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Abstract—Recommender-systems has been a significant re-
search direction in both literature and practice. The core of rec-
ommender systems are the recommendation mechanisms, which
suggest to a user a selected set of items supposed to match user
true intent, based on existing user preferences. In some scenarios,
the items to be recommended are not intended for personal use
but a group of users. Group recommendation is rather more
since group members have wide-ranging levels of interests and
often involve conflicts. However, group recommendation endures
the over-specification problem, in which the presumingly relevant
items do not necessarily match true user intent. In this paper,
we address the problem of diversity in group recommendation
by improving the chance of returning at least one piece of
information that embraces group satisfaction. We proposed a
bounded algorithm that finds a subset of items with maximal
group utility and maximal variety of information. Experiments
on real-world rating datasets show the efficiency and effectiveness
of our approach.

Index Terms—group recommendation, diversification

I. INTRODUCTION

Recommender-systems has been an important research di-
rection in both literature and practice, especially with the
growth of traditional e-commerce applications (e.g. Netflix,
Amazon) as well as new Web applications such as social
networks [1] (e.g. Facebook, Twitter) and mobile products
(e.g. Instagram). The core of recommender systems is the
recommendation mechanisms, which suggest to user a selected
set of items supposed to match user true intent, often via the
relevancy notion of user queries or preferences [2], [3], [4], [5].
The suggestions relate to various decision-making processes,
such as what products to buy, what user to follow, or what
tweets to read.

Most of the techniques of recommendation systems are
designed to individual users. However, in some scenarios the
items to be recommended are not intended for personal usage
but for a group of users [6], [7]. Such scenarios, for example,
include planning a tour for colleagues, looking for a restaurant
for close friends, or finding a movie for a family. Group
recommendation is rather more complicated than individual
recommendation since the preferences of group members are
varying and often involve conflicts. Many challenges and
associated approaches in individual recommendation are no
longer applicable for group recommendation. A major issue
in this research area relates to the difficulty of quantifying the
objective function and evaluating the effectiveness of group
recommendations.

While various group recommendation techniques have been
proposed [8], their proposed objective functions are rather

heuristics. As a result, there is no winner for all settings.
Moreover, group recommendation endures the same over-
specification problem as in individual recommendation, in
which the presumingly relevant items do not necessarily match
user true intent. While users enjoy receiving relevant items,
they also tend to loose interest quickly if the recommended
items are too similar to each other. Last, but not least, each
group member has different taste and interest, receiving similar
items might incur bias and conflicts between group members.

In this paper, we address the problem of diversity in
group recommendation, which improves group satisfaction
by increasing the variety of information shown to group
members. The goal of recommendation diversification is to
identify a list of items that are dissimilar with each other, but
nonetheless relevant to the group’s interests. Generating good
recommendations is a non-trivial task. On one hand, group
members expect to receive content items that are relevant to
their interests. On the other hand, group members get bored
quickly if all the recommended items are too similar to each
other.

The problem of diversifying recommended items for a group
of users is more challenging than for individuals. Dissimilar
items may have different relevances to different group mem-
bers and this disagreement among members must be resolved.
Therefore, group recommendation diversification becomes a
tri-criteria optimization problem, in which we have to (i)
maximize the group satisfaction of items, (ii) minimize the
disagreement between group members, and (iii) minimize the
similarity between items.

TABLE I: Ratings provided by group members.

i1 i2 i3 i4 i5 i6 i7 i8

u1 10 10 3 3 1 - 7 7
u2 - 1 9 9 - 1 7 7
u3 1 - 6 6 10 10 7 7

rating scale: [1-10]
-: missing preference

Example 1. Consider a 3-member group G = {u1, u2, u3}.
Assume that there are 8 items in contention {i1, i2, ..., i8},
and 2 items are required to be recommended for this group.
The users provide preferences in the rating scale from 1 to
10. In terms of average rating, recommending {i7, i8} to the
group would be the best choice. However, i7, i8 is similar to
each other (in terms of rating or content features). Since the
true intention of each member is not known before-hand, it
is better to include a novel item such as i3 or i4. Moreover,
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since some preferences could be missing, it would be unfair
for items with incomplete preferences. Therefore, the returned
set of items should maximize their utility to the group as well
as the content dissimilarity between them.

Our contributions and the paper structure are summarised
as follows.
• We formalize the problem of diversifying group recom-

mendation and define its semantics as an objective function
that aims at maximizing item satisfaction to group and
minimizing the similarity between items in Section III.

• We incorporate aggregation functions to combine individ-
ual preferences into a single group utility in Section IV.

• We solve the diversified group recommendation in Sec-
tion V. In that, we study the complexity and diminishing
returns properties of the problem. Then we design an
efficient algorithm based on the monotonicity and sub-
modularity of the objective function. Finally, we prove the
bounded optimality of our algorithm.

• We conduct a comprehensive experimental evaluation in
Section VI.

Finally, we describe the related work in Section II and
conclude the paper in Section VII.

II. RELATED WORK

Individual Recommendation. From the beginning, recom-
mender systems are designed to make recommendations for
individual users. Since recommendations are personalized,
different users receive diverse suggestions. The common goal
of individual recommendation is to predict user true preference
for items he has not rated before, and return items with high-
est estimated preferences [2], [9]. Existing recommendation
strategies are fallen into the most popular categories: content-
based similarity analysis [10] and collaborative filtering [11],
and some hybrid [12]. The item-based techniques leverages
the notion of item similarity to recommend new similar items
to old rated items; whereas, the collaborative filtering methods
rely on other users who share similar interests. Some further
techniques [13] incorporate addtional information such as
social network profiles and interconnecting interests. Rec-
ommender systems have been applied in various real-world
platforms, such as web sites recommendation [14], Amazon’s
product recommendation [15], Google’s news personaliza-
tion [16], and Netfix’s movie recommendation [17]. For more
surveys, see [18], [19]. While our work considers group rec-
ommendation as a general form, the proposed diversification
algorithm can be applied to individual recommendation as
well.

Group Recommendation. The problem of group recommen-
dation has also been investigated intensively in the litera-
ture [20], [21], [22], [23], [24]. When it comes to a group
of interests or a group of closed members, personalized
recommendation becomes inapplicable since group members
have wide ranging levels of interest and importance. Group
recommendation is more challenging than individual recom-
mendation, for survey, see [25]. Even if we know perfectly
what is good for individual users, a more complicated question

is how to combine individual user recommendation. Various
group recommendation methods have been proposed for differ-
ent data types (e.g. music, movies, TV program) and different
groups (e.g. family, friends, social network). Existing methods
have focused mostly on aggregating individual preferences to
produce recommendations to a group [23]. One approach is
to extend the individual recommendation to groups by aggre-
gating group members into a single virtual user and making
recommendations to that user, which provides a unified view of
a group. For instance, Jameson et al. [23] summarizes different
strategies for aggregating individual ratings, including average
satisfaction, minimum misery, and maximum satisfaction. An-
other approach is making a seperate recommendation for each
user first and then merging the individual lists into a single
one for the group, which offers better flexibility for heuristics.
For example, the PartyVote system [26] provides a democratic
mechanism for selecting music at social events (each group
member is guaranteed to have at least one of his preferred
songs selected), but only works for group with large options.
Vildjiounaite et al. present a TV program recommender sys-
tem [27] for family based on view history, but not work
foor static family group. Most popular group recommendation
systems include PolyLens [28], MusicFX [29], and TV recom-
mender [30]. In general, they incorporate group characteristics,
social value functions, member rights, and system interfaces.
While existing group recommendation rely on heuristics and
there is no winner. Our approach increases the potential of
capturing true preference intention of group members by
providing theoretical and empirical study of diversification.

Result Diversification. Most information systems focus on
increasing the utility of retrieved items and neglect diversity.
However, there haas been a push towards diversifying the
search results in the last decades [31]. Diversification implies
a trade-off between selecting data of relevance to user intent
and filtering data having similar characteristics. As such, di-
versification is often characterized as a bi-criteria optimization
problem, in which the twin objectives of being relevant and
being dissimilar compete with each other[32]. Most represen-
tative diversification techniques include threshold-based ap-
proach: Swap [33] and Motley [34]; function-based approach:
MMR [35] and MSD [31]; and graph-based approach: Affinity
Graph [36] and GrassHopper [37]. For survey and benchmark,
see [38], [39]. While our work is orthorgonal to diversification
works by developing specific mechanisms for diversified group
recommendation, further improvements can be incorporated
from these works.

III. MODEL AND PROBLEM STATEMENT

Setting. A group G consists of a set of members
{u1, u2, . . . , un}. Denote D = {d1, d2, . . . , dm} is the uni-
versal set of items available in the system, from which a
recommender has to suggest a set of at most k items to the
group G.

User preference pref(u) is modelled in the form of a
vector of length m where the value at position j, denoted
as pref(u, dj), provides his preference for the corresponding
item dj . We consider a universal preference model, which is
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either numeric or ordinal preferences. Under numeric prefer-
ence model, the user expresses his preference for an item as a
real number between 0 and 1, where 1 represents the highest
preference (e.g. normalizing movie ratings in 10 or 100 score
band to [0, 1]). Under an ordinal preference model, user relies
on a discrete set of values (e.g. ‘not liked’, ‘neutral’, ‘liked’,
‘very liked’). It is noteworthy that ordinal values are more
generic than categorical values, since there exist an ordering
between preferences.

Let L be the rating domain. Then, user preferences are
modeled as an n×m rating matrix:

M =

m11 . . . m1k

. . . . . . . . .
mn1 . . . mnk


where mij ∈ (L ∪ {�}) for 1 ≤ i ≤ n, 1 ≤ j ≤ m. Here, the
special label � denotes that a user did not assign a preference
to an item. We write M(u, d) to denote the preference of user
u for item d.

A recommender will rank the items in a decreasing order of
group utility, which reflects the degree to which the item is pre-
ferred by the members. For any utility function r : D → R≥0,
which returns the non-negative relevance score for each item
in D with respect to a group of users, our goal is to find a
subset I of k items, which are most preferred to the group and
diversified among themselves. Here the positive integer k is of
particular practical relevance for recommendation systems [2].
An appropriate value for k depends on the user and the
application context.

Denote S(d, d′) be a measure of similarity between two
items di and dj . Our model accepts any non-negative, symmet-
ric similarity function (i.e. S(d, d′) = S(d, d′) and S(d, d′) ≥
0). When we describe the objective function as well as the pro-
posed optimization algorithm, it is convenient to introduce the
weight factor q(d) =

∑
d′∈D S(d, d′)r(d′), which measures

the importance of item i. To be specific, if di is similar to many
items that are preferred by the group, it is more important than
the items whose neighbors are not preferred. For example, if
d is close to the center of a big cluster preferred by the group,
the value of q(d) is large.
Recommendation process. We follows a two-step approach,
which is illustrated in Fig. 1. The input is a rating matrix
provided by a group for some items. The first step is respon-
sible for Aggregating Individual Preferences, which combines
different user preferences into a single group utility that ranks
the items. Section IV will discuss in details the design princi-
ples and concrete group utility functions. However, the group
utility often ranks similar items consecutively (otherwise, they
are less likely to be similar). While group members embrace
the overall satisfaction, they also tend to loose interest quickly
if the recommended items are too similar to each other. Since
individual as well as group true intention is not known before-
hand, we increase the chance of recommendation matching
true preferences by Diversifying Group Aggregation, which
optimizes both utility and diversity as a bi-objective problem.
Section V realizes this step by proposing an efficient solution
to the diversified group recommendation problem formulated
below.

Diversified group recommendation. Our goal is to find a
subset IG ⊆ D of k items which are both useful to the group
G and diversified among themselves. To this end, we propose
the following optimization problem.

Problem 1 (Diversified Group Recommendation). Given a
group of users G, a universal set of items D, a group
aggregation function r : D → R≥0, returns a list of item
IG of k items that maximize the objective function:

IG = arg max
I⊆D

g(I) (1)

where

g(I) = w
∑
d∈I

q(d)r(d)−
∑
d,d′∈I

r(d)S(d, d′)r(d′) (2)

where w is a positive regularization parameter that defines
the trade-off between the two terms, and I consists of the item
that will be returned in the group recommendation.

Intuitively, in the objective function g(I), the first term
measures the weighted overall utility of I with respect to the
group, and q(di) is the weight for r(di). It favors relevant
examples from big clusters. In other words, if two items are
equally preferred by the group, one from a big cluster and the
other isolated, by using the weighted relevance, we prefer the
former. The second term measures the similarity among the
items within I . That is, it penalizes the selection of multiple
preferred items that are very similar to each other. By including
this term in the objective function, we seek a set of items which
are preferred to the group, but also dissimilar to each other.

IV. AGGREGATE INDIVIDUAL PREFERENCES

Now we design the group utility function r(.) that maxi-
mizes average satisfaction and ensures some degree of fairness.
The output of the utility function is a vector of length m.

A. Design Principles

Our function takes into account the following requirements:
(R1) User satisfaction: reflects the degree to which the item is

preferred by the members. The more group members prefer
an item, the higher its score should be for the group.

(R2) Fairness: reflects the level at which members disagree
with each other.

B. Group Utility Function

1) Numeric Preference Model: User satisfaction (R1) is
modelled as follows. The satisfaction of an item d to a group
G, denoted as pref(G, d), is an aggregation over pref(u, d)
where u ∈ G. We consider two main aggregation strategies:
• Average: pref(G, d) = 1

|G|
∑
u∈GM(u, d). This approach

considers each item independently and each user equally. A
disadvantage of this approach is the sensitivity to outliers,
e.g., some users could provide very high rating scores or
very low rating scores. An improved version to avoid the
outlier sensitivity is Beta model [40], in which 5% upper
scores and 5% lower scores will be excluded from the
aggregation.
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Fig. 1: Diversified Group Recommendation

• Least-Misery: pref(G, d) = minu∈GM(u, d). This is
another most prevalent mechanisms being employed re-
cently [23]. This mechanism captures cases where some
user has a strong preference (e.g., a vegetarian cannot go to
a steakhouse) and that user’s preference acts as a decider.

Fairness (R2) is modelled as follows. The disagreement of
a group G over an item d, denoted as dis(G, d), reflects the
degree of consensus in the preference scores for d among
group members. Intuitively, the closer the preference scores
for d between users u and v, the lower their disagreement
for d. We consider the following two main disagreement
computation methods:
• Average pair-wise disagreements:

dis(G, d) =
2

|G|(|G| − 1)

∑
u,v∈G

|M(u, d)−M(v, d)|

where u 6= v and u, v ∈ G. This function computes the
average of pair-wise preference differences for the item
among group members.

• Disagreement variance:

dis(G, d) =
1

|G|
∑
u∈G

(M(u, d)−mean)2

where mean = 1
|G|

∑
u∈GM(u, d) is the mean of all the

individual preferences for the item. This function computes
the mathematical variance of the preferences for the item
among group members.

Finally, we combine the user satisfaction and the fairness for
an item in the utility function. Formally, the utility function,
denoted as r(G, d) (or r(d) for short), combines the group
satisfaction and the group disagreement of d for G into a single
group recommendation score using the following formula:

r(G, d) = w1 × pref(G, d) + w2 × (1− dis(G, d)) (3)

where w1 +w2 = 0 and each specifies the relative importance
of satisfaction and fairness in the overall utility score.

2) Ordinal Preference Model: The preference of a user u is
transformed to an ordering τ of a subset I ⊆ D; i.e., τ = [i1 ≥
i2 ≥ . . .], with each ij ∈ I and ≥ is some ordering relation on
I . τ is also called a rank list on D; i.e. τ(d) = j is the rank of
d w.r.t. τ . Let |τ | denote the number of elements in τ . τ might
not be a full list; i.e. |τ | < |D|. Denote Θ = {τ1, . . . , τn} is the
set of all user preferences. The problem output is to determine
an aggregated ranking r(.) such that r(.) is a full list over the
union of elements of τ1, . . . , τn; i.e. r : ∪τ∈R∪i∈τ i→ [1, |D|].

The research efforts on solving the ranking aggregation
problem can be categorized into the following methods.

• Score based: This approach aggregates the final ranking
by computing the ranking scores for each item (higher the
score, better the rank). The process consists of following
steps. In the first step, for each item d ∈ D, we will com-
pute the normalized ranking scores wτ1(o), . . . , wτn(d)
over all user preferences τ ∈ Θ. Several normaliza-
tion computations [41] include score normalization, Z-
score normalization, rank normalization, and Borda rank
normalization [42], [43]. In the second step, we will
compute the aggregated ranking score r(d) of the item
d by combining its normalized ranking scores; i.e. r(d) =
f(wτ1(d), . . . , wτn(d)). One simple way to implement
the aggregation function f(.) is using the sum, min, or
max [44]; e.g. r(d) =

∑
τ∈Θ wτ (d). A complex imple-

mentation is using a weighted version of the sum [44]:
r(d) = hΘ(d)

∑
τ∈Θ wτ (d), where hΘ(d) is the number

of occurrences of d over all user preferences in Θ with
the idea is that the items appear in more user preferences
are likely to be more important. In the final step, the
aggregated ordering can be simply obtained following the
decreasing order of the aggregated ranking scores.

• Distance based: This approach computes the ranking ag-
gregation by solving an optimization formulation, in which
the objective function is the distance between user order-
ings. Formally, ∆(.) is the distance measurement between
two or many orderings. The ranking aggregation problem
then becomes finding an aggregated ranking r(.) such that
the distance value ∆(r, τ1, . . . , τn) is minimal. A wide
range of distance measures has been proposed [45], such
as Spearman footrule distance (which uses the absolute
difference between the ranks of an item according to the
given rankings τi and τj) and Kendall distance (which uses
the number of pairwise adjacent transpositions needed to
transform from ranking τi to another ranking τj).
In general, the optimization formulation of ranking ag-
gregation is intractable (e.g., using the Kendall distance
with k = 4 is NP-Hard [46]). Therefore, a wide range
of important properties that an aggregation solution needs
to satisfy have been studied in the literature, such as
Condorcet property [47].

• Probability based: The methods in this category capture
the item ranking via probabilistic interpretation. Techni-
cally, for two given items di and dj , we will compute
the probability of an item di having a greater order of an
item dj ; i.e. Pr(di > dj). Several probabilistic models
to compute Pr(di > dj) have been proposed, such as
Bradley-Terry model [48] and Thurstone model [49]. The
Bradley-Terry model formulates a logistic function over
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the true ranking scores of di and dj (i.e., Pr(di > dj) =
eτ(di)

eτ(dj)+eτ(dj)
) and performs a log-likelihood maximization

to compute all the pair-wise probability values and the
true ranking scores simultaneously. The Thurstone model
follows a similar process, in which the ranking score for
each item has a Gaussian distribution.
With the similar idea of computing pair-wise ranking
probabilities, one can use Markov chains [46] in which
the states correspond to the items to be ranked and
the transition probability from state i to state j is the
probability of the item di has a higher order of the item
dj w.r.t. some user rankings τ ∈ Θ. As such, computing
the aggregated ordering is equivalent to determining the
stationary probability distribution of the Markov chains,
which can be done in polynomial time [46]. Probabilistic
models in general and Markov chains in particular not
only offer a parameterizable approach but also open ways
to integrate different heuristics into the probability formu-
lation (e.g., one could use other distributions rather than
Gaussian distribution). As such, the ranking aggregation
can be iteratively refined by these heuristics, producing a
fine-grained aggregated ranking.

In sum, while the score-based focuses on computing a
unified utility score for the ranking, the distance-based method
aims to minimize the differences between the final utility and
individual ones. Taking advantages of the two, the probability-
based allows more fine-grained combination of ordinal pref-
erences.

V. DIVERSIFY GROUP AGGREGATION

In this section, we present the optimization solution for
diversified group recommendation problem. We start by an-
alyzing the problem complexity, and then study the properties
of the objective function, followed by a greedy algorithm.

A. Problem Complexity

Recall that in the diversified group recommendation prob-
lem, we want to find a subset of k items that collectively max-
imize the objective function. Unfortunately, by the following
theorem, it is NP-hard to find the optimal solution.

Theorem 1. Problem 1 is NP-hard.

Proof. We prove Theorem 1 by reduction to the Densest k-
Subgraph problem, which is known to be NP-Complete [50].
Let G = (V,E) be an undirected graph with vertices V and
edges E. Let W be the |V | × |V | binary connectivity matrix
(symmetric), i.e., Wi,j = 1 if {i, j} ∈ E, and Wi,j = 0
otherwise. Then, the Densest k-Subgraph problem requires
identifying a subgraph of k vertices with a maximal number
of edges:

arg max
V̂⊆V,|V̂ |=k

∑
i,j∈V̂

Wi,j

which is equivalent to

arg max
I=(V \V̂ ),|V̂ |=k

2
∑

i∈V̂ ,j∈I

W ′i,j +
∑
i,j∈I

W ′i,j (4)

where W ′i,j = 1−Wi,j . Now we will show that Eq. 4 can be
viewed as an instance of the optimization problem in Eq. 1.
To this end, let all utility scores be one (r(d) = 1 for all
d ∈ D) and choose w = 2. Then, our objective function g(I)
becomes:

g(I) = 2
∑
d∈I

q(d)−
∑

d1,d2∈I

S(d1, d2)

= 2
∑
d1∈I

∑
d2∈D

S(d1, d2)−2
∑

d1,d2∈I

S(d1, d2)+
∑

d1,d2∈I

S(d1, d2)

= 2
∑

d1∈(D\I)

∑
d2∈I

S(d1, d2) +
∑

d1,d2∈I

S(d1, d2) (5)

The latter is equivalent to the objective function in Eq. 4, so
that selection of k items corresponds to the finding the densest
subgraph of (|V | − k) nodes.

B. Diminishing Returns Properties

Given that Equation 1 is NP-hard in general, we seek for a
provably near-optimal solution. It turns out that it is possible to
find such a solution based on the diminishing returns properties
of the objective/goodness function g(.).

The first property considers the influence of the utility
scores. We observe that the higher utility a item is to the
group, the higher are the chances of it to be part of the
recommendation.

Proposition 1 (Strength of Utility). Let D be a corpus of
items, r an utility ranking, I ⊂ U a recommendation, and
d ∈ D \ I a non-recommended item. Let r′ be an utility score
defined such that r′(d) > r(d) and r′(x) = r(x) for x ∈
D \ {d}. For w ≥ 2 it holds that:

gr′(I ∪ {d}) ≥ gr(I ∪ {d})

Proof. The strength of utility follows by this transformation
(w ≥ 2):

gr′(I ∪ {d})− gr(I ∪ {d})

= gr′(I) + wq(d)r′(d)− 2r′(d)
∑
x∈I

S(x, d)r′(x)

− gr(I)− wq(d)r(d) + 2r(d)
∑
x∈I

S(x, d)r(x)

= wq(d)[r′(d)− r(d)]− 2
∑
x∈I

S(x, d)r(x)[r′(d)− r(d)]

= w
∑
x∈D

M(x, d)r(x)[r′(d)−r(d)]−2
∑
x∈I

M(x, d)r(x)[r′(d)−r(d)]

= (w − 2)
∑
x∈I

M(x, d)r(x)(r′(d)− r(d))

+ w
∑

x∈D\I

M(x, d)r(x)[r′(d)− r(d)] ≥ 0

Our notion of goodness further shows monotonicity. That
is, when adding more items to an existing recommendation,
the goodness of the overall recommendation will increase.
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Proposition 2 (Monotonicity). Let D be a corpus of items, r
a utility ranking, I ⊂ D a recommendation, and I ′ ⊆ (D \ I)
a set of non-selected items. For w ≥ 2 it holds that:

g(I ∪ I ′) ≥ g(I)

Proof. Monotonicity follows by the following transformation
(w ≥ 2):

g(I ∪ I ′)− g(I) = w
∑
x∈I′

q(x)r(x)

− (
∑

x∈I′,x′∈I

r(x)S(x, x′)r(x′) +
∑

x∈I,x′∈I′

r(x)S(x, x′)r(x′)

+
∑

x,x′∈I′

r(x)S(x, x′)r(x′)) = w
∑
x∈I′

r(x)
∑
x′∈D

S(x, x′)r(x′)

− (2
∑

x∈I,x′∈I′

r(x)S(x, x′)r(x′) +
∑

x,x′∈I′

r(x)S(x, x′)r(x′))

≥ 2
∑
x∈I′

r(x)
∑
x′∈D

S(x, x′)r(x′)− (2
∑

x∈I,x′∈I′

r(x)S(x, x′)r(x′)

+
∑

x,x′∈I′

r(x)S(x, x′)r(x′)) = 2
∑
x∈I′

(
∑
x′∈D

S(x, x′)r(x′)

−
∑

x′∈I∪I′

S(x, x′)r(x′)) = 2
∑
x∈I′

∑
x′ /∈I∪I′

S(x, x′)r(x′) ≥ 0

Finally, our goodness function shows submodularity, which
refers to the property that marginal gains in goodness start
to diminish due to saturation of the objective. That is, the
marginal benefit of adding items to the recommendation de-
creases w.r.t. the size of the recommendation.

Proposition 3 (Submodularity). Let D be a corpus of items, r
a utility ranking, I ⊂ D a recommendation, and d, d′ ∈ D \ I
non-selected items. Then, it holds that:

g(I ∪ {d}) + g(I ∪ {d′}) ≥ g(I ∪ {d, d′}) + g(I)

Proof. Submodularity follows by the following transforma-
tion:

g(I ∪ {d}) + g(I ∪ {d′}) ≥ g(I ∪ {d, d′}) + g(I)

⇔ g(I ∪ {d′})− g(I) ≥ g(I ∪ {d, d′})− g(I ∪ {d})

⇔ wq(d′)r(d′)− 2r(d′)
∑
x∈I

r(x)S(x, d′) ≥ wq(d′)r(d′)−

2r(d′)
∑

x∈I∪{d}

r(x)S(x, d′)⇔ 2r(d)r(d′)S(d, d′) ≥ 0

C. Greedy Algorithm

Now we attempt to develop an algorithm for solving the
diversified group recommendation problem. First of all, we
propose a greedy algorithm that well approximates the op-
timization objective in general. Then, we give a complexity
analysis and finally we provide an illustrative example of the
algorithm.

Algorithm 1: A greedy algorithm for diversified group
recommendation

input : A set of items D, a group of users G
A non-negative group utility function r
An item similarity matrix S
A weight w ≥ 2, and a budget k

output: A subset I of k items to be recommended for the group

// Step 1: Initilization
1 Compute the utility score r(d) for each item d ∈ D in context of G ;
2 Compute the weight factor q(d) =

∑
d′∈D S(d, d′) · rd′ for each item

d ∈ D ;
3 Initialize I as an empty list ;
4 Initialize the ranking score s(d) = wq(d)r(d) for each item d ;
// Step 2: Greedy Selection

5 for k iterations do
6 Pick x = arg maxd∈D,d/∈I s(d) ;
7 Append x to I ;
8 Update the ranking score s(d) = s(d)− 2r(x)S(d, x)r(d) for remaining

items d ∈ D \ I ;

9 return I

1) Algorithm Description: In light of the complexity result
in Theorem 1, we look for heuristics that can approximate
the optimization objective. The challenge is that using simple
greedy algorithms based on thresholding [33], [34] has no
guarantee on the group utility of the output. To overcome this
challenge, we propose the following greedy algorithm, whose
near-optimizality can be bounded, based on the diminishing
returns properties in Section V-B. The idea is that we try to
expand the list of recommended items one-by-one to maximiz-
ing the objective function for k iterations. At each iteration,
we need to identify the item d to maximize g(I ∪ {d}). As a
result, a naive way to find d is to traverse all of the remaining
items D \ I for each iteration.

The details of our greedy algorithm are given in Algorithm
1. It takes a set of items D, a group of users G, a group
utility function r(.), a item similarity matrix S, a regularization
parameter w, and a budget k as input and returns a ranking
list I of k items to be recommended for a group of users
(the first item has the highest rank). In the initialization step,
we begin by computing the utility score of each item. As
mentioned above, our approach does not have any restriction
on the utility model. Besides, we also compute the weight
factor q(.) and the ranking score s(.) for each item. In the
greedy selection step, we perform k iterations to select k items
into the ranking list I . At each iteration, we add one more item
with the highest ranking score into the current list (line 6). Our
algorithm is guaranteed to converge since it iterates k times
and the measures (utility, similarity, etc.) can be normalized
to [0, 1] before-hand.

2) Algorithm Analysis: Now we analyze our proposed
algorithm through the following guarantees. First, we observe
that the approximation error of the proposed algorithm is
bounded.

Guarantee 1 (Near-Optimality). Alg. 1 is a (1- 1/e)-
approximation for diversified group recommendation.

Proof. Following the analysis of diminishing returns proper-
ties in [51], we have the fact that given a subset I of k
items constructed greedily by selecting a item x one at a
time with largest marginal increase g(I ∪ {x}) − g(I), we
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have g(I) ≥ (1 − 1/e)g(I∗) ≈ 0.63g(I∗), where I∗ is the
optimal solution. Our greedy heuristic in Alg. 1 resembles
this fact in the sense that the ranking score of each item d
is initialized as wq(d)r(d) (line 4) and subtracted a quantity
of 2r(x)S(d, x)h(d) (line 8) each iteration, which ends up
equal to g(I ∪ {x}) − g(I). As a result, selecting the item
with highest ranking score is equivalent to maximizing the
marginal increase of g at each iteration.

Guarantee 2 (Complexity). The time complexity and the
space complexity of Alg. 1 is O(|D|2 + k|D|) and O(|D|2),
respectively.

Proof. For time complexity, we have a quadratic term and a
linear term. The quadratic term |D|2 comes from the com-
putation of weight factor in the initialization step. The linear
term k|D| comes from the fact that in each of k iterations, we
compute the ranking score for all remaining tags and iterate
them for choosing the one with highest score.

For space complexity, it can be easily seen that the only
expensive cost is to store the similarity between all pairs of
items, whose exact size is |D||D−1|

2 . The similarity between
an item and itself is unnecessary to be stored; i.e. S(d, d) =
0.

Further, our algorithm shows stability in the recommenda-
tion, which is important to support incremental recommender
systems. If a group is first presented with the top-5 items, but
then extends the result to the top-10, the expectation is clearly
that the top-10 remain unchanged.

Guarantee 3 (Stability). For I as returned by Alg. 1, let Ik1 =
{d1, . . . , dk1}, Ik2 = {d′1, . . . , d′k2} be selections with di ∈ I
for 1 ≤ i ≤ k1 and d′j ∈ I for 1 ≤ j ≤ k2, and 0 < k1 ≤ k2.
Then, it holds that di = d′i for 1 ≤ i ≤ k1.

Proof. In Alg. 1, the construction of I is performed stepwise
and elements are never removed from I . The selection also
is deterministic: we always add the item with highest ranking
score (line 6). Thus, a larger selection sequence comprises a
smaller selection sequence as a prefix.

Finally, we also highlight that the selection heuristic is fair
in the sense that it is genuinely driven by the utility function.

Guarantee 4 (Fairness). Let D be a corpus of items. For any
set of items I ⊂ D, there exists an utility function r, s.t. Alg. 1
returns I∗ = I .

Proof. Given I , we define r as r(d) = 1 if d ∈ I and r(d) = 0
otherwise. Then, the ranking score s(d) is positive if d ∈ I ,
whereas s(d) = 0 if d /∈ I . Hence, the algorithm selects only
elements from I .

Example 2. Contiuning the motivating scenario in Example 1,
our algorithm runs as follows. Using average aggregation with
w1 = 1 and w2 = 0, we have r(d1) = r(d2) = r(d5) =
r(d6) = 10+1

3 = 3.67, r(d3) = r(d4) = 3+9+6
3 = 6, r(d7) =

r(d8) = 7. Let us define S(di, dj) = 1/|r(di) − r(dj)|, we
have q(d1) = q(d2) = q(d5) = q(d6) = 6/(6−3.67)+7/(7−
3.67) = 4.68, q(d3) = q(d4) = 3.67/(6−3.67)+7/(7−6) =
8.58, q(d7) = q(d8) = 3.67/(7 − 3.67) + 6/(7 − 6) = 7.10.

Now running Alg. 1 with w = 2, at the beginning, we have
s(d1) = s(d2) = s(d5) = s(d6) = 2 ∗ 4.68 ∗ 3.67 = 34.35,
s(d3) = s(d4) = 2 ∗ 8.58 ∗ 6 = 102.96, and s(d7) = s(d8) =
2 ∗ 7.10 ∗ 7 = 99.4. Therefore, at the first iteration, we can
select d3 (or d4). Then, the ranking score is updated, s(d1) =
s(d2) = s(d5) = s(d6) = 34.35 − 2 ∗ 6/(6 − 3.67) ∗ 3.67 =
15.45, s(d4) = 102.96−2∗6/(6−6)∗6� 0, s(d7) = s(d8) =
99.4−2∗6/(7−6)∗7 = 15.4. Therefore, at the second iteration,
we can select d1 (or d2, d5, d6). The procedure continues until
we reach the pre-defined budget k of recommendation.

VI. EVALUATION

A. Experimental Setup

Datasets. We utilize the following datasets (see also Table II):
• MovieLens: The dataset contains 1682 movies rated by 943

users. 100,000 ratings ranging from 1 to 5 were given by
these users. Each user rated at least 20 movies 1.

• TripAdvsor: The dataset contains 37K ratings about 2K
hotels provided by 34K users [52].

• Amazon: The dataset contains 16K MP3 player reviews
provided by 15K users for 686 items [53].

TABLE II: Datasets

Dataset #Items #Users #Ratings

MovieLens 1,682 943 100K
TripAdvisor 2,232 34,187 37,181
Amazon 686 15,004 16,680

These datasets can be used for both numeric preference
model and ordinal preference model, as the ratings are limited
to a small ordered set of integers.
Evaluation Metrics. We use the following measures:
• Subtopic recall (S-Recall): A popular metric to evaluate

the diversity of recommendation is subtopic recall. For
example, an item on Amazon has description and belong to
different categories/tags, which may cover many subtopics,
so that a set of items is diverse if it contains many
subtopics. For a group G, the metric measures the propor-
tion of unique subtopics retrieved in the recommendation
result IG:

S-Recall(G, IG) =
|
⋃
d∈IG subtopics(d)|

subtopics({d ∈ D|∃u ∈ G,M(u, d) 6= �})
(6)

where the term in the divisor represents the set of all items
receiving at least one rating.

• Normalized utility: This metric measures the utility of
the diversified recommendation w.r.t. the top-k item set
returned, i.e., it indicates how well a recommendation
preserves utility when diversifying the result. Formally,
normalized utility (∈ [0, 1]) of a topk item recommenda-
tion I from corpus D is defined as the sum of selected
utility scores over the sum of the k highest utility scores:

nR(D, r, I) =

∑
d∈I r(d)

maxI′⊆D,|I′|=|I|
∑
d∈I′ r(d)

(7)

1http://www.grouplens.org/node/73

http://www.grouplens.org/node/73
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Here, a higher score indicates higher utility and
nR(D, r, I) = 1 means that I is exactly the recommenda-
tion of items with the highest utility scores.

There are other metrics for recommendation systems [25].
However, it would be inapplicable to use them in our setting
since they do not consider the diversity aspect. Moreover,
novel recommendation systems rely on user study [8], [54],
which we also perform in Section VI-D.

Group formation. We report efficiency and effectiveness
results for the recommendation under different group utility
functions. Performance is evaluated by mainly varying three
parameters: k – the number of items in the generated recom-
mendation, n – group size, and m – total number of items.
A group is simulated by random sampling from the user pool
following the long-tail distribution of user-rating (user with
more ratings is more likely to be chosen). The total running
time of the system is the aggregated running time of group
utility function and the recommendation.

Baselines. For a competitive evaluation, a brute-force al-
gorithm is implemented by enumerating and evaluating all
possible combinations for selecting the best recommendation
according to the good function g(.). Traditional group rec-
ommendation techniques are compared via a baseline called
utility-only, which returns the top-k items with highest utility
values. Another baseine is k-medoids clustering [55], which
generates k clusters of item sets according to group utility
and picks a representative from each cluster. We study the
two competitive group utility functions: average-based (av-
erage satisfaction and average disagreement) [40] and score-
based [44].

Experimental environment. Experimental results have been
obtained on an Intel Core i7 system (3.4GHz, 12GB RAM).
The results are averaged over 100 runs.

B. Runtime Performance

Effects of data domains. We evaluate the running time of
recommendation with the item size n = 100, recommendation
sizek = 5, and group size m = 10. The users and items
are chosen randomly from each dataset. The three recommen-
dation algorithms are compared: brute-force, k-medoids, and
greedy. The average-based group utility function is used with
w1 = w2 = 0.5. The trade-off parameter between utility and
diversity is w = 2.

MovieLens Amazon TripAdvisor
Dataset

0.0

0.2

0.4

0.6

0.8

1.0
Runtime (s)

brute-force k-medoids greedy

Fig. 2: Effects of data size on running time

Fig. 2 illustrates the efficiency result for three aforemen-
tioned datasets. It can be clearly seen that our proposed greedy
algorithm is the fastest one since it runs in linear time if the
pre-processing time of item similarity computation is not taken
into account. Another interesting finding is that the running
time on MovieLens dataset is quite slow since its rating matrix
is more dense than the other datasets.
Effects of recommendation size. To study the effects of the
top-k value – recommendation size – on the computation time
required by our greedy algorithm for diversified group recom-
mendation. We vary k from 10 to 50, which is a suitable range
for user cognitive load. According to the previous experiment,
we choose MovieLens for representative evaluation with 1000
users and 1000 items are chosen randomly. We also study two
group utility functions: average-based and score-based.

0 10 20 30 40 50
Top-K

0

40

80

120

160

Runtime(ms)
average-based
score-based

Fig. 3: Effects of recommendation size on running time

Fig. 3 shows the computation time (in ms) with respect
to the recommendation size. We observe that a solution is
obtained quickly, in less than 170ms for k = 50, which
can be seen as the maximum number of items a group can
discuss with each other. In fact, we observe a linear trend of
computation time despite the super quadratic time complexity
of our algorithm. This highlights that our approach is efficient
for real datasets.

C. Effectiveness of Group Recommendation

Next, we study the effects of varying the top-k value on
the diversity and utility of the result. We use S-Recall and
Normalized Utility to measure diversity and utility of the group
recommendation returned by our approach, respectively. We
randomly set the tuning parameter w1, w2 (trade-off between
satisfaction and fairness) and w (trade-off between utility
and diversity) according to uniform distributions U (0, 1) and
U (2, 10), respectively. For each dataset, 1000 users and 1000
items are chosen randomly. The results are averaged across
the used datasets. Three group recommendation methods are
compared: greedy, k-medoids, and utility-only. The brute-force
method is intractable, thus is not evaluated.

The results are depicted in Fig. 4 and Fig. 5. Both the k-
medoids and utility-only baselines are limited by the trade-
off between utility and diversity. They have either small S-
Recall with large Normalized Utility or large S-Recall with
small Normalized Utility. Our proposed greedy algorithm
outperforms k-medoids in terms of normalized utility and even
better than two of them in terms of S-Recall. When increasing
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Fig. 4: Top-k vs. diversity
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Fig. 5: Top-k vs. utility

the top-k value, the greedy method increases S-Recall and
Normalized Utility increase as well. This is expected because
of two reasons. First, when the size of the recommendation set
increases, more dissimilar item are included as a result of the
output objective of Alg. 1, leading to higher S-Recall. Second,
if we consider larger results, more useful items are chosen
by our algorithm since the chance that they are dissimilar is
higher, leading to higher Normalized Utility. We conclude that
our algorithm is stable and (except for a very few outliers) non-
decreasing with the number of representative items presented
to user.

D. User Study

To evaluate our techniques also from a user perspective,
we conducted a user study using the CrowdFlower system.
We designed two surveys in which a user is assigned to a
certain evaluation task, called HIT. In each HIT, a number of
questions on the result quality had to be answered. We allowed
a maximum number of 10 users for each HIT and finally count
all user responses to determine a trend in the result perception.

For this experiment, we designed HITS that ask users
to compare two recommendations of items for 100 random
groups. A first list (utility-only) is built by selecting the items
according to their utility scores. A second list (diversified
group recommendation, DGR) contains the items selected by
our technique. Then, we built a HIT for each group (so there
are 100 HITS in total) that comprises two questions. First, we
asked users to rate the diversity of the DGR list against the
baseline by five choices: from (1) highly less diverse to (5)
highly more diverse. In the second question, we asked users
which of the lists they prefer. we further considered only cases
in which the number of identical items in the two lists is less
than 70% to prevent users from being confused with close to
identical list.

Fig. 6: Diversity of Recom-
mendation

Fig. 7: Quality of Recom-
mendation

For the first question on the diversity of the lists of rec-
ommended items, the percentages of user answers are shown
in Fig. 6. We observe that 55.73% of the users answered
that the recommendation derived with our technique is highly
(15.72%) or slightly (40.01%) more diverse; whereas only few
users considered it to be slightly (14.02%) or highly (3.08%)
less diverse than the baseline. This confirms that our technique
is sound and indeed increases diversity of group recommen-
dation. As illustrated in Fig. 7, 79.09% of the users prefer the
DGR list over the baseline, which highlights the importance of
diversification for satisfying the true preference intent of group
members and suggests that our recommendation technique
helps to achieve it.

VII. CONCLUSIONS

In this paper, we developed a framework for diversifying
group recommendation. We followed a two-step approach:
firstly computing a group utility function, then optimizing
the diversification problem as bi-objective criteria. While the
former preserves history information about group member
preferences, the latter increases the chance of returning at least
one recommendation that matches the true intention of group.
Given that diversification problem turns out to be NP-hard,
we proposed a greedy diversification mechanism that achieves
bounded optimality and a scalable complexity running time.
Experiments on real datasets show the efficiency and effec-
tiveness of our approach. The recommendation runs fast and
linearly, achieving less than one second interaction practicality.
Compared to other baselines, our approach overcomes the
trade-off between diversity and utility by being 1.4 and 1.6
times better respectively.

While our work is orthogonal to a broad range of literature
in group recommendation and result diversification, further
improvements can be incorporated such as parallelization,
optimization of similarity computation [56], [57], and other
formulations of group utility functions and diversifications
tailored to specific data domains.
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