Sampling at unknown locations: Uniqueness under
constraints

Golnoosh Elhamif, Student Member, IEEE, Michalina Pacholska®, Student Member, IEEE,
Benjamin Béjar Haro, Member, IEEE, Martin Vetterli, Fellow, IEEE, Adam Scholefield, Member, IEEE

Abstract—Traditional sampling results assume that the sample
locations are known. Motivated by simultaneous localization
and mapping (SLAM) and structure from motion (SfM), we
investigate sampling at unknown locations. We show that, without
further constraints, the problem is often hopeless. More precisely,
we show that, for polynomial and bandlimited signals, it is
possible to find two signals, arbitrarily far from each other, that
fit the measurements.

To overcome this, we propose to add constraints to the sample
positions. As we show, this leads to a uniform sampling of a
composite of functions. Our formulation retains the key aspects
of the SLAM and SfM problems, whilst providing uniqueness, in
many cases.

We demonstrate this by studying two simple examples of
constrained sampling at unknown locations. In the first, we con-
sider sampling a periodic bandlimited signal composite with an
unknown linear function. We derive the sampling requirements
for uniqueness and present an algorithm that recovers both the
bandlimited signal and the linear warping. Furthermore, we
prove that, when the requirements for uniqueness are not met,
the cases of multiple solutions have measure zero.

For our second example, we consider polynomials sampled
such that the sampling positions are constrained by a rational
function. We prove that, if a specific sampling requirement
is met, uniqueness is achieved. In addition, we present an
alternate minimization scheme for solving the resulting non-
convex optimization problem.

Finally, simulation results are provided to support our theo-
retical analysis.

Keywords—Sampling, sampling at unknown locations,

SLAMpling.

I. INTRODUCTION

As we navigate through our surroundings, we are able to
visually map the 3-D structure of the environment and at the
same time localize ourselves within it. As humans, we do this
so naturally that it is tempting to assume that the problem is
trivial. However, theoretically understanding this process is far
from easy.

The most obvious existing work in this direction comes
from the robotics and computer vision communities in the
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Fig. 1: The connection between sampling at unknown locations
and SLAM/SfM. Here a camera moves along a trajectory
and takes images of a surface. The surface is painted with
a texture, which the camera measures. The locations of its
measurements is dictated by the surface geometry, trajectory
and camera orientations. Since none of these are known the
sample locations are unknown.

form of simultaneous localization and mapping (SLAM) [1,2]
and structure from motion (SfM) [3,4]. In the traditional
SLAM problem, one considers a robot measuring distances
or directions between itself and a set of landmarks. Each
time the robot moves, it obtains an estimate of this movement
(from odometry sensors) and takes new measurements to the
landmarks. The aim is to use this data to estimate both the
location of the landmarks and the robot’s trajectory.

SfM is very similar. In this case, one typically has a set of
images of the same scene taken from different viewpoints. The
aim is to build a 3-D model of the scene and estimate the pose
of the camera for each of the input images. This is traditionally
done by extracting key feature points from the scene that can
be matched between views. Reconstructing the scene geometry
and camera poses is then a problem in multi-view geometry.

We see that in both these cases, the features/landmarks that
are considered are discrete. While this simplification leads
to practical algorithms, it doesn’t fully model the underlying
continuous world. To do this, we argue that one needs to
consider the problem from a sampling perspective.

Sampling results have two main components: a signal model
and a sampling scheme. For example, in Nyquist-Shannon
sampling [5]-[7], one assume that the signal belongs to the
shift-invariant space of band-limited functions and the signal



is sampled at uniform known locations. Extensions have been
made in both of these directions, leading to additional sam-
pling results [8]-[10]. For example, on the signal model side,
sampling results have been developed for general-shift invari-
ant spaces and other more complex spaces [11,12]. On the
sampling scheme side, the known uniform sampling positions
have been generalized to the case of a small unknown additive
perturbation as well as non-uniform known locations [13,14].

In SLAM and SfM, we take measurements to land-
marks/features at unknown locations. Therefore, to develop a
sampling theory for these problems, we need to consider the
problem of sampling at unknown locations.

In this case, unsurprisingly, uniqueness is not guaranteed
in general. In fact, in [15], we show that, for polynomial
and bandlimited signals, it is possible to find a valid solution
arbitrarily far from the original signal (we review this result
in Lemma 1 of this paper).

However, despite this result, we know that algorithms exist
that can solve SLAM and SfM; therefore, given the correct
constraints, it is possible to recover the measurement positions
and underlying function from samples at unknown locations.
In this paper, we formulate a set of constraints on the sampling
positions, which both retain applicability to SLAM and SfM
and, at least in some cases, lead to uniqueness.

To see this, consider the toy problem depicted in Fig. 1.
Here we show a surface, which we assume is painted with
an unknown texture, being sampled by a camera at three
positions along an unknown trajectory. We could also remove
the trajectory and view this as three cameras viewing the
same surface. Note that here we assume that we are in
flatland but the general idea extends to higher dimensions.
As the figure shows, the cameras take samples of the texture
at non-uniform locations. Furthermore, these locations are
unknown, since they are governed by the unknown surface
and unknown camera poses. However, if we assume that the
surface and trajectory belong to some known function space,
the sample positions are no longer arbitrary!. In this paper,
we consider problems of this form; that is, functions sampled
at unknown locations but where the locations of the samples
are constrained by another function. As we show in the next
section, this can also be interpreted as a uniform sampling of
a composite of functions.

To emphasize, in this paper, we are proposing sampling
of a composite of functions as a problem with previously
unseen practical relevance. As a first analysis in this direction,
we do not analyze the full SLAM and SfM setups and the
algorithms we propose are not in anyway intended to be
practical algorithms that compete with the state of the art in
these fields. In instead, we study two simple incarnations of
constrained sampling at unknown locations:

1) We show that periodic bandlimited signals can be
efficiently recovered from an unknown linear warping.
2) We show unicity for polynomial signals constrained
by a rational function. This result originally appeared
in [15] but we present it here under the more general

'In the general case depicted in Fig. 1, we need an additional function
enforcing a ‘trajectory’ for the camera’s orientation.

framework we are proposing.

We believe that two incarnations provide a first step towards a
deeper theoretical understanding of the more complex SLAM
and SfM problems.

In relation to prior work, sampling at unknown locations is
a relatively unexplored topic. For the continuous problem that
we consider in this paper, Browning proposed an alternating
least squares algorithm that converges to a local minimum [16]
and Kumar considered the case where the unknown sample
positions are governed by a stochastic model. He was able to
show that the reconstruction error is asymptotically inversely
proportional to the number of samples [17] [18].

In the discrete case, Marziliano et. al. investigated the
recovery of bandlimited signals [19] and there is a connection
to the recent work on unlabelled sensing [20]-[24].

Finally, since we consider a composite of functions, there
is a connection to previous works on sampling time-warped
signals [25]-[29]. In fact, in [30], we used a result from [29]
to show that, for particular warpings of bandlimited signals,
uniqueness can be guaranteed. We also proposed an algorithm
based on local bandwidth to recover the shape of a surface
from an image. Clerc et. al. introduced ‘warplets’ to perform
surface retrieval in a similar spirit [31].

In this paper, we also consider toy examples of surface
retrieval but using the two sampling results we develop for
composites of functions.

The rest of this manuscript is organized as follows. We first
define the problem of sampling at unknown locations and show
that in many cases it is ill-posed. We use this as motivation to
introduce the constraints that lead to a sampling of a composite
of functions. Then, we consider the two incarnations previously
mentioned. Finally, we present simulations results supporting
our theoretical findings and conclude.

II. PROBLEM FORMULATION

In this section, we formalize the problem of recovering a
function from a finite set of samples at unknown locations,
show that the problem is in general ill-posed and show how
additional constraints on the sample positions can be used to
regularized it. In doing so we are effectively transforming the
problem of signal recovery from unknown irregular sample po-
sitions to that of regular sampling of a composite of functions.

Consider the following setup: let F be a linear space of
functions defined over some interval X C R and let T, be
a sampling or acquisition device that records the value of a
function, f € F, at the set of locations & = [zg,...,ZN_1]
with x,, € X, n=0,...,N—1. Assume we observe f € F at
N unknown and distinct locations over the interval; that is, we
measure y = Ty f = {f(x0),..., f(xn_1)}, where x,, # z,,
for i # j. The knowledge on the sampling device is limited. In
the most general case we consider, the only knowledge about
the sampling instants is their linear order, that is o < z1 <
e < IN_1-

The question is whether we can recover the original f from
the set of observations. Since F is a linear space, recovering
functions is understood as finding the expansion coefficients
of the function f in the space F.



original function f
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Fig. 2: If we sample function f from a linear space of contin-
uous functions F, we can add to it some small perturbation.
If the perturbation is small enough the samples can be moved
to match the perturbed function.

We call a solution any function f & JF that could have
been a source for the observed samples; that is, a function
for which there exists an ordered sequence {1, ..., T, } such
that Z, € X and f(%,) = f(z,) forall i =0,..., N —1. Of
course, f itself is a solution.

A. Non-uniqueness

It is clear that, without any further constraints on the sample
positions, many solutions may exist. Except for trivial cases,
the problem is ill-posed, since every measurement introduces
a new unknown—its location. For instance, in the case of
sampling bandlimited signals at unknown locations one can
find many valid solutions by just adding a small perturbation
to the original samples [16] (see Fig. 2). However, in many
cases, the situation is even worse. As proved in [15, Lemma
1], for polynomial and bandlimited functions, one can find a
solution arbitrarily far from the original (in the Ls-norm). We
restate this result here using the notation adopted in this paper.

Lemma 1 (Pacholska er al, 2017). Let f € F and let

y = Tof = {f(xe),.... flen—1)} be the samples of f.
Furthermore, suppose rq < r1 < -+ <xn_1. If

1) F is the class of polynomials of degree at most m, or

2) F is the class of real-valued, m-bandlimited functions,
then for any C > O there exists a function f € F such that
Ilf — fll = C and points & = [Zo, ..., Tn 1], with E¢ = xg
and Tn_1 = xn_1, such that f(x,) = [(Zn).

Proof: See [15]. [ |
Note that, in Lemma 1, the first and last samples are fixed
(g = xg and Zny_1 = xy_1). This is not necessary but,

without this restriction, it is very easy to find another function
that could have produced the samples (e.g. shift the domain
of the original function); however, the lemma shows that,
even with this additional restriction, it is still possible to find
a function, arbitrarily far from the original, that could have
produced the samples.

The proof of the lemma is based on the construction of
a function f, or equivalently on finding a direction ¢ in the
linear space J, such that if we move in that direction (e.g. take
f =g+ [) the values of the maxima do not decrease and the
values of the minima do not increase. Such a function g then
defines a path of solutions, on which we can find a solution
arbitrary far from the original (see [15]).
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Fig. 3: Illustration of the path of solutions generated by moving

along g € F from the initial f. The path of solutions (f, =

f + «ag) defines a trajectory along which samples can move.

B. Constraining the sample positions

Lemma 1 gives one way in which sampling at unknown
locations can break. Whilst this is a negative result, it also
gives us some intuition of how we can fix the problem. More
precisely, the lemma gives us a path of solutions, which defines
a trajectory for the sample positions, see Fig. 3. If the samples
can move freely, they will adjust to any function on the path.
However, if we restrict the way samples can move, there is a
high chance that at least one of the samples will not lie on the
trajectory defined by the path. Therefore, adding any constraint
will remove at least some of the large scale ambiguity. This
observation motivates us to regularize the inverse problem by
adding a constraint on the allowed sample trajectories.

To do this, let’s constrain the sample positions. Let £ =
[g,.-.,xN_1] be the true sample positions. Instead of allow-
ing the sample positions to move arbitrarily, let’s only allow
sample positions = [Zo, ..., Ty _1] satisfying the constraint
Z, = ¥ (x,), for all n; that is, we only allow sample positions
that are a function of the true sample positions. If ¢/ is unknown
but comes from some known family of functions, maybe we
can recover the original function f.

An alternative way to constrain the way samples can move
is to consider a uniform sampling of a composite of functions.
Let ¢ € ® be a function from a known space of functions,
®, and assume that the sample positions are z, = p(nT)
where n € [0,..., N — 1]. That is, we uniformly sample the
composite f o, obtaining b = T, rnero.. v—1131(f o). Now,
although the true ¢ is unknown, we still know that any valid
set of sample positions must satisfy Z,, = @(nT'), for some
@ € ®. Furthermore, to maintain the order of samples, lets
restrict ¢ to be a monotonically increasing function. It follows
that ¢ is invertible and we can define 1) ;= @ o 1. With this
definition, we have Z, = ¢(¢ !(xn)) = ¥(x,), showing the
equivalence to the previous formulation.



Therefore, by constraining the sampling positions, we have
changed the problem from sampling at arbitrary unknown
locations to sampling a composite of functions (fo¢) at known
uniform locations. We often think about ¢ as a warping of f.
We thus sample a warped version of f and wish to recover
both f and the warping ¢.

To summarize, let f € F be the signal of interest, and let
@ € ® be a warping function. The problem to solve is

find {feF,pcd} 0
s.t. h= T{TLTITLE[O,..qN—l]}(f © 50)

As a motivating example of the proposed framework, con-
sider a camera in flatland, i.e. a 2-D world, viewing a linear
surface z(z) painted with an unknown texture f as illustrated
in Fig. 4. We would like to recover both the texture and the
surface from a set of observations. Under this setup we can
distinguish between the following two scenarios:

1) Orthographic projection: In the orthographic projection
case, depicted in Fig. 4a, the sample positions are simply x,, =
nT cosd = ¢(nT); i.e., the warping function is a scaling:
o(x) € & = {z — bx for b € R}, where in our example b is
the cosine of the unknown surface orientation 2. Note that,
in this example, the distance d of the surface from the camera
does not affect the measurements and is thus unrecoverable.

To find the corresponding constraint function ¢ € U, let
0 be the true surface orientation. The true sample positions,
Zn, are related to the sample positions, %, for a surface with
angle 0, by x,, cos = &, cos . Therefore,

i.e., the samples are constrained to move according to

b(z) €T = {m o T80 e (—7r/2,77/2)} .

COS

2) Perspective projection: Similarly, in the perspective pro-
jection case, depicted in Fig. 4b, we have

x; cos _E IR iTd — S(T);
x;sinf+d v ¢ L4 ’

veosf —iTsinf
i.e., the warping function is ¢(x) € ®, where

d
@z{x»—> v

——  ford,v € R" and
vecosf — xsiné

0 e (—7r/277r/2)}.

Let d and 6 be the parameters of the true surface and d and

6 be the parameters of any other surface. Then, since
x; cos 0 Z;cosf

zosinf+d Z;sinf+d

we can find the constraint function from

N Jxl cos
z; = = - — = (zi);
dcosf + z;sin(f — )

2Since b = cos6, b € [—17 1}. However, for generality, we consider the
case b € R.
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(a) Orthographic projection (b) Perspective projection

Fig. 4: Orthographic and perspective projections. Examples of
sampling a warped signal, where the warping is define by the
camera. Note that in the orthographic projection the warped
samples are equally spaced, what is not the case for perspecitve
projection.

i.e., the constraint function satisfies ¢ € ¥, where

U= {xn—> ~da:cos€ — for d,d € R* and
dcosf + xsin(f — 0)

0,0 (—7r/2,7r/2)}.

For the majority of this paper, we investigate setups re-
lated to these two examples. However, the framework we are
proposing is very general and incorporates much of the existing
works on sampling at unknown locations. For example, if ®
is a space of random functions, we align with the probabilistic
framework of Kumar. When & is the space of i.i.d. random
variables independent of the input, we have the model analyzed
in [17] and when it is a random process we have the model
analyzed in [18]. The framework can also be used to describe
measurements taken approximately at known positions.

In the following two sections, we consider two simple
cases intimately connected to the previous two examples: first,
we consider periodic-bandlimited signals warped by an affine
function and, second, we consider polynomials with sample
locations constrained to be a rational function of the true
sample positions. In the first case, we show when the function
and sample locations can be retrieved and present an algorithm
that performs this recovery. In the second case, we present a
uniqueness result and an iterative algorithm that attempts to
find this unique solution.

III. PERIODIC BANDLIMITED SIGNALS WARPED BY A
LINEAR FUNCTION

Let f(x) be a 7-periodic and bandlimited signal given by
K .
f(.%) _ Z ay eg27rkz/7. )
k=—K

Note that ay corresponds to the Fourier Series (FS) coeffi-
cients of f(x). Instead of f(x) we observe samples of a warped



version of it. Let h(x) denote the warped signal given by

K

Z akeJQTrk(bl+c)/T (3)
k=—K

hx) = (fop)(x) = f(br+c) =

where p(x) = bx + ¢, with b # 0,¢ € R is an affine
transformation of the domain of f(z). The signal h(z) is
sampled uniformly with a sampling rate of T = 7/N (e.g.
N samples per period) producing the sequence h,, = h(nT):

K
h, = 2 ag 6j27rbk:c/7 €j27rbk:n/N' %)
—_——
k=—K -~

ag
The goal is then to recover both f(z) and ¢(x) from the set
of observations. In other words, we would like to find ay, for
reconstructing f(z), and b, ¢ to reconstruct ().

If we assume that a; € R, it is easy to recover ay and ¢
from ay: simple set ax, = |ax| and ¢ = 7Zay /27bk. In the case
of complex ay’s, there are methods such as Prony’s method
which enables us to retrieve the complex aj and ¢ from ay.

We see immediately that we can only recover ¢(x) up to
some trivial ambiguities. For instance, both ¢(z) and p(—x)
would produce the same set of samples h,,.

Consider the case of b = 1 (the signal is just shifted by c).
In that case, we can recover the FS coefficients of the signal ay,
provided N > 2K + 1 and we observe at least one period. In
fact, we can recover ay, from the DFT of h,,,n =0,..., N—1.
From @y, we can estimate the offset ¢ by Prony’s method [32],
provided ¢ < 7.

Let us now look at the more interesting case of b # 1. In-
tuitively, one should be able to reconstruct the signal provided
N > b(2K +1) and we observe enough samples. We will show
that it is indeed possible to recover the signal in most of the
cases even when aliasing is present. The intuition behind the
method is based on the observation that in the Fourier domain,
the signal f(x) corresponds to a set of Diracs uniformly spaced
in frequency (see Fig. 5). By introducing a linear warping,
we are effectively changing the spacing between those Diracs
while still preserving the uniform (modulo 27 as a result of
sampling) spacing structure. Depending on the warping we
might have aliasing (e.g. Diracs warp around in the unit circle)
but even in those cases we might be able to recover the signal.
Of course, the first step for recovery is to identify the locations
of the spikes in the unit circle. Note that (4) is a sum of
complex exponentials and that line-spectral estimation methods
[33] can be used to retrieve the angular frequencies (locations)
of the spikes. From this discussion, it is easy to realize that
a necessary condition for perfect recovery requires the set of
spike locations to be uniquely specified. In other words, no two
spikes can lie on top of each other as a result of the warping.

We are now ready to state the main result.

Theorem 2. Let f(x) be a periodic (2K + 1)/ bandlimited
signal as in (2). Let the affine warping function be o(x) =
ba + ¢, with {c,b| b/c € [-1,1],b € R — {0}}. Consider a
finite sequence of 4K + 2 samples of the following form:

hn = (f o @)(nT), n=20,...,4K +1, 5)

where T = 7/N is the sampling rate. Then, we can uniquely
reconstruct f(z) and find ¢ and b, provided

N > 2mb (6)

= —1\

vt (sin (o))
where Y ~Y(-) is the inverse of the Dirichlet kernel as per (12).
Furthermore, for smaller values of N if b € (0, N/2], both the

set of non-recoverable cases and the set of non-unique cases
have measure zero.

In order to prove Theorem 2, we start by introducing an
algorithm to unwarp f(z) from samples h,,.

A. Unwarping bandlimited signals with DIRACHIet

As it has been already pointed out the Fourier transform of
f(x) corresponds to a set of uniformly spaced Diracs:

K
Z a6 (w - 2:k> 7

k=—K
Because of (7), the the DTFT of h,, has the following form:

eJ“ = Tb Z ayd (w — W) . ®)

k=—K

F(w) = F{f(x)} =

Figure 5 shows an example F'(w) and several examples of
H (e’*) for different values of b while keeping ¢ = 0. As can
be seen from the figure, F'(w) consists of 2K +1 Diracs equally
spaced on the interval [—m,7]. Similarly, H(e/*) consists of
2K + 1 Diracs in [—, 7] but now at locations

2mwbk
N

In order to retrieve the warping parameters and the original
signal we proceed as follows:

1) We use Prony’s method [32,34] to find the locations
of the delta Diracs 6, from the observations h,. In
order to recover the 2K + 1 locations, we need at least
2(2K + 1) = 4K + 2 samples of h,,.

2) Then, to remove the effect of periodisation, we calculate
the average phase:

O = mod 27, k=-K,... K.

K
= ) et ©)
k=—K
3) Next, find a solution for
K
s = Z eIk =y (ed) (10)
k=—K

where o = 27b/N. Note that Y (e/¥) = Z e~ Ihw

can be seen as the DTFT of the f0110w1ng sequence

1, n=-K,....K
= ’ 3 ) ) 11
Yn {0, otherwise. (n



F(w) b=1,a<apy,s=4.49

b=4,a=-3_5=0.0 b=% apg<a<f,s=—0.62

Fig. 5: An example of the function F(w) and H(e’“)’s for
different values of b. Here, we define o = %. In all the
examples, we set K =3, 7 =2K +1and N =14 (T = 0.5).
In the titles we use apg = ¥ ! (sin(550y) ') For small
enough values of b, there is no aliasing in the Fourier domain.
However, for large values of b (for example b = 5), we have

aliasing and thus retrieving the value of b is not trivial.

The DTFT has a closed form and is referred to as the
Dirichlet kernel of order K:

sin(¥ (2K + 1))

Y(ejw) = sin(ﬂ)

12)

Therefore, we need to find the values of « such that

3 [e%
LB
sin(§)

Depending on s, (13) might have a different number of
possible solutions, with the maximum being 2K.

4) By just using the average phase to estimate «, we lose
some information. The price is that we can recover
some incorrect a’s that do not warp the Diracs to the

Fig. 6: Finding o using DIRAChlet.

Algorithm 1 DIRAChlet algorithm

Input: 2(2K + 1) samples of sequence h,, = h(nT).
Output: All possible values for b, ¢ and ay.
1: Find the position of warped Diracs, ) using Prony’s
method. X

: Calculate s = 5. e 9%,

[\

k=—K
3: Find all values of « satisfying
sin(§ (2K +1))

sin(§)

4: Find the position of Diracs corresponding to the values of
a from previous step.

5: Keep the valid «’s that correctly warp the Diracs back to
Ok

6: Find all the valid values of b = &<,

27
7: Solve a linear set of equations to find aj and c.

positions observed at the output of Prony’s method.
However, these are easy to detect and remove. The
remaining «’s are all valid. In the following section,
we will explain uniqueness with respect to the number
of possible valid a’s.

5) Once we have estimated the valid a’s, we can find the
corresponding b’s from b = N&/2x.
We can use then use these estimates, to find the values
of ay, using a simple linear equation. Estimating ¢ from
ay, is then straightforward, provided that ¢ < 7.

The above procedure is summarized in Algorithm 1.

As an example, Fig. 6 shows the Dirichlet kernel and the
horizontal line s ~ 1.67, which is the value of s resulting
from K =3, b= 1.6 and N = 14. To calculate «r, we need
to intersect the Dirichlet function with this horizontal line.
In our implementations, we find the intersection points using
bisection methods.

Equivalence classes: Note that in (3), changing the value of
b to —b does not change h(z), i.e., f(c+ bx) = f(c — bx).
Therefore, both b and —b are valid solutions. We observe this
symmetry in Fig. 6, as the s-line intersects the Dirichlet kernel
both at a and —a. This shows that the unwarping problem with
this formulation of f(x) has symmetric solutions for b. We will



assume that either one of these solutions is valid.

Furthermore, if we replace b by b+ N/ in (4), where ¢ € Z,
the expression for %, does not change. This translates into
changing o to o + 247 in (10). Since the Dirichlet kernel is
2m-periodic, all the values b 4+ N¥¢ for ¢ € 7Z are also valid
solutions. This results in another set of trivial solutions. Note
that replacing b in (4) with b+ N¥¢ does not result in the same
expression for h(x) but we are given the sampled signal A,
and not ~(x). Thus, these values of b are not distinguishable
given only the sampled sequence h,,.

In what follows, we will look for uniqueness beyond these
trivial equivalences. To do this, we consider « in the interval
(0, 7). Then, given a valid solution for « in this range, we can
always find the trivial equivalent solutions corresponding to
o+ 2nf and —a+ 27f for £ € 7.

In Theorem 2, we saw that if N is larger than a certain
value, we can uniquely reconstruct the values of b up to the
above equivalencies. Furthermore, we stated that for smaller
values of IV, we can uniquely reconstruct the functions almost
surely. Now that we have introduced the required tools, we
move to prove Theorem 2.

B. Proof of Theorem 2

First we will show that if (6) holds, then we always end up
with the unique solution. The Dirichlet kernel lies between
two envelopes £1/sin(w/2). It is straightforward to see that
the two curves and the kernel are tangent to each other when
sin(w(2K +1)/2) = £1. Thus, the kernel is tangent to one or
the other of these two curves at points w; . = (2n+1)7/(2K+
1). Particularly, the first and second tangent points are at w;, =
/(2K +1) and wy, = 37/(2K +1). Let denote w,,, and w.y,
as the second and third optima of the kernel, respectively (the
first optimum happens at w,,, = 0). In Figure 7, we can see
the Dirichlet kernel of order 3, its absolute value, the envelope
&(w) = 1/sin(w/2), as well as the tangent points and local
optima. If the value of s was larger than Y (e“™s), we could
recover b uniquely. Additionally, as can be seen in Figure 7,
W, 18 less than the first zero of the Dirichlet kernel; i.e.,
Wy < 27/(2K + 1). Therefore, there is no overlap of Diracs
and the value of s is known. Since there is no closed form
solution for finding the value of w,,,, we will set the threshold
to |Y (e?*#2)|, which is the value of the kernel at the second
tangent point. Then, we only need to show that

[V (e7¥t2)| > Y (ed¥ms ). (14)

First, note that the envelope £(w) is strictly decreasing in
the interval [0, 7). Indeed,

dé(w) 5 cos(5)
& sm(z) O

for0 <w< .
We prove (14) by contradiction; Suppose that |Y (ev2)| <
Y (e?¥ms). Then,

(@) ) 9
(o) = [Y(e7™2)] < Y(e?¥ms) < E(wmg), (1)

where (a) follows from the fact that, in the tangent point wy,,
the function and the envelope have the same value, (b) from the

— Y(e/v)
-—-- V()|
— 1/sin(w/2)

bound in thm?2
actual bound - >, -
" \\\ ,—’
d N , e
4 \\ v
w Ombt \
0 n

Fig. 7: The (absolute) Dirichlet kernel in (dashed-) blue and
its envelope in red for K = 3. If the s-line is above the black
dashed line, we are guaranteed to have a single solution for a.
In Theorem 2 we loosen this by taking the red dashed line.

assumption and (¢) from the fact that £(w) is an envelope to the
Dirichlet kernel. Finally, using (15) and the strict monotonicity
of £(w), we have wy, > wyy,,, which is a contradiction.

In the above, we showed that if the value of s is larger
than |Y (e7“t2)], it will also be larger than Y (e/“=s) and thus
we will have only one solution for « in [0, 7] (and hence for
b). This condition translates into s = Y (e/%) > &(wy,) =
1/sin(37/2(2K + 1)). Since o« = 2xwb/N then (6) follows
from the previous inequality. This proves the first part of the
theorem. Note that we could have stated instead a bound on
the sampling rate /N based on wy,,. That would provide a less
restrictive constraint but for which there is no “closed-form”
expression in terms of K.

Now, we want to show that the number of non-recoverable
cases has measure zero. We consider jointly cases when the
number of recovered Diracs is smaller than 2K + 1 and when
the solution is not unique. Consider a set of points on a circle,
So C SL S, = {&*|k € {-K,—(K —1),...,(K —
1),K}}, where K € N is given and o € R. We will say
that & # « are equivalent if S, = Sg.

Note that in order to discard the trivial equivalent answers,
we consider « € (0, 7] or equivalently b € (0, N/2]. Assume
that o, @ are equivalent. Since S, = Sz, ¢/® € S, there
exists m € {—K,..., K}, such that « = (ma) g . Similarly,
we can write & = (7)o, . This leads to o = (mma)(g .
Therefore, a(mim — 1) = w¢ for some ¢ € Z. This can be true
if:

1) mm—1=0, or equivalently m = 7 = 1, since m and
m are integers. In this case @ = «, meaning that the
solution is unique on the interval (0, ].

2) o ={x/(mim — 1), that is, « i3 a rational multiple of
7. Then, & is also a rational multiple of 7, which is
clear because & = £ma + 27n, n € Z.

Now, we only need to count how many pairs there are of the



form (pm, gw), where p,q € Q. This is |Q x Q| = Ny, which

is countable. Therefore, the set of non-recoverable cases has

measure zero. u
From the proof we can infer the following.

Corollary 1. There is only a finite number of equivalent pairs
«, @ on the interval (0, 7).

Proof: Recall from the proof of Theorem 2 that, in
order for o to have an equivalent, it has to have the form
a = 2/(mm — 1), for m,m € {-K,...,K}. The de-
nominator can have values between —K? — 1 and K2 — 1,
possibly not all of them. The absolute value of the denominator
P = |mm — 1| defines a set of possible a’s: o = 2n7/P,
for p € {0, | P/2]}. Additionally, & must also be in this set.
This set has |P/2] + 1 elements, and there can be at most
(|P/2] + 1)| P/2] equivalent pairs (for a given P). Thus, the
total number of pairs is bounded by:

K241
> (P/2] +1)[P/2] < (K* +1)°. (16)

P=2

C. Behaviour of the bound in (6)

Theorem 2 provides a bound to guarantee that the DIRACh-
let algorithm results in a unique solution for b. One may
wonder about the tightness of this bound for different values of
K. As K grows, the scale of the Dirichlet kernel also grows.
In fact, the maximum value of the kernel (at w = 0) is equal to
2K +1. In the following lemma, we show that the gap between
the actual bound, shown in Figure 7 by a black dashed line,
and the bound introduced in Theorem 2 converges to a small
constant factor of the maximum of the kernel.

Lemma 3. Define the gap between the bound introduced in
Theorem 2 and the actual bound shown in Figure 7 as

7= Y ()| =Y ().
Then,

. Y 4
< — =~ 0. .
A ST S Ty 0085

Proof: We can use the strictly decreasing property of
the envelope to show that the kernel satisfies Y (e/“%s) <
Y (e?“ms). Thus,

This lemma is verified experimentally in Figure 8. As the
figure shows, the bound converges quickly to 4/157 as K
Srows.

51
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6 1‘0 2‘0 3‘0 4‘0 5‘0
Fig. 8: The gap between the actual bound and the bound in

Theorem 2. The z axis shows different values of K while the
y axis shows the value of the gap, v/(2K + 1).

D. Non-unique solutions

In Theorem 2, we showed that non-unique solutions have
measure zero. We have also presented an algorithm that returns
all valid solutions; recall that it actually first returns a set of
candidate solutions and then retains only the valid ones in an
additional step.

In the cases of multiple valid solutions, we have also
considered their structure. Experimentally, we have observed
that there are two cases. When « < 7/ K, the valid solutions
only occur when s = —1,0, 1. It is easy to prove that these
values of s lead to valid solutions, for o < 7/K; however, we
have been unable to prove that they are the only cases. Finally,
when o > 7/K, we have been unable to deduce anything
about the structure of the valid solutions.

IV. POLYNOMIALS AND RATIONAL FUNCTIONS

In this section, we consider polynomials warped such that
the sampling positions are constrained by a rational function.
We give a uniqueness result and propose an iterative algorithm
that aims to find the unique solution.

Let f be a polynomial of degree K:

K
fla) = ara,
k=0

where the coefficients a; € R are unknown. Next, assume that
we uniformly sample the composite function h = f o ¢; i.e.,
our measurements are y, = h(nT) = f(o(nT)). As explained
earlier, as well as thinking of p(z) warping f, we can also
consider 9) = (% o ¢! constraining the possible sampling
positions.

We now prove that the polynomial exactly fitting the sam-
ples is unique, if 1) is a rational function with the degree of
its denominator not smaller than the degree of its numerator.
In addition, we will propose a simple iterative algorithm,
which attempts to find this unique solution. The algorithm
employs a simple Alternating Least Squares strategy similar
to Browning [16].

The uniqueness result is the following lemma.

Lemma 4. Let F be the space of polynomials of degree at
most K. Let f be the sampled polynomial and let 0 < zy <
Ty < - < axny_1 < T be the original sample positions. Let



Ty, be any other sample positions satisfying the constraint );
ie &, =v(xy,). Let

p(zn)
1/1 Tn) =
(zn) (o)
where p and q are irreducible polynomials with degrees
satisfying: deg(p) < deg(q). If the number of samples N >
K(deg(q) + 1), then there is no polynomial g € F, [ #£ g
such that f(xy) = g(&,) for all n.

forallne[0...N —1], (17)

To prove the lemma, we use the fact that the polynomial g
would have to have a higher degree than f in order to match
N > K(deg(q) + 1) samples.

Proof: Let g € F be a polynomial such that

9(Zn) =g <§Ei:§) = f(z,) forallnel0...N —1],

and let K, = deg(p) and K, = deg(q). For every z,, the
following equation is satisfied:

S aak = b <p ”) , (18)
k=0

=0 q(xn)

where a and by, k = 1,..., K are the coefficients of the
polynomials f and g, respectively. We can rewrite this as

K K
(q(@n) D arzly = br(p(aa)*(g(xn)*. (19)
k=0 k=0

This equation defines a polynomial with degree at most xk =
max(K,K+ K, K,K). But, since K, > K,,, k = (K, +1)K.

If the degree of f is not zero, the left hand side of (19)
cannot be equal to the right hand side everywhere. Therefore,
(18) has at most  solutions and hence the polynomial f is
unique, provided that n > (K, + 1)K.

If f is a constant (degree 0), it is possible that both sides
of (19) are equal everywhere but this can only occur if f = g.

|

Once the solution is unique for a certain constraint 1,
it is also unique for the corresponding warping function ¢.
Therefore, theoretically, a non-convex optimization method
can be used to recover the sample positions and warping
parameters.

To begin with, the error we can optimize is the difference
between the true sample values and the re-estimated sample
values. We choose the standard Mean Squared Error (MSE).
In the constrained case, it has the following form:

C(%,a)=|V&a-y|? (20)

where a is an estimated vector of coefficients of f and V is
an interpolation matrix at points X = [Zo,...,Zy—1]. In the
polynomial case, V(%) is the Vandermonde matrix consisting

of the powers of X = [&,...,&n_1]:
1 i K
AR O O
VE) =| 2 % .. %K | = : :
| | e e

For simplification from now on we shall use V for V(x).
We wish to find the sample positions X and polynomial
coefficients & that solve the following optimization problem:

%,4 =argmin C (%, 4).
X,

When the conditions of Lemma 4 are met, we have & = a and
Tp=a, foralnel0...N —1].

Unfortunately, (20) is non-convex and thus the problem is
difficult to solve in practice. We utilize an alternating least
squares (ALS) algorithm with the following two steps:

1) Fix the matrix V and solve for the coefficients & using

ordinary least squares (OLS).

2) Fix the vector & and make one step of gradient descent

with respect to X.

The gradient step is the part of the algorithm that depends
on the warping. In the general case, with no constraints but
fixed &, the derivative of C' in the direction x,, is

oC oV

o = 2<(V€1)n _ fn> (@a)n,

where (-),, denotes the n-th element in the vector. Therefore,
the gradient can be written as a column vector:

ViC =2(Va—f)o (V'a),

where o is the entrywise (Hadamard) product, and the entries
of V' are (V') = kik™1, counting from 0, so V'a is
the derivative of the polynomial f evaluated at the points
Zoy.. oy TN-1-

In order to include the warping function Z,, = ¢(nT,a),
we use the chain rule to replace the derivative over x, with
the derivative over a—the parameters of the transformation:

VaC = @'V, C,

where @' is a matrix of partial derivatives of ¢(Tn,a) with
respect to the parameters:
(q),)i,n = %(Tﬂ,a)

The matrix form of the gradient allows fast calculations. The
derivative matrix has to be recomputed every time, but one
expects the number of parameters to be small compared to
the number of samples. The OLS part is generally the most
expensive computationally and most sensitive to numerical
erTors.

Naturally, full specification of the (ALS) algorithm requires
details of the step size and stopping criteria. This is described
in Section V with reference to the specific application. A
summary of the final algorithm is given in Algorithm 2.

V. SIMULATION RESULTS

We have presented two main scenarios for sampling at
unknown locations with constrained sampling positions: a
periodic bandlimited signal with an affine warping and a
polynomial with sampling positions constrained by a rational
function.

We now present simulation results for these two cases
separately. The simulation code will be available online.



Algorithm 2 Alternating Least Squares Algorithm (ALS)

Input: Sampled vector f, initial sample positions X
Output: Sample positions X and polynomial coefficients p.
1: initialize sample transformation parameters «
2: while not converged do
3:  for current matrix V := V calculate:

p=(V'V)y Iv'f

calculate @'
update « :

a:=a— fX((Vp - f)o(V'p))

6: calculate X = ¢(a)
7: end while

ok

A. Periodic bandlimited signals

We start by evaluating the behavior of Algorithm 1 for
unwarping periodic bandlimitted signals in the presence of
noise. We ran the following simulations. We set K = 5
and 7 = 2K + 1 and fixed a; to random arbitrary values
(a = [0.43, -0.15, —-0.44, 0.67, -0.32,
-0.76, -0.32, 0.67, —0.44, -0.15, 0.43]).
We also fixed the value of b to 4. Then, we took samples
of the warped function f(bx) with four different number of
samples per period, N, each of which indicate one of the
regimes we studied above:

) N = 3 x2rb/Y (sin(gmegy) ") According to
Theorem 2, this value of N guarantees that in the
noiseless case the intersection of Y(w) and s has a
unique solution in [0, 7].

2) 2Kb < N < 2wb/Y*1(sin(%)*l): We choose
this value of T" so that the line s has several intersections
with the Dirichlet kernel Y (w). The case N > 2Kb
corresponds to o < .

3) N < 2Kb: This value of N corresponds to o« > 7.

4) N = br: This case results in s = 0 in the noiseless case
when 7 = 2K + 1 (our assumption in the simulations).

In each case we fix the value of /V in the interval of interest
and run the simulation. Each of the above sampling periods
results in a different set of samples h,. We contaminate the
samples h,, by random Gaussian noise with zero mean and
varying variance such that the value of SNR ranges from -
10dB to 40dB, where we define the SNR as,

0.2
SNR = 10log;, 02"" . 21)

noise

This results in the noisy observations Bn. Then, we apply
Algorithm 1 on these noisy samples to estimate the values
of b and ay (and thus hy); we call these estimated values b
ay and hy,, respectively. For each value of SNR, we run 10000
simulations.
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Fig. 9: Percentage of cases with more than one valid solutions
for b.
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Fig. 10: Percentage of cases where Algorithm 1 results in a
single solution.

Figure 9 depicts the percentage of cases that have multiple
solutions. We see that, except for Case 4, there is always a
unique solution, for the full SNR range considered. In Case
4 (s = 0), we expect to have multiple solutions when the
noise level is low. This is due to the fact that each of the
estimated values of o represents a multiple of b (in this case:
b {4,8,12,16,20}), all of which produce identical Fin.

Also note that it might happen that when the noise level is
too large, the line s falls below the curve of Y (w) and thus has
no intersection with it. In the above study we have excluded
these cases from the analysis and they do not contribute to
the average error. Once we set aside the cases that Algorithm
1 generates no or multiple solutions, we can look at the
percentage of cases where the algorithm produces a single
solution. Figure 10 shows these cases.

and compute the average of the errors defined by

[b— 0]

error (3) =

A7) — lnlll2

[[2[r][|2

In the case that the algorithm generates multiple solutions,
we choose the solution closest to the true value, when comput-
ing the above error. However, we can see in Fig. 11 represents
the error in reconstructing b from noisy samples h[ ] for each
of the four cases detailed above. As it is apparent in the
simulation results, case 1 has lower reconstruction errors for
large noise levels. This can be partly attributed to the fact that

(22)

error(ﬁ[ D= (23)
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Fig. 11: Error in reconstruction of b from noisy observations
h[n] versus SNR.
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Fig. 12: Error in reconstruction of i[n] from noisy observations
h[n] versus SNR.

the Dirichlet function has a large slope in this part of its curve
which results in small variation in & with changes in s. The
rest of the cases have a very similar behavior. Also note the
break point in the curve at around 10dB.

Figure 12 shows the average error for reconstructing h[n].
Interestingly, although the first case has a lower error for
estimating b in high noise regimes, it has almost the same
performance in estimating A[n].

B. Polynomials

To evaluate the performance of the ALS algorithm in the
polynomial case (see Algorithm 2), we simulate the surface
retrieval problem, introduced in Subsection II-B. We describe
how to alter Algorithm 2 to retrieve the angle.

We assume a polynomial texture and linear surface, with
unknown angle and offset. Recall that, assuming the pinhole
camera model, the sample positions are defined by

Id
oliT) = veosh —iTsinf’

Note that, from Lemma 4, we know that 2m samples are
sufficient to distinguish between different angles of the surface.
On the other hand, if the angle is found, the constraint 1
becomes a linear function, and Lemma 4 does not tell us
anything about the recovery of the offset d. Note that changing
the distance of the surface from the camera is equivalent to
scaling the polynomial. But a scaled polynomial is also a
polynomial and therefore it is impossible to recover this offset.
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This also suggests that it is difficult to relax the assumptions
of the lemma.

From the above reasoning, we know that we will be unable
to recover the offset of the surface. We thus ran a number
simulations with different polynomial degrees, surface orien-
tations and noise levels. We set the irretrievable distance d and
the focal length v to 1.

For each polynomial degree, surface orientation and noise
level, we ran 100 experiments with arbitrary random poly-
nomials. The polynomials were generated in the standard
polynomial basis. The coefficient of the highest power was
fixed to 0.5 and the remaining coefficients generated randomly
from a standard normal distribution A(0,1). We needed to fix
the first coefficient to ensure that it is not zero. This is because,
if the polynomial is similar to a polynomial of smaller degree,
the model becomes too powerful with respect to the data.

If not stated otherwise, each of the 100 tests was done for 13
different angles uniformly spaced between —20° and 20°. The
alternating algorithm is always initialized with & = 0. The
initialized sample values range from —1 to 1, and therefore
angles close to 45° cannot be recovered, because the line from
the origin to the last sample would also be 45° and would
thus never cross the surface. We are restricting the angles even
further because of stability problems, see Figure 16.

We add to the sample values noise generated from the
normal distribution A(0, o), for different values of o. The
signal to noise ratio (SNR) — defined in (21) — vary between
-10dB and 200dB.

We report the error in position estimates defined as

error(@) = |§, 0. 24)

Recall also that, since the algorithm knows only the sample
values, the cost function it minimizes is

C(x,a) = |V(x)a—y|>. (25)

This cost function is in general not convex, see Figure
13. This means that without any additional modifications the
algorithm will sometimes miss the global minimum. This can
be fixed by choosing a number of different starting positions,
or other standard methods. In the noiseless case we know that
the cost function is equal to O if and only if we found the
global minimum. However, in the noisy case, distinguishing
between local minima might be difficult’.

The problems with local minima can be seen for all kinds of
polynomials. However, when the polynomial degree is small,
those situations are rare. As the degree of polynomial increases
they became more common and lead to increased error even
in the noiseless case, see Figures 14 and 15.

The reconstruction is not very robust to noise, see Figure
17. This is not a problem with the alternating algorithm, but
with the cost function itself. With noise, the minima of the cost
function flatten out, because perfect fitting of the polynomial to
the samples is no longer possible. This is also the reason why

3Note that, for this 1D problem, it is easy to come up with a more robust
scheme, such as a simple grid-search. However, we have chosen the ALS
algorithm, because it generalizes easily to higher dimensions, and is therefore
more illustrative.
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Fig. 13: The cost function is not convex. The plot shows
the cost function for different estimated errors, for a fixed
polynomial of degree 9, with no noise added. The true angle
is 10 degrees. Since the algorithm is initialized at 0, it will
stop at the local minimum.
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Fig. 14: Histogram of the errors for a polynomial of degree 4,
with no additional noise added. The distribution of the error
is clearly bi-modal. In more than 80% of cases the error is
smaller than 101, yet the mean is around 2.5.
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Fig. 15: Results of the ALS algorithm for different polynomial
degrees. The median error with no noise is shown in orange
and the median error with a small amount of additive noise
(SNR 80dB) is shown in blue. As one can see, in the noiseless
case, the algorithm breaks down at around degree 6. In the
noisy case, the errors are much bigger even when the algorithm
finds the global minimum. This makes the error less dependent
on the number of local minima, and thus less dependent on
the degree of the polynomial.
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Fig. 16: Median error for different angles, aggregated for 7
different polynomial degrees (2,...,8). The blue line (left scale)
shows the noiseless case, and orange shows an SNR of around
80dB. The decrease of error around 0 for the noiseless case is
due to algorithm initialization at 0.

oversampling does not give a big improvement — although
the oversampling reduces the relative power of the noise, it
does not prevent minima from flattening out.

Inside the interval [—20°,20°], the error does not depend,
see Figure 16. Outside this interval the algorithm becomes
unstable. This is due to the geometry of the problem and
the fact that a small change in # leads to a big change of
the estimated sample positions and therefore a big change in
the estimated coefficients of the polynomial. One can imagine
that a change of variables or introducing a varying step size
depending on the current angle could widen the stable region.

Finally, we needed to adjust the step size and the stopping
criteria of Algorithm 2. We chose step size (3 to be inversely
proportional to the oversampling factor, in order to prevent
gradients that were too large. This is because large gradients
can cause the algorithm to move to angles # outside the allowed
(—45°,45°) interval. Therefore, we multiplicatively decrease
B every time # would become too extreme. We use different
stopping criteria: when the cost function is small enough, when
the cost function stops changing and after a certain number of
iterations. We noticed that increasing the number of iterations
does not improve the results, and limiting the number of
iterations might be seen as a version early stopping.

V1. CONCLUSION

We have proposed the problem of uniformly sampling
a composite of functions as a regularizer for sampling at
unknown locations. As we have shown, this formulation main-
tains many of the key aspects of practical problems such as
simultaneous localization and mapping (SLAM) and structure
from motion (SfM).

In addition, we have studied two simple examples and
demonstrated uniqueness in both cases. Furthermore, in one
case we have provided an efficient algorithm that reaches this
unique solution. We believe that there are many additional
examples of sampling a composite of functions that can be
solved.

In terms of the connection to SLAM and SfM, much work
needs to be done to create practical algorithms from this
type of approach. However, simple extensions such as moving
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17: Error for different signal to noise ratios, for polynomi-

als of degree 4. Around 40dB SNR, the average error and mean
error begin to differ. Unsurprisingly, the mean error flattens
when the few large errors dominate the mean. Oversampling
improves the results but not significantly. Oversampling 8
times gives error equivalent to no oversampling with SNR
10dB bigger, but this results in the small difference in error.

to piecewise linear surfaces would already make a step in
this direction. Furthermore, we believe that it is important to
understand the fundamental limit of such problems and our
analysis contributes to this understanding.
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