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CV in one slide

What When
Batchelor in Chemistry (Uni Trieste, IT) 2001-2005
Internship at INOGS (IT) 2005

Master in Physics (Uni Trieste, IT) 2005-2008
Internship at Elettra Synchrothron (IT) 2008
PhD at KNMI/Uni Utrecht (NL) 2009-2013
Post-doc at NIOZ (NL) 2013-2016
Post-doc at EPFL (CH) 2016-2018

17 peer-reviewed papers and proceedings

Lots of (open-source) software

Several datasets collected

Conferences, workshops (EGU, Euromech,...)

Summer schools: DAMTP Cambridge, Alpine Summer School
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Introduction

Turbulence and internal waves in geophysical flows

e Can we link theory to observations?

An overview of my work at NIOZ and EPFL
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Introduction

A statistical perspective on fluid motions

Context: Increasing amount and quality of observational data.

Opportunity to obtain a “statistical” description.

e Focus on full dataset instead of single events.

e In practice: spectra, structure functions, PDFs, PCA,...
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Introduction

A statistical perspective on fluid motions

Statistics of temperature, velocity,. ..

e scale-dependence of variability;

intermittency (e.g., time/space dispersion of turbulence events);

hints on underlying physical mechanisms;

identification of different regimes at different scales.
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Introduction

A statistical perspective on fluid motions

Statistics of temperature, velocity,. ..
e scale-dependence of variability;
e intermittency (e.g., time/space dispersion of turbulence events);
e hints on underlying physical mechanisms;
e identification of different regimes at different scales.

Well-established field (IWs, turbulence):
o relatively well understood theory (single-process level);
e laboratory studies.
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Introduction

A statistical perspective on fluid motions

Statistics of temperature, velocity,. ..

e scale-dependence of variability;

intermittency (e.g., time/space dispersion of turbulence events);
e hints on underlying physical mechanisms;
e identification of different regimes at different scales.

Well-established field (IWs, turbulence):
o relatively well understood theory (single-process level);
e laboratory studies.

In the field:

e We cannot control what we observe in the field,
m e.g. control parameters are variable / undefined.

e Statistics can help extracting information from “noisy” data.
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Deep ocean

Turbulent transport in the deep ocean (NIOZ)

e Vertical transport in the ocean interior is poorly understood
o Hypothesis of mixing “hot-spots” with sloping bottom
e Sparse observations, poorly understood dynamics
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Deep ocean

Data

Latitude
Longitude

Max. depth

Min. height above seafloor
Seafloor slope
Number of sensors
Vertical spacing
Depth range
Deployment
Recovery
Sampling rate

36° 58.885' N
13°45.523' W
2205m

5m

9.4°

144

0.7m
100.1m

13 Apr 2013
12 Ago 2013
1Hz
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Deep ocean

Data

Cooling phase (upstope) Warming phase (downslope)
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Deep ocean

Generalised structure functions (GSF)

GSFs provide a way to characterise variability in a flow:

W = (1) = ([A:0]")

So-called “scaling ranges” have been predicted by theory and
observed in the laboratory:

Vg ~ r$@

e ((gq) = q/3 if turbulence were fully self-similar (non-intermittent),
for r within the “turbulence inertial range”.
e In reality, ((q) = ( for q > 10 (saturation):

m Grid turbulence, shear driven — (- ~ 1.4
m Convective turbulence, buoyancy driven — (.. ~ 0.8
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Deep ocean

Generalised structure functions (GSF)

... many steps afterwards. ..

Scaling exponent within the turbulence inertial range.
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Deep ocean

Generalised structure functions (GSF)

... many steps afterwards. ..

Scaling exponent within the turbulence inertial range.
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Deep ocean

Flux—gradient relation
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Long-term averaging enables to identify simple mean behaviour in an
otherwise highly variable environment.
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Deep ocean

Conclusions |

rection in field observations

e Previously hypothesised, but hard to measure.
e Implications for efficiency of turbulent transport:
m Implications for transport of heat, CO,, nutrients,...
e Generalised structure functions enable to identify points of
contact between laboratory and field results. ..
e ...and discrepancies!
o Much more not shown here.

® A A Cimatoribus and H. van Haren. Temperature statistics above a deep-ocean sloping boundary. J. Fluid Mecl., 775:415-435,
2015.

® A A. Cimatoribus and H. van Haren. Estimates of the temperature flux-temperature gradient relation above a sea floor. J. Fluid
Mech., 793:504-523, 2016.
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Lake Geneva

Transport in coastal areas (EPFL)

e In a linear, rotating flow, cross-isobath velocity is zero.

e How does cross-shore transport take place?

Lausanne
®
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46.2°N

.
Geneva
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Lake Geneva

Velocity spectra

Lake Geneva
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“Standard” interpretation of observations:
e combination of long internal waves (seiches)

e linear or weakly nonlinear
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Lake Geneva

Velocity spectra

Lake Geneva

Kinetic energy spectra
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Lake Geneva

Velocity spectra

Lake Geneva

Kinetic energy spectra

W we w
10° il
10* '

10%

10*

Near Shore g 100{ Bue

16D SHL2*A W' |ISHL2*B

10"

10° 10t 10° 10t

Period [h]m
Observations, model, slope = -1, dashed lines: linear modes frequencies

Andrea Cimatoribus — Oceanography, Fluid Mechanics, Climate Science

11/14



Lake Geneva

Conclusions Il

nlinearity cannot be neglected.

e Linear models predict sharp spectra, which are only observed
off-shore,

m or by considering short time intervals

o Broad spectra from longer time series suggest strongly nonlinear
dynamics (more “turbulence”-like)

m Confirmed by numerical modelling results.

e Classical tools like PCA, struggle to capture relevant dynamics in
the highly variable, strongly forced, Lake Geneva.

®  Andrea A. Cimatoribus, U. Lemmin, D. Bouffard, and D. A. Barry. Nonlinear Dynamics of the Nearshore Boundary Layer of a
Large Lake (Lake Geneva). ]. Geophys. Res. Oceans, in press, 2018.
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Conclusions

Conclusions

o Field observations are growing in size and quality.
o A statistical description allows testing theories in a natural
(uncontrolled) environment,
m whose overall, mean behaviour is usually the most interesting one.
e Sometimes, statistical quantities can surprise:

m Simple behaviour out of highly turbulent environments
m Nonlinear behaviour (instabilities? vortices?) in a low energy
environment

® from very common power spectra!
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Conclusions

Thanks for listening.

Andrea.Cimatoribus@epfl.ch

[La Palma, Islas Canarias]
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