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Frederike Dümbgen*, Majed El Helou*, Natalija Gucevska, Sabine Süsstrunk
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Abstract
Scattering of light due to the presence of aerosol particles

along the path of radiation causes atmospheric haze in images.
This scattering is significantly less severe in longer wavelength
bands than in shorter ones, thus the importance of near-infrared
(NIR) information for dehazing color images.

This paper first presents an adaptive hyperspectral al-
gorithm that analyzes intensity inconsistencies across spectral
bands. It then leverages the algorithm’s results to preserve photo-
realism of the visible color image during the dehazing. The color
images are dehazed through a hyperspectral fusion of color and
NIR images, taking into account any inconsistencies that can af-
fect the photorealism. Our dehazing results on real images con-
tain no halo or aliasing artifacts in hazy regions and successfully
preserve the color image elsewhere.

Keywords: Image dehazing, joint color-NIR imaging,
Rayleigh scattering, hyperspectral fusion, photorealism.

Introduction
Camera sensors are made of silicon that is sensitive to the

part of the electromagnetic spectrum ranging from visible light
(blue, green and red) to NIR. In most digital cameras, a filter is
placed in front of the sensor to block the NIR radiation and stop it
from affecting the acquisition of the color image [1]. Using recent
research [2, 3, 4, 5], a camera can simultaneously capture both
visible and NIR images after removing the NIR-blocking filter.
Image dehazing [6] is one of many applications where the addi-
tional NIR image proves to be very useful. Scene recognition [7]
or more specifically shadow detection [8] and face recognition un-
der different lighting conditions [9] are some of the multiple other
applications.

NIR radiation is the part of the electromagnetic spectrum
with wavelengths ranging approximately from 700 to 1100 nm.
Therefore, it has larger wavelength compared to visible light
which ranges in wavelength from 400 to 700 nm. According to
Rayleigh scattering [10], as long as haze particles are smaller than
one tenth of the radiation wavelength, the scattered energy Es is
inversely proportional to the wavelength to the fourth power,

Es ∝
Ei

λ 4 (1)

where λ is the radiation wavelength and Ei is the energy of inci-
dent radiation. Having a larger wavelength than visible light, the
energy lost due to scattering in the NIR band is lower compared
to the visible band. NIR radiation thus has an advantage over vis-
ible light with respect to haze and it has first been leveraged for
dehazing by Schaul et al. [6].

Although visible light and NIR are correlated, mostly
through their high-frequency components, materials have differ-

Figure 1. Image dehazing results obtained using the proposed algorithm.

From top left to bottom right are shown the hazy input image, NIR image,

inconsistency mask, and the dehazed image. Note how the details of the

NIR image are merged with the RGB image without changing the color of

non-hazy regions such as the port in the bottom of the image.

ent reflective properties in NIR compared to visible light [11].
These differences or inconsistencies, most apparent in low-
frequency regions, have to be taken into consideration during
hyperspectral fusion when the output needs to be photorealistic.
Throughout this paper, a result is called photorealistic if it is close
to the visual perception of the real-world scene, i.e. if the results’
colors are in accordance with the original color image.

In this paper, we present a novel adaptive algorithm that de-
tects intensity inconsistencies between color and NIR in a cap-
tured scene and improves on state-of-the-art dehazing results. By
leveraging the inconsistency mask, no artifacts are carried from
NIR to color during the dehazing process. Our proposed solution
improves upon the state-of-the-art multi-scale method developed
in [6] by adjusting the color-NIR fusion at every scale based on
our inconsistency mask, thus successfully eliminating the artifacts
of [6]. Figure 1 shows an example of a hazy color image and its
NIR counterpart in the first row, and our inconsistency mask and
dehazed color image in the second row.

We first present a survey of the state-of-the-art approaches
for image dehazing. Our solution is detailed in Section Proposed
Solution. Finally, the improvement of our algorithm over the state
of the art is highlighted through experimental results in Section
Experimental Results.

Literature Review
The classical dehazing approach consists of haze detection

followed by haze removal. Haze removal is typically performed
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by restoring constrast and detail in the hazy regions of the im-
age. On one hand, this can be achieved using intensity redistribu-
tion. Some of the oldest methods use first and second order image
statistics [12], while newer approaches use histogram equalization
conserving brightness [13] or image luminance [14], respectively,
or adaptive histogram equalization avoiding the loss of detail and
artifacts [15]. These methods perform particularly well when the
images exhibit a poor intensity distribution. On the other hand,
tools such as wavelet [16], ridgelet [17] and curvelet [18] trans-
forms perform edge-enhancement rather than intensity redistribu-
tion, also leading to the desirable effect of increasing contrast in
hazy regions.

Despite its difficulty, some authors have proposed single-
image dehazing solutions without using additional information.
Tan [19] proposes a single-image method which maximizes lo-
cal contrast under the condition that airlight is smooth. Fattal
et al. [20] exploit the physical properties of the acquisition, in a
similar way as the polarization filters used at acquisition time by
some photographers [21]. He et al. [22] notice that in many nat-
ural scenes very dark pixels exist in every local image patch, and
they use this observation to both obtain a depth map based on the
attenuation of dark pixels and to dehaze the image accordingly.
Haze detection is facilitated when additional information is avail-
able. It can consist of multiple images in different weather condi-
tions [23], interactive inputs provided by a user [24], 3D models
provided by additional depth sensors or multiple views [25], or a
library of georeferenced digital terrain and urban models [26].

Because of the robustness of NIR to haze, it provides a nearly
haze-free version of the scene, which can be exploited for de-
hazing the color image. The main challenge in this appraoch is
to integrate hyperspectral information without distorting the vis-
ible information, i.e. to conserve photorealism. Schaul et al. [6]
obtain state-of-the-art results by using the edge-preserving filter
proposed by Farbman et al. [27] to merge details from the NIR
channel into the RGB channel. Their results show excellent de-
hazing performance but lack in photorealism: the dehazed im-
ages have artificially high intensities in regions of high NIR re-
flectance, such as vegetation. Feng et al. [28] leverage NIR in-
formation for dehazing by estimating the airlight. With airlight
estimation and a simplified haze model, the haze-free image can
be attained through an optimization. Even though only a subopti-
mal solution can be reached, good dehazing is obtained. However,
due to inaccurate airlight estimation, the overall color of the im-
age is affected, making it often darker and more saturated than the
original.

More general hyperspectral fusion algorithms can be applied
to merge the NIR information into the visible image. Connah
et al. [29] propose a spectral mapping algorithm from a general
hyperspectral image to a subspace of lower dimension. While
this approach is designed to yield relatively photrealistic fusion
results, it is suboptimal for the dehazing problem. For dehazing, it
is more important to fuse the details in hazy regions from NIR into
the visible image, but Connah’s approach aims to keep the most
information from all channels. Haze in the RGB image being
seen as information it is thus conserved during the fusion, instead
of being corrected based on higher-frequency NIR information.

Proposed Solution
Healthy vegetation generally appears brighter in the NIR

channel compared to the visible color band. Note for example
the difference in intensity of the patch of grass in Figure 1. This
is because healthy plants do not absorb NIR. Indeed, NIR radia-
tion travels inside the leaves to only interact with mesophyll cells
that play a role in plant photosynthesis. Half of the NIR waves get
reflected and half cross the leaf unaffected. However, healthy veg-
etation is not the only source of intensity inconsistencies between
NIR and visible color. Different materials can cause such incon-
sistencies depending on their reflectance properties. Our first goal
is to detect all such inconsistent pixels in the captured scene.

Due to spectral proximity, NIR is most correlated to red
among all color channels [11]. Hence, if an inconsistency is
present in the NIR relative to the red channel, it is very likely
present relative to all other less correlated color bands. We also
experimentally find that among red, green, blue, luma, and lumi-
nance channels, the most robust channel for inconsistency analy-
sis is the red channel and it is used throughout this paper. In fact,
comparing NIR to the red channel for vegetation detection is on
par with the remote sensing community [30].

We propose a statistical adaptive method for the detection
algorithm. First, the difference image ∆ is computed pixel-wise,

∆(x,y) = NIR(x,y)−Red(x,y). (2)

We then make a rough estimate of the percentage of pixels having
intensity inconsistency,

p =
100
m.n

m

∑
x=1

n

∑
y=1

u(∆(x,y)− t0), (3)

where the image is mxn pixels, t0 is a fixed threshold and u(·) is
the Heaviside function. We continue by standardizing the differ-
ence image with the z-score operation,

∆Z(x,y) =
∆(x,y)− ∆̄√

1
m.n ∑

m
x=1 ∑

n
y=1(∆(x,y)− ∆̄)2

, (4)

where ∆̄ is defined as the average of ∆, which yields a zero-mean
and unit-variance difference map. Assuming all scene images
have the same probability distribution for a given pixel to be part
of inconsistencies (up to mean and variance shifts), then a fixed
threshold would result in a constant known probabilistic threshold
for considering a pixel to be representing an intensity inconsis-
tency.

However, the above assumption doesn’t apply to all images
(note that even among vegetation there are variations in the ∆

map). This means that classifying as inconsistency the X% most
likely pixels could yield the exact solution when X% of the image
is made up of inconsistencies to begin with. If the scene con-
tains no inconsistencies or is only made up of inconsistencies or
any percentage different from X , the classification would be erro-
neous. This is where we leverage our a priori estimate p from (3)
to linearly adapt our probabilistic threshold on the set [0,1.5],

t0Z = 1.5− (
p

100
)∗1.5. (5)

A fixed range such as [0,1.5] can be used since our map is always
normalized to zero mean and unit variance. A very low a priori



percentage of inconsistencies is mapped to a threshold close to
1.5, meaning that differences need to be above 1.5 standard de-
viations away from the mean to be considered true positives. On
the other hand, a high a priori percentage of inconsistencies, is
mapped to values close to 0. Lastly, the inconsistency mask is
obtained as

M(x,y) = u(∆Z(x,y)− t0Z) (6)

and the probability for each pixel to be inconsistent is given by

P(x,y) = M(x,y) ·
[
(1−α)+α · (∆Z(x,y)− t0z)

max(∆Z(x,y)− t0z)

]
, (7)

where max(·) returns the maximum value of the map (∆(x,y)−
t0z). Equation (7) follows the soft thresholding LASSO estima-
tor [31] and bounds P(x,y) to the interval [1−α,1] where α is a
real parameter in [0,1].

Schaul et al. [6] use an edge-preserving filter to decompose
both color and NIR images into K levels of detail and coarse-
ness. The operation is carried on the luma channel of the color
image. The multi-scale detail images of the color luma and the
NIR channel are combined back while keeping the detail pixels
with higher intensity. With this operation, the additional high fre-
quency present in the NIR image is artificially added to hazy color
regions. The problem is that vegetation and many other materials,
being naturally brighter in NIR, are carried into the color image
and distort it. By incorporating the probability estimate into the
multi-scale fusion step, a photorealistic dehazed image can be ob-
tained,

F0(x,y) =V a
K

K

∏
k=1

max(V d
k (x,y),N

d
k (x,y)∗(1−P(x,y)))+1, (8)

where F0 is the fused luma, V d
k and Nd

k are the detail images of
the visible channel luma and the NIR at decomposition level k,
respectively, and V a

K is the K-th approximation layer. The role of
the factor (1−P(x,y)) in (8) is to attenuate the NIR detail im-
age where high intensity is due to highly reflective materials in
NIR and not haze in visible color. The fused luma F0 is finally
recombined with the blue-difference and red-difference chroma
components extracted from the original color image to obtain the
final dehazed color image.

Experimental Results
We test the proposed approach on images captured using a

Canon Rebel T1i camera [6]. The built-in infrared-blocking fil-
ter of the camera sensor is removed. Color images are obtained

Figure 2. Dehazing masks (bottom) obtained by comparing the NIR in-

formation (middle) with the visible images (top) for images from the dataset

provided by [6].

(a) Original hazy color image

(b) Original image (left) compared to dehazed image by Schaul [6] (middle)

and our result (right).

Figure 3. Image dehazed using the algorithm of Schaul [6] and the pro-

posed solution. The regions with vegetation exhibit too bright responses in

the result by Schaul due to high NIR intensities. By leveraging the dehazing

mask, this effect is attenuated in our approach.

by placing an external infrared-blocking filter in front of the lens
before capture. Likewise, a filter is mounted on the camera lens
to block visible light during the NIR image acquisition. There-
fore, every scene is captured twice. However, the scenes being
motion-free, the two images match perfectly.

The dehazing masks obtained on the dataset provided by [6]
are shown in Figure 2. The masks reliably depict the areas with
high NIR responses due to vegetation, and also detect outliers
in NIR intensity resulting from other materials such as reflect-
ing street signs. Note also that not all vegetation has a high NIR
response; the intensity depends among other factors on the health-
iness of the plant. We compare our approach to the state-of-the-
art dehazing pipeline proposed in [6] (see Figure 3). Without
the inconsistency mask, vegetation-rich regions appear artificially
bright in the dehazed image, which can lead to illusions of snow
or dust on the plants. The two crops of Figure 3 (b) highlight the
advantages of our proposed algorithm. The trees keep their natu-
ral dark color, while the dehazing performance is identical to [6].
The same conclusion can be drawn from looking at the results
shown in Figure 4.

Our algorithm’s performance is compared to other results on



Figure 4. Original hazy images (left) and crops of results obtained after de-

hazing (right) using our algorithm (top) and the algorithm proposed by Schaul

et al. [6]. Artificially bright regions resulting from high material reflectance

properties are corrected using our algorithm.

two images in Figure 5. The algorithm by He et al. [22] dehazes
effectively but changes the intensity distribution of the original
image significantly and yields artificial looking results. While the
algorithm of Feng et al. [28] delivers very good dehazing perfor-
mance, it significantly affects the overall brightness and satura-
tion, yielding results far from the visually perceived image. The
algorithm of Schaul et al. [6] exhibits bright artifacts in the grass,
trees and bushes. The proposed algorithm outperforms previous
methods, preserving color in haze-free regions without compro-
mising the dehazing performance.

Conclusion
This paper studies the intensity inconsistencies, essentially

caused by vegetation, between NIR and visible color images. An
adaptive algorithm is developed to detect such inconsistencies in
a scene and compute a corresponding probabilistic mask. The in-
tensity inconsistencies result in artifacts in such regions for the
state-of-the-art dehazing method. Incorporating the inconsistency
mask into our image fusion framework, we propose a technique
which conserves the photorealism of the original color image dur-
ing the image fusion. Our results for dehazing a color image using
its NIR counterpart are free of artifacts while having state-of-the-
art dehazing performance. Future work can study the feasibility
of separately dehazing each color channel instead of directly tar-
geting the luma.

Figure 5. Original and dehazed images using our approach (full images)

and comparison with state-of-the-art results (zooms). From left to right are

depicted: original image, He et al. [22], Schaul [6], Feng et al. [28] and our

result. Our method gives state-of-the-art dehazing results while conserving

the colors of haze-free regions, thus yielding photorealistic dehazing.
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infrared,” in Color and Imaging Conference. Society for Imaging
Science and Technology, 2008, pp. 176–182.

[2] Yue M Lu, Clément Fredembach, Martin Vetterli, and Sabine
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[8] Dominic Rüfenacht, Clément Fredembach, and Sabine Süsstrunk,
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