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We explore the unconventional wave scattering properties of non-Hermitian systems in which
amplification or damping are induced by time-periodic modulation. These non-Hermitian time-Floquet
systems are capable of nonreciprocal operations in the frequency domain, which can be exploited to induce
novel physical phenomena such as unidirectional wave amplification and perfect nonreciprocal response
with zero or even negative insertion losses. This unique behavior is obtained by imparting a specific
low-frequency time-periodic modulation to the complex coupling between lossless resonators, promoting
only upward frequency conversion, and leading to nonreciprocal parametric gain. We provide a full-wave
demonstration of our findings in a one-way microwave amplifier, and establish the potential of non-
Hermitian time-Floquet devices for insertion-loss free microwave isolation and unidirectional parametric
amplification.
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In conventional media, wave scattering is usually recip-
rocal: the transmission coefficient from a source to a
receiver remains the same if we interchange their locations
or, in other words, the scattering matrix is always sym-
metric. This fundamental property of wave propagation is
linked to microscopic reversibility, and holds for any linear
time-invariant system in the absence of external time-odd
bias [1,2]. There exist, however, many situations in which
one would like to transmit waves unidirectionally by
breaking reciprocity. For instance, nonreciprocal antennas
that can emit and receive at the same frequency may allow
for doubling the available bandwidth in the next generation
of full-duplex telecommunication systems [3,4].
In electromagnetic systems, the conventional way of

breaking Lorentz reciprocity is the use of magnetic materi-
als and an external magnetic field as time-odd external
bias [5]. Magnets, however, are bulky, expensive, and to a
large extent incompatible with integrated circuit technology
and standard CMOS fabrication methods. For this reason,
magnet-free nonreciprocal components have been devel-
oped based on nonlinearity [6–18] or time modulation
[19–32]. Nonlinear systems strongly break reciprocity;
however, they are fundamentally limited as isolators [33].
Time-Floquet systems represent a promising alternative to
magnetic-free isolation, but they do not conserve frequency,
and are thus associated with unavoidable insertion losses due
to the energy lost in all the intermodulation frequency
channels.
In a different field of research, non-Hermitian photonic

systems that exploit the interplay between gain, loss, and
the coupling between individual optical components have
created a wealth of new opportunities in classical physics to
generate and control the transmission of light [34–46].
While non-Hermitian systems by themselves cannot break

reciprocity [47], they provide an interesting platform for
nonunitary scattering, loss compensation, and wave ampli-
fication [39–46]. For instance, PT symmetric systems can
exhibit resonant localized amplification when operated in
the broken phase, a phenomenon that can be exploited to
obtain nonlinear responses at much lower power than in the
exact phase [44], and induce low-threshold optical non-
reciprocity [45,46].
In this Letter, we investigate the unexplored physics of

non-Hermitian systems for which non-Hermiticity is not
due to the direct presence of material losses or gain, but is
instead induced by periodic time modulation. We show that
these non-Hermitian time-Floquet systems can be obtained
by considering time-dependent coupling between lossless
components, leading to a unique way to generate para-
metric loss or gain. Simultaneously, the breaking of time
invariance in these systems can trigger nonreciprocal
frequency conversions, allowing for highly efficient non-
reciprocal amplification of the signal. By engineering at the
same time non-Hermiticity and nonreciprocity, we over-
come the insertion loss challenges inherent to Hermitian
time-Floquet isolators, and obtain large nonreciprocal
isolation with zero, or even negative insertion losses (signal
amplification). We provide a full-wave demonstration of
these findings at microwave frequencies.
Let us consider a simple time-invariant system described

by the general two-by-two Hamiltonian H ¼ ½ω1; k12;
k21;ω2�. The usual route to induce non-Hermiticity of
the system is to make ω1 and ω2 complex, which
corresponds to adding gain and/or loss to the medium
inside the resonators. However, imagine that instead, the
coefficients k12 and k21 can depend on time: the Stokes
principle of microscopic reversibility implies k21ðtÞ ¼
k�12ð−tÞ, meaning that the system can potentially be
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non-Hermitian (k21ðtÞ ≠ k�12ðtÞ) when k12ðtÞ is not an even
function of time. A particular example of such non-
Hermitian systems is obtained for k12ðtÞ ¼ KðtÞ ¼
k0 þ Δk0 cos ðΩtÞ þ jΔk00 sinðΩtÞ, with j2 ¼ −1, for
which the relation k21ðtÞ ¼ k�12ð−tÞ implies k21ðtÞ ¼
k12ðtÞ ¼ KðtÞ, i.e., a non-Hermitian Hamiltonian with
identical complex off-diagonal terms. In this Letter, we
focus on the class of non-Hermitian two-level systems for
whichH ¼ ½ω1; KðtÞ;KðtÞ;ω2�. Such Hamiltonians are not
only non-Hermitian, but periodic in time with period
T ¼ 2π/Ω, corresponding to time-Floquet non-Hermitian
systems. Note that k0 represents the static Hermitian part of
the coupling, Δk0 cosðΩtÞ the time-dependent Hermitian
part, and jΔk00 sinðΩtÞ the time-dependent non-Hermitian
part. In the following, we study the effect of each part of the
coupling on the system dynamics and scattering properties.
An example of a device described by such a Hamiltonian

is represented in Fig. 1. The two coupled resonators
[coupling KðtÞ, resonance frequencies ω1 and ω2,
ω1 < ω2], are combined with two ports for incoming or
outgoing wave signals, with decay rates γ1 and γ2. After
applying the Floquet theorem [48] in time domain, we use
standard temporal coupled mode theory (CMT) [49,50],
writing the amplitudes α1 and α2 inside the two resonators
as α1;2ðtÞ ¼

P
na

n
1;2e

jðωþnΩÞt, where an1 and an2 represent
the time-independent complex amplitudes of the nth
Floquet harmonic, and ω is the excitation frequency.
Assuming excitation from port 1, the coupled-mode equa-
tions of the system are found as [51].

ðωþ nΩ − ω1 − jγ1Þan1 − k0an2 −
�
Δk0 þ Δk00

2

�

an−12

−
�
Δk0 − Δk00

2

�

anþ1
2 ¼

ffiffiffiffiffiffiffi
2γ1

p
δn0; ð1Þ

ðωþ nΩ − ω2 − jγ2Þan2 − k0an1 −
�
Δk0 þ Δk00

2

�

an−11

−
�
Δk0 − Δk00

2

�

anþ1
1 ¼ 0. ð2Þ

We see that k0 couples identical frequencies, whereas the
harmonic time-Floquet modulation couples each resonator
with the two adjacent Floquet harmonics in the other
resonator. For a Hermitian system (Δk00 ¼ 0), upward

and downward frequency conversion are equally efficient.
Conversely, adding a non-Hermitian time-Floquet modu-
lation (Δk00 ≠ 0) allows one to tune the amount of energy
that will undergo upward and downward frequency tran-
sitions. Crucially, the condition Δk0 ¼ Δk00 is special as it
enables only upward frequency conversion [51]. This
unique capability is enabled by the non-Hermitian time-
Floquet modulation, and totally impossible in previously
considered Hermitian time-modulated systems [55–58].
To illustrate better the profound implication of this

special condition on the scattering properties of the system,
let us assume incidence from port 1 at ω ¼ ω1, and
Ω ¼ ω2 − ω1, so that the n ¼ þ1 harmonic is exactly at
ω2 and will resonantly excite the second resonator. Figure 2
shows the norm of the field amplitudes an1;2 of the n ¼ −1,
n ¼ 0, and n ¼ þ1 Floquet harmonics in various cases of
interest. In the Hermitian case [Fig. 2(a), Δk00 ¼ 0], the −1,
0, and þ1 harmonics of the field amplitudes α1;2 all have
significant energy. When we increase Δk0, the energy of the
−1 and þ1 modes both increase, since all the frequency
conversion rates are equal and proportional to Δk0. Still for
Δk00 ¼ 0, another interesting phenomenon occurs if we
force k0 to become zero [Fig. 2(b)]: the system is driven to a
condition where the second resonator cannot have a 0
harmonic, and transmission to the second port can only be
at a frequency different than ω1. Yet, in both Hermitian
cases of Figs. 2(a)–2(b), because upward and downward
frequency conversion coefficients are equal, the trans-
mission coefficient for incidence at port 2 with frequency
ω2 to port 1 with frequency ω1 would be the same than the

FIG. 1. Non-Hermitian time-Floquet system under study. Two
coupled resonators with resonant frequencies ω1 and ω2 are
connected to ports 1 and 2, with lifetimes 1/γ1 and 1/γ2. The
complex internal coupling coefficient KðtÞ is time dependent,
with KðtÞ ¼ k0 þ Δk0 cosðΩtÞ þ jΔk00 sinðΩtÞ.

FIG. 2. Excited Floquet amplitudes for incidence at ω1 from
port 1. We represent the amplitudes of the three dominant
Floquet harmonics in the first (orange) and second (blue)
resonators for two different (arbitrary) values of Δk0, and for
(a) Δk00 ¼ 0 and k0 ≠ 0, (b) Δk00 ¼ 0 and k0 ¼ 0, (c) Δk0 ¼ Δk00
and k0 ≠ 0, and (d) Δk0 ¼ Δk00 and k0 ¼ 0.
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transmission coefficient for an input field at port 1 at ω1 to
port 2 at ω2, and the system is reciprocal.
The situation is drastically different when we provide the

system with a non-Hermitian time-periodic modulation
[Figs. 2(c), 2(d)]. The plots are made under the special
condition Δk0 ¼ Δk00, which promotes absolute upward
frequency conversion. As discussed above, this modulation
never excites the −1 harmonic, whose amplitude is always
identically zero, and forces the system to exhibit only the 0
and þ1 Floquet harmonics [Fig. 2(c)]. In addition, if we
force k0 to become zero, the only remaining states are a01
and aþ2 [Fig. 2(d)]. This means that the field is transmitted
to port 2 only via aþ2 , through upward frequency con-
version. Evidently, in these conditions a backward field
incident on port 2 at ω2 will neither be downward converted
to ω1 (since downward conversions are forbidden), nor be
transmitted at ω2 through the zero harmonic (since k0 ¼ 0),
and the transmission to port 1 will be identically zero.
Therefore, the non-Hermitian time-Floquet system can
exhibit perfect nonreciprocity: it transmits energy incident
on port 1 to port 2, but has zero transmission for any signal
incident on port 2. In Ref. [51], we provide a more complete
study of the system’s dynamics as k0 and Δk00 change
gradually, and demonstrate that this behavior remains true in
a large vicinity of the condition k0 ¼ Δk0 − Δk00 ¼ 0.
Next, we move on to a quantitative study. Assuming

time-harmonic incidence on port 1, with ψ inc ¼ ψ0
ince

jωt,
the transmitted field at the second port can be expanded as
ψ t ¼

P
nψ

n
t ejðωþnΩÞt, and we can define a transmission

coefficient for each frequency harmonic as Sn21 ¼ ψn
t /ψ0

inc.
Here, only the n ¼ −1; 0; 1 harmonics are important and
we use the short-hand notations Sn¼−1

21 ¼ S−21, Sn¼0
21 ¼ S021

and Sn¼þ1
21 ¼ Sþ21. Similarly, we define transmission coef-

ficients for excitation from port 2 and note them S−12, S012,
and Sþ12. The definitions of scattering parameters are
adequate since the system is linear [51]. Note that these
quantities depend on the incident frequency, for instance,
Sþ21ðωÞ corresponds to the field transmitted at port 2 at
ωþ Ω when ω is sent at port 1.
We represent in Fig. 3 the evolution of jSþ21ðω1Þj and

jS−12ðω2Þj as Δk0 is gradually increased, comparing exci-
tation from port 1 at ω1, and the reciprocal situation of
excitation from port 2 at ω2. We also look at the trans-
mission at the incident frequency jS021ðω1Þj and jS012ðω2Þj.
We consider two cases: (i) the static Hermitian case with
k0 ¼ Δk00 ¼ 0 [Fig. 3(a)], and (ii) the non-Hermitian case
with k0 ¼ 0, Δk0 ¼ Δk00 [Fig. 3(b)]. Because k0 ¼ 0 in
both cases, transmission at the excitation frequency is
impossible, and S021 and S012 are always zero. In the
Hermitian case, frequency conversion is symmetric and
therefore the system is always reciprocal: we have
jSþ21ðω1Þj ¼ jS−12ðω2Þj regardless of Δk0. Conversely, in
the non-Hermitian case, transmission from port 2 to port
1 is identically zero regardless of the considered harmonic,

whereas jSþ21ðω1Þj is nonzero, demonstrating the large
nonreciprocal behavior. In addition, for sufficiently high
values of Δk0/ ffiffiffiffiffiffiffiffiffi

γ1γ2
p

, we find that jSþ21ðω1Þj can even reach
values well above unity. Remarkably, the non-Hermitian
time-Floquet modulation provides unidirectional paramet-
ric gain to the signal. This unique feature is a direct
symptom of non-Hermiticity and is confirmed by direct
finite-difference-time-domain (FDTD) simulations [51].
A closed-form analytical validation of this amplifying

behavior can be obtained if we truncate the system of
Eqs. (1), (2) to three Floquet harmonics. For a field incident
at port 1 at frequency ω1, we find

Sþ21¼
2

ffiffiffiffiffiffiffiffiffi
γ1γ2

p Δk0½ð−Ω−jγ2ÞðΩ−jγ1Þþk20�
½ð−Ω−jγ2Þð−jγ1Þ−k20�½ð−jγ2ÞðΩ−jγ1Þ−k20�

ð3Þ

If k0 ¼ 0, Eq. (3) becomes Sþ21 ¼ −2Δk0/ ffiffiffiffiffiffiffiffiffi
γ1γ2

p
, which is

identical with the results in Fig. 3(b), obtained numerically
considering 201 Floquet harmonics. It is noteworthy that
amplification can be obtained with arbitrarily small modu-
lation depths Δk0 ¼ Δk00 as long as the system is resonant
enough, i.e.,

ffiffiffiffiffiffiffiffiffi
γ1γ2

p
< Δk0. Using the same method, we have

also checked that the transmission coefficients of the 0
Floquet harmonic S021 and S012 are proportional to k0, and
thus become zero when k0 ¼ 0, in perfect agreement with
the results of Fig. 3.
We demonstrate our findings in a realistic full-wave

device at microwave frequencies. The resonators are
split rings with eigenfrequencies f1 ¼ 3.1201 and f2 ¼
3.6921 GHz, the ports are microstrip transmission lines of
width 0.333 and height 0.1778 mm, and the substrate is

FIG. 3. Nonreciprocal gain in non-Hermitian time-Floquet
systems. We plot the magnitude of the transmission coefficients
to demonstrate the highly nonreciprocal behavior of the system.
S021 and Sþ21 correspond to the transmissions to port 2, respec-
tively, at ω1 and ω2, when a signal at ω1 is incident on port 1. S012
and S−12 correspond to the transmissions to port 1, respectively, at
ω2 and ω1, when a signal at ω2 is incident on port 2. We compare
the (reciprocal) Hermitian time-Floquet system with (a) Δk00 ¼ 0
and k0 ¼ 0 to the (nonreciprocal) non-Hermitian time-Floquet
system (b) Δk0 ¼ Δk00 and k0 ¼ 0. Transmission through any
other frequency channel is identically zero.

PHYSICAL REVIEW LETTERS 120, 087401 (2018)

087401-3



FR4 with ϵr ¼ 4.5. Between the resonators, we insert a
capacitor of C ¼ 0.15849 fF, which has a small modula-
tion with depth ΔC ¼ 15.849 fF and slow modulation
frequency fC ¼ 572 MHz, in series with a resistor modu-
lated in quadrature with ΔR ¼ 1/ΔCω. We provide more
details about the circuit implementation of these modulated
elements in the Supplemental Material [51]. To minimize
the static coupling strength k0, we keep some distance
between the components and place the resonators in
antisymmetric positions (Fig. 4). The fields are computed
using the three-dimensional finite-element method (FEM)
method in frequency domain using a truncation of
Maxwell’s equations to three harmonics f−1; 0;þ1g.
Figure 4(a) shows the numerical results (solid lines),

and compares them to the analytical CMT model (dashed
lines). In Fig. 4(a), we plot the spectrum in dB of the
only nonzero transmission coefficients: jSþ21ðωÞj, and
jS021ðωÞj ¼ jS012ðωÞj. Note that the x axis of Fig. 4(a)

corresponds to the frequency of the incident field. A point
of abscissa ω on the curve jSþ21ðωÞj, for instance, describes
the amplitude of the Fourier component at ωþΩ of the
field transmitted to the second port. Therefore, the peak of
jSþ21j at the position f1 of the x axis corresponds to strong
transmission to port two at f1 þΩ/2π ¼ f2, i.e., trans-
mission via upward frequency conversion. The level of this
peak is above 30 dB, meaning amplification. At any other
frequency, including at f2, the transmission from port 2 to
port 1 jS012ðωÞj is always below −50 dB; i.e., jSþ21ðf1Þj is
more than 80 dB higher than jS012ðωÞj over the entire
spectrum, which demonstrates that this parametric ampli-
fication phenomenon is indeed strongly nonreciprocal and
well suited for signal isolation. The analytical model
captures very well the physics involved, the only discrep-
ancies being attributed to the inherent dispersion of the
coupling coefficients, which is neglected in CMT. These
discrepancies are extremely small, as they correspond to
corrections that are −100 dB below the incident field level.
We find that the unidirectional transmission gain is linearly
controlled by the modulation depth ΔC and the quality
factor of the system, in perfect agreement with coupled
mode theory. The simple Hamiltonian model is therefore a
very good description of this system.
Below the spectrum, we show the distribution of the

electric field (vertical component). Since this field is
principally made up of two frequency components (at
ω1 and ω2), we plot each component separately. When
the signal is incident from port 1 at ω1 [Fig. 4(b)], the field
component at ω1 remains isolated on the first resonator and
no field is excited at frequency ω1 in the second resonator,
preventing transmission to port 2 at this frequency. This is
consistent with the very small static coupling k0 between the
rings.However, a nonzero field exists in the second resonator
at frequency ω2 [Fig. 4(c)], which is consistent with upward
frequency conversion. This field leaks out to port 2, giving
nonzero transmission. When the signal is incident from
port 2 at ω2, the field at ω2 remains localized on resonator 2,
and there is no significant transmission to port 1 [as shown in
Fig. 4(d)]. Because of the upward-only frequency conversion
property, downward frequency conversion is not allowed
and the Floquet harmonic atω1 is identically zero [Fig. 4(e)],
making the system an extremely efficient isolator. The same
phenomenon happens if ω1 > ω2, providing Ω is negative;
i.e., the helicity of the modulation is reversed to get down-
ward frequency conversion. Therefore, by cascading two
inverted systems, one with upward frequency conversion,
and one with downward frequency conversion, we can make
a nonreciprocal amplifier that operates without changing the
frequency of the signal.
In conclusion, we have introduced a new class of

physical systems in which a periodic drive induces not
only nonreciprocity, but also non-Hermiticity. Different
from previous works about time-Floquet non-Hermitian
systems [59–62], which considered the time modulation

FIG. 4. Full-wave finite-element demonstration of non-reciprocal
gain at microwave frequencies. The system is made of two micro-
strip ring resonators connected with a time-modulated capacitor in
series with a time-modulated resistor [51]. (a) Spectrum of the
scattering parameters demonstrating strong nonreciprocity and one-
way amplification in a non-Hermitian time-Floquet systemmade of
coupled split-ring resonators at f1. Panels (b) and (c) correspond to
incidence on port 1 at ω1 and show the vertical electric field
component atω1 andω2, respectively. (d),(e) Same as (b) and (d) for
incidence onport 2.All panels are plottedwith the same scale,where
blue correspond to a negative field and red to a positive field.
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of an already non-Hermitian static system, here non-
Hermiticity is induced by the modulation itself. These
systems are capable of unidirectional parametric gain, and
insertion-loss free isolation. Unidirectional amplification is
of parametric nature, and obtained from a low modulation
frequency, different from usual parametric amplification
that requires pumping at the double frequency (this
property, also found in QASERs [63], may be relevant
in the design of efficient high frequency sources). A tunable
microwave nonreciprocal amplifier may be readily imple-
mented using voltage controlled capacitors and resistors
combined with negative impedance converters [51], pro-
viding a way to solve the vexing insertion loss problem
recurrent in conventional designs. Altogether, these excit-
ing findings extend the reach of non-Hermitian physics to
time-dependent systems and their applications.
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