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ABSTRACT

Sensitivity coefficients calculated with Monte Carlo neutron transport codes are subject to

statistical fluctuations. The fluctuations affect parameters that are calculated with the sen-

sitivity coefficients. The convergence study presented here describes the effects that sta-

tistically uncertain sensitivities have on first-order perturbation theory, uncertainty quan-

tification, and data assimilation. The results show that for data assimilation, posterior

nuclear data were remarkably uninfluenced by fluctuations in sensitivity mean values and

by sensitivity uncertainties. Posterior calculated values computed with first-order per-

turbation theory showed larger dependence on sensitivity mean-value convergence and

small uncertainty arising from the sensitivities’ uncertainties. A convergence criterion is

proposed for stopping simulations once the sensitivity means are sufficiently converged

and their uncertainties are sufficiently small. Employing this criterion economizes com-

putational resources by preventing an excess of particle histories from being used once

convergence is achieved. The criterion’s advantage is that it circumvents the need to set

up the full data assimilation procedure, but is still applicable to data assimilation results.
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1. INTRODUCTION

Sensitivity coefficients calculated by Monte Carlo neutron transport codes [1] compare well to

sensitivities calculated with deterministic neutron transport codes. Unfortunately, they are more

computationally expensive than deterministic perturbation theory. Their expense is a function of

the sensitivities’ statistical uncertainties. With more Monte Carlo histories, the sensitivities’ mean

values converge and their statistical uncertainties are reduced thereby leading to more accurate

results, but at an increased computational cost. For Monte Carlo calculated sensitivities to be

competitive with deterministically calculated sensitivities for data assimilation and uncertainty

quantification calculations, the cost of the Monte Carlo simulation must be minimized while still

maintaining sufficient statistical accuracy in the sensitivities.

To find this balance between cost and statistics, it is important to end a simulation once a suffi-

cient level of convergence is achieved and the statistical uncertainties are reduced to an acceptable
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level. By ending the simulation once the sensitivities are acceptable, significant computer time is

saved. To be able to end the simulation, what is acceptable in terms of sensitivity convergence and

uncertainty needs to be defined and characterized. It is not possible to just examine the individual

sensitivity coefficients because there can be hundreds to thousands, some of which are important

and others not, and they later take different roles in different formulas. It would be wasteful to

continue a simulation until an unimportant sensitivity converged because this sensitivity would not

play an important role in the final calculated value. The acceptability of the statistically uncertain

sensitivities is the focus of this document and a convergence criterion to stop the sensitivity sim-

ulations is proposed based on the results. Previously, simulations were run until some arbitrary

criterion specified the user was met, often leading to one to two orders of magnitude more particles

than needed being simulated. With the proposed convergence criterion, a systematic approach is

presented that can lead to significant computation economizing. While Serpent version 2.1.29 [2]

is used in this work, the conclusions are applicable to sensitivities calculated with other Monte

Carlo neutron transport codes.

Three sensitivity coefficient applications are evaluated: 1) first-order perturbation theory 2) uncer-

tainty quantification (UQ) and 3) data assimilation (DA) with the generalized linear least squares

method [3][4]. The convergence of the sensitivity coefficients affects each application differently,

i.e. it affects the convergence of the parameters calculated with the sensitivity coefficients. There-

fore, to study the effect of the sensitivity coefficients, the convergence of the applications’ calcu-

lated parameters will be the focus of this study. With this approach, the convergence of the most

important sensitivities is emphasized and less important sensitivities, which may fluctuate greatly

and have large uncertainties, are de-emphasized. For UQ, the convergence of the calculated param-

eter’s uncertainty from nuclear data is studied. For DA, the convergence of the posterior nuclear

data and their uncertainty, and the posterior calculated values and their uncertainty are examined.

DA uses first-order perturbation theory to compute posterior calculated values. Therefore, the con-

vergence of the posterior calculated values in the DA results is examined to evaluate first-order

perturbation theory. Ideally, the convergence criterion would not require performing the DA cal-

culations, which can be expensive when large matrices need to be inverted.

2. THEORY

Sensitivities are, speaking simply, tools that are applied to achieve an analysis. They allow simpli-

fying the functional dependence of a calculated value - such as keff - from neutron transport theory

down to a simple linear model, or first-order perturbation theory. The assumed linear relationship

between a parameter and the nuclear data used in its calculation is shown in Eq. 1. The first-order

derivative, or slope of the linear function, is the sensitivity coefficient matrix S. C0 is the nom-

inal calculated value with a given neutron transport solver and CS is the value calculated with

the linear approximation given a change in σ (∆σ). The sensitivity coefficients with the linear

approximation can be seen as a tool to rapidly scope changes to the nuclear data σ without fully

solving the neutron transport equation. Here, σ is a vector containing the nuclear data with a size

Nσ × 1, where Nσ equals the number of isotope/reaction pairs × number of energy groups in the

nuclear data. S is a matrix of dimensions NE×Nσ, where NE is the number of integral parameters

considered. CS and C0 are vectors with a size NE × 1.
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CS = C0 + S∆σ (1)

The linear approximation is often used in uncertainty quantification. By doing linear error propa-

gation on Eq. 1, the uncertainty on C can be approximated by taking the diagonal elements of the

matrix MC calculated with Eq. 2. Mσ is a covariance matrix of the nuclear data (size: Nσ ×Nσ).

MC = SMσS
T (2)

The linear approximation is also used in DA theory to derive the generalized linear least squares

(GLLS) technique and has been shown to be effective for linear responses such as keff [5]. The

linear model for C is fit to experimental values, E, by using Lagrangian multipliers to find the

roots that minimize an error function. The roots of σ become the posterior nuclear data set σ′ and

are the updated cross sections. The posterior nuclear data set σ′ is given by Eq. 3. The posterior

nuclear data covariance matrix, M′

σ, is calculated with Eq. 4. ME and MM are the experimental

and modeling/methodology covariance matrices, respectively, and their dimensions are NE×NE .

E and C are vectors of size NE×1.

σ
′ = σ +MσS

T
[

SMσS
T +ME +MM

]

−1[

E−C(σ)
]

(3)

M
′

σ = Mσ −MσS
T
[

SMσS
T +ME +MM

]

−1

SMσ (4)

After DA has been performed, the posterior calculated value, C′, can easily be found if the as-

sumption of its linearity is valid. This is done by using the calculated sensitivity coefficients, and

the prior and posterior nuclear data together, as seen in Eq. 5. These values can then be used in

the desired application analyses or used to reevaluate the bias between E and C. Additionally the

uncertainty associated with the C
′ can be calculated with M

′

σ by taking the diagonal elements of

matrix M
′

C
calculated as seen in Eq. 6.

C
′ = C(σ) + S(σ′

− σ) (5)

M
′

C
= SM

′

σS
T (6)

The equations presented in this section show the predominant role that sensitivity coefficients have

in these applications. When Monte Carlo neutron transport codes are used to do these analyses,

the statistical uncertainties associated with Monte Carlo results will propagate to the results. For

example, the calculated values C0 in Eq. 1 and C(σ) in Eq. 3 will have statistical uncertainties

that will affect the output values. The sensitivity coefficients used in all of the above equations

to calculate CS, MC, σ′, M′

σ, C′, and M
′

C
may have important uncertainties that affect the final
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results. The mean values for S and C0 or C(σ) need to be sufficiently converged and their un-

certainties need to be sufficiently small to have accurate results. What “sufficient” means for the

applications and Serpent run times is the subject of the rest of this document.

3. APPROACH

This document presents the simple benchmark Jezebel Pu-239 to effect this study [6]. Its integral

responses include keff and the spectral indices F28/F25, F49/F25, and F37/F25. Here, spectral

indices are referred to as Fij which is the fission of isotope 2jx of element 9i (i.e. i = 2, 3, 4 for

U, Np, and Pu, respectively). F37, for example, is the Np-237 fission rate. The COMMARA-2.0

covariance data [7] is used together with the ENDF/B-VII.0 central values [8]. The sensitivity

coefficients and nuclear data are discretized in the ECCO 33-energy-group structure [9].

The isotopes Pu-239, Pu-240, and Pu-241 are included in the adjustment. The following nu-

clear data were explicitly considered: Elastic scattering (MF3/MT2), total inelastic scattering

(MF3/MT4), capture (MF3/MT100), fission (MF3/MT18), the average prompt fission neutron

multiplicity (MF3/MT456), and the normalized prompt fission neutron spectrum (MF5/MT181).

The GLLS calculations use the experimental covariance matrix (ME) shown in Table I. The cor-

relation factors are taken from the DA analysis in Ref. [4]. For the modeling/modeling covariance

matrix (MM) in GLLS, the variances are the statistical uncertainties of the calculated values from

the Serpent simulation.

Table I: Experimental covariance matrix. Diagonal terms are relative standard deviations

in percent, off-diagonal terms are correlation coefficients.

keff F28/F25 F49/F25 F37/F25

keff 0.2% 0.0 0.0 0.0

F28/F25 0.0 1.1% 0.23 0.23

F49/F25 0.0 0.23 0.9% 0.32

F37/F25 0.0 0.23 0.32 1.4%

The Jezebel model is executed in Serpent with 20,000 particles per cycle. Fifteen latent generations

are used for the sensitivity calculations. Every ten cycles, the sensitivity coefficients and C values

are written to their respective output files and used to estimate the parameters in the three appli-

cations. In this way, the evolution of the calculated parameters in first-order perturbation theory,

uncertainty quantification, and DA can be studied as the number of simulated particles increases.

4. RESULTS

4.1. Effects on Linear Approximation and Uncertainty Quantification

The linear model of a calculated parameter is the raison d’être of sensitivity coefficients. Subse-

quently, it is the logical place to start the study. The linear model is also investigated in Section

4.2 when used in DA. This section presents the uncertainty associated with the calculated value of
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C from the linear approximation, or the uncertainty associated with CS. The uncertainty comes

from three sources: the nuclear data, the nominal calculated value C0 from the Monte Carlo calcu-

lation, and from the sensitivities themselves. By investigating the convergence of these sources of

uncertainty, it is possible to investigate the effects of the sensitivities’ mean values’ convergence

and of the sensitivities’ uncertainties. The nuclear data uncertainty should converge as the sensi-

tivities converge. The uncertainty coming from sensitivities and C0 should decrease as the number

of particles increases. A good convergence criterion for the sensitivity coefficients will be able

to consider, simultaneously, these three sources of uncertainty on CS. Importantly, this analysis

ignores the fact that C0, S, and σ may be correlated. This correlation may be important to the

overall uncertainty of CS.

The sensitivity mean values’ convergence is investigated by looking at the uncertainty from nu-

clear data calculated with Eq. 2. This equation directly uses the sensitivity mean values and can

be used to assess sensitivity mean value convergence. It is expected that as the number of particles

in the simulation increases, important sensitivities (ones that contribute most to calculating the nu-

clear data uncertainty) will converge, meaning that the nuclear data uncertainty will also converge.

Unimportant sensitivities that are not converged will not have a significant effect on nuclear data

uncertainty.

Next, the effect of the sensitivity uncertainties on CS is assessed by using Eq. 7. Examining this

parameter allows assessing the effect of sensitivity uncertainties. Eq. 7 comes from linear error

propagation on Eq. 1 assuming that the sensitivities are the random variable. MS is the covariance

matrix of the sensitivity coefficients, where the diagonal is variances of the sensitivities taken from

the Serpent output file. It is assumed that the sensitivities are not correlated, i.e. the covariances

in MS are all zero. The change in the cross section, ∆σ, that produces CS from the linear model

is not known a priori. For the purposes of proposing a convergence criterion, it is assumed that

the change in the cross sections in 100%, or ∆σ = σ. This will over predict the uncertainty on

CS coming from sensitivities. However because the aim of this work is to propose a convergence

criterion, this will give a conservative estimate of the uncertainty coming from sensitivities. Later

when examining DA in Section 4.2, a real ∆σ is used and a more realistic estimate of the effect

of sensitivity uncertainties on first-order perturbation theory can be seen. Other values besides

∆σ = σ could be used, but this value was chosen for its simplicity.

var(CS) = diag
(

∆σMS∆σ

)

(7)

Figure 1 shows the convergence of the three sources of uncertainty for Jezebel’s four responses as

the number of particles increases. The values are plotted at intervals of 2,000,000 particles, i.e. one

unit on the x-axis is equivalent to 2,000,000 particles. When the number of particles is low, 2-20

million, the uncertainty in CS from sensitivities is significant, i.e. close to the uncertainty from

nuclear data. Here, the sensitivity coefficients are not yet acceptable for first-order perturbation

theory analyses with ∆σ = σ. The uncertainty in CS from sensitivities then decreases rapidly

within the first 100 units on the x-axis, or 100*2e+6 = 2e+8 particles. By 1,000 units, or 2e+9 par-

ticles, the uncertainty in CS from sensitivities is roughly equal to that coming from the uncertainty

in C0. Examining the nuclear data uncertainties’ convergence, and thereby the sensitivity mean

values, shows approximate convergence after ∼100 x-axis units (2e+8 particles).

From this set of results, a criterion can be proposed for halting a simulation when the sensitives
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Figure 1: Uncertainties on C calculated with first-order perturbation theory.

are acceptable. If ∆σMS∆σ + var(C0) << SMσS
T , then the simulation can be stopped. This

criterion can be applied to perturbation theory analyses and to uncertainty quantification. It will

also be tested against DA later. It covers the convergence of C0 and the acceptability of the

S uncertainties. Because SMσS
T is converged when ∆σMS∆σ + var(C0) becomes small, it

also covers S mean value convergence. From the data sets presented in this work, the criterion

0.2 ∗ (∆σMS∆σ + var(C0)) < SMσS
T , where ∆σ = σ, was effective in showing convergence

for the considered parameters. If another value besides ∆σ = σ was used, the results would

be consistent and only the constant term 0.2 (where convergence occurs) would be altered. It

should also be noted that the SMσS
T term also has an uncertainty coming from the sensitivity

uncertainties that is not described here. The reduction of this uncertainty to an acceptable level

would also be covered by the proposed criterion.

4.2. Effects on Data Assimilation Posteriors

The sensitivity coefficients play an important role in the GLLS equations. They are used in Eqs. 3

and 4 in the term SMσS
T that estimates the variances/covariances of calculated values and in the

SMσ term that estimates the covariances between calculated values and nuclear data. Additionally,
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they are used to calculate the posterior moments of the calculated values in Eqs. 5 and 6. First, the

effects on the posterior nuclear data calculated with Eqs. 3 and 4 are presented, followed by the

calculated values’ posterior moments.

Figure 2: Adjustments to Pu-239 reactions calculated with sensitivity coefficients from

different numbers of particle histories (2e+6, 2e+7, 2e+8, 2e+9).

4.2.1. Nuclear Data

The adjustments to select nuclear data at different numbers of particle histories are shown in Figure

2. The adjustments are shown at 2e+6, 2e+7, 2e+8, and 2e+9 particles. For reference with other

figures presented in this document, this corresponds to 1, 10, 100, and 1,000 units on their x-axes.

The red line representing the adjustment at 2e+8 particles corresponds approximately to where the
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convergence criterion for first-order perturbation theory presented in Section 4.1 is satisfied. The

data are all roughly converged by 2e+8 particles, similar to first-order perturbation theory. This

intimates that the proposed criterion may also be suitable for nuclear data adjustment purposes.

Remarkably, the adjustments to the nuclear data are not greatly affected by the sensitivities’ uncer-

tainties. The low sensitivity of the posterior nuclear data to the sensitivity coefficient fluctuations

is likely related to the other terms in Eqs. 3 and 4. Particularly, the experimental covariance matrix

ME. The values in ME are roughly equivalent to those in SMσS
T . ME serves as a ballast as

fluctuations in the terms SMσS
T and SMσ may be happening. This restricts the fluctuations in

the sensitivities from significantly affecting the adjustments.

4.2.2. Calculated Values

The posterior calculated values are made with in Eqs. 5 and 6, which incorporate the posterior

nuclear data and the sensitivities. First, the posterior C mean values (C′) are shown in Figure 3.

C
′ shows convergence after 100-300 units on the x-axis, similar to the C uncertainties shown in

Figure 1. For instance, keff varies at ∼2 pcm after 100 x-units. The convergence of C′ seen in

Figure 3 corroborates the convergence criterion presented in Section 4.1.

Figure 3: Convergence of posterior calculated values (C′).

The C
′ uncertainties from nuclear data and from the sensitivity coefficients are shown in Figure

4. As done for the prior C values, the uncertainty on C
′ coming from the sensitivities’ statistical
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uncertainties can be computed with Eq. 7. In this case, ∆σ = σ
′
− σ0 is used instead of ∆σ =

σ0. This represents a much more realistic estimation of the uncertainty on a C value calculated

with first-order perturbation theory coming from sensitivity uncertainties. Here, it is seen that at

2e+6 particles, the uncertainty from sensitivity uncertainties is roughly one-fifth that coming from

nuclear data. By ∼100 units on the x-axis, the uncertainty from sensitivities for all four responses

is insignificant compared to that from nuclear data. Additionally, the nuclear data uncertainty is

roughly converged at ∼100 units on the x-axis. Figure 4 shows little fluctuations as the number

of particles increase, i.e. as the sensitivities become more precise. This behavior reflects that seen

for the posterior nuclear data uncertainties seen in Figure 2: Because M
′

C
is calculated with M

′

σ,

small fluctuations in M
′

σ will result in small fluctuations in M
′

C
. Examining these results, the

convergence criterion proposed in this work can also be applied to posterior C uncertainties.

Figure 4: Convergence of the posterior calculated values’ (C′) relative standard deviations.

5. CONCLUSIONS

The sensitivity coefficients calculated with Serpent are subject to statistical fluctuations and un-

certainty. The statistical fluctuations and uncertainty affect parameters that are calculated with the

sensitivity coefficients in first-order perturbation theory, uncertainty quantification, and data as-

similation. The convergence study presented here described the effects of sensitivity mean values

and uncertainties on these applications. In terms of data assimilation, the posterior nuclear data are
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remarkably insensitive to the statistical fluctuations of the sensitivity coefficients. This is because

of other terms in the equations, such as the experimental covariances, lessen the impact of the fluc-

tuations. For first-order perturbation theory studied by examining the posterior calculated values,

convergence was seen within 200,000,000 particles. The posterior calculated values’ uncertainties

converge rapidly because the posterior nuclear data covariance matrix is not greatly affected by

sensitivity uncertainties.

A convergence criterion is proposed for sensitivity calculations when they are used perturbation

theory, uncertainty quantification, and data assimilation. The criterion consists of checking, as the

simulation is running, the uncertainty on the calculated value with first-order perturbation theory

that comes from three sources: the nuclear data, the nominal calculated value from the Monte

Carlo calculation, and from the sensitivities themselves. In this work, it was found that once the

combined uncertainty from nominal calculated value and from sensitivity coefficients was ∼0.2

times smaller than the uncertainty from nuclear data, there was convergence for all parameters

calculated with sensitivity coefficients. At this point, the simulation can be stopped. This criterion

would ensure that the sensitivities sufficiently well approximated that they would give good results

in first-order perturbation theory, uncertainty quantification, and data assimilation. The results pre-

sented in this document show that this criterion works well for the three applications investigated

and that it could be employed to significantly economize computational resources in future appli-

cations. The criterion is advantageous because it is a simple calculation that circumvents the need

to setup the full data assimilation procedure, but is still applicable to data assimilation results.

REFERENCES

[1] M. Aufiero et al., “A collision history-based approach to sensitivity/perturbation calculations
in the continuous energy Monte Carlo code SERPENT,” Annals of Nuclear Energy 85, pp.
245-258 (2015).

[2] J. Leppänen et al.. “The Serpent Monte Carlo code: Status, development and applications in
2013.” Annals of Nuclear Energy 82, pp. 142-150 (2015).

[3] Dragt. “Statistical Considerations on Techniques for Adjustment of Differential Cross Sec-
tion with Measured Integral Parameters.” Internal Report, NRG (1970)

[4] M. Salvatores et al., “Methods and Issues for the Combined Use of Integral Experiments
and Covariance Data: Results of a NEA International Collaborative Study,” Nuclear Data
Sheets 118, pp. 38-71 (2014).

[5] D. Siefman et al., “Case Study of Data Assimilation Methods with the LWR-Proteus Phase
II Experimental Campaign,” Proceedings of M&C 2017, Jeju, Korea, April 16-20 (2017).

[6] International Handbook of Evaluated Criticality Safety Benchmark Experiments,
NEA/NSC/DOC(95)03, September 2007 Edition.

[7] M. Herman et al., “COMMARA-2.0 Neutron Cross Section Covariance Library,” BNL-
94830-2011, U.S. Department of Energy (March 2011).

[8] M.B. Chadwick et al., “ENDF/B-VII.0: Next Generation Evaluated Nuclear Data Library
for Nuclear Science and Technology,” Nuclear Data Sheets 107, pp. 2931-3060 (2006).

[9] G. Rimpault et al., “The ERANOS data and code system for fast reactor neutronic analyses,”
Proceedings of PHYSOR 2002, Seoul, Korea (2002).

Proceedings of the PHYSOR 2018, Cancun, Mexico


