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A B S T R A C T

Nuclear thermal-hydraulics (TH) system codes use several parame-
trized physical or empirical models to describe complex two-phase
flow phenomena. The reliability of their predictions is as such pri-
marily affected by the uncertainty associated with the parameters of
the models. Because these model parameters often cannot be mea-
sured, nor have inherent physical meanings, their uncertainties are
mostly based on expert judgment.

The present doctoral research aims to quantify the uncertainty of
physical model parameters implemented in a TH system code based
on experimental data. Specifically, this thesis develops a methodol-
ogy to use experimental data to inform these uncertainties in a more
objective manner. The methodology is based on a probabilistic frame-
work and consists of three steps adapted from recent developments
in applied statistics: global sensitivity analysis (GSA), metamodeling,
and Bayesian calibration.

The methodology is applied to reflood experiments from the FEBA
separate effect test facility (SETF), which are modeled with the TH
system code TRACE. Reflood is chosen as a relevant phenomenon
for the safety analysis of light water reactors (LWRs) and three typical
time-dependent outputs are investigated: clad temperature, pressure
drops and liquid carryover.

In the first step, GSA allows screening out input parameters that
have a low impact on the reflood transient. Functional data anal-
ysis (FDA) is then used to reduce the dimensionality of the time-
dependent code outputs, while preserving their interpretability. The
resulting quantities can be used once more with GSA to investigate,
quantitatively, the effect of the input parameters on the overall time-
dependent outputs.

In the second step, a Gaussian process (GP) metamodel is devel-
oped and validated as a surrogate for the TRACE model. The aver-
age prediction error of the metamodel is sufficiently low to predict
all considered outputs, and its computational cost is less than 5 [s] as
compared to 6− 15 [min] per TRACE run.

In the final step, the a posteriori model parameter uncertainties
are quantified by calibration on a selected test from the FEBA exper-
iments. Several posterior probability density functions (PDFs) corre-
sponding to different calibration schemes – with and without model
bias term and for different types of output – are formulated and di-
rectly sampled using a Markov Chain Monte Carlo (MCMC) ensem-
ble sampler and the GP metamodel. The posterior samples are then
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propagated in a set of FEBA experiments to check the validity of the
posterior model parameter values and uncertainties.

The calibration is performed on different types of output to in-
form model parameters that would have otherwise remained non-
identifiable. The calibration scheme with model bias term is able to
constrain the prior uncertainties of the model parameters while keep-
ing the nominal TRACE parameters values within the posterior un-
certainty interval. That is in contrast with the results of the calibration
without model bias term, in which the posterior uncertainties are con-
centrated on either side of the prior range, and at times do not include
the nominal TRACE parameters values. Finally, except for a few out-
puts – the clad temperature output at the top assembly and the liquid
carryover –, the relative performance of all posterior uncertainties is
insensitive to boundary conditions of the different FEBA tests.

The proposed methodology was shown to successfully inform the
uncertainty of the model parameters involved in a reflood transient.
In the future, the methodology can be applied to model parameters
involved in other TH phenomena using data from SETFs and, hope-
fully, contributes to achieve the goal of quantifying uncertainties for
transients considered in the safety assessment of LWRs.

keywords: system thermal-hydraulics (TH), reflood, TRAC/RELAP
Computational Engine (TRACE) code, uncertainty quantification (UQ),
global sensitivity analysis (GSA), Gaussian process (GP) metamodel,
Bayesian calibration
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R É S U M É

Les codes de système thermohydraulique nucléaires utilisent plusieurs
modèles paramétriques physiques ou empiriques pour modéliser des
écoulements diphasiques complexes. La précision de leurs prédic-
tions est de fait directement affectée par les incertitudes des paramètres
de ces modèles. Du fait que ces paramètres ne sont souvent ni mesurables
ni n’ont de significations physique propres, leurs incertitudes sont
généralement déterminés par un jugement d’expert.

Ce travail de thèse a pour but de quantifier les incertitudes des
paramètres des modèles physiques implémentés dans les codes de
système thermohydraulique en utilisant des données expérimentales.
Cette thèse développe plus spécifiquement une méthodologie qui
utilise les données expérimentales pour quantifier ces incertitudes de
manière plus objective. La méthodologie utilise une approche proba-
biliste et comprend trois étapes qui proviennent de développements
récents dans le domaine des méthodes statistiques appliquées : anal-
yse de sensibilité globale (GSA), méta-modèle, et calibration Bayési-
enne.

La méthode est appliquée dans le cadre d’expériences de renoyage
qui se sont déroulés dans l’installation FEBA et qui sont modélisées
avec le code de thermohydraulique TRACE. Le renoyage est choisi car
il représente un phénomène d’importance majeure dans le cadre des
analyses de sûreté des réacteurs à eau légère (LWR). Trois types de
sortie du code qui dépendent du temps sont observés : la température
de la gaine, la réduction de pression et la quantité de liquide entrainé
hors de la section de test.

Dans la première étape de la méthodologie, l’analyse de sensitiv-
ité globale permet d’éliminer des paramètres d’entrées du code qui
ont une faible influence sur le transitoire de renoyage. L’analyse de
fonctions (functional data analysis (FDA)) permet de réduire le nom-
bre de dimensions des sorties du code dépendant du temps tout en
préservant leurs interprétabilités. Ceci permet, à l’aide d’une nouvelle
analyse de sensibilité, de quantifier les effets des paramètres d’entrées
sur les paramètres de sorties du code considérés dans leur ensemble.

Dans la seconde étape, un méta-modèle basé sur un processus
gaussien (GP) est développé et validé comme substitut au modèle
TRACE. Les incertitudes sur les prédictions du méta-modèle sont
suffisamment faibles pour prédire précisément toute les sorties d’intérêt.
Le méta-modèle est évalué en moins de 5 [s] contre 6− 15 [min] pour
le modèle TRACE.

Dans la dernière étape, l’incertitude a posteriori sur les paramètres
des modèles est quantifiée par calibration sur une expérience choisie
parmi l’ensemble des expériences FEBA considérés dans cette thèse.
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Plusieurs densités de probabilités a posteriori correspondant à dif-
férents schémas de calibration (avec et sans terme prenant en compte
le biais du modèle et pour différents types de sortie du code) sont
formulées et directement échantillonnées en utilisant le méta-modèle
gaussien et un échantillonneur d’ensemble basé sur la méthode de
Monte-Carlo par chaînes de Markov (MCMC). Les échantillons obtenus
sont propagés dans l’ensemble des expériences FEBA considérés pour
vérifier la validité des valeurs et incertitudes des paramètres des mod-
èles obtenus par calibration.

En utilisant différents types de sorties du code la calibration a per-
mis d’améliorer les incertitudes de certains paramètres qui seraient
dans le cas contraire restés à leurs valeurs d’origine. La calibration
qui prend en compte le biais du modèle a quant à elle permis de con-
traindre les incertitudes a priori des paramètres tout en garantissant
que leurs valeurs nominales restent dans l’intervalle de confiance a
posteriori. Ce n’est pas le cas pour la calibration qui ne prend pas
en compte le biais du modèle. Pour cette dernière, les incertitudes a
posteriori sont concentrées sur les bords de l’intervalle de confiance
a priori des paramètres et parfois n’incluent pas leurs valeurs nomi-
nales. Finalement, excepté pour la température de la gaine au sommet
de l’assemblage et la quantité de liquide transporté hors du système,
les performances de toutes les incertitudes a posteriori obtenues ne
sont pas sensibles aux conditions limites des différentes expériences
FEBA considérées.

La méthodologie proposée dans cette thèse a permis de réduire
les incertitudes des paramètres des modèles utilisés dans la modéli-
sation du transitoire de renoyage. Dans le future, cette méthodolo-
gie pourra être mise en œuvre avec des modèles impliqués dans
d’autres phénomènes thermohydrauliques en utilisant des données
issues d’autres installations pour l’étude d’effet thermohydraulique
(SETF), et pourquoi pas ainsi contribué à atteindre le but de quanti-
fier les incertitudes dans les transitoires considérés dans l’analyse de
sûreté des réacteurs à eau légère.

mots-clefs: système thermohydraulique, reflood, code TRAC/RE-
LAP Computational Engine (TRACE), quantification d’Incertitude (UQ),
analyse de sensitivité globale (GSA), méta-modèle processus gaussien
(GP), calibration Bayésienne
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I N T I S A R I

Kode thermo-hidrolika sistem tenaga nuklir menggunakan beberapa
model parametrik, baik empiris maupun mekanistis, untuk menggam-
barkan fenomena-fenomena aliran dua fase yang kompleks. Kean-
dalan prediksi kode thermo-hidrolika sistem dipengaruhi oleh keti-
dakpastian yang berhubungan dengan parameter-parameter di dalam
model-model tersebut. Karena parameter-parameter tersebut seringkali
tidak bisa diukur secara langsung, dan bahkan tidak memiliki arti
fisik yang melekat, ketidakpastian yang berhubungan dengan parame-
ter-parameter tersebut biasanya ditentukan dengan pertimbangan ahli.

Tujuan dari riset doktoral ini adalah untuk melakukan kuantifikasi
ketidakpastian dari parameter-parameter yang diimplementasikan di
dalam kode thermo-hidrolika sistem berdasarkan data dari eksperi-
men. Khususnya, disertasi ini mengembangkan sebuah metodologi
untuk memanfaatkan data dari eksperimen guna memperbarui keti-
dakpastian tersebut dengan cara yang lebih objektif. Metodologi yang
diajukan ini dikembangkan berdasarkan kerangka kerja probabilis-
tis dan terdiri dari tiga langkah yang diadaptasi dari perkembangan
terkini dalam statistika terapan: analisis sensitivitas global (global sen-
sitivity analysis, GSA), pemetamodelan, dan kalibrasi Bayes.

Metodologi tersebut kemudian diterapkan pada eksperimen reflood
di fasilitas uji efek terpisah FEBA, yang dimodelkan dengan kode
thermo-hidrolika sistem TRACE. Reflood dipilih sebagai fenomena
yang relevan dalam analisis keselamatan reaktor air ringan. Investi-
gasi dilakukan terhadap tiga keluaran utama gayut-waktu: temper-
atur cladding, penurunan tekanan, dan carryover cairan.

Di langkah yang pertama, analisis sensitivitas global mampu me-
nyaring parameter-parameter yang kurang berpengaruh terhadap kelu-
aran simulasi reflood. Kemudian, analisis data fungsi (functional data
analysis, FDA) digunakan untuk mereduksi dimensi keluaran gayut-
waktu, sembari mempertahankan penafsiran keluaran tersebut. Besaran-
besaran yang dihasilkan dapat digunakan dengan analisis sensitivitas
global untuk menginvestigasi, secara kuantitatif, efek parameter ma-
sukan terhadap keluaran gayut-waktu secara menyeluruh.

Di langkah yang kedua, sebuah metamodel berdasarkan proses
Gauss (Gaussian process, GP) dikembangkan dan divalidasi untuk di-
gunakan sebagai pengganti model TRACE. Kesalahan prediksi rerata
metamodel tersebut cukup rendah untuk memprediksi secara akurat
semua keluaran-keluaran yang disebut di atas. Terlebih lagi, biaya
komputasi evaluasi dengan metamodel membutuhkan kurang dari
5 detik untuk tiap evaluasi, dibandingkan dengan waktu yang dibu-
tuhkan TRACE untuk tiap evaluasi antara 6 sampai 15 menit.
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Di langkah yang terakhir, ketidakpastian dari parameter-parameter
model dikuantifikasi secara a posteriori melalui kalibrasi berdasarkan
data dari uji terpilih FEBA. Beberapa fungsi densitas peluang (prob-
ability density function, PDF) posterior yang terkait dengan beberapa
skema kalibrasi – baik dengan mempertimbangkan suku ketidaksesua-
ian model (model bias term) maupun tidak, dan dengan mempertim-
bangkan berbagai macam tipe keluaran – diformulasikan. Dari for-
mulasi tersebut, sampel langsung diambil secara acak menggunakan
algoritma Monte Carlo Rantai Markov (Markov Chain Monte Carlo,
MCMC) ansambel dan metamodel proses Gauss; dan kemudian dipro-
pagasikan untuk beberapa uji FEBA guna memastikan validitas nilai
dan ketidakpastian dari parameter-parameter model tersebut.

Kalibrasi dilakukan terhadap beberapa tipe keluaran untuk mem-
perbarui ketidakpastian dari parameter-parameter model. Jika keluar-
an-keluaran tersebut tidak dipertimbangkan, maka ketidakpastian
dari beberapa parameter-parameter model tidak dapat diperbarui.
Skema kalibrasi dengan suku ketidaksesuaian model mampu mem-
batasi ketidakpastian awal dari parameter-paremeter tersebut, sem-
bari mempertahankan nilai nominal parameter-parameter TRACE di
dalam rentang ketidakpastian akhir. Hasil ini berlawanan dengan
hasil dari kalibrasi tanpa suku ketidaksesuaian tersebut, sedemikian
hingga ketidakpastian akhir terpusatkan di salah satu sisi rentang
ketidakpastian awal, dan kadang tidak mengikutsertakan nilai nom-
inal parameter-parameter TRACE. Kecuali untuk beberapa keluaran
– temperatur cladding di bagian atas rangkaian fasilitas uji dan car-
ryover cairan –, kinerja relatif dari ketidakpastian akhir tidak dipen-
garuhi oleh syarat batas dari beberapa uji FEBA.

Metodologi yang diajukan di atas berhasil memperbarui ketidak-
pastian dari parameter-parameter model yang berhubungan dengan
simulasi reflood. Pada masa yang akan datang, metodologi ini da-
pat diterapkan untuk parameter-parameter model yang berhubun-
gan dengan simulasi fenomena-fenomena thermo-hidrolika lainnya
menggunakan data dari berbagai fasilitas uji efek terpisah. Metodologi
ini juga diharapkan dapat memberikan kontribusi dalam melakukan
kuantifikasi ketidakpastian secara menyeluruh dalam penilaian kese-
lamatan reaktor air ringan.

kata kunci: thermo-hidrolika sistem, reflood, kode TRAC/RELAP
Computational Engine (TRACE), kuantifikasi ketidakpastian (UQ),
analisis sensitivitas (GSA), metamodel proses Gauss (GP), Kalibrasi
Bayes
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1
Q U A N T I F Y I N G U N C E RTA I N T Y O F C O M P U T E R
M O D E L : F O RWA R D A N D B A C K WA R D

“All models are wrong but some are useful” – George Box

It is perhaps convenient to use the quote by Box – at least half of
it – as an excuse if a modeling exercise goes awry. But engineers
are constructive bunch, as they are pragmatic, so they often focus on
the second part of the statement and try to do better. Some would
argue that to make a model useful is to make a model less wrong,
a very difficult task. Some others would start by making an effort
assessing whether the “wrong” model is useful, can ever be useful,
or can be made useful without any direct improvement to the model.
The two views are not contradictory, although the latter is arguably
more humble. This thesis is an effort in line with the latter view.

By many measures, TH system codes for simulating system behav-
ior of a nuclear power plant (NPP) are an achievement. Their develop-
ment, by the best and the brightest, includes decades of verification
and validation (V&V) and validation activities supported by numer-
ous experimental facilities, small and large scales. Many of the cur-
rent understanding of physical phenomena in NPP transient were
established during that period. Yet, their predictions can still be off
when compared against experimental data. The efforts to minimize
this difference by developing high-fidelity physical models coupled
with high-resolution numerical algorithms are always on-going and
are indispensable for moving forward.

At the same time, simulations are being continuously used to make
decisions, from optimal system design to safety margin evaluation for
reactor licensing. For robust decision-making, it is important to ac-
knowledge and determine the uncertainties associated with the pre-
dictions. Thus, independently of the efforts to improve the code, un-
certainty quantification of the code predictions is an important part
of the code development; it is the main topic of this thesis.

This opening chapter introduces briefly the importance and chal-
lenges of using system codes for simulating the TH behavior of NPPs
in the context of their safety analysis. Section 1.1 starts with basic def-
initions of relevant terms used throughout the thesis before moving
on to a brief introduction to safety analysis and TH system code. Un-
certainty analysis of TH system codes is first discussed in Section 1.2,
outlining the background and the context of the doctoral research.

Section 1.3 then describes the statement of the problem, the objec-
tives, and the scope of the research. This thesis proposed a methodol-
ogy comprised of sequential steps to analyze a computer model (i.e.,

1
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TH system code) with the overall goal of quantifying the uncertainty
associated with the model parameters based on experimental data.
It consolidates and adapts recent developments in the applied statis-
tics literature. In this context, Section 1.4 provides a broad, but by no
means exhaustive, overview of the research landscape on each pro-
posed steps. Finally, Section 1.5 concludes the chapter by outlining
the structure of the thesis.

1.1 computer simulation and safety analysis of nuclear
power plant

1.1.1 Scientific Computer Simulation

The ubiquity of computer simulation in science and engineering has
resulted in numerous definitions of the term scientific computer simu-
lation, model, and simulation. To avoid confusion, this thesis adopts aScientific computer

simulation recent definition proposed by Kaizer et al.[1] quoted below:

Scientific Computer Simulation is the imitation of a be-
havior of a system, entity, phenomenon, or process in the
physical universe using limited mathematical concepts, sym-
bols, and relations through the exercise or use of scientific
computer model.

This definition highlights three main points. First, this definitionmodel, simulation,
scientific simulation,

and scientific
computer simulation

accentuates the difference between model and simulation. A model
deals with the notion of representation of a system, while a simu-
lation deals with the notion of imitation of a behavior of that system.
Secondly, a model is said to be scientific when it represents a real
world system as its subject. Finally, the modifier computer generally
implies that the mathematical models cannot be solved analytically
and their solutions require a computer. Because the associated nu-
merical approximations can affect its solution, many computational-
related aspects often need to be considered. This thesis only deals
with computer simulation.

Beven [2] articulates this definition of a scientific model further
through the following distinctions: a perceptual model (i.e., the theo-
retical description of the physical phenomena), a formal model (i.e.,Perceptual, formal,

and procedural
models

its mathematical description), and a procedural model (i.e., the com-
puter implementation of the formal model). For many physical mod-
els of complex system, only the procedural model is able to make
a quantitative prediction of the system behavior. These distinctions
are useful in acknowledging the level of approximation involved in
modeling.

A computer software that implements scientific models down to
the solution algorithms is called a scientific code or simply a code [3].Code

Many modern implementations of scientific codes, apart from possi-
bly being specific to a scientific domain, are comprehensive platforms.
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For instance, in the context of TH system modeling, such codes allow
modeling various attributes of the system ranging from its geometry,
initial and boundary conditions, and design variables to the settings
for discretization scheme and numerical solver.

A simulation or a calculation [3] using a code can only be made on
a particular well-specified system, where all the aforementioned at-
tributes (geometry, initial and boundary conditions, etc.) have been
completely fixed or specified. As a result, the terms computer simula- Simulator

tion model or simulator include not only the code itself, but also the
particular system of interest being modeled using the code [4].

1.1.2 Codes and Safety Analysis of Nuclear Power Plant

Scientific codes play a central role in deterministic safety analysis of
NPPs. They provide a physics-based evaluation of relevant phenomena
taking place in the plant during postulated transients to demonstrate
that safety requirements are met [5]. The demonstration is carried
out with respect to acceptance criteria, a set of limits and conditions
ensuring the integrity of the safety barriers. The criteria are set by
regulatory bodies for normal and off-normal operation of the plants.

The physics-based evaluation is achieved through simulation. As Codes in safety
analysis of NPPnoted in [5, 6], there are four disciplines associated with the different

physical processes relevant in the safety analysis of the plant behavior:
the neutronics of the core; the thermo-mechanics of the fuel and reactor
components; the radiological analysis of a possible release; and, the
system thermal-hydraulics of the plant, the subject of this thesis1. Each
discipline is, in turn, characterized by a distinct set of governing phys-
ical equations and that are often solved by a distinct code.

The NPP safety is established, among other things, by setting the
acceptance criteria in terms of limiting physical quantities relevant
for the phenomena involved. The upper tolerance limit of 1 ′204 [oC]
for the peak clad temperature (PCT) is one such criteria for LWRs [7].
Whether the physical quantities respect such limits during postulated
scenarios is analyzed using simulations either in a conservative or
best-estimate approach [5].

During its early days, reactor safety analysis involved a high-degree
of conservatism. Conservatism called for the most pessimistic and pe- Conservative

analysisnalizing modeling assumptions (including initial and boundary con-
ditions) to ensure conservative results, that is far below their expected
values. This approach, was justified by limited modeling capabilities
and limited knowledge of the physical process involved. However, it
was later found that there are conditions for which conservative as-
sumptions do not lead to conservative (or even physical) predictions.

1 Ref. [6] added one additional key discipline, namely: reliability analysis. It is ex-
cluded in the above listing as it is not technically a discipline of physics.
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As an example, consider the analysis for a loss-of-coolant accident
(LOCA) of an LWR. Assuming less interfacial shear between the liq-An illustration

uid and the gas phases of the coolant (water) reduces mist flow and
is a conservative assumption because less heat is transferred to the
coolant flow in the upper region of the core, which penalizes the
fuel temperature prediction. But this assumption also reduces that
the time to refill the core as more liquid is retained in the reactor
cooling system. Furthermore, with less shear, there is less resistance
in injecting emergency coolant into the core (condition known as the
counter-current flow limitation). Both effects are clearly not conserva-
tive and put into question the conservatism of the prediction [5].

Because of this example and many others [5], a more accurate
prediction of two-phase flow transient behavior under accident con-
ditions was deemed necessary. As opposed to the conservative ap-Best-estimate

analysis proach, best-estimate approach calls for (more) physically sound thermal-
hydraulics models with more realistic assumptions, which are backed
up by experimental data obtained from numerous experimental pro-
grams conducted in Separate and Integral Effect Test Facilities. In
that context, Best-estimate TH system codes were developed to pro-
vide more realistic predictions. The codes were designed to be com-
prehensive tools capable of simulating realistically a wide range of
transients foreseen in LWR operation, and were developed using the
current best understanding of flow processes expected to happen dur-
ing the transients.

1.1.3 Thermal-Hydraulics (TH) System Codes

A TH system code is a tool to simulate the flow behavior of the reactor
coolant during transients. This implies solving time-dependent con-TH system code

servation equations, describing the two-phase fluid flow inside the
coolant circuit, coupled with a heat conduction equation, describing
the heat transfer between fluid and heated elements (e.g., fuel rods).
The simulation of the plant behavior also requires an explicit model-
ing of the geometry, components, equipments, and systems that are
specific to LWRs [6].

The coolant circuit of an LWR is a complex system. The system
includes the reactor pressure vessel with hundreds of fuel assem-
blies; kilometers of interconnecting pipes; scores of valves, pumps,
and tanks; as well as numerous special components like steam gen-
erators and condensers. The first major simplification made for de-Nodalization

scribing the fluid flow in the coolant circuit is to average the fluid
on the surface perpendicular to its flow (i.e., flow area averaging – see
Chapter 2). This results in a 1-dimensional nodalization of the circuit.
Through nodalization, an LWR is decomposed into a set of intercon-
nected nodes which holds discretized information of fluid flow (see
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Fig. 1.1). Due to the 1-dimensional simplification of the flow2, a node
is only characterized by its fluid cell (with attributes of length and free
volume) and its faces (with attributes of flow area, hydraulic diameter,
and orientation).

at faces:
- flow area
- hydraulic diameter
- flow orientation

face

fluid
cell

at fluid cell:
- length
- volume

Pressurizer

Steam Generator 2

Lower plenum

RPV

Downcomer

Steam Generator 1

Accumulator

Upper plenum

Pump

Valve

from hot leg

to cold leg

Heated
channels

from
secondary
circuit

to
secondary
circuit

Hot leg
Cold leg

from
secondary
circuit

to
secondary
circuit

Safety Injection
System (ECCS)

Figure 1.1: Nodalization of an NPP in a thermal-hydraulics (TH) system
code. Shaded elements are heated elements, where heat ex-
change occurs between the element and the fluid.

The typical structure of a system code is illustrated in Fig. 1.2. As
shown, a system code constitutes of several building blocks that can
be used to model and simulate wide ranges of systems and condi-
tions. It includes a set of conservation equations, closure laws, and Structure of

thermal-hydraulics
system codes

equation of states. System codes are complemented with models for
special components that perform specific functions (e.g., heated solid
structure, pumps, and separators) or actions during transients (e.g.,
valves, instrumentation, and control systems); and models for special
processes and phenomena that are relevant to the LWRs but too com-
plex to be captured implicitly in the (simplified) conservation equa-
tions (e.g., critical flow). In fact, the inclusion of models for those
components and processes are the defining characteristics of TH sys-
tem code [6].

The core element of a system code is a set of conservation equations
describing the dynamics of the state variables of the fluid. The state- Two-fluid model

of-the-art model widely implemented in TH system codes to describe
the dynamics of fluid flow in NPPs (specifically, LWR) is based on the
two-fluid model. This model separately treats the transport phenomena
of the two-phases of fluid flow (gas and liquid) resulting in a set of

2 Some system codes allow a 3-dimensional modeling for selected components, mainly
the reactor pressure vessel where 3-dimensional effects might be of relevance to
safety analysis. However, as of today, no system code supports full 3-dimensional
modeling of all the components in the coolant circuit.
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Thermal-Hydraulics System Code
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• Form Loss Model
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Figure 1.2: Generic structure of a thermal-hydraulics (TH) system code. The
code and an input deck define a simulator of a system.

six balance equations (mass, momentum, and energy for each of the
two phases). The model can capture phenomena where thermal and
mechanical non-equilibrium conditions exist between the two phases,
giving more realistic picture in a wide range of transients.

The validity of the two-fluid model relies on the proper modeling
of the transfer terms between phases and between each phase and the
boundary walls. The transfer terms include interfacial drag, interfa-Transfer terms,

physical models cial heat transfer, and wall heat transfer. In principle, any two-phase
flow pattern exhibits particular phase distributions and interfacial
structures. As a result, the mathematical expressions of the transfer
terms change with the pattern of the two-phase flow. As the trans-
fer terms represent different physical processes taking place for each
flow pattern, they constitute the physical models of a system code.

These physical models, so-called closure laws, close the set of bal-
ance equations for mass, momentum, and energy of the two phases.
Based on their origins, closure laws can be classified into three cate-
gories: fully empirical, fully mechanistic, and semi-empirical [8]. FullyClosure laws origin

empirical closure laws are based only on the available representative
experimental data by correlating transfer terms of interest with ob-
served flow variables. Given comprehensive experimental data, theseFully empirical

approach models tend to be accurate within the range of experimental condi-
tions (i.e., its validation domain). On the other hand, an extrapolation
outside of that range can give dubious results.

A fully mechanistic (i.e., phenomenological) approach for develop-
ing closure laws lies at the other end of the spectrum. Using this ap-Fully mechanistic

approach proach, a physical mechanism that governs the phenomena of interest
is postulated. Experimental data plays a role only in validating such
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a postulated model. If the model cannot be supported by the data
then a complete revision might be required. Mechanistic approach to
closure laws modeling provides a scientific basis for prediction out-
side the validation data range (i.e., extrapolation). However, its qual-
ity strongly depends on the adequacy of the postulated model and
the associated assumptions.

Lastly, the semi-empirical approach combines both approaches, i.e.,
an initial mechanistic model which is tuned using parameters that are Semi-empirical

approachfitted to match experimental data. These parameters then become a
measure of the inadequacy of the postulated model in explaining the
data due to any unaccounted physical processes.

Any of these approaches proved to be a difficult effort [9–11] due to
various reasons ranging from the lack of knowledge of the underlying
physical process (with respect to the fully mechanistic modeling) to
limitation in the amount and precision of the measured data (with re-
spect to the fully empirical approach). Simplifying assumptions and
extrapolations are made because of these limitations. In the end, clo-
sure laws in system codes are of mixed origins and they become a
major source of uncertainty3 in the application of TH system codes,
especially when used outside their validation domains.

1.2 uncertainty quantification in nuclear engineering
thermal-hydraulics

Before continuing the discussion of uncertainty analysis of code pre-
dictions, this section defines some additional terminologies to avoid
later confusion.

The notion of simulator introduced in Section 1.1 is depicted in a
more generic way, as an input/output model in Fig. 1.3.

Conservation Equations

Input Deck

Geometry

Initial conditions

Boundary conditions

Material specifications

Other controllable inputs

Simulator

u(r, t)

TH System Code

Closure Laws, sub-models, etc.

b(u,xc, {Mi(xc,xm,u)}) = 0

{Mi(xc,xm,u); i > 0}
Selected sub-models

Figure 1.3: Simplified illustration of a simulator as an input/output model.

The input deck defines a specific problem (i.e., system) of interest
and can be seen as the input of TH codes. It includes the geometrical
configuration (i.e., the nodalization), the material and fluid involved,
the initial and boundary conditions, and possibly the settings for the
numerical solver. Some of these specifications (such as the bound- Controllable inputs

and model
parameters3 defined in this thesis as a state of limited knowledge, that is of epistemic nature.



8 introduction

ary conditions) are parametrized and constitutes controllable inputs
denoted by xc. The simulator is to be run for a given controllable
input value4. The conservation equations of the code are closed with
additional set of closure laws (and other sub-models) Mi(xc, xm,u).
These closure laws are, in turn, parametrized by a set of model spe-
cific parameters denoted by xm which are referred to as the physical
model parameters. Both the controllable inputs and the physical model
parameters are considered by the code as inputs.

Specifying the input deck, as far as the user is concerned, com-
pletely defines the problem and the code solves the conservation
equations b (Fig. 1.3) to estimate the physical variables u(r, t) (where
r and t denote space and time variables, respectively) associated
with the fluid flow and heat structure (e.g., fluid pressure, temper-
ature, wall temperature, etc.). These “raw” outputs are further post-
processed to obtain relevant QoIs for the problem at hand (e.g., max.
temperature, max. pressure, onset time, etc.).

1.2.1 Forward Uncertainty Quantification

Best-estimate analysis attempts to describe as realistically as possible
the behaviors of the physical processes that occur during a plant tran-
sient. And yet, neither complete understanding nor enough data is
always available to adequately simulate these complex physical phe-
nomena. Simplifying assumptions, approximations, and expert judg-
ments remain to some degree unavoidable for a complete analysis.

Hence, best-estimate analysis has to be complemented with uncer-
tainty analysis. The ultimate goal of uncertainty analysis is to asso-Best-estimate plus

uncertainty ciate code prediction a with its uncertainty. These combined quanti-
ties are then compared with safety limits (e.g., peak clad temperature
(PCT)) to check whether the limits still fall outside the uncertainty
band of the code prediction.

There are several known sources of uncertainty that render the pre-
diction on u(r, t) and its derived quantities uncertain. The sources ofSources of

uncertainty primary interest in the present research are:

1. Uncertainty associated with the controllable inputs. In the case of a
controlled experiment, controllable inputs are observed and con-
trolled for. However, their observations might contain errors due
to instrument imprecision or inherent variability. When simulat-
ing a real accident scenario in a plant, plant parameters prior to
the accident scenario can also be measured and constitute un-
certain controllable inputs. In addition, parameters defining the
accident scenario, such as the break size in a LOCA, or the avail-
ability and performance of safety systems can also be treated as
uncertain controllable inputs [12].

4 Later on, controllable inputs correspond to the parameters whose counterparts in a
physical experiment which can be controlled by the experimentalist.
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2. Uncertainty associated with the physical model parameters. The value
of the physical model parameters are often not known a priori.
Thus, the uncertainties are epistemic. They can either be esti-
mated using data from a calibration experiment or by expert
judgment.

3. Uncertainty associated with the physical models. The physical mod-
els themselves are still approximations, even with perfectly known
model parameters. If derived in a fully mechanistic manner,
some important processes might be unaccounted for due to the
inherent complexity and lack of knowledge (i.e., the case of miss-
ing physics). On the contrary, if derived fully empirically, models
might be derived separately for different elementary processes,
while in the applications of the code multiple such models are
used in concert. Despite each being validated, it is fair to ques-
tion the validity of models used in an ensemble. Any of the
two tends to cause a systematic bias on the code prediction, the
extend of which is unknown and uncertain. As a result, this
source of uncertainty is referred to as model bias, inadequacy, or
discrepancy.

In uncertainty analysis, the controllable inputs and physical model
parameters are modeled as random variables (Xc and Xm, respec-
tively) equipped with probability density functions (PDFs). By trans- Forward uncertainty

quantificationforming the random variable inputs, the simulator output becomes
random variable as well

U(r, t) = f(Xc,Xm; r, t)

where f represents the simulator as a mathematical function. The QoI
related to the random outputs can be summarized by different inte-
gral quantities. For instance, the mean of a QoI given by function g
is

E[g] =

∫
Xc,Xm

g(f(xc, xm; r, t))p(xc, xm)dxc dxm

where p(xc, xm) denotes the joint PDF for the input parameters.
Using Monte Carlo (MC) techniques, samples are generated from

the joint input parameters distribution and are used to run the code
multiple times. Afterward, the resulting code outputs (raw or post-
processed), are summarized to obtain the uncertainty measure of the
prediction. In other words, the uncertainties in the controllable in-
puts and physical model parameters are propagated forward through
the code to quantify the uncertainty of the predictions as shown in
Fig. 1.4. The practice of propagating parametric uncertainty by MC is
widely accepted in the nuclear engineering thermal-hydraulics com-
munity [13–16].
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Figure 1.4: Simplified flowchart of forward uncertainty quantification of
a simulator prediction. Notice that the simulator has been
parametrized by the controllable inputs and physical model pa-
rameters, each of which are represented as a random variable.

1.2.2 Inverse (Backward) Uncertainty Quantification

A lot has been said about the origin of the uncertainty associated with
the controllable inputs. The physical model parameters, however, are
conceptually different. The physical models referred to in this thesisModel parameters

are usually represented either in the form of correlations, phenomeno-
logical models, or a mixed between the two (see Section 1.1.3). There-
fore, the model parameters do not necessarily have a physical mean-
ing (see Chapter 5) and the source of their uncertainties vary with
the type of model. For instance, in an empirical model the model pa-
rameters are the curve-fitting parameters and their uncertainties are
observable and can be associated with the dispersion of the data.

However, many physical models, be it empirical or mechanistic, are
originally derived from experiments on simple systems that do not,
strictly speaking, reflect the flow conditions in an LWR (e.g., heated
tube vs. rod bundle, low pressure vs. high pressure, etc.) [8]. Thus,Separate Effect Test

Facilities (SETFs) to better represent the flow characteristics in reactor transient, exper-
iments with well-specified conditions are conducted in SETFs, facil-
ities aimed at reproducing a particular safety-relevant phenomena
during transient at a particular part of the reactor [6].

The data are used to assess the physical models. In the assessment,
some parameters in the models are adjusted to match the experimen-Calibration against

SETFs tal data [9]. Alternatively, additional free parameters can be intro-
duced in the models to serve the same purpose [8]. That is, the pa-
rameters are tuning parameters and become measures of the models
inadequacy in reproducing the data. Ultimately, optimal values for
the parameters are estimated and implemented in the code.

In light of this, it can be argued that the uncertainty associated
with the tuning parameters stems from the fact that the calibration
was conducted only on limited set of data obtained from selected
SETFs. As different SETFs exist for the same phenomena, it is fair
to ask if the calibrated value will hold if the calibration were to be
conducted on other SETFs data. Additionally, as tuning parameters,
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expert-judgment is also often used to estimate the uncertainty. Ex-
perts fixed the range of variation of the parameters based on their
expectation of the model performance.

To derive the uncertainty associated with the model parameters
described above, the problem can be posed as an inverse problem. In An inverse problem

this setting, given a set of experimental data {D} taken with known
controllable inputs xc, the task is to infer the value of the unobserved
parameters in the physical model used to predict the same quantity as
the experimental data. To avoid excessive bias towards the calibration
data, it is important here to acknowledge the observation errors of
the experimental data and the controllable inputs, and the possible
systematic bias of the associated models.

In a probabilistic setting, a way to make an inference of unobserved
parameters based on observed data is through the Bayes’ theorem, Inverse uncertainty

quantification

p(xm | {D}, xc) =
p({D} | xm, xc) · p(xm)∫
p({D} | xm, xc) · p(xm)dxm

where the left-hand side of the equation is the posterior probabil-
ity density of the model parameters xm conditioned on the observed
data {D} and controllable inputs xc. The right-hand side constitutes of
the likelihood function p({D} | xm, xc) (probability of observing data
given the parameters), the prior of the model parameters p(xm) (the
initial state of knowledge regarding the parameters values before ob-
serving the data), while the denominator is a normalizing constant
such that the posterior is a valid PDF (that is, it integrates to one)5.
The posterior represents the knowledge one has on the model param-
eters values conditioned on the data under the modeling assumption.
Fig. 1.5 depicts a simplified flowchart of the inverse quantification.

Conservation Equations
Input Deck

Geometry

Other fixed inputs

Simulator

p(D |xc,xm)
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Additional
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Figure 1.5: Simplified flowchart of inverse quantification for model parameters of a simulator.

The formulation and computation of the posterior above can be
seen as a calibration exercise. That is, it seeks to adjust the model Statistical

calibrationparameters such that the predictions of the simulator are consistent
with the observed (i.e., calibration) data under the assumed likeli-
hood and the prior. However, instead of obtaining a single estimated

5 Note that the formulation assumes the controllable inputs xc are fully known. If
they are considered uncertain, such as due to their inherent variability, then a prior
probability can be put on them as well.
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value (or values in case of multiple parameters), the resulting poste-
rior is a joint PDF, conditioned on the observed data. In relation to
the aforementioned expert-judgment for estimating the parameters
uncertainty, the approach uses the experimental data to better inform
the prior expectation about the model parameters values. The poste-
rior PDF, in turn, can be used in uncertainty propagation to quantify
the uncertainty on the prediction made outside the calibration data.

The importance of characterizing the uncertainty in the physical
models parameters was acknowledged by the Working Group on the
Analysis and Management of Accidents (WGAMA) of the Organiza-
tion for Economic Cooperation and Development (OECD)/Nuclear
Energy Agency (NEA). This led to the Post-BEMUSE Reflood Models
Input Uncertainty Methods (PREMIUM) project. Its main goal is to
report the state-of-the-art methodologies to quantify the uncertainty
in the physical models parameters. The following will briefly describe
the project and highlight the selected main lessons learned from the
author’s perspective through his participation on behalf of the Paul
Scherrer Institut (PSI) [17].

1.2.3 OECD/NEA PREMIUM project

The PREMIUM project was an activity launched by the OECD/NEA
with the aim to advance the methods for quantifying the uncertain-
ties associated with the physical model parameters in TH system
codes. It was the continuation of the project Best-Estimate Methods
– Uncertainty and Sensitivity Evaluation (BEMUSE), which concen-
trated on the propagation and sensitivity analysis of the input uncer-
tainties in large scale simulation (large break loss-of-coolant accident
(LBLOCA)). The main finding of BEMUSE can be found in [18]. The
emphasis of the PREMIUM benchmark was placed on the derivation
of the model parameters uncertainties and their validation.

The scope of the project was limited to the simulation of the phe-
nomenon of core reflood and quenching under conditions representa-
tive of a pressurized water reactor (PWR) large break LOCA. Exper-
imental data from two SETFs was made available for the purpose of
uncertainty quantification of the model parameters as well as valida-
tion. For the model parameters uncertainty quantification, the data
from the FEBA reflood facility was used. The derived uncertainties
were then propagated and compared with the experimental data from
other experimental runs of FEBA and from another reflood facility
(PERICLES). Thus the main goal of the project followed the approach
of statistical uncertainty analyses explained above.

Sixteen organizations from 11 different countries participated in the
4-year project (2012–2016) using 6 different TH system codes. Each
participant employing a chosen simulation code and methodology
had to contribute to the 5 following phases of the benchmark:
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1. Phase 1: Description of the selected simulation code and method-
ology.

2. Phase 2: Identification of the uncertain parameters that are most
relevant to PWR LOCA reflooding simulations.

3. Phase 3: Quantification of the uncertainties in the parameters,
using available data from the FEBA experiment.

4. Phase 4: Propagation of the quantified uncertainties as part of
a blind benchmark exercise based on data from the PERICLES
experiment.

5. Phase 5: Contribution to the analysis and synthesis of the bench-
mark results.

During the course of the project, three OECD/NEA reports have been
published [19–21]. Details can be found in the reports. The following
will describe briefly some of the lessons learned from PREMIUM of
relevance to the present study.

PREMIUM provided state-of-the-art (as of 2015) uncertainty quan-
tification methods for TH system codes. It emphasized methodolog-
ical issues that are yet to be overcome. Some of these issues, such
as the identification of important parameters, extrapolation of quan-
tified results, scaling, and nodalization were already raised in the
1994 review studies on uncertainty methods for TH codes sponsored
by the European Commission [22]. At the conclusion of PREMIUM,
these issues are still considered open problems.

First, there was an apparent lack of consensus among participants
(and thus, the community) for a systematic identification of impor-
tant parameters in TH simulation models. Guidelines were indeed Identification of

important
parameters

provided, but each participant eventually came up with their own
selection criteria and methodology, some still relied solely on graph
comparison of outputs when changing one parameter at a time [19].

Although complete exclusion of expert judgment is not feasible
(nor advised), it is useful to take benefit from the progress made in
the computer experiment community. For instance, the Morris screen-
ing method can be useful in the initial parameter identification and
importance ranking process by making the analysis more systematic
and robust. The method can provide a smooth transition from the
more familiar one-at-a-time method adopted by most participants.
Furthermore, there was a valid issue raised by a participant regard-
ing the possibility of “complicated” code response from simultaneous
parameters perturbation [23]. This can be interpreted as parameter in-
teraction in the literature. In this case, GSA methods can help in the
investigation about its presence.

Secondly, there was a slight disagreement between participants re-
garding the use of calibrated parameter. This notion stemmed from the
use of a Bayesian method (the so-called CIRCÉ [20, 24], a method



14 introduction

based on maximum likelihood approach under linear assumption
coupled with normal prior for the parameter) to update the prior
distribution of the model parameter such that the resulting posterior
distribution yields the closest agreement with the experimental data.
In the application of CIRCÉ, the nominal value of the model param-Calibrated parameter

and best-estimate
code

eter was allowed to shift following the updated central measure of
the posterior. Such practice of calibration was questioned because the
best-estimate code used was, in fact, already calibrated on the basis
of larger experimental databases over decades of V&V activities. In
other words, the calibration over a very limited set of the FEBA tests
would undermine the built-in (calibrated) models already in place.

That is a valid point of contention. The results of applying CIRCÉ
were mixed. On one hand the experimental data from the FEBA ex-
periment allowed CIRCÉ to reduce the initial uncertainty on the pa-
rameters and simultaneously improved the nominal case predictions.
On the other hand, when the updated parameters were used in the
uncertainty propagation of another FEBA test, the narrow uncertainty
band on the predictions failed to cover some part of the experimen-
tal data. Moreover, when the same updated parameters were used
in the blind uncertainty propagation for another facility there results
were poor: poor nominal case prediction and too narrow uncertainty
without covering the experimental data [17, 21].

This indicated a symptom of overfitting in which the uncertain pa-
rameters were calibrated strongly on one data set and thus became
very sensitive to a change of data set. The narrow uncertainty ob-Overfitting and

extrapolation tained indicates that the calibration procedure converged to a “wrong”
values and thus was not applicable to extrapolation.

While the Bayesian approach makes sense for parameter calibra-
tion, updating its value in light of new data, its application might re-
quire accounting for additional sources of uncertainty. It also makes
sense to acknowledge the extensive V&V activities that serve as the
basis of TH system codes; observing one additional data set should
not render previous results invalid right away. Thus it remains an
open question how to compromise between learning from new data
and preserving what has been learned before.

Finally, there was a natural reluctance among the participants to
embrace more recent methods requiring less assumptions (e.g., nor-
mal prior of the parameters, linearity between outputs and parame-
ters, etc.) but requiring more code runs. The use of metamodel canThe use of

metamodel help in alleviating such computational restriction6, insofar that the er-
ror incurred by the use of metamodel can be accepted. Strictly speak-
ing, the community is not unfamiliar with the use of metamodel (a
fast approximating function as a substitute of running the code) for
uncertainty analysis, especially in the context of uncertainty propa-

6 It is not, however, cost-free as will be explained in more detail in Chapter 4.
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gation7. However, in the context of inverse uncertainty quantification,
none of the participant took the benefit of using metamodel and re-
laxed some of the assumptions in calibration.

1.3 objectives and scope of the thesis

With the larger context provided above, this section presents briefly
and specifically the statement of the problem, followed by the objec-
tives as well as the scope of the present doctoral research.

1.3.1 Statement of the Problem

System code development is an effort to consolidate correlations and
mechanistic models to create a phenomenological-based simulation
code that can provide best-estimate results. This consolidated effort
results in a code that can simulate a wide range of transients foreseen
in NPP operation in a best-estimate manner. Alas, to come up with a
consistent set of closure laws is a great challenge for code developers.

The closure laws required to close the two-fluid model pose partic-
ularly difficult challenges [11]. For instance, to have a correlation of
heat transfer between the wall and the fluid, temperature data from
the wall, and the liquid and gas phases are needed. But measuring
temperature of the individual phases in an arbitrary interfacial topol-
ogy has its own technical difficulties to the extend that no such data is
available to be implemented in the closure laws. Additionally, the ex-
periments to obtain hydrodynamic closure laws (e.g., interfacial fric-
tion factor, wall friction factor) were generally carried out in adiabatic
conditions. As a result, this excludes the coupling of any heat transfer
phenomena between the phases and the wall in such correlations.

Furthermore, during the development of a code, programming con-
siderations also came into the picture. For robustness, simplification
is often required and continuity is enforced. Transitionary flow regime
for which data is not available is often modeled to be the average
of the two known bounding regimes. Different code developments,
which used different assumptions and experimental databases, come
up with different set of closure laws with their own parametrization
(see for instance [10] for TRAC code and [26] for CATHARE code).
Several authors have expressed their concerns about the uncertainty
stemming from the closure laws [6, 11, 27].

7 It was initially used for the estimation of PCT probability distribution from uncer-
tainty propagation in the context of safety margin evaluation of LBLOCA scenario
[25].
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As an example of the above point, consider that in the TRACE code,
after some derivations the interfacial drag coefficient closure law in
the inverted slug flow regime Ci,IS is given by,

Ci,IS = x̂m,SET ×
1

24

ρg

La
(1−α)

α1.8 ; x̂m,SET = 0.75

where ρg is the density of the gas phase; La is the Laplace number; α
is the void fraction; and x̂m,SET is a fitting parameter.

There are several remarks that can be made about the closure law
given above. First, the second term in the right-hand side was de-
rived from experimental data but based on several simplifying as-
sumptions. In the inverted slug regime, saturated liquid core breaks
up into ligaments. These ligaments are assumed to take form as pro-
late ellipsoid. The drag coefficient is then taken from the experimental
database of coefficient for distorted droplet. Then to take into account
the multi-particle effect, the coefficient is divided by the void fraction
α raised to the power of 1.8 (this, in turn, was taken from experi-
mental data of inertial regime). Lastly, the first term of the equation,
x̂m,SET = 0.75 was added to calibrate against the experimental data
from the FLECHT-SEASET reflood experimental facility. This first
term, although clearly non-physical in nature, is nevertheless an im-
portant tuning parameter of the model. Its uncertainty should be con-
sidered in uncertainty analysis, especially when reflood is expected to
occur. Yet, no statement regarding the associated uncertainty is given.
Similar adjustment on several other closure laws exists [28].

As illustrated above, it is clear that models in thermal-hydraulics
system code are, to a certain extent, limited. Various experimental pro-
grams were carried out to better understand the important phenom-
ena, and to validate (and, as noted, to calibrate) the models. Series
of experiments, carried out in SETFs with well-specified boundary
conditions were aimed to reproduce limited part of the transient in a
selected component following a postulated scenario. For example, in
the case of reflooding, several facilities existed and data was gathered
(FEBA, PERICLES, etc.). But, there has not been an orchestrated ef-
fort to incorporate the accumulated data into the calibration process
of the physical models, in a systematic way, while acknowledging the
multiple sources of uncertainty in the process.

1.3.2 Objectives

The purpose of this research is to quantify the uncertainty of physi-
cal model parameters implemented in a TH system code. The phys-
ical models of interest describe the phasic interactions in a complex
multiphase flow during a reactor transient, namely heat, mass, and
momentum exchanges between vapor, liquid and structures. These
models are parametrized by physical or empirical parameters, the
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values of which are uncertain. This results in uncertain code predic-
tions of important safety quantities, such as the evolution of the fuel
clad temperature during a postulated reactor transient.

Adopting a probabilistic framework to conform to the statistical un-
certainty propagation widely adopted in the field of nuclear engineer-
ing, the uncertainties in the parameters are represented as probability
density functions (PDFs) or their approximations. The derivation of
these functions is posed as an inverse statistical problem following a
Bayesian framework as the parameters themselves are not directly ob-
servable. Although subjectivity cannot be removed completely from
the analysis, the research aims to develop a methodology to incor-
porate the available, albeit indirect, experimental data to inform in a
more objective and transparent manner the uncertainties associated
with the model parameters. This is done in three steps by consol-
idating and adapting recent developments in the applied statistics
literature to:

1. Analyze and better understand the inputs/outputs relationship in
a computer simulation with uncertain inputs. Sensitivity analy-
sis (SA), in particular global sensitivity analysis (GSA), methods
can be used to assist identifying which of the model parameters
can be calibrated using the available data. An uncertainty analy-
sis often starts a with large list of input parameters that may and
may not be relevant (i.e., influential) to the simulation at hand.
A screening method can be used to remove the least influential
parameters from the list. Afterward, a variance decomposition
method is employed to quantitatively analyze the contribution
of the remaining influential parameters uncertainty on the pre-
diction uncertainty. Multiple types of data can be measured dur-
ing experiments in a test facility (e.g., clad temperature, pres-
sure drop, etc.), it might be worthwhile to consider each one
of them. Finally, for each of the different types, the analysis is
conducted on various derived QoIs, some of which explicitly
consider the output as function. By doing so, it is hoped that in-
teresting model behavior with respect to the input parameters
perturbation can be revealed.

Section 1.4.1 provides an overview of the wide range of sen-
sitivity analysis (SA) methods in the applied literature, while
Chapter 3 presents the details of the selected SA methods and
their applications to a TRACE model.

2. Approximate the inputs/outputs relationship of a complex com-
puter simulation for a faster evaluation. The step is required as
the statistical calibration method adopted in this thesis is com-
putationally expensive (requiring numerous code runs in the or-
der of hundreds of thousands and beyond). This approximation
is done through a Gaussian process (GP) metamodel resulting
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in a statistical metamodel. The highly multivariate nature of the
outputs (time- and space-dependent) is dealt by a dimension re-
duction technique. Build upon the results of the previous step,
only parameters that are identified to be influential are included
in the construction of the metamodel.

Section 1.4.2 introduces a broad overview of metamodeling in
the literature and Chapter 4 presents the details and the appli-
cation of Gaussian process (GP) metamodel to a TRACE model.

3. Calibrate the physical model parameters against various relevant
experimental data. The word calibrate carries a disparaging in-
terpretation related to tweaking. However, using a Bayesian sta-
tistical framework, the aim of calibration is extended to simul-
taneously quantify the uncertainty of the parameter estimation.
The framework includes various sources of uncertainty, which
can be modeled probabilistically, including the model bias term.
At the end, the parameters of interest will either be given in the
form of posterior PDFs conditioned on the data or samples gen-
erated from such distributions to conform with the practice of
statistical uncertainty propagation widely adopted in the field
of nuclear engineering.

Section 1.4.3 provides the practice of Bayesian calibration of
computer model from the literature. Chapter 5 the details the
formulation of a Bayesian calibration problem for model param-
eters, the ways to solving it, and an application of it to a TRACE
model.

Finally, as the calibration is only conducted using experimental
data in a limited set of experimental conditions, it is important to
validate the proposed methods by demonstrating the applicability of
the results to the simulation of the phenomena in the same facility but
in different experimental conditions. That is to propagate the poste-
rior uncertainty of the parameters and to compare the results against
experimental data not used in the calibration step.

1.3.3 Scope

Although the proposed set of strategies in this PhD research work can
be applicable to the analysis and calibration of any physical model of
a system code, it is illustrated by its application on the models of par-Simulation of

reflooding ticular importance during simulation of reflooding, i.e., the so-called
post-Critical-Heat-Flux (post-CHF) flow regimes. There are several
reasons for this emphasis as recognized by the BEMUSE and PRE-
MIUM projects (see Section1.2.3):

• Reflooding is an important part in the simulation of LWRs tran-
sient during LOCA. Modeling reflooding determines the appro-
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priate representation of the dynamics of heat transfer phenom-
ena during the effort to rewet an uncovered core. Of paramount
interest is the estimation of the time at which the rod can be ex-
pected to be rewet as well as the maximum temperature reached
prior to rewet. Reflood is a transient with highly coupled hydro-
dynamic-heat-transfer effects and it challenges the assumption
made on the implemented closure laws. Indeed, several reflood
experimental programs conducted in SETFs exist. Unfortunately,
no orchestrated effort was made so far to consolidate the gener-
ated data in general and into the TRACE code in particular.

• The models are adequately complex. It is complex that 4 flow
regimes are involved in a single phenomena: multiple sub-models,
parametrized with numerous inputs, with multivariate outputs
(both time- and space-dependent). But as the source of data is
from reflooding SETFs, real plant system (and full scale) effects
can be excluded and the ensuing analysis can be concentrated
on a limited set of models. In fact, as already pointed out, re-
flooding SETFs were designed to validate and to calibrate re-
flood models in system codes.

• Multiple data of various types (pressure, temperature, etc.), taken
with different experimental conditions (flow rate, system pres-
sure, etc.), are typically available from experiment within the
same facility. As calibration in the present research is conducted
using one experimental condition, it is important to validate the
calibration results against the data with different experimental
conditions albeit from the same experimental facility. Moreover,
additional data from other reflooding SETFs are available. This
is important for validating the proposed method further and
expanding it to calibration against data from multiple facilities.

As such, while it is important to acknowledge that reflood simu-
lation and the associated relevant model (or models) are only parts
of a large and complex TH system code, they can provide a repre-
sentative and relevant illustration on the particulars of analyzing and
calibrating the code using experimental data from SETF in general;
providing a suitable testing ground for the proposed methods.

The methods and practices of sensitivity analysis, approximation,
and calibration of computer model need not be statistical. This thesis, Statistical

frameworkhowever, focuses on the statistical approach for each of the aforemen-
tioned steps. The main reasoning for this choice are twofold: First,
statistical methods tend to require fewer assumptions regarding the
model complexity. While they may be more computationally expen-
sive than their non-statistical counterparts, they are also easier to set
up, with minimal intrusion to the code itself, and subject to less se-
vere dependence on the number of input parameters. Secondly, the
ultimate results of the model parameters calibration (i.e., their quan-
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tified uncertainties) should be represented in terms of probability. As
mentioned previously, this is to conform with the widely accepted
practice of statistical uncertainty propagation in the nuclear engineer-
ing community.

As a last note, the thermal-hydraulics (TH) system code considered
in this thesis is the TRAC/RELAP Computational Engine (TRACE)
code developed by the the United States Nuclear Regulatory Com-
mission (USNRC). The main reason to consider solely this particularTRACE code

code is the fact that TRACE is the thermal-hydraulics system code
used for the safety analysis of the Swiss NPPs conducted within
the Steady-state and Transient Analysis Research for Swiss Reactors
(STARS) program [29] at the Paul Scherrer Institut (PSI).

1.4 statistical framework for computer model sensitiv-
ity analysis , approximation, and calibration

The set of strategies for sensitivity analysis, model approximation,
and calibration presented above constitutes a consolidated statistical
framework that will be used in this thesis for quantifying the uncer-
tainty in model parameters of a TH system code. This section presents
a broad, and by no means exhaustive, literature review of the strate-
gies used in this thesis. For each strategy, the review first reiterates
its main motivation followed by a generic classification and the steps
involved before briefly summarizing its applications in nuclear engi-
neering TH, both in the past and more recent times. As will be out-
lined in Section 1.5, three main chapters of the thesis will be dedicated
for each of the proposed strategies detailing the selected methods fur-
ther and presenting their applications on a TRACE model.

1.4.1 Sensitivity Analysis (SA)

An essential part of model development and assessment is to properly
describe and understand the impact of model input parameter vari-
ations on the model predictions. SA is an important methodological
step in that context [3]. SA is the process of investigating the role of
input parameters in determining the model output [30] variation and
it seeks to quantify the importance of each model input parameter on
the output.

Various classifications exist in the literature to categorize SA tech-
niques [30–34]. In the review by Ionescu-Bujor and Cacuci [32, 33], SAClassifications

techniques are classified with respect to their scope (local vs. global)
and to their framework (deterministic vs. statistical). In the review of
SA methods by Iooss and Lemaître [30], and the works by Saltelli et
al. [34] and by Santner et al. [35], the statistical framework is implic-
itly assumed, and the classification is based on the parameter space
of interest (local vs. global).
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Local analysis is based on calculating the effect on the model out-
put of small perturbations around nominal parameter values. Often, Local sensitivity

analysisthe perturbation is done one parameter at a time thus approximating
the first-order partial derivative of the model output with respect to
the perturbed parameter. The derivative can be computed through
efficient adjoint formulation [36, 37] capable of handling numerous
input parameters.

Besides being numerically efficient, sensitivity coefficients obtained
from local deterministic sensitivity analysis have the advantage of
being intuitive in their interpretation, irrespective of the method em-
ployed [38]. The intuitiveness stems from the equivalence to the deriva-
tive of the output with respect to each parameter [32] around a specif-
ically defined point (i.e., nominal parameter values). Thus the coeffi-
cients can be readily compared over different modeled systems, inde-
pendently of the range of parameters variations.

Global analysis, on the other hand, seeks to explore the input pa- Global sensitivity
analysisrameter space across its range of variation and then quantify the input

parameter importance based on a characterization of the resulting
output response (hyper-)surface. In the global deterministic frame-
work [32, 37], the characterization is aimed at the identification of
the critical points of the system (e.g., maxima, minima, saddle points,
etc.). In statistical global methods [34, 39, 40], the characterization is
aimed at measuring the dispersion of the output based on variance
[41, 42], correlation [43], or elementary effects [44].

Due to the different characterizations, the global statistical frame-
work can potentially give spurious results not comparable to the re-
sults from the local method as there is no unique definition of sensi-
tivity coefficient provided by different global methods [38]. In some
cases, different methods can give different and inconsistent parameter
importance ranking [34, 39]. Furthermore, the result of the analysis
can be highly dependent to the assumed input parameters probability
distributions or their range of variations [33, 37].

Yet, despite the aforementioned shortcomings, the global statisti- Global statistical
sensitivity analysiscal framework has three particular attractive features relevant to the

present study. First, the statistical method for sensitivity analysis is
non-intrusive in the sense that minimal or no modification to the
original code is required. In other words, the code can be taken as
a black box and the analysis is focused on the input/output relation-
ship [34]. This is the case especially in comparison to adjoint-based
sensitivity [45, 46], which is a highly efficient and accurate method
applicable to a large number of parameters, provided that the code is
designed/modified for adjoint analysis.

Second, no a priori knowledge on the model structure (linearity,
additivity, etc.) is required. This is essential in many cases because
depending on the model complexity and for large parameter varia-
tions, the linearity or additivity assumption might not hold.
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Last, the choice of a statistical framework for sensitivity analysis fits
the Monte Carlo (MC)-based uncertainty propagation method widely
adopted in nuclear reactor evaluation models [15, 16, 25, 47]. The
method prescribes that the uncertain model input parameters (mod-
eled as random variables) should be simultaneously and randomly
perturbed across their range of variations. Multiple randomly gener-
ated input values are then propagated through the code to quantify
the dispersion of the prediction (e.g., peak clad temperature) which
serves as a measure of the prediction reliability. Statistical global sen-
sitivity analysis thus complements the propagation step by address-
ing the follow-up question on the identification of the most important
parameters in driving the prediction uncertainty.

Saltelli et al. [40] emphasized that an analysis using computer sim-
ulation should be focused on a specific question the simulation isChoosing model

output as a quantity
of interest

required to answer as opposed to the analysis of each and every in-
dividual model output. This is done through judicious choice of rep-
resentative quantities of interest (QoIs) that properly substantiate the
problem at hand. In particular, computer code output often comes in
a form of time series. In such case, Saltelli et al. [34, 39] proposed to
derive the relevant QoI from time-dependent output using a prede-
fined scalar function such as the maximum, the minimum, the aver-
age, etc. that fits the initial question.

However, in some cases, the whole course of a transient is of pri-
mary interest such as in assessing the ability of a model to reproduceFunction as model

output the overall dynamics of the simulated system. If the attention is fo-
cused on the overall change in shape of the time-dependent output
(a shift in the Y-axis, a delay, a distortion, etc.), the descriptions pro-
vided by the aforementioned scalar functions might be incomplete
and overlook important features of the variation. To tackle this prob-
lem, Campbell et al. [48] proposed to represent the functional (time-
dependent) output in a certain basis function expansion and to carry
out the sensitivity analysis on the coefficients of the expansion. In
accordance to such approach, functional data analysis (FDA) popu-
larized by Ramsay and Silverman [49] is useful to reduce the high
dimensionality of time-dependent output.

Despite these recent developments, there are very few publicationsDevelopments in
nuclear engineering

application
on the application of global sensitivity analysis to nuclear thermal-
hydraulics evaluation models specifically dealing with time-dependent
output. Notable recent examples related to sensitivity analysis for a
time-dependent TH problem were the work done by Ionescu-Bujor et
al. [50] for reflooding experiment of degraded fuel rods, utilizing ad-
joint sensitivity method; by Auder et al. [51] for pressurized thermal
shock analysis, utilizing statistical methods with emphasis on meta-
modeling; and by Prošek and Leskovar [52] for LBLOCA analysis,
utilizing Fast Fourier Transform-Based method (FFTBM) and local
sensitivity analysis.
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1.4.2 Statistical Metamodeling

Many tasks involving computer simulations can be boiled down to
making predictions. A computer experiment, an experiment using com-
puter simulations, evaluates the output based on different inputs to
achieve various objectives. In the aforementioned sensitivity analy- Computer

experimentsis, the objective is to identify the influential inputs that drives the
variation in the outputs of the computer simulator. In the forward
uncertainty quantification, MC simulation are used to propagate the
uncertainty of the inputs to quantify the uncertainty of the simulator
prediction using the notion of probability; while in its inverse coun-
terpart, the goal is to identify a region of the input parameter space
that is consistent with both the observed data and the assumed prior
uncertainty of the inputs. The latter objective, in turn, is related to op-
timization where the goal is to identify particular value of inputs that
maximize a certain objective function as computed by the simulator.

The objectives above are arguably distinct, but they share a com-
mon characteristic of involving analyses of outputs from numerous
simulator runs. An increasingly more realistic and complex computer Complex simulator,

expensive simulatorsimulator, however, often translates into a long running simulation
and may have to be evaluated a large number of times due to the com-
plexity of the relationship between high-dimensional inputs and high-
dimensional outputs (e.g., non-linearities, interactions). The high com-
putational cost hinders the analysis and the effort to achieve the afore-
mentioned objectives of computer experiment.

As a result, having a fast approximating model of a complex simu-
lator is beneficial in conducting a computer experiment and its value
was acknowledged by Sacks et al. in their seminal paper [53] and
formalized further in several textbooks [35, 54]. The approximating An approximating

modelmodel, while simpler and much faster to evaluate than the original
simulator, is designed to capture the dominant features of the input-
s/outputs relationship of the original complex simulator [55]. Cap-
turing the dominant features allows the approximating model to be
used in lieu of the original simulator in the experiment. This approx-
imating model in the literature is referred to as metamodel, surrogate
model, response surface model, proxy model, or emulator.

Nowadays, any of the terms above are used interchangeably and
all are used to substitute the original simulator to reduce the com-
putational cost of conducting computer experiments [55–57]. Subtle Classification

differences do exist. Thus, it is worthwhile to consider a broad classi-
fication of surrogate models and the approaches to their derivations
(i.e., surrogate modeling or metamodeling) according to the literature.
Surrogate models according to their derivations can be broadly clas-
sified in two categories: the data-driven response surface surrogates and
the mechanistic reduced-order models [57].
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The reduced order models are perhaps more familiar in the scien-
tific community where a complex physical model is being simplified
by putting more stringent assumptions or reducing the numerical
resolution while trying to preserve the most important physical pro-
cesses present in the more complex model. The point neutron kinet-Reduced-order model

ics model is an example of a reduced-order model, substituting the
more complex 3-dimensional nodal code. A TH system code is also
a reduced-order model of the more expensive multi-phase computa-
tional fluid dynamics code. When applicable, reduced-order models
can be useful as first approximations and didactic tools to build intu-
ition.

The response surface surrogates, on the other hand, make no pre-
tense of preserving the underlying physical process modeled in a
complex simulator. It seeks to emulate the relationship (i.e., mapping)Response surface

surrogates between inputs and outputs of the simulator. The term metamodel is
used throughout the thesis and exclusively refer to this particular
type of surrogate model. The workflow of constructing a response
surface surrogate consists of three steps. The first step is to gather
the data, that is by running the simulator at limited and selected
points across the input parameter space of interest and evaluate its
outputs. The selection of such points are known as the design of experi-
ment [35, 58]. The second step is to choose an approximating function
that emulates well the relationship between the inputs and outputs
and train this function based on the data. Training a surrogate model
involves fitting the parameters associated with the selected approxi-
mating function. The function is chosen such that it is simpler and
faster to evaluate at arbitrary inputs, relative to the original simula-
tor. Finally, a validation step is conducted to assess the quality of the
resulting metamodel. These are a typical workflow of constructing a
metamodel, though variation exists [57].

The surrogate model introduced in the papers of Sacks et al. [53,
59] were GP metamodel. The metamodel was constructed as a toolGaussian process

metamodel to interpolate between observed data, that is, between the inputs and
outputs of actual simulator runs. Once constructed the output at any
arbitrary input point can be predicted faster using the metamodel.
This idea was borrowed from a spatial interpolation tool in geostatis-
tics (where the inputs were spatial coordinates) developed by Krige
dating back to the 1950s [60] and formalized by Matheron in the 1960s
[61]. GP metamodel is arguably the most popular approach to meta-
modeling and it enjoys a renewed interest due to its application for
machine learning [62].

A GP metamodel is a statistical metamodel. It is based on the ex-
tension of multivariate Gaussian distribution to a continuous multidi-
mensional input parameter space. Under the Bayesian interpretation,
the metamodel assumes a prior probability distribution over func-
tions (i.e., a probability distribution of which each realization is a
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function) to initially describe an unknown complex function that un-
derlies the simulator. The observed data (i.e., design of experiment
plus the corresponding outputs) is then used to update the prior and
learn more about the true underlying function. Though the simulator
itself might be deterministic, the limited size of the observed data ren-
ders prediction at arbitrary non-observed input uncertain. This mea-
sure of uncertainty makes a GP metamodel an attractive choice to
be incorporated into a model calibration framework where multiple
sources of uncertainty are considered. This research adopts GP for
constructing a metamodel of a TH system code model as detailed in
Chapter 4.

GP metamodel is by no means the only method to construct a
data-driven metamodel, though it can be considered as the most
popular choice in the literature (Table 1.1). Response Surface Method Other metamodeling

approaches(RSM), originally developed as a technique in the design and analy-
sis of physical experiments [63], has a long history of being adapted
to the design and analysis of computer experiments [64–67]. It is
mostly based on either linear or quadratic regression (with interac-
tion terms) (see for instance [68], and more recent reviews [56, 69]).
In recent times, other methods such as the ones based on artificial
neural network [70] and polynomial chaos expansion (PCE) [71, 72]
have also gained traction. For comparison, Table 1.1 shows the search
hits from Scopus, an online bibliographic database [73], for the differ-
ent selected metamodeling approaches. Note that the list is not at all
exhaustive.

Table 1.1: Number of publications related to different metamodeling ap-
proaches based on Scopus web search as of Feb. 14. 2017.

metamodeling search i number of since

approach keyword publications

Gaussian Process / Kriging ("Gaussian Process OR

kriging")
1838 1992

Artificial Neural Network "neural network" 997 1993

Response Surface Method "response surface" 947 1977

Polynomial Chaos Expansion "polynomial chaos" 208 2004

i (...) AND ("surrogate" OR "metamodel")

Metamodel applications have a long history in nuclear engineer-
ing analyses due to the complexity of the simulators and the long-
understood importance of quantifying the uncertainty of the predic-
tions. Hence, historically, metamodels (specifically, the response sur- Developments in

nuclear engineering
application

face method) have been applied for quantifying the prediction uncer-
tainty forward through MC sampling as well as for statistical sensi-
tivity analysis [74, 75]. The range of applications varied from quan-
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tifying the reactor safety margin [13] for a LBLOCA scenario, propa-
gating the uncertainty of fuel rods failure in the core [76] during the
same scenario, to the uncertainty and sensitivity analyses of severe ac-
cident progressions [77]. In recent times, more advanced metamodels
(e.g., GP metamodel) have been applied to more diverse engineering
analysis; from the design optimization problem of fuel assembly [78]
and spacer grid [79] to the calibration of physical models in TH sys-
tem code [80] and fuel performance [81] code.

1.4.3 Bayesian Calibration

The objective of model calibration is to increase the agreement be-
tween simulation predictions and measurement data by adjusting
some of the simulator inputs [3, 82]. Traditionally, calibration is closelyModel calibration,

goal and approach related to an optimization problem of an objective function measur-
ing the error between simulation predictions and measurement data
(e.g., root-mean-square-error). However, statistical approach to cali-
bration using a Bayesian framework has become a popular practice in
the scientific simulation community. Instead of minimizing a measure
of error, Bayesian framework treats the uncertainty of the inputs prob-
abilistically and update their prior probability distributions based on
the available, albeit uncertain, measurement data. The framework of-
fers flexibility in modeling various sources of uncertainty [83, 84].

Bayesian framework for the calibration of computer simulation mo-
del was popularized by the work of Kennedy and O’Hagan [83]. TheBayesian framework,

Kennedy and
O’Hagan approach

main goal of the framework is similar to any calibration framework,
that is to learn the apropriate values of model parameters and their
uncertainties by taking into account different sources of uncertainty
based on the observed data. The distinct idea is to acknowledge that a
systematic bias between a physics-based simulator and reality might
exist and is often not known a priori. If the bias is not modeled prop-
erly, the calibration process might overfit the model parameters. That
is, the calibrated model parameters will be overly sensitive to the cali-
bration data and thus not applicable for prediction. As such, Kennedy
and O’Hagan proposed to model the unknown bias term probabilis-
tically by putting a prior probability distribution on the bias term to
be updated simultaneously with that of the model parameters, by us-
ing the observed data. The proposed prior distribution is a GP. Due
to its popularity, the term KOH approach became synonymous to this
particular approach of computer model calibration [3, 85, 86]. It is
adapted here to deal with the particular problem posed in the PRE-
MIUM benchmark that itself represents a typical problem in nuclear
engineering TH analysis, as detailed in Chapter 5.

Bayesian framework for model calibration consists of two main as-
pects [87]: a formulation of a posterior distribution for the model pa-



1.4 statistical framework 27

rameters of interest and the computation involving the posterior dis-
tribution. Regarding the first aspect, the KOH approach for model Steps in Bayesian

frameworkcalibration, in essence, prescribes a probabilistic model for the data-
generating process of the experimental data, incorporating the predic-
tion by the simulator, the uncertain model bias term, and the uncer-
tain model parameters into it. The formulation will eventually results Bayesian framework,

formulationin a posterior probability distribution of the model parameters as
presented in Section 1.2.2. Extension and modification to the KOH ap-
proach includes dealing with high-dimensional output [88–90], multi-
ple types of output [91], different choices of the model bias term [86],
and various simplifications [92–94].

Regarding the choice for the prior distribution, there is a tendency
in the modern literature [87, 95] to move away from the notion of
Bayesianism, which emphasizes specifying the correct prior (if not the
true prior altogether) so as to guarantee that the resulting posterior
will always be true relative to that prior. In a more modern practice of On prior

distributionBayesian statistics, the use of prior is seen in a more pragmatic light,
i.e., as a starting assumption that can be changed if not appropriate
[96, 97]. Gelman et al. [87] advocates to check if the resulting parame-
ters posterior distributions and the prediction using them make sense
and are useful, rather than to check whether the posterior parameter
distribution is true.

The second aspect of the Bayesian framework is related to the com-
putations involving the posterior distribution of the model parame-
ters. The formulated posterior distribution in practical problems is Bayesian framework,

computationmultidimensional. Numerically integrating the posterior distribution
to summarize a given QoI (see Section 1.2.1) might not be efficient.
Traditionally, maximum a posteriori estimates8 is often used to de-
scribe each of the posterior model parameter values using a single
number. It simply requires the maximization of the posterior density Semi analytical

approachfunction (i.e., its mode). An extension of this, giving description of the
shape of the posterior, is done by the so-called Laplace’s approximation
or the normal approximation [87, 95, 98, 99]. In this approximation, the
distribution of the posterior is approximated as a normal distribution.
The mean corresponds to the maximum of the posterior density func-
tion, while the variance of the distribution is approximated as the
function of the second derivative of the posterior around the mean
(i.e., its curvature). Multidimensionality of the posterior distribution
is taken into account by using the Hessian matrix. The approximation
works well if the posterior distribution is approximately normal (i.e.,
unimodal, bell-shaped, and linearly correlated).

To deal with more generic formulations of the posterior distribu-
tion, modern approach to Bayesian computation involves random
simulation to directly generate samples from the posterior. This can MCMC, classical

samplersbe seen as an extension of the simulation method for estimating inte-

8 or maximum likelihood estimates, if the prior is non-informative
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gral quantities (the Monte Carlo (MC) simulation), for the case of a
complicated sampling distribution not easily sampled from. The idea
of MC simulation dates back to the 1940 for solving the problems in
neutron transport [100] and statistical mechanics [101]. In the latter,
generation of a Markov chain by MC simulation paved the way to a
generic simulation method applicable to generate samples from any
kind of probability distribution; thus the origin of MCMC simulation.
Later on, its usage for data analysis in general and Bayesian data
analysis in particular were revived in the 1970s and the early 1980s
by the generalization of the simulation algorithm by Hastings [102]
(i.e., the Metropolis-Hastings (MH) algorithm) and by the invention
of a computationally efficient sampler and its application for image
reconstruction by Geman and Geman [103] (i.e., the Gibbs sampler).

Nowadays, MCMC sampler is the backbone of Bayesian computa-
tion [87, 104, 105]. Loosely speaking, its improvement and modernMCMC, modern

samplers implementations can be broadly classified into three different fam-
ilies: adaptive MH samplers (e.g., [106]), Hamiltonian MC samplers
[107], and ensemble samplers [108]. Adaptive MH sampler deals with
the adaptation of the algorithm to achieve faster convergence. Hamil-
tonian MC sampler simulates the movement of a particle in the pa-
rameter space as described by the posterior distribution according
to the Hamiltonian dynamic. Finally, ensemble sampler uses multi-
ple particles that move together in the input parameter space each of
them moving according to the position of the others. Ensemble sam-
pler has a particularly simple implementation, is easily parallelized,
and requires minimal tuning [109]. Chapter 5 describes in more detail
the basics of MH and ensemble samplers.

Unlike the forward uncertainty propagation and statistical sensitiv-
ity analysis, the use of Bayesian model calibration is relatively new in
nuclear engineering applications [110]. A notable early example wasDevelopments in

nuclear engineering
application

the previously mentioned CIRCÉ [24] for the calibration of model
parameters in a TH system code. A recent demonstration on the ap-
plicability of the method can be found in Ref. [111]. More recent ex-
amples are in-line with the KOH approach but provide extensions to
it: for dealing with high-dimensional output of the same type (i.e.,
time- and space-dependent) with [112] or without [80, 81] explicit
treatment of the model bias, and with [113] or without [114] the use
of metamodels.

1.5 structure of the thesis

This doctoral thesis is organized into six chapters. The description
and the application on a thermal-hydraulics simulation of the statisti-
cal approaches for sensitivity analysis, statistical metamodeling, and
the Bayesian calibration, preceded by a brief review of the TH system
code TRACE, the selected phenomenon of interest, and the associated
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physical models, constitute the main chapters of the present thesis
(see Fig. 1.6). They are bookended by an introductory chapter (this
chapter) and a concluding chapter.

f : (xc,xm) ∈ RD 7→ f (z, t) ∈ RP

BC

GSA

GP

Dimension
Reduction

Model parameters
Chapter 2
Forward Model and
Initial Parameters Selection

Chapter 4
Gaussian Process
Metamodel

Chapter 3
Global Sensitivity Analysis

Chapter 5
Bayesian Calibration

experimental
data

Controllable
Inputs

Parameters Screening
and Variance Decomposition

Model Parameters
Posterior

Bayesian Uncertainty Quantification of

Thermal-Hydraulics System Code Model:

Main Chapters

Figure 1.6: The structure of the thesis and its main chapters.

Chapter 2 gives an overview of the system thermal-hydraulics
code TRACE with an emphasis on its reflood phenomenon modeling
and simulation. The chapter also introduces the reflood experiment at
the FEBA facility that serves as the experimental basis of this work fol-
lowed by its modeling in TRACE. This model becomes the running
case study in the three subsequent chapters to which the proposed
methods are applied. The chapter includes the selection of the initial
parameters relevant for reflood simulations and the propagation of
their prior uncertainties on the code predictions.

Chapter 3 introduces the GSA methods adopted in this thesis with
three key underlying ideas. The first idea is to reduce the dimen-
sionality of the input parameters space through parameter screen-
ing, while the second is to reduce the dimensionality of the code
output space. As the output of the simulation is time-dependent,
dimension reduction is carried out while trying to preserve the in-
terpretability of the results. The third and final idea is to investi-
gate, quantitatively, the effect of variation of parameters on the over-
all time-dependent output variation through variance decomposition.
The presented methods are then applied to the TRACE model of
FEBA and the results are discussed.

Chapter 4 presents an approach to construct a fast surrogate model
that approximates the inputs/outputs relationship of a computation-
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ally expensive simulator. The theoretical minimum of the method is
introduced, before adapting the method for dealing with highly mul-
tivariate output via dimension reduction. Afterward, the application
of the method to the TRACE model of FEBA is presented and dis-
cussed. In the end, a metamodel of the TRACE model is constructed
and validated in anticipation of the high cost of the calibration ap-
proach presented in the following chapter.

Chapter 5 describes the Bayesian calibration and is the last of the
main chapters of the thesis. The description of the methods is split
into two parts, following the convention in the Bayesian data anal-
ysis, the formulation part and the computation part. The formula-
tion of the Bayesian statistical calibration problem (i.e., the posterior)
as well as its simplification (the so-called modularization) are first in-
troduced. The resulting posterior is potentially complex, i.e., a high-
dimensional PDF with highly varying ranges in each dimension. Con-
sequently, the computational part is focused on a simulation-based
approach called MCMC to directly generate representative samples
useful for downstream analysis (e.g., forward propagation). After
that, as in the two previous chapters, the application of the method to
the TRACE model of FEBA is presented and the results are discussed.
Included in the discussion is the validation of the method based on
additional experimental data from FEBA that were not used in the
calibration.

Chapter 6 brings the thesis to an end. The main findings and ac-
complishments of the thesis are summarized through chapter-wise
summary. Recommendations of future work are then presented.

Four parts of appendices are included in the back of the thesis.
They include the governing equations of the TRACE code, additional
results of the thesis not presented in the main chapters, the compu-
tational tools developed and used in the context of this thesis, and
some useful mathematical results and recipes.
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R E F L O O D S I M U L AT I O N U S I N G T H E T R A C E C O D E

Reflood is the last phase of the four canonical phases in the mitiga-
tion of LBLOCA in LWRs [115]. An LBLOCA transient starts with a
rapid depressurization of the primary coolant circuit (blowdown). It is
then followed by an initial rejection of emergency coolant water in-
jection into the reactor core due to massive steam flowing out of the
boiling core (bypass). After an eventually successful injection of the
emergency coolant water through the downcomer and into the lower
plenum of the reactor pressure vessel (RPV) (refill), the reflood phase
takes place. It refers to the phase of the transient in which the emer-
gency coolant water flows slowly upward through the dried reactor
core, quenching the fuel elements along the way, preventing them
from being further damaged due to overheating.

This chapter introduces the phenomenology of reflood and its mod-
eling in the thermal-hydraulics system code TRACE. Section 2.1 first
presents a quick overview of the TRACE code, including a major
simplification taken in the code to describe a complex two-phase
flow phenomena in the reactor coolant circuit during accident sce-
narios. Section 2.2 then describes reflood in LWRs: its importance,
phenomenology, and modeling. It introduces several important ter-
minologies used throughout the thesis. The description is specific to
the TRACE code and is by no means an exhaustive account on the
subject.

The present study is based on the data from a SETF for reflood
experiment. The Flooding Experiments with Blocked Arrays (FEBA)
facility and the relevant test runs for this study are described in Sec-
tion 2.3. The modeling aspects of the facility in TRACE is then de-
tailed in Section 2.4.

Section 2.5 deals with the problem of selecting the initial set of
input parameters perceived to be influential for the simulation. Af-
terward, prior uncertainties in the form of PDFs are assigned to the
selected input parameters. Those two steps provide the starting point
for the sensitivity and uncertainty analyses on the TRACE model
of FEBA presented in the upcoming chapters. Section 2.6 presents
the propagation of the specified prior uncertainties on the TRACE
model to assess the initial level of uncertainty in the predictions be-
fore any experimental data is used to update the prior uncertainties.
Section 2.7 finally concludes and summarizes the chapter.

31
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2.1 the thermal-hydraulics (th) system code trace

A thermal-hydraulics (TH) system code is a computer code used to
analyze the TH behavior of NPPs [116]. Its current usage ranges fromThermal-hydraulics

system code safety analysis and licensing process of current reactor designs to
qualification of a new reactor designs [117, 118]. To that end, the code
is designed to be a comprehensive tool capable of simulating wide
range of operating conditions, from normal operations, anticipated
transients, to accident scenarios foreseen in the operation of NPPs.

A nuclear reactor system is a complex system of numerous inter-
connected components, each serving distinct purposes, built with
multiple engineered safety features. During a transient, the systemNuclear reactor

system might exhibit complex behavior with physical phenomena interact-
ing at vastly different time scales (10−1 [s] in a power excursion due
to control rod ejection, 105 [s] for decay heat removal after successful
reactor shutdown) and length scales (10−3 [mm] for boiling at sub-
channel level, 103 [m] for coolant flow in the primary/secondary cir-
cuit). Additionally, the engineered safety features are designed for
some equipments (such as control rods, valves, pump) to perform
safety-related actions. Such equipments, in turn, are controlled by a
complex dynamical control system. As such, system code has to take
into account these different aspects to properly simulate the thermal-
hydraulics behavior of NPPs.

Indeed, component-based codes, such as TRACE, approach the
problem by representing each prominent component in a nuclear reac-
tor system separately. On top of a two-phase fluid dynamics equationComponent-based

codes solver, system code includes models for steam separator, pump, heat
exchanger, valve, pressurizer, and neutron-kinetics as well as compre-
hensive models for control system to mimic the signal monitoring and
component actuation systems in an NPP. System thermal-hydraulics
thus distinguishes itself by considering explicitly the geometry, mate-
rials, boundary conditions, various interconnecting components, and
control systems that constitute an NPP [6].

However, it can be argued that the modeling of two-phase flow
inside a heated channel remains a central part in nuclear thermal-
hydraulics analysis which puts an emphasis in the correct predictionBasic

thermal-hydraulics,
two-phase flow in a

heated channel

of clad temperature evolution during different postulated scenarios
(Fig. 2.1). This is also supported by the fact that the majority of op-
erating nuclear power plants is of LWR type, where two-phase flow
can be expected to occur during its operation, both in normal operat-
ing and accident conditions for boiling water reactors (BWRs) and in
accident condition for PWRs.

The problem of modeling properly the two-phase flow in a heated
channel, though much more limited in scope, is by no means trivial.
This is due to the fact that in two-phase flow, the morphological con-Flow regimes

figurations of the flow (i.e., flow regimes) can vary widely depending
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guillotine break
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Figure 2.1: Thermal-hydraulics system analysis encompasses many aspects
of nuclear reactor system analysis, but the core of the problem
for predicting the clad temperature evolution – especially during
an accident condition – is to model properly and realistically the
coolant flow in a heated channel in steady or transient conditions.
Here it is shown a simplified picture of an LBLOCA in a PWR
where phase change occurs along the heated channel.

on many flow parameters such as differences in the respective phase
density and velocity, as well as in the flow orientation. Different flow
regimes implies different interfacial surface structure between the two
phases (see Fig. 2.2), which in turn affects the mass, momentum, and
energy coupling terms (transfer relation) between the phases. At the
same time, the interfacial surface and its deformation in an arbitrary
flow configuration are not known a priori and becomes part of the
problem to be simultaneously solved.

The most rigorous approach in describing two-phase flow is by
using local instantaneous formulation where a set of partial differen-
tial equations describing the conservation of mass, momentum, and
energy, is formulated for each phase. The two phases are, in turn, Local instantaneous

formulation,
topological
constraint

separated by zero-thickness interfacial surfaces. The resulting set of
equations fully describes the flow at any given location and at any
given time. In addition, the solution of this formulation also respects
the topological constraint of the flow. The constraint states that only
one phase can exist at any given time and location in the flow [119].
This is illustrated in the Fig. 2.3 where a hypothetical probe is put
within a two-phase flow and a signal of indicator function M(r, t) is
recorded.
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Figure 2.2: Some of the observed flow regimes in vertical and horizontal
flow with different superficial liquid velocity, Ql = Vl/A, and
superficial gas velocity, Qg = Vg/A, where A is the flow area.
The flows of both phases are co-current.

The indicator function M(r, t) is defined as,

M(r, t) =

1 ; if probe tip is in the gas phase

0 ; otherwise
(2.1)

where r is position; and t is the time. The indicator function defined
here is equivalent to the local instantaneous void fraction, which can
be interpreted as the probability that the gas phase is present at a
given point in space at a given moment [28].

1

0 t

M

Hypothetical Phase Indicator Probe

Phase Indicator Function

Figure 2.3: Illustration of a hypothetical phase indicator probe inside a chan-
nel of a two-phase flow, recording the evolution of the indicator
function (Eq. (2.1)) at a given point.

As mentioned, the interfacial surface structure of the flow deter-
mines the coupling terms between the two phases. However, this sur-Resolving the

motion of interfacial
surface

face and its deformation along the flow are not known a priori. As
such, the solution of the local instantaneous formulation of two-phase
flow requires to solve the motion of interfacial surface. As the time
and length scales of the interfacial structure in a two-phase flow of
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an arbitrary morphological configuration can vary wildly, the prob-
lem of resolving the motion of interfacial surface becomes intractable.
Though advances have been made in the area of Computational Fluid
Dynamics (CFD) in this regard, the problem remains intractable for
the purpose of thermal-hydraulics system analysis1.

To simplify the intractability problem of resolving the motion of
interfacial surface motion in two-phase flow inside a channel, time-
and area-average is carried out on the flow. Averaging can be seen Time- and volume

(area)-averagingas a filtering operation to remove the local temporal and spatial fluc-
tuations (short scale variation) in the flow. The length and duration
which define short scale variation are problem specific (that is, at least
qualitatively, not longer than the length and time scales of the flow
configuration of interest). The volume over which averaging is car-
ried out is referred to either as a control volume, a cell, or a node. It is
further assumed that the flow is one-dimensional, in which the flow
area changes slowly along the principal direction of the flow. Under
these assumptions, a control volume simply corresponds to a cross-
sectional slice of the channel and the averaging is based on the flow
area instead [119].

Averaging the indicator function both in time and in (a sliced) area
gives the void fraction,

〈ᾱ〉 = 1

A∆t

∫
A

∫t+∆t
t

M(r, t)drdt (2.2)

Following the above formulation, void fraction can be interpreted as
the fraction of the control volume occupied by the gas phase [28].

Averaging the flow state variables in time and area and using them
to formulate a set of mass, momentum, and energy balance equations
describing the fluid dynamics in 1-dimension yield the so-called two-
fluid model [121]. The model is the state of the art formulation for Time- and

Volume-Averaged
formulation,
two-fluid model

describing the dynamics of two-phase flow in system codes (includ-
ing, for example, CATHARE, RELAP5, and TRACE). This model sep-
arately treats the transport phenomena of the two phases of fluid
resulting in six balance equations which are able to capture phenom-
ena where thermal and mechanical non-equilibrium conditions exist
between the two phases, conditions to be expected in a wide range of
NPP transients.

Averaging greatly simplifies the description of the complicated in-
terfacial structure between phases in a two-phase flow. This simplifi-
cation, at the same time, incurs a loss of information regarding energy,
momentum, and mass transfers at the local level (between the phases
and between each phase and the channel wall, Fig. 2.4). These trans-
fer terms will have to be modeled separately for each distinct flow
regime of interest through closure laws [8].

TRACE is the best-estimate system TH code developed by the the
United States Nuclear Regulatory Commission (USNRC) as a tool

1 See [120] for a recent review on the topic.
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Bubbly flow Slug Flow Churn Flow

(Time- and Volume-averaging)

Figure 2.4: Time and volume average carried out on the two-phase flow in-
side a channel results in a tractable form of fluid dynamics equa-
tion, but incur loss of information at the local level, especially
when it comes to the interfacial structure between phases and
between each phase and the channel wall.

for LWR transient analysis during normal and accident scenarios. Its
development is an on-going effort to modernize into a single soft-
ware package all previous USNRC TH codes that were developed
separately for specific reactor types and applications. This ultimatelyTRACE code

would make the code more versatile for end users and more efficient
to maintain for the developer. Appendix A summarizes the final for-
mulation of THE governing equations (time and volume-averaged) in
TRACE, of which the complete derivation can be found in [28].

2.2 phenomenology and modeling of bottom reflood

As mentioned in the opening of this chapter, reflood phase is the
last phase of the four canonical phases in the mitigation of LBLOCA
in LWRs, in which emergency coolant water flows slowly upwardReflood phase in

LBLOCA through the reactor core, quenching the fuel elements along the way.
The phase is expected to occur after the refill phase, in which a
successful injection of the water through the downcomer and lower
plenum of the RPV.

Quenching (or rewetting) refers to the phenomenon in which a sus-
tainable contact between the liquid phase of the coolant and the hot
surfaces of the fuel is re-established. Prior to the quenching, the ex-Quenching

cessively high surface temperature prevents a stable contact between
the liquid phase and the surface, degrading the heat transfer between
the two. The maximum temperature for which the liquid might make
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a stable contact with the surface is referred to as the quenching temper-
ature. In consequence, although the bulk of the flow through the core
is liquid, the inability for the liquid to make contact with the surface
keeps it at a very high temperature [115, 122].

In BWR, reflood might also occurs by spraying the core from the
top resulting in the top reflood; while in both BWR and PWR, injection Top and bottom

refloodof water downward through the downcomer and upward through the
core is termed bottom reflood. There are different physical processes
associated with the two, such as the fact that in the top reflood there
is steam flow from the bottom of the channel pushing back the liquid
injection. This thesis is only concerned with the bottom reflood. As
the process sets a limiting ability for the emergency coolant to bring
about efficient cooling to the fuel elements in the LBLOCA transient, a
proper modeling of the physical processes associated with the reflood
phase is an important for the safety analysis of LWRs.

A typical mid-height clad temperature evolution in a channel un-
dergoing a bottom reflood (so-called reflood curve) can be seen in Reflood curve

Fig. 2.5 under a constant coolant injection rate and a constant power
boundary condition.
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Figure 2.5: A typical clad temperature evolution during constant flooding
rate reflooding at mid-height assembly (adapted from [122]). The
labels on the both axes are typical QoIs of reflood transient,
where the abbreviations max., init., and sat. refer to the max-
imum, initial, and saturation, respectively.

At the start of the transient (clad temperature at Tinit.) the chan-
nel consists purely of steam. Keeping the power constant increases
the clad temperature up until mixture of steam and liquid (droplets)
arrives at the location, improving the heat transfer mechanism, and
decreasing the temperature (Tmax. at tTmax.). As the channel keeps un-
dergoing reflood from the bottom, more droplets are available at the
location to keep decreasing the clad temperature. Moreover, as the
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quenching happens below this particular location, large axial temper-
ature gradient in the clad is present and is further accelerating the
heat conduction from the un-quenched part to the quenched part
of the clad. Finally, when the temperature of the clad reaches the
quenching temperature (Tquench at tquench)), quenching occurs and sta-
ble contact between liquid and the clad can be established. From that
point onward, the clad temperature is in equilibrium with the liquid
at saturation.

The phenomenological view of the process, adopted by TRACE
code [28], is shown in Fig. 2.6a along with the corresponding part
in the reflood curve of Fig. 2.6b. The post-critical heat flux (CHF)Reflood,

phenomenology flow regimes (regimes (2)–(5) in the figure) are in-between two pre-
CHF flow regimes, namely nucleate boiling at the bottom and steam
convection at the top.
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Figure 2.6: Phenomenology of two-phase flow during reflood according to
the TRACE code and the corresponding parts of the transient in
the reflood curve.

Consider a case of injecting subcooled liquid water with a con-
stant feed rate (i.e., flooding rate) into a dry heated channel. At the
given location of the temperature probe at the start of the transient,
steam convection (regime (2) in Fig. 2.6a) is the dominant heat trans-
fer mechanism and the clad temperature keeps increasing. In TRACE,
the steam convection process belongs to the pre-CHF package [28].

As the bottom part of the channel is quenched (the point of quench-
ing on the surface is referred to as quench front) three flow regimes can
be observed. Far from the quench front, liquid droplets are dispersedDispersed flow film

boiling (DFFB) and carried away by the bulk steam flow. The flow regime, called
dispersed flow film boiling (DFFB), provides an improved heat trans-
fer mechanism from the wall to the fluid as compared to the pure
steam convection through direct radiation to the droplets, convection
to the droplets and convection to the steam. The droplets provide
additional heat sink from the bulk steam flow. The presence of the
droplets in the flow also further enhance the turbulence of the steam
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flow improving the convection from the wall to the steam flow [122].
The improvement to heat transfer brought by these mechanisms al-
lows the clad temperature to reach a maximum and decrease (i.e., the
temperature reversal).

As the quench front progresses upward, not too far from the front a
more efficient cooling is provided from morphologically less regular
entrained liquid, called ligaments or slugs (regime (3) in Fig. 2.6a).
Due to this efficient cooling, the clad temperature keeps decreasing. Inverted Slug

The slug flow regime is inverted in the sense that the slugs are of the
liquid phase. In TRACE these slugs are modeled as prolate ellipsoids.
The flow regime itself represents an interpolatory region between the
previous DFFB flow regime and the subsequent inverted annular film
boiling (IAFB) flow regime [28].

Closer to the front, the bulk of the subcooled liquid flow starts
to appear in front of the surface. However, a thin vapor film still Inverted annular

film boiling (IAFB)separates the liquid from the wall and thus prevents an ideal heat
transfer to occur. In this so-called IAFB flow regime (regime (4) in
Fig. 2.6a), the bulk of the coolant flow in the center of the channel
is liquid (i.e., the liquid core). The heat transfer mechanism from the
wall is through convection to the vapor film and direct radiation to
the liquid core [28, 122].

Finally, as quenching becomes imminent and the clad temperature
reaches the quenching temperature, the flow regime switch to the un-
stable transition boiling, which literally means the transition between
dry wall and wet wall regimes. In TRACE the heat transfer is evalu- Transition boiling

ated based on the look-up table CHF at the particular flow conditions.
It results in a very large heat transfer coefficient (HTC) between the
wall and the fluid and causes the rapid drop (i.e., quenching) of the
temperature (regime (5) in Fig. 2.6a). After quenching, the clad sur-
face is in full contact with the liquid. The clad temperature is in equi-
librium with the bulk flow of saturated liquid and the flow regime
involves different phenomena, namely nucleate boiling (regime (6) in
Fig. 2.6a). In TRACE, as the steam convection, the nucleate boiling
process belongs to the pre-CHF package [28].
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2.3 feba reflood separate effect test facility

A series of FEBA experiments was conducted in the 1980s at the Karl-
sruhe Institute of Technology (KIT)2 to improve the knowledge of
heat transfer mechanism during reflooding, taking into account the
effects of spacer grids and flow blockage due to fuel rod ballooning.
The data from the facility was also intended to validate the TH mod-
els and codes available at the time.

The facility consisted of a test section with a full height 5× 5 bun-
dle of PWR fuel rod simulator (Fig. 2.7a) enclosed in a rectangular
stainless steel housing (Fig. 2.7b). An approximate cosine power pro-
file was mapped over the height of the fuel rod simulators (Fig. 2.7c).
Seven spacer grids were used to provide mechanical support of the
fuel rod simulators (Fig. 2.7d).
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Figure 2.7: (a) The cross section of a fuel rod simulator used in FEBA
separate-effect test facility; (b) the cross section of the test sec-
tion including the rectangular housing; (c) the approximate co-
sine power profile, numbers written inside the box are the rel-
ative power P/Pavg; (d) the location of spacer grids in the test
section. All dimensions are in units of millimeters [mm].

During the initialization phase of the experiment, the test section
was heated up at low nominal power (200 [kW]) to achieve a speci-
fied initial heater rod temperature, with no liquid present in the test
section. The transient phase of the experiment was initiated by ramp-

2 formerly Kernforschungzentrum Karlsruhe (KfK)
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ing up the power according to 120% (ANS3) decay heat power curve
while simultaneously injecting subcooled liquid from the bottom of
the test section. Several temperature measurements at the outer sur-
face of the heater rods, hereinafter referred to as the clad temperature,
were taken at different axial locations during the course of each tran-
sient test.

Eight different test series were performed in the FEBA facility. The
first two test series (I and II) used two different numbers of spacer
grids, seven and six, respectively. The middle spacer grid was re-
moved in test series II to investigate the effect of spacer grids in a
reflood transient. The other test series used different flow area block-
age sizes at midheight of the test section to investigate the effect of
rod ballooning of different sizes. In each test series, combinations of
two different inlet liquid velocities and three different system back-
pressure were imposed.

The present thesis analyzed the experimental data sets from test
series I. This particular test series was used as the base experimental
setup with all seven spacer grids mounted and no flow area blockage.
Different experimental runs corresponding to different experimental
conditions of test series I are given in Table 2.1.

Table 2.1: FEBA test series I experimental conditions.

Test No. System Pressure Flooding Rate Duration of Test

[bar] [cm · s−1] [s]

216 4.12 3.81 600

214 4.11 5.77 400

223 2.21 3.82 900

218 2.08 5.81 550

220 6.18 3.85 400

222 6.18 5.78 300

Three types of time series measurement were recorded in the ex-
periment. These included thermocouples to measure the clad temper-
ature (referred to as TC) at eight different axial locations, pressure
probes to measure the pressure drop (referred to as DP) at four dif-
ferent axial segments of the test assembly, and a collecting tank mea-
suring the mass of water carried over at the end of the test section
(i.e., the liquid carryover, referred to as CO). It should be noted that
the collecting tank for measuring the liquid carryover was saturated
at 10 [kg] and thus no measurement above that value is available. The
axial locations of the thermocouples and the axial segments at which
the pressure drop were measured are summarized in Table 2.2. Note

3 American National Standard
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that the thermocouple ID was inverted, the increasing number indi-
cated a decreasing elevation. That is, TC1 at the top and TC8 at the
bottom of the assembly.

Table 2.2: Locations of the thermocouples and the pressure drop measure-
ments in the FEBA experiment.

Types of ID Axial Locations (or segments)

Measurement [m]

TC

TC1 4.1

TC2 3.6

TC3 3.0

TC4 2.4

TC5 1.9

TC6 1.3

TC7 0.8

TC8 0.3

DP

Bottom (Bot.) 0.0− 1.7

Middle (Mid.) 1.7− 2.5

Top (Top) 2.3− 4.1

Total (Tot.) 0.0− 4.1

The facility specification and the test data are compiled in a series
of reports that are available at the KIT library website [123]. The spec-
ifications and the data provide a valuable source of information for
the TRACE code assessment since the FEBA experiment is not part
of the original validation matrix of the code.

2.4 feba model in trace

The FEBA facility was modeled using the TH system code TRACE.
The TRACE code used was a prototypical version developed, with
the support of USNRC, for propagation of uncertainties. The develop-
ment was a branch from the reference code version v5.0 Patch 3 [28].
The model was developed based on specifications provided within
the context of the PREMIUM benchmark [21, 124], following when-
ever possible the modeling best-practices guidelines for the TRACE
code to minimize user effect [125].

The model comprised the following TRACE components:TRACE components

• A 1-dimensional VESSEL component to model the bundle test
section.
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• A PIPE component to model the upper plenum of the test sec-
tion.

• A FILL component to set the inlet flow and inlet temperature
boundary conditions.

• A BREAK component to model the outlet pressure boundary con-
dition.

• Two HTSTR components to model the heater rods simulator and
non-powered test section housing.

• A POWER component to impose the electrical power boundary
condition.

The VESSEL component was nodalized into 28 hydraulic nodes of
varying sizes between 60 and 315 [mm]. Both HTSTR components were Model nodalization

nodalized into the same number for the coarse axial conduction nodes.
However, since a large axial temperature gradient was expected in a
reflood transient, the fine-mesh reflood flag in TRACE was enabled.
As a result, each of the coarse conduction nodes was divided uni-
formly in five, yielding a total of 142 axial conduction nodes.

The main geometrical parameters and experimental conditions used
to develop the TRACE input model are summarized in Table 2.3, and
the nodalization of the model is illustrated in Fig. 2.8.

2.5 initial selection of input parameters

This section presents the selection process of the initial set of uncer-
tain input parameters of the FEBA simulation in TRACE. Afterward,
the assignment of the initial (prior) uncertainties of these parameters
are presented. This part is closely related to PSI participation in the
PREMIUM benchmark thus several reference are made to activities
related to that benchmark [126].

2.5.1 Selection of Input Parameters

The selection process for the uncertain input parameters to consider
differs depending on the type of parameter. Each of the selected pa-
rameters can broadly fall into one of the two following categories:

• Input parameters that are not specific to the TRACE code (e.g.,
initial and boundary conditions, material thermo-physical prop-
erties). This category of parameters is often referred to as the
controllable inputs of the simulation.

• Input parameters that are specific to TRACE code (e.g., imple-
mentation of the two-phase momentum and heat transfer pack-
age for reflood condition). This category is often referred to as
the model parameters of the simulation.
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Table 2.3: Geometrical parameters and experimental conditions for the
FEBA model in TRACE.

Parameter Unit Value

Test section total length [m] 4.114

Total heated length [m] 3.9

Flow area [m2] 3.901× 10−3

Hydraulic diameter [mm] 13.45

Rectangular housing width [mm] 78.55

Rectangular housing thickness [mm] 6.5

Number of rods [−] 25

Rod outer diameter [mm] 10.75

Pitch-to-Diameter ratio [−] 1.33

Number of spacer grids [−] 7

Spacer grid flow obstruction [%] 20

Spacer grid axial locations [m]

0.454, 0.999, 1.544,

2.089, 2.634, 3.179,

3.724

Number of hydraulic nodes [−] 28 (varying length)

Number of axial nodes [−]
28 (coarse)

142 (fine)

Inlet liquid temperature [K] 312

Inlet flow velocity [cm · s−1] see Table 2.1

System backpressure [bar] see Table 2.1

The selection of parameters belonging to the controllable inputs
category simply corresponds to the parameters recommended by theControllable inputs

selection benchmark organizers and employed by most participants [19]. The
13 selected parameters of this category are listed in Table 2.4.

On the other hand, the selection of the model parameters specific
to the TRACE code is challenging due to the fact that TRACE is a rel-
atively recent code (in comparison with codes like RELAP5, ATHLET,
or CATHARE). In essence, the code has been developed from differ-
ent variants of the TRAC codes for different reactor types (TRAC-BF1,
TRAC-P) to result in a single consolidated code applicable to both
PWR and BWR. Contributing to that difficulty is the fact that TRACE
is currently undergoing significant developments and improvements,
including modifications to the two-phase closure models for momen-
tum and heat transfers. Consequently, the tasks of selecting the model
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Figure 2.8: Nodalization of the FEBA experimental facility in TRACE.

parameters and later their prior uncertainties are more difficult than
for a more established codes.

To overcome this issue, the following principles have been followed Model parameters
selectionto select the model parameters:

1. The selection has been focused on the physical models in the
post-CHF package of the TRACE code (including the reflood
models). Specifically, these are models for the IAFB and DFFB
flow regimes [28].

2. Models related to spacer grid are also included as they are
known to have a significant impact on reflooding [127].

3. Parameters related to the minimum film boiling temperature
and transition boiling should be selected, since they have (by
model construction) an impact on the time of quenching.
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Additionally, as a common principle, the selected models and their
parameters are perturbed by means of perturbation factors (detailed
below) at the highest-possible level of the structure of these models.
Different codes share similarity in representing major flow regimes
(high-level) but might differ in the constituents models (i.e., sub-models)
for each flow regime (lower-level). Focusing on the higher-level im-
plementation of the models allows, to some extent, to use reference
uncertainty information obtained from codes other than TRACE.

In accordance with the first selection principle above, a set of 10
high-level parameters has been selected (five for each flow regime).
Specifically, for each flow regime: the wall-fluid HTC, the liquid-inter-
face HTC, the vapor-interface HTC, the wall-fluid drag coefficient,
and the interfacial drag coefficient.

Following the second principle, two additional parameters have
been selected: the spacer grid pressure loss coefficient model from
Yao, Loftus, and Hochreiter as well as the grid convective heat trans-
fer enhancement model from Yao, Hochreiter, and Leech (see [28]
pp. 425–429 and [128]). These perturbations on the parameters are
applied to all seven spacer grids at once.

Lastly, from the third principle, the quench temperature parameter
in TRACE and wall-fluid HTC for transition boiling (see [28] pp. 293–
299) have been added to the list of uncertain input parameters.

In the end, 14 parameters are selected and are summarized in Ta-
ble 2.5, yielding a total number of 27 uncertain input parameters.

2.5.2 Perturbation Factors

The nominal values of the selected input parameters of the TRACE
FEBA model are varied by means of perturbation factors. These per- Perturbation factor

turbation factors are modeled as random variables following a prede-
fined PDF detailed in the next section, from which a set of samples
of input parameters values can be generated.

For a given sampled perturbation factor, one of three modes of per-
turbation is possible: additive, multiplicative, and substitutive. In the ad- Modes of

perturbationditive mode, the sampled perturbation factor is added to the nominal
parameter value of the TRACE model. In the multiplicative mode, the
sampled perturbation factor is multiplied by the nominal parameter
value. Finally, in the substitutive mode, the sampled perturbation fac-
tor directly substitutes for the nominal parameter value. The mode
of perturbation for each selected input parameter are listed in last
column of Table 2.4 and Table 2.5.

A tool is developed in the Python programming language to as-
sist in automatically pre-processing, executing, and post-processing
numerous TRACE simulations of the FEBA model based on a set of trace-simexp

sampled input parameters values. The tool, trace-simexp, is detailed
in Appendix C.2.
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2.5.3 Prior Uncertainty Quantification

The uncertainties associated with the controllable inputs were taken
directly from the recommended value of the PREMIUM benchmark
and the list can be found in Table 2.4. As for the model parameters,
the uncertainty ranges has been determined following the available
literature on uncertainties in physical models for LBLOCA.

The main sources of information consisted of Ref.[129] and Ref. [130],
which included uncertainty information for the closure models of the
system codes TRAC-PF1/MOD1 and ATHLET-Mod2.1 (Cycle B), re-
spectively. Furthermore, prior experience and knowledge of the clo-
sure model uncertainties of the CATHARE2 code (V1.3L_1, Rev.5)
have been used [126, 131]. Ref. [131] accounts for an analysis by
IPSN4 of the uncertainty quantification method “Méthode Détermin-
iste Réaliste” for the PWR LBLOCA which was proposed by EDF5

and was evaluated in 2000. The high-level implementation of the per-
turbation factors for the uncertainty analysis in the post-CHF closure
models, allowed information from different codes to be extracted for
the initial estimate. This approach was deemed adequate in the con-
text of the determination of the prior PDFs.

To simplify the quantification of the prior uncertainties further, the
PDFs of the multiplication factors were assumed to follow symmet-
ric bounded uniform and log-uniform distributions with the nominal
parameter value equals to the median value. For the log-uniform dis-
tribution the form [2−n, 2n] was assumed, where n is an integer. All
model parameters that were a priori deemed to be important were
assumed to follow log-uniform distributions.

The ranges of the parameters (i.e., their minimum and maximum),
were chosen to cover range of similar parameters available in Refs. [129,
130]. Though this at times resulted in the selection of large bounds,
they were deemed acceptable following a verification study against
the nominal predictions. The verification heavily relied on engineer-
ing judgment via visual inspection of the width of the prediction
uncertainty bands to decide if such bands were indeed reasonable6.
The approach is admittedly imprecise, but is intentional as it avoids
underestimating the prior uncertainty range of influential model pa-
rameters.

Table 2.5 lists the results of the prior uncertainty quantification of
the selected model parameters. Note that all 27 input parameters con-
sidered are a priori independent.

4 Institut de protection et de sûreté nucléaire (IPSN)
5 Electricité de France
6 The loosely defined notion of “reasonable” in this case is similar to the notion of

“’behavioral vs. non-behavioral” prediction in hydrology modeling [2].
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2.6 propagation of the prior uncertainties

The quantified prior uncertainties of the input parameters are propa-
gated through the TRACE model of FEBA to assess (and verify) the
prior level of prediction uncertainties. Independent samples are gen-
erated from the prior PDFs of the 27 selected input parameters (Ta-
bles 2.4-2.5) and the TRACE model of FEBA is run using the sampled
parameters values.

Figs. 2.9a, 2.9b, and 2.9c show the nominal TRACE predictions (i.e.,
the prediction with the nominal values of the input parameters) in
comparison with the experimental data for FEBA test No. 216 for
three selected outputs of different types: the clad temperature TC at
the mid-height assembly, the pressure drop DP of the middle axial
segment, and the liquid carryover CO (up to the saturation of the
collecting tank at 10 [kg]), respectively.

0 200 400
Time [s]

400

900

1400

C
la

d
 T

em
p
er

at
u
re

 [
K

]

(a) Mid-height clad temperature
(TC)

0 250 500
Time [s]

0.00

0.05

0.10

P
re

ss
u
re

 d
ro

p
 [

b
ar

]

(b) Mid. pressure drop (DP)

0 220
Time [s]

0

5

10

15

L
iq

u
id

 c
ar

ry
ov

er
 [

k
g]

(c) Liquid carryover (CO)

Figure 2.9: Nominal TRACE predictions (thick lines) for FEBA test No. 216 in comparison with
the experimental data (crosses) for three selected outputs. The thin lines in each panel
indicate the predictions from 50 selected realizations of the uncertainty propagation of
the input parameters.

The comparison between the nominal TRACE predictions and the
corresponding experimental data for the clad temperature and the
pressure drop are satisfactory. TRACE seems to capture all the impor-
tant features of the transient in FEBA test No. 216. That is, TRACE
predicts well the behavior of the reflood curve during the transient;
while for the DP output TRACE predicts well the behavior of channel
flooding. Note that in Fig. 2.9b the transient between the two equilib-
rium values indicates the flooding of the channel between axial level
1.7 and 2.3 [m] from an initial pure steam flow (low pressure drop)
to mixture (rising) and eventually a pure liquid flow (higher pres-
sure drop). Note also that Fig. 2.9a is the prediction at the axial level
1.9 [m], a level within the axial segments of the pressure drop. On the
other hand, there is a strong apparent bias (over-prediction) of the
TRACE predictions with respect to the liquid carryover.



2.6 propagation of the prior uncertainties 51

The thin lines plotted in each panel of Fig. 2.9 indicate the pre-
dictions from 50 selected realizations of the uncertainty propagation.
Particularly with respect to the clad temperature output, the predic-
tions exhibit large variations both in terms of amplitude (vertical) and
phase (horizontal). Specifically for the latter, the timing of important
events like the time of quenching varies significantly across realiza-
tions. Moreover, for all the three outputs shown in the figure, the
experimental data seems to be within the parametrization of TRACE
according to the assumed prior uncertainties for the parameters.

Figs. 2.10, 2.11, and 2.12 show the complete results of the uncer-
tainty propagation for the three types of output for FEBA test No.
216 based on 1 ′000 samples of input parameters values. The predic-
tion uncertainty bands plotted in each panel of the figures refer to the
pointwise symmetric 95% probability. That is, they are constructed
based on the intervals between the 2.5-th and 97.5-th percentiles of
each output type at each time step. Similar plots showing the results
of all the 6 FEBA tests are given in Appendix B.1.

Fig. 2.10 shows the uncertainty propagation results for the clad
temperature TC output at all eight axial levels. As observed, for each
axial level, the experimental data is well enveloped within the wide
prediction uncertainty bands. The uncertainty band becomes wider
starting from the start of the transient up to the time of quench-
ing. Furthermore, the uncertainty bands also become wider for the
TC predictions moving from the bottom to the top of the assembly.
Lastly, as observed, the nominal TRACE predictions tends to have
larger discrepancy with the experimental data above the mid-height
assembly. Although the time of quenching at all axial levels are well
predicted, the TC predictions above the mid-height assembly are un-
derestimated during the transient up to the time of quenching.

Bottom (z = 0.0 − 1.7 [m]) Middle (z = 1.7 − 2.3 [m]) Top (z = 2.3 − 4.1 [m]) Total (z = 0.0 − 4.1 [m])

0 200 400 600 0 200 400 600 0 200 400 600 0 200 400 600

0.0

0.1

0.2

0.3

Time [s]

P
re

ss
u
re

 D
ro

p
 [

b
ar

]

FEBA Test No. 216, Psys = 4.1 [bar], Flooding Rate = 3.8 [m.s−1]

Figure 2.11: Propagation of the 27 input parameters prior uncertainties on FEBA test No. 216 for
the pressure drop output (DP). The uncertainty bound corresponds to the symmetric
(95%) probability; solid lines and crosses indicate the simulation with the nominal
parameters values and the experimental data, respectively.

Fig. 2.11 shows the uncertainty propagation results for the pressure
drop DP output at all four axial segments. The plots in the figure
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shows the same pointwise symmetric 95% probability of the predic-
tion uncertainty as before. As observed, there is no major discrepancy
between the TRACE predictions and the experimental data and the
uncertainty bands cover the experimental data well, especially during
the transient (i.e., the ramp between two equilibrium values).

Finally, Fig. 2.11 shows the uncertainty propagation results for the
liquid carryover CO output. As mentioned, although there is a large
discrepancy between the nominal TRACE prediction and the experi-
mental data, the prediction uncertainty covers the experimental data.
In particular, the propagation of the prior input parameters uncertain-
ties results in large band that is skewed toward the lower values of
the predictions uncertainties.
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Figure 2.12: Propagation of the 27 input parameters prior uncertainties on
FEBA test No. 216 for the liquid carryover output (CO). The
bound corresponds to the symmetric (95%) probability; solid
lines and crosses indicate the simulation with the nominal pa-
rameters values and the experimental data, respectively.

2.7 chapter summary

The physical model of the TH system code of interest in the present
doctoral research has been presented in this chapter. The reflood phe-
nonema and its modeling with the TRACE code were presented.

The FEBA SETF for reflood experiment was described and modeled
using the TRACE code. The simulation of the selected reflood experi-
ment using the TRACE model with nominal parameters values gave
no indication of major deficiency with respect to important outputs.

A set of 27 initial input parameters, each of which either belongs
to the controllable input or model parameter category, have been se-
lected. The justification for the selection was given along with the
specification of the prior uncertainties associated with the parame-
ters. The specification of the uncertainties was admittedly imprecise,
but deemed adequate for the prior uncertainties. These priors were
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then propagated through the TRACE model of FEBA. As expected,
the prediction uncertainty bands for all types of output were found
to be very wide but at the same time covering all the experimental
data points.

The set of methods presented in the next three chapters builds
upon the results of this chapter. The experimental data and the TRACE
model become the basis for the applications of the methods proposed
in this thesis. In Chapter 3, the importance of each selected input pa-
rameter is verified in a quantitative manner via SA. The assessment
will serve as the basis for parameter screening to reduce the size of
the problem. In Chapter 4, a fast approximation of the TRACE model
of FEBA is developed to alleviate the computational burden of evalu-
ating the TRACE model numerous times. Finally, in Chapter 5, the se-
lected model parameters are calibrated against the experimental data
of FEBA test No. 216, which results in an a posteriori quantification
of the parameters uncertainties.



3
S E N S I T I V I T Y A N A LY S I S : U N D E R S TA N D I N G
M O D E L I N P U T / O U T P U T R E L AT I O N S H I P U N D E R
U N C E RTA I N T Y

As mentioned in the introduction, describing and understanding prop-
erly the impact of model parameters variations on a model prediction
are an essential part of the model development and assessment. This
chapter presents the application of global and statistical SA to ana-
lyze the FEBA model in TRACE in order to investigate the effects of
the input parameter variations.

After first introducing in Section 3.1 the notational convention used
in this chapter, the proposed methodology is presented. The method-
ology leverages various developments in global sensitivity analysis
(GSA) and functional data analysis (FDA) methods and follows three
key underlying ideas.

The first idea, presented in Section 3.2, is to reduce the dimension-
ality of the output space while preserving the interpretability of the
results by utilizing techniques derived from FDA [49]. Section 3.3 in-
troduces the second idea, which is to reduce the dimensionality of
the input parameter space through screening analysis using the Mor-
ris method [44, 132]. The third and final idea is to investigate, quan-
titatively and in more detail, the effect of variation of parameters on
the overall time-dependent output variation. This is done through
variance-based SA using the Sobol’-Saltelli method [41, 133], which is
presented in Section 3.4.

The methods are then applied to analyze the FEBA model in TRACE
to understand better its inputs/outputs relationship under the as-
sumed uncertainty on its input parameters. The results are presented
and discussed in Section 3.6. Finally, Section 3.7 closes the chapter
with a summary.

3.1 statistical framework

The methodology for SA presented in this work belongs to the cate-
gory of statistical framework, a term attributed to Cacuci and Ionescu-
Bujor [32] or simply the global method, following the terminology
from Saltelli et al. [39]. Within this framework, sensitivity measures
of a parametrized model are obtained by post-processing the collec-
tion of model outputs obtained from multiple model evaluations at
different points in the input parameter space according to a certain
experimental design. As such, the model itself can be considered as a
black box, and the input parameters are modeled as random variables

55



56 sensitivity analysis

equipped with a joint PDF. The specification of a joint PDF allows for
the generation of an experimental design.

Consider the following mathematical model used as a template for
the rest of the present chapter:

y(t) = f(t; x), t ∈ [ta, tb] (3.1)

where y(t) is the scalar output at time t from a deterministic func-
tion f; and x is the input parameter vector in D-dimension, i.e., x =

(x1, x2, . . . , xd, . . . , xD). It is customary to assume, for generality, that
the input parameters are normalized between [0, 1] (i.e., x ∈ [0, 1]D).

Let DM be an experimental design matrix of size N ×D, where
N is the number of samples. Each row in the matrix represents a
point in the D-dimensional input parameter space. The model is then
evaluated at each of these N points by using a simulation code that
results in a matrix of discrete-time outputs of size N× tb−ta

∆t where
∆t is the time-step size,

Y =



y1(ta) · · · y1(ti) · · · y1(tb)
...

...
...

yn(ta) · · · yn(ti) · · · yn(tb)
...

...
...

yN(ta) · · · yN(ti) · · · yN(tb)


(3.2)

where yn(ti) = y(ti; xn) is the model output at time ti evaluated
using xn, the input parameter vector at the n-th row of DM.

Based on this general description of a time-dependent model out-
put, the next three sections will outline the main components of the
proposed SA methodology.

3.2 describing variation of time-dependent output

Ramsay and Silverman [49] popularized FDA, which refers to statisti-
cal analysis of data that are functions. The main assumption of FDA,Functional Data

Analysis (FDA) as opposed to a more conventional multivariate analysis, is that data
present sufficient smoothness, defined by existence of derivatives up
to a certain order. Another distinguishing feature of FDA, as opposed
to time-series analysis or spatial statistics, is the availability of numer-
ous replications of such data (i.e., set of functions) produced by the
same or similar underlying process. The role of FDA in this work is
to describe the overall variation within the data set Y using a reduced
set of scalars and functions obtained from principal component analy-
sis (PCA). The functions remain the same for all of the data set, while
the scalars vary as function of the sample. Key here is that the re-
quired number of scalars is much smaller than the size of Y and, in
turn, can be used as the QoI for SA.
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3.2.1 Functional Output Representation

The assumption of continuity within a practically discrete data set
(such as the numerical code output of Eq. (3.2)) is made explicit
through a functional representation. The recommended representa-
tion is through a linear combination of basis functions [49]. This the-
sis adopts the B-spline basis function [134] expansion because of its
flexibility [135, 136] and the availability of its implementation in open
numerical libraries [137].

Within this framework, a function can be written using basis func-
tion expansion as,

yi(t) =

K∑
k=1

cik ·φk(t); i = 1, 2, · · ·N (3.3)

where K indicates the number of basis functions; φk(t) is the k-th
basis function; and cik; k = 1, . . . ,K are the basis coefficients for curve
i. These coefficients are fitted to the data set to construct curve i, with
or without smoothing.

A B-spline is constructed using piecewise polynomial (spline) con-
nected at selected points in the domain called knots. Let τ = {τk; k =

0, 1, · · · ,L} be a sequence of knots, i.e., an ordered set of non-decreasing
numbers that divide the function domain into L sub-intervals. Within
each sub-interval, a piecewise polynomial of degree p is defined.
At the interconnection (knots), adjacent polynomials are continuous
with their derivatives up to p− 1 matching up. In other words, the
spline is p− 1 differentiable at the knots.

The basis functions in the B-spline system are determined by the
degree of the polynomial p and the knot sequence τ = {τk; k =

0, 1, · · · ,L}. However, per definition, there is no data point available
on the left (right) of the leftmost (rightmost) knot. As such, there is
no differentiability (smoothness) condition to uphold at the bound-
aries and the resulting system of equations are underdetermined. To
resolve this issue, the endpoints can be repeated p times and aug-
mented into both ends of the knot sequence such that

τ−p = · · · = τ0 6 τ1 6 · · · 6 τL = · · · = τL+p (3.4)

This procedure will only reduce the order of continuity of the p
outer left and p outer right basis functions of the domain such that
the system of equations becomes fully determined. As a result, the
augmented knot sequence becomes

τ = {τk; k = −p,−p+ 1, · · · , 0, 1, · · · ,L+ p} (3.5)
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The B-spline basis functions of degree p can then be defined recur-
sively on the augmented knot sequence using de Boor - Cox formula
as follows,

B0k(t) =

1, τk 6 t < τk+1

0, otherwise

B
p
k(t) = α

p
k(t)B

p−1
k +

[
1−αpk+1(t)

]
B
p−1
k+1

α
p
k(t) =


t−τk

τk+p−τk
, τk+p 6= τk

0, otherwise

(3.6)

where Bpk(t) denotes the k-th B-spline of degree p. The degree p and
the number of interior knots L − 1 (i.e., excluding the end points),
determine the number of spline basis functions according to K =

p + L. In other words, the B-spline basis functions are {B
p
k(t); k =

−p,−p+ 1, · · · ,L− 1}.
Fig. 3.1 illustrates all the 14 spline basis functions of degree 3 over

10 uniform interior knots (or 11 sub-intervals) defined in [0, 1]. The re-
sulting augmented knot sequence is τ = {0, 0, 0, 0, 111 , · · · , 1011 , 1, 1, 1, 1}.
The three leftmost and three rightmost basis functions are less smooth
at the two boundaries than the other eight basis functions in the cen-
ter. From leftmost to the right (rightmost to the left) the three basis
functions are non-, once-, and twice-differentiable at the left (right)
boundaries, respectively.
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Figure 3.1: The fourteen B-spline basis functions of degree 3 (cubic) with 10 uniform interior knots
(shown in light dashed vertical lines) that divides the domain into 11 sub-intervals.
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Returning to the formulation of Eq. (3.3), a function yi is then rep-
resented by B-spline basis functions of a given order Bpk(t) and a knot
sequence τ as follows,

yi(t) =

L−1∑
k=−p

cik ·Bpk(t); i = 1, 2, · · ·N (3.7)

3.2.2 Curve Registration by Landmarks

Essential to the idea of summary statistics of a data set is the mea-
sure of central tendency (e.g., the mean), which characterizes a typical
realization. The measure of dispersion such as the variance, in turn, variation in a

functional data set:
amplitude & phase

can be defined relative to the mean. Two types of variations are of-
ten simultaneously present in a functional data set: the variation in
magnitude (vertical variation) and the variation in phase (horizontal
variation). The simultaneous presence of these two types of variations
makes the definition of a mean function difficult [138].

Fig. 3.2 illustrates this point. For a functional data set that does Cross-sectional vs.
structural meannot contain strong phase variations, a simple cross-sectional mean

(average values across realizations taken at every argument values)
does indeed represents a typical realization (Fig. 3.2a). On the other
hand, with a strong phase variation (often mixed with amplitude vari-
ation), the cross-sectional mean fails to produce a typical realization
(Fig. 3.2b). In this case, according to Kneip ([138]) a more proper struc-
tural mean of the data set can be defined instead by first separating
the phase and amplitude variations.

t

y(
t)

(a) Without phase variation

t

y(
t)

Mean (Cross−Sectional)
Mean (Structural)

(b) With strong phase variation

Figure 3.2: Two examples of functional data sets. (Left) without pronounced
phase variations, cross-sectional mean can reflect a typical
realization. (Right) with pronounced phase variations, cross-
sectional mean differs from the notion of typical realization.
Structural mean derived after registration better represents a typ-
ical realization. The scales in the axes are arbitrary.
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In order to obtain a meaningful structural mean in presence of
strong amplitude and phase variations, the two types of variation
are first separated through a registration procedure [139, 140]. Thelandmark

registration procedure transforms the time argument using a warping function to
reduce the phase variation in the data set. Specifically, the landmark
based registration can be employed when the main features of the
function of interest (i.e., reflood curve) are readily identifiable. In a
functional data set with phase variation, this particular type of regis-
tration forces important events in a curve (its landmarks) to occur at
the same time relative to a set of reference values.

This is illustrated in Fig. 3.3. The left panel shows a functional data
set exhibiting phase variation, which is reduced by aligning its land-
mark, here the time of maximum of each realization (shown as ver-
tical solid lines) to a reference value (shown as the vertical dashed
line). The structural mean (solid line curve) is simply computed as
the cross-sectional mean of the registered curves shown on the right
panel. The structural mean properly represents the inflection and the
maximum points of a typical realization indeed, and therefore is more
representative of the curves in the original data set.

t

y(
t)

(a) Unregistered curves

t

y(
t)

(b) Registered curves, by landmark

Figure 3.3: Illustration of curve registration. Shown in the left, curves whose
landmarks (solid vertical lines) are to be aligned with respect to
a reference value (dashed vertical line). Shown in the right, the
registered curves. The structural mean is shown as a thick solid
line curve. The scales in the axes are arbitrary.

More details on the properties of the warping functions used to
transform the time argument for registration can be found in Ap-
pendix D.6.

3.2.3 Functional Principal Component Analysis

Separation of phase variation from magnitude variation by registra-
tion procedure allows for the definition of a proper mean function.
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With respect to the mean, the notion of functional variation can then
be defined. In the following discussion, it is assumed that the func-
tional data set does not contain phase variation. That is, the functions
are fully registered. If this is not the case then the previous step of
registration might be required to first obtain a proper mean function.

The covariance function of a set of function realizations {yn(t);n = Covariance function

1, 2, · · · ,N; t ∈ [ta, tb]} from a random process Y is defined as

ν(t1, t2) ≡
1

N

N∑
n=1

(yn(t1) − ȳ(t1)) · (yn(t2) − ȳ(t2)) (3.8)

where ȳ(t) is the proper mean function.
To extract more meaningful information from the covariance func-

tion, the function can be projected onto lower-dimensional space us- Functional principal
component analysis
(fPCA)

ing an orthogonal decomposition. This projection can be done through
the functional principal component analysis (fPCA) (also known as
the Karhunen-Loéve transform (KLT), see Appendix D.7 for the un-
derlying theorem):

ν(t1, t2) =
+∞∑
j=1

ρj · ξj(t1) · ξj(t2) (3.9)

where ρj is a series of ordered eigenvalues of decreasing values; ξj(t)
is the corresponding series of orthogonal eigenfunctions (or the fPC).

The transformation of the covariance function into pairs of eigen-
values and eigenfunctions also allows each element of the original
data set {yn(t)}Nn=1 to be represented as a series that is optimal in the
root-mean-square-error (RMSE) sense:

yn(t) = ȳ(t) +

+∞∑
j=1

θj,n · ξj(t); n = 1, 2, · · · ,N (3.10)

where the fPC score θj,n associated with each realized function is
defined by the orthogonality condition

θj,n =

∫tb
ta

[yn(t) − ȳ(t)] · ξj(t)dt (3.11)

Eqs. (3.10) and (3.11) imply that across realizations in the samples,
{yn(t)} can be represented linearly using a common mean function
and sums of deviation terms from the mean. The deviation terms
consist of a set of common eigenfunctions and a set of fPC scores. As
such, the random character of each realization is left to the score asso-
ciated with each component and each realization. Put differently, the
eigenfunctions described the (common) modes of variations, while
the scores quantify the strength of a particular mode [141]. These
scores will be used as the QoI in the subsequent global SA. A way to
compute the fPC and the associated scores can be found in Ref. [142].
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3.3 parameters screening

Screening methods are used to rank the importance of the model
parameters using a relatively small number of model evaluations
[39]. However, they tend to simply give qualitative measures. That is,
meaningful information resides in the rank itself but not in the exact
importance of the parameters with respect to the output. Screening is
particularly valuable in the early phase of a SA to identify the nonin-
fluential parameters of a model, which then could be safely excluded
from further detailed analysis. This step is important to reduce the
size of the problem especially if more expensive methods are to be
applied at the subsequent steps. In this work, attention was paid to a
particular screening method proposed by Morris [44] with an exten-
sion proposed by Campolongo et al. [132].

3.3.1 Elementary Effects and One-at-a-Time Design

Consider a mathematical model f : x ∈ [0, 1]D 7→ y = f(x) ∈ R, where
x = (x1, x2, . . . , xD) is a vector of input parameters. The elementary
effect of the d-th parameter on f is defined asElementary effect

EEd =
f(x1, . . . , xd +∆, . . . , xD) − f(x1, . . . , xd, . . . , xD)

∆
(3.12)

or more concisely,

EEd =
f(x+∆ · ed) − f(x)

∆
(3.13)

where ed is the d-th basis vector of the input parameter space; and
∆, the grid jump, is chosen such that x + ∆ · ed is still in the spec-
ified domain of the parameter space, i.e., [0, 1]D; ∆ is a value in
{ 1
p−1 , . . . , 1 − 1

p−1 }, where p is the number of (discretization) levels
that partition the model parameter space into a uniform grid of points
where the model can be evaluated. For a given p, the grid constructs
a finite distribution of pD−1[p−∆(p− 1)] elementary effects for each
input parameter.

The elementary effect distributions for each of the input param-
eters, evaluated across discretized input parameter space, provideOne-at-a-time

(OAT) experimental
design

useful information on the importance of a parameter on the output.
Unfortunately, an exhaustive evaluation of all elementary effects for
a given discretization levels suffers from a curse of dimensionality
especially for numerous parameters or for reasonably fine discretiza-
tion level1. Consequently, a class of design of experiment that only
change one parameter at a time (one-at-a-time (OAT)) are devised to
estimate the statistics of the distributions.

The key idea behind the original Morris method is in initiating
the model evaluations from various nominal points, x, randomly se-Trajectory OAT

design
1 for p = 8 and D = 20 the total number of evaluations for exhaustive computation of

all EEs is ≈ 6× 1017 for each parameter
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lected over the grid and then gradually advancing one grid jump,
perturbing one parameter at a time, making a perturbed point as the
base point for the next perturbation. The order of perturbation (i.e.,
which dimension to perturb first) and the direction of the perturba-
tion (i.e., whether it is added or subtracted) are also randomized be-
tween replications. As such, different replication generates different
starting nominal point as well as different order and sign (but with
the same size) of perturbation. The OAT experimental design com-
plemented with this requirement is known as the trajectory design
[143]. Fig. 3.4a illustrates a trajectory design with 4 replications in a
two-dimensional input parameter space discretized in 6 levels .
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(b) Radial scheme

Figure 3.4: Illustration of One-at-a-Time (OAT) design constructed using tra-
jectory scheme (left) and radial scheme (right) each with 4 repli-
cations. The trajectory design is discretized in 6 levels, while the
number of levels is irrelevant for radial design. Filled circles are
the nominal or the starting point (for the trajectory) or the base
(for the radial) points and crosses are the perturbed levels.

To remove the requirement to specify a method-specific parameter
p (the number of levels), Campolongo et al.[132] proposed to use a Radial OAT design

radial scheme coupled with Sobol’ quasirandom sequence. In a single
replication of this particular OAT design, each parameter is perturbed
relative to a base/nominal point which is not required to be located on
a predetermined grid. The size and sign of the perturbation is also
allowed to vary from parameter to parameter in different replication.
As such, radial design implicitly incorporates several additional pos-
sible sources of variation in the method that can potentially bias the
estimation of elementary effects. Because the size of parameter per-
turbations varies, the definition of the elementary effects is slightly
changed to Elementary effect for

radial design

EEd =
f(x+∆xd · ed) − f(x)

∆xd
(3.14)



64 sensitivity analysis

where now each parameter at each design replication has its corre-
sponding perturbation size ∆xd ∈ [−1, 1] such that xd +∆xd ∈ [0, 1].

An illustration of a radial design in a two-dimensional input pa-
rameter space with 4 nominal/base points is shown in Fig. 3.4b.

3.3.2 Statistics of Elementary Effects and Sensitivity Measures

Consider now that an NR number of elementary effects associated
with the d-th parameter have been sampled from the finite distribu-
tion of EEd, using an OAT design with NR replications, either based
on the trajectory or radial design. The statistical summary of the sam-
pled EEd based on a given number of an OAT design replications can
be calculated. The first is the arithmetic mean defined as,Mean of the

(sampled)
elementary effects

µd =
1

NR

NR∑
r=1

EErd (3.15)

where EErd is the elementary effect of the d-th parameter of the r-th
replication. The mean gives the global influence of the d-th parameter
on the chosen output f.

The second statistical summary of interest is the standard deviation
of the (sampled) elementary effects for input parameter xd,Standard deviation

of the (sampled)
elementary effects

σd =

√√√√ 1

NR

NR∑
r=1

(EErd − µd)
2 (3.16)

The standard deviation gives an indication of the presence of non-
linearity or interactions between the d-th input parameter and the
others.

In cases where f is a non-monotonic function, the sign of EEd may
change according to the change of the output, and cancellation ef-
fects on the estimation of µd might occur . To circumvent this issue,
Campolongo et al. [132] proposed to take the absolute values of the
sampled elementary effects. It is defined as,Mean of the

(sampled) absolute
elementary effects

µ∗d =
1

NR

NR∑
r=1

|EErd| (3.17)

Note that although the overall sign of the output perturbation is lost
by using this measure, its use is justified if the input parameters are
to be ranked based on a single importance measure.

The aforementioned statistical summaries, when evaluated over a
large number of replications NR, can provide global sensitivity mea-
sures of the importance of each input parameter. As indicated by Mor-Input parameter

importance
classification

ris [44], there are three possible categories of parameter importance
based on those statistics:
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1. Parameters with noninfluential effects on the model output, i.e.,
the parameters that have relatively small values of both µd (or
µ∗d) and σd.

2. Parameters with linear or additive effects, i.e., the parameters
that have relatively large value of µd (or µ∗d) and relatively small
value of σd. The small value of σd and the large value of µd
(or µ∗d) indicate that the variation of elementary effects across
replications is small while the magnitude of the effect itself is
consistently large for the perturbations in the parameter space.

3. Parameters with nonlinear or interaction effects, i.e., the param-
eters that have a relatively small value of µd (or µ∗d) and a rela-
tively large value of σd. Opposite to the previous case, a small
value of µd (or µ∗d) indicates that the aggregate effect of per-
turbation is relatively small (or in the case of µd, can be close
to zero) while a large value of σd indicates that the variation
of the effect is large; the effect can be large or negligibly small
depending on the values of the other parameters at which the
model is evaluated. Such large variation is a symptom of non-
linear effects or parameter interaction.

This classification makes parameter importance ranking and, in
turn, screening of noninfluential parameters possible. However, the
procedure is done rather qualitatively, and this is illustrated in Fig. 3.5,
which depicts a typical parameter classification derived from a visual
inspection of the elementary effects statistics on the σ vs. µ∗ plane.
The notions of influential and noninfluential parameters are based
on the relative locations of those statistics in the plane. Typically, the
noninfluential ones are clustered closer to the origin (relative to the
more influential ones) with a pronounced boundary such as the sit-
uation depicted in Fig. 3.5. Admittedly, if these statistics are spread
somewhat uniformly across the plane, the distinction would be more
ambiguous and problematic2. Furthermore, for a parameter with a
large value of both µ∗ and σ, the method cannot distinguish between
nonlinearity effect from parameter interaction effect on the output.

3.4 variance decomposition

Variance-based methods for GSA use variance as the basis to define a
measure of input parameter influence on the overall output variation
[33]. In a statistical framework of sensitivity and uncertainty analysis,
this choice is natural because variance (or standard deviation) is often
used as a measure of dispersion in the model prediction [34]. The

2 In such a case, more advanced classification approaches such as the ones based on
clustering techniques might be helpful to identify a finer structure of the parameters
importance.



66 sensitivity analysis

µ∗

σ

less
influential

Influential
(non-interacting)

noninfluential

Influential
(non-linear and/or
interacting) +2× SEM

Figure 3.5: Illustration of a typical parameter importance classification ob-
tained from the Morris screening method. The importance of
each parameter relative to the other ones is defined with respect
to its location on the σ− µ∗ plane. Each dot represents a param-
eter, and the line corresponds to twice the standard error of the
mean (SEM) indicating the relative magnitude of the standard
deviation to the mean.

dispersion, in turn, can measure the level precision of the prediction
when the input parameters are considered uncertain.

This section first presents a method to decompose the model output
variance into the contributions from the individual variances of the
inputs. Then, two sensitivity measures based on the decomposition
are introduced and a method for their estimations is presented.

3.4.1 High-Dimensional Model Representation

Consider once more a mathematical model f : x ∈ [0, 1]D 7→ y =

f(x) ∈ R. The high-dimensional model representation (HDMR) ofHigh-dimensional
model representation

(HDMR)
f(x) is a linear combination of functions with increasing dimensional-
ity up to the dimension of x [144],

f(x) = fo +

D∑
d1=1

fd(xd) +
∑

16d1<d26D

fd1,d2(xd1 , xd2) + · · ·

+ f1,2,··· ,D(x1, x2, · · · , xD)

(3.18)

where fo is a constant. The representation in Eq. (3.18) is unique if
the following condition [41]:∫1

0

fd1,d2,···di(xd1 , xd2 , · · · , xdi)dxdm = 0 ; for m = 1, 2, · · · , i (3.19)

is established for all i ∈ 1, · · · ,D and any corresponding ordered
combination of dimensions 1 6 d1 < d2 < · · · < di 6 D of the input
parameter space.
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Assume now that X is a random vector of independent and uni-
form random variables over a unit hypercube {Ω = x | 0 6 xi 6 1; i =
1, · · · ,D} such that y = f(x) becomes

Y = f(X) (3.20)

where Y is a random variable, resulting from the transformation of
the random vector X by the function f. Using Eq. (3.19) to express
each term in Eq. (3.18), it follows that

fo = E[Y]

fd1(xd1) = E∼d1 [Y|Xd1 ] − E[Y]

fd1,d2(xd1 , xd2) = E∼d1,d2 [Y|Xd1 ,Xd2 ]

− E∼d1 [Y|Xd1 ] − E∼d2 [Y|Xd2 ] − E[Y]

(3.21)

The same follows for higher-order terms in the decomposition. In
Eq. (3.21), E∼◦[◦|◦] is a conditional expectation operator, where the
subscript symbol ∼ ◦means that integration on the parameter space is
carried out over all parameters except the one(s) in the subscript. For
instance, E∼1[Y|X1] refers to the conditional mean of Y given X1, and
the integration is carried out for all possible values of parameters in x
except x1. Note that because X1 is a random variable, the expectation
conditioned on it is also a random variable.

Assuming that f is square integrable, applying the variance opera-
tor on Y results in

V[Y] =

D∑
d1=1

V[fd1(xd1)] +
∑

16d1<d26D

V[fd1,d2(xd1 , xd2)] + · · ·

+ V[f1,2,··· ,D(x1, x2, · · · , xD)]

(3.22)

3.4.2 Sobol’ Sensitivity Indices

Division by V[Y] aptly normalizes Eq. (3.22):

1 =

D∑
d1=1

Sd1 +
∑

16d1<d26D

Sd1,d2 + · · ·+ S1,2,··· ,D (3.23)

where Sobol’ main-effect sensitivity index Sd is defined as, Main-effect index

Sd =
Vd[E∼d[Y|Xd]]

V[Y]
(3.24)

The numerator is the variance of the conditional expectation, and the
index is a global sensitivity measure interpreted as the amount of
variance reduction in the model output if the parameter Xd is fixed
(i.e., its variance is reduced to zero). The main-effect sensitivity index
is also known in the literature as the first-order sensitivity index as it
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captures only the effect of a single parameter variation on the model
output considering no interaction with other parameters [133].

A closely related sensitivity index proposed by Homma and Saltelli
[145] is the Sobol’ total-effect index defined as,Total-effect index

STd =
E∼d[Vd[Y|X∼d]]

V[Y]
=

V[Y] − V∼d [Ed [Y|X∼d]]

V[Y]

= 1−
V∼d[Ed[Y|X∼d]

V[Y]

(3.25)

The index, also a global sensitivity measure, can be interpreted as
the amount of variance left in the output if the values of all input
parameters, except Xd, can be fixed. In other words, the total-effect
index measures the contribution to the output variance of parameter
Xd, including all variance caused by its interactions, of any order,
with any other parameters.

These two sensitivity measures can serve the objectives of GSA for
model assessment as proposed by Saltelli et al [34, 39]. The main-Parameter

prioritization
objective

effect index is relevant to parameter prioritization in the context of
identifying the most influential parameter since fixing a parameter
with the highest index value would, on average, lead to the greatest
reduction in the output variation.

The total-effect index, on the other hand, is relevant to parameter
fixing (or screening) in the context of identifying the least influential
set of parameters since fixing any parameter that has a very small
total-effect index value would not lead to significant reduction in theParameter screening

objective output variation. The use of the total-effect index to identify which
parameter can be fixed or excluded is similar to that of the elementary
effect statistics of the Morris method, albeit more exact.

Finally, the difference between the two indices of a given input
parameter, i.e., STd − Sd, is used to quantify the amount of all inter-
actions involving that parameter in the model output.

3.5 implementation

In this work, an implementation of the Morris method and a Monte
Carlo method to estimate the main- and total-effect sensitivity indices
has been developed using the Python [146] programming language,
to allow for well-controlled parametric and convergence studies. The
implementation follows a black box approach of SA. It deals with the
generation of design of experiment (a set of input values at which
the model or code is evaluated) and the post-processing of output to
obtain the selected measures of sensitivity presented in the previous
sub-sections. In the following, the basic procedures that underlie the
implementation of both methods are laid out. More details on the pro-
gramming aspects of the implementation (the so-called gsa-module)
can be found in Appendix C.1.
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3.5.1 The Morris Method

The implementation of the Morris method (see Section 3.3.1) follows
four sequential steps:

1. An OAT design matrix consisting of NR replications is created
by randomly sampling the nominal points as well as the per-
turbed points for each parameter. A replication in an OAT de-
sign consists of one nominal point with D (number of dimen-
sions/parameters) additional perturbed points. In each of the
perturbed points, only one parameter change its value relative
to the base. Note that in trajectory design, the nominal point
only serves as the starting point and a perturbed point becomes
the base point for the next perturbation. Different replications
yield different nominal points and the associated perturbed points.

2. Each point in the design matrix, included in [0, 1]D, is scaled to
the corresponding point in the D-dimensional parameter space
of the model parameters through iso-probabilistic transforma-
tion (see Appendix D.4).

3. The model is evaluated for each (rescaled) point of the design
matrix. The total number of model evaluations for a given de-
sign matrix is NR × (D+ 1).

4. Finally, for a selected QoI the NR elementary effects EEd are
computed for each input parameter xd. The statistical summaries
µd,µ∗d, and σd are computed, and the ranking of the input pa-
rameters for the selected QoI is established based on µ∗d.

The different rankings based on µ∗d obtained from various relevant
QoIs can then be used and compared to consistently identify and
screen out noninfluential parameters (low µ∗d) from the relatively in-
fluential ones (high µ∗d) [147].

3.5.2 The Sobol’-Saltelli Method

In principle, the estimation of the Sobol’ sensitivity indices defined
by Eqs. (3.24) and (3.25) can be directly carried out using MC simu-
lation. The most straightforward, though rather rudimentary, estima- Brute force

Monte Carlotion method is to use two nested loops for the computation of the
conditional variances and expectations appearing in both indices.

In the estimation of the main-effect index of parameter xd, for in-
stance, the outer loop samples values of Xd while the inner loop sam-
ples values of X∼d (all parameters except xd). These samples, in turn,
are used to evaluate the model and generate the output realizations.

Algorithm 1 illustrates the procedure to compute the variance of
conditional expectation used in main-effect indices estimation of a
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parameter xd. In the inner loop, the arithmetic mean of the model
output is taken for a given value of Xd but over many values of X∼d.
Afterward, in the outer loop, the variance of the model output is
taken over many values of Xd.

Algorithm 1 Brute Force MC for estimating Vd[E∼d[Y|Xd]]

Σi ← 0

Σi2 ← 0

for i = 1 to N do
sample x(i)d from Xd
Σj ← 0

for j = 1 to N do
sample x(j)∼d from X∼d

Σj += f(x
(j)
∼d, x(i)d )

end for
E∼d[Y|Xd]

(i) ← 1
NΣj

Σi += E∼d[Y|Xd]
(i)

Σi2 += E∼d[Y|Xd]
(i) ×E∼d[Y|Xd]

(i)

end for
Vd[E∼d[Y|Xd]]← 1

N

(
Σi2 − Σ

2
i /N

)
Algorithm 1 can easily become prohibitively expensive as the nested

structure requires N2 model evaluations per input dimension for one
of the sensitivity indices (i.e., the main- or total-effect index), while N
(the size of MC samples) are typically in the range of 102 − 104 for a
reliable estimate.

Sobol’ [41] and Saltelli [133] proposed an alternative approach that
circumvent the nested structure of MC simulation to estimate the in-
dices. The formulation starts by expressing the expectation and vari-Sobol’-Saltelli

method ance operators in their integral form and ends with different possible
MC estimators for both sensitivity indices. A detailed derivation of
the integral form and the origin of the estimator can be found in
Appendix D.1.

An implementation of the Sobol’-Saltelli method is also part of
gsa-module python3 package (see Appendix C.1 for detail). For N
number of MC samples and D number of model parameters, the
MC simulation procedure to estimate the sensitivity indices follows
the sampling and resampling approach adopted in [41, 133, 145] de-
scribed in the following.

1. Generate two N × D independent random samples A and B

from a uniform independent distribution inD-dimension, [0, 1]D:

A =


a11 · · · a1D

...
. . .

...

aN1 · · · aND

 ; B =


b11 · · · b1D

...
. . .

...

bN1 · · · bND

 (3.26)
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2. Construct D additional design matrices from A and B where
each matrix AdB is matrix A with the d-th column substituted by
the d-th column of B:

A1B =


b11 · · · a1D

...
. . .

...

bN1 · · · aND



AdB =


a11 · · · b1d · · · a1D

... · · · ... · · · ...

aN1 · · · bNd · · · aND



ADB =


a11 · · · b1D

...
. . .

...

aN1 · · · bND



(3.27)

3. Rescale each element in the matrices of samples to the actual val-
ues of model parameters according to their actual range of vari-
ation through iso-probabilistic transformation (Appendix D.4).

4. Evaluate the model multiple times using input parameters vec-
tors that correspond to each row of A, B, and all AdB.

5. Finally, extract the QoIs from all the outputs and recast them as
vectors, which will be used to estimate the main- and total-effect
indices according to a selected estimator described below.

For the main-effect sensitivity index, two estimators are considered.
One is proposed by Saltelli [133], and the other, as an alternative, is
proposed by Janon et al [148]. The latter proved to be more efficient,
especially for a large variation around a parameter estimate [30, 148].

The general form of main-effect sensitivity index estimator is Main-effect
sensitivity index
estimator

Ŝd =
1
N

∑N
n=1 f(B)n · f(AdB)n − E2[Y]

V[Y]
(3.28)

where the subscript n corresponds to the row of the sampled model
parameters such that f(B)n and f(AdB)n are the model outputs eval-
uated using inputs taken from the n-th row of matrix B and matrix
ADB , respectively. The estimators for the term E2[Y] and V[Y] differs
for the two indices estimators and are given in Table 3.1.

To estimate the total-effect sensitivity indices, the Jansen estima-
tor [149] is recommended in [150]. The estimator reads Total-effect

sensitivity index
estimator

ŜTd =
1
2N

∑N
n=1

(
f(A)n − f(AdB)n

)2
V[Y]

(3.29)

where V[Y] is estimated by the Saltelli et al. estimator in Table 3.1.
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Table 3.1: Two MC estimators for the terms in Eq. (D.6) to estimate the main-
effect indices (the sum is taken implicitly over all samples N)

estimator E2[Y] =
(∫
fdx
)2

V[Y] =
∫
f2dx −

(∫
fdx
)2

Saltelli [133] 1
N

∑
f(A)n · f(B)n 1

N

∑
f(A)2n −

(
1
N

∑
f(A)n

)2

Janon
et al. [148]

(
1
2N

∑
f(B)n + f(AdB)n

)2
1
2N

∑
f(B)2n + f(AdB)

2
n

−
(
1
2N

∑
f(B)2n + f(AdB)

2
n

)2

The computational cost associated with the estimation of all the
main-effect and total-effect indices using the Sobol’-Saltelli method is
N× (D+ 2) code runs, where N is the number of MC samples and DComputational cost:

brute force Monte
Carlo vs.

Sobol’-Saltelli

is the number of parameters. Compare this to the cost of brute force
Monte Carlo of 2×D×N2 code runs to estimate all the main-effect
and total-effect sensitivity indices.

As an additional comparison, the cost for Morris method to com-
pute the statistics of elementary effect is NR × (D + 1) code runs,
where NR is the number of OAT design replications. In either meth-Computational cost:

Morris vs.
Sobol’-Saltelli

ods, the number of samplesN (in the case of the Sobol’-Saltelli method)
and replicationsNR (in the case of the Morris method) determines the
precision of the estimates. A larger number of samples (and replica-
tions) increases the precision. Note, however, that in practice the typ-
ical number of Morris replications is between 101 − 102 [151], while
the number of MC samples for the Sobol’ indices estimation amounts
to 102 − 104 [41].

3.6 application to trace model of feba

The GSA methodology presented above was applied to analyze the
simulation of the FEBA experiments using the TRACE model de-
scribed in Chapter 2. In the following, only the results from analyzing
FEBA test No. 216 (with inlet velocity of 3.8× 10−2 [m.s−1] and sys-
tem pressure of 4.1 [bar]) are presented.

3.6.1 Simulation Experiment

The simulation experiment for global sensitivity analysis on the TRACE
model of FEBA was carried out in two steps. The first step was aimedScreening analysis

at screening out any possible noninfluential parameters with rela-
tively few code runs using several screening methods, i.e., the two
variants of the Morris screening method (the radial and the trajectory
designs) and the Sobol’-Saltelli method; with the latter only the total-
effect indices were estimated, in line with the factor fixing objective.
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The second step of the analysis consisted of variance decompo-
sition through the estimation of the Sobol’ indices on the reduced
number of parameters. This was a more detailed analysis where the Variance

decompositioncontribution of each input parameter variation to a particular output
variance was quantified. Since the number of code runs is directly
proportional to the number of input parameters, the screening pro-
cedure done in the first step allowed us to reduce the size of the
problem and to generate a larger sample for a fewer code runs3. A
larger sample, in turn, led to a more precise Sobol’ indices estimates.
The experimental design matrix used to carry out the estimation was
generated using a Sobol’ quasi-random sequence generator [152].

Different types of QoIs were investigated for this simulation exper-
iment. The application of the Morris method to the TRACE model Quantities of

Interest (QoIs)of the FEBA facility to rank the parameter importance was already
demonstrated in [153] using the time-averaged temperature as QoI,
which is defined as

T̄ =

∫
T(t)dt∫
dt

(3.30)

where the integration of the pointwise time-dependent reflood curve
was approximated using the trapezoidal rule over the duration of the
transient. The time-averaged temperature was selected as the simplest
possible scalar QoI to capture the overall variation of the temperature
transient since it was previously shown that a high maximum clad
temperature as QoI would not necessarily imply a delayed time of
quenching, and vice versa [153]. To further investigate these aspects,
the maximum clad temperature and the quench time have also been
considered as QoIs in this study.

To represent better the notion of functional variation, FDA-based
techniques were applied to derive a new set of QoIs. All the steps FDA-based

Quantities of
Interest

required in the application of FDA were already demonstrated in the
context of the reflood simulation output in [142]. All the required
computations related to FDA were done with the R programming
language [137] using the fda package [154]. The application of FDA
resulted in a set of common fPCs and a set of realization-specific
fPC scores. The scores were therefore used as the QoI for the Sobol’
indices estimation and compared to the indices obtained from the
more conventional QoIs for the reflood transient.

Finally, to give a measure of the uncertainty in all indices estimated
by the Sobol’-Saltelli method, the 95% percentile confidence interval
(CI) were constructed using the bootstrap technique (see [155] and for
detail). The flowchart of the simulation experiment for the analysis is
illustrated and summarized in Fig. 3.6.

3 Note that the total duration of the transient is set to be 600 [s] and each TRACE
run required between ∼ 400− 600 [CPUs], where [CPUs] is “Central Processing Unit
seconds”.
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3.6.2 Screening Analysis

A screening analysis to identify the noninfluential parameters was
first carried out on the 27 model parameters using three different
methods. The QoIs for this screening analysis were the time-averaged
quantities for all output types (clad temperature, channel pressure
drop and liquid carryover) as explained in Sec. 3.6.1. 320 replications
were used for the Morris method while 1 ′000 samples were used to
estimate the total-effect indices for the Sobol’-Saltelli method. The
parameter ranking was constructed based on µ∗d (for the two Morris
methods) and ŜTd (the total-effect indices).

Fig. 3.7 gives an example of convergence of sensitivity measures
µ∗d and ŜTd with respect to the average temperature at the middle of
the assembly, with increasing number of replications (for the Morris
methods) and samples (for the Sobol’ total-effect indices estimation).
It is shown that all of the sensitivity measures converged and the
most important parameters identified by each of the methods are the
same (in this case: gridHT, dffbIntDr, dffbWHT, dffbVIHT). Note that
the values of the two measures cannot be compared with each other.
The convergence of these measures with respect to other outputs was
also found to have the same behavior.
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Figure 3.7: Evolution of µ∗d and ŜTd with respect to the average temperature at the middle of
the assembly as a function of the number of replications or samples. The sensitivity
measures related to the four most important parameters, the same for each method,
are given unique line types in the plots.

An important finding is that the noninfluential parameters iden-
tified by both variants of the Morris methods are confirmed by the
total-effect indices based on the variance decomposition, whose val-
ues are estimated with small uncertainty. Table 3.2 presents the sum-
mary of parameters importance across different outputs. In the table,
a parameter is considered noninfluential with respect to a particular
output type if its Sobol’ total-effect index value falls below 5%. This
parameter will be screened out in the downstream analysis. The fi-
nal selection of 12 important parameters are then made by making a
union set of the important parameters identified with respect to the
different outputs. Complete numerical results of the sensitivity mea-
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sures used in the ranking/screening of each parameter with respect
to each of the different outputs are tabulated in Appendix B.2.

Table 3.2: Parameters importance across different outputs, average quantities over the transient.
Checkmark signifies a parameter with a Sobol’ total-effect indices above 5% and
shaded cells signify the final selection of the retained influential parameters.

No. Parameter
TC (1 is at the top, 8 is at the bottom of the assembly) DP

CO

1 2 3 4 5 6 7 8 Bot. Mid. Top Tot.

1 breakP !

2 fillT !

3 fillV ! ! ! ! ! ! ! ! !

4 pwr !

5 nicK

6 nicCP

7 nicEm

8 mgoK

9 mgoCp

10 vesEps

11 ssK

12 ssCp

13 ssEm

14 GridK

15 GridHT ! ! ! ! ! ! ! ! ! ! ! !

16 iafbWHT !

17 dffbWHT ! ! ! ! ! ! ! ! !

18 iafbLIHT

19 iafbVIHT

20 dffbLIHT

21 dffbVIHT ! ! ! ! ! !

22 iafbIntDr ! ! ! !

23 dffbIntDr ! ! ! ! ! ! ! ! ! ! !

24 iafbWDr

25 dffbWDr ! !

26 transWHT

27 tQuench ! ! ! !
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Using a 5% cut-off value to screen out noninfluential parameters
is admittedly an ad hoc approach. To check the consistency of the
screening approach, Fig. 3.8 illustrates the notion of noninfluential
and influential parameters, in terms of the effects of their perturba-
tions on the transient of three different outputs. TRACE was executed
using 500 samples of parameter value from each set of parameters
(i.e., influential and noninfluential). The figure confirms that the use
of time-averaged quantity for each output type is a viable QoI for
screening. The identified noninfluential parameters were indeed the
ones that result in minor variation (black curves) of all outputs tran-
sient as compared to the variation brought by the influential parame-
ter perturbations (gray curves). Furthermore, it also confirms that by
making the union set of all the important parameters subsets (each
with respect to a particular output, using the 5% cut-off value), the
final selection of 12 influential parameters is valid for all outputs.
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Figure 3.8: Illustration of the variations in the transient of three different outputs using only the
12 influential parameters (background, gray) and only the 15 noninfluential parameters
(foreground, black). Each case uses 500 samples.

From the screening analysis results, a more detailed analysis was
carried out on the 12-parameter model involving only the aforemen-
tioned influential parameters. The detailed analysis consisted of the FEBA TRACE

model with 12
influential
parameters

estimation of the Sobol’ main-effect sensitivity index (in complemen-
tary with the total-effect index used in the screening above) with re-
spect to different types of time-dependent outputs as well as to dif-
ferent QoIs associated with each of them. The analysis was aimed
at exposing how an individual input parameter might have affected
particular model behavior as highlighted by the different choices of
QoIs.

It should be noted that the estimation of the main-effect indices
were relatively more expensive as a larger number of samples was re-
quired to reliably estimate the indices (i.e., such that the uncertainty
associated with the Monte Carlo estimation was within an accept- Convergence of the

Sobol’ indices
estimation

able level). In relation to this, the convergence of two different Sobol’
main-effect index estimators as well as one Sobol’ total-effect index
estimator was investigated empirically. The result of the analysis was
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useful in the planning of the simulation experiments regarding the
number of samples in relation to the expected uncertainty (in terms
of confidence interval (CI)) of the estimates. It was found that the CI
length of a given estimator depended on the QoI, the estimand, the
estimator used, and the number of samples. A more detailed discus-
sion is presented in Appendix B.3.

Consequently, by benefiting from the screening procedure taken
before (12 influential parameters instead of 27 parameters) and by
considering the results of the empirical convergence study, a total
of 2 ′000 samples (which corresponds to 28 ′000 TRACE runs) was
deemed appropriate for the more detailed SA presented below. ForSelected results for

detailed analysis conciseness only the results of selected types of output are presented
to illustrate the method application, namely the mid-height clad tem-
perature transient (TC4 at elevation z = 2.4 [m]), the pressure drop
transient at the middle of the assembly (the segment between z =

1.7 [m] and z = 2.3 [m]), and the liquid carryover.

3.6.3 Sobol’ Indices for Conventional QoIs of the Reflood Curve

As explained in Chapter 2, two conventional QoIs to characterize a
reflood curve are the maximum clad temperature and the time of
quenching. As shown in Fig. 3.9 the variation of the maximum mid-
height clad temperature (with standard deviation of 59.7 [K]) was
driven mainly by four model parameters, contributing up to 77% of
the total output variation. One influential parameter was related to
the spacer grid heat transfer enhancement model and the three others
were related to the DFFB-regime model parameters (with a combined
effect of 63%). Moreover since the sum of all the main-effect indices
was relatively close to 1.0, the parameters were not interacting with
respect to this particular QoI.
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Figure 3.9: The main-effect and total-effect sensitivity indices with the maximum mid-height clad
temperature as the QoI. Each boxplot represents the bootstrap sample quartile statistics
and the vertical line extends the 95th sample percentile.
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The parameter sensitivity with respect to the time of quenching
gave a different picture as shown in Fig. 3.10. The variation in the time
of quenching (with standard deviation of 59.9 [s]) was driven mainly
by the spacer grid heat transfer enhancement parameter model (with
contribution close to 50% of the total output variation). The DFFB-
related parameters were next in line with a combined contribution of
about ∼ 18%, while each of the other parameters contributes to less
than 10% of the total output variation. Similar to the case of the max-
imum clad temperature, no strong interaction effect was observed.
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Figure 3.10: The main-effect and total-effect sensitivity indices with the time of quenching at the
mid-height of the assembly as the QoI. Each boxplot represents the bootstrap sample
quartile statistics and the vertical line extends the 95th sample percentile.

To better understand how the output sensitivity to the model pa-
rameters is changing over the course of the reflood transient, the mid-
height clad temperature at each time step was taken as the QoI and
the main-effect indices were calculated. This resulted in a set of sen-
sitivity indices at each time with respect to the clad temperature as
presented in Fig. 3.11. Note that the indices presented in the figure
correspond to the reflood curves in which the phase variations be-
tween realizations were removed through the registration procedure.

The top panel of Fig. 3.11 shows how the relative importance of
the parameters and their interactions in a dynamic model change
with time. With respect to the clad temperature, up to 120 [s], the
model parameters were non-interacting as indicated by the sum of
the main-effect indices that was close to 1.0. The spacer heat transfer
enhancement and DFFB-related model parameters were found to be
the most important parameters in this time period.

However, from 120 [s] onward, stronger parameter interactions took
place, as indicated by the decreasing sum of the main-effect indices
which at its minimum only explained well below 20% of the total
output variation. Furthermore, other parameters also became more
prominent at a later stage of the transient. The quench temperature
(tQuench), which for the most part of the transient was non-influential
started to top after 200 [s]. At ∼ 300 [s], the temperature transient vari-
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ations suddenly were driven only by parameter interactions. Finally,
the variation of the pressure boundary condition (breakP) accounted
for most of the temperature variance at the end of the transient.
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Figure 3.11: (top) the main-effect sensitivity indices at different time steps during the reflood tran-
sient. (bottom) The clad temperature standard deviation at different time steps during
the same transient.

To put the dynamic behavior of the sensitivity indices in context,
the temperature variation is also given for each time step in the bot-
tom panel of Fig. 3.11. Note that in the plot, the last part of the tran-
sient (where the pressure boundary condition becomes visibly impor-
tant) amounts to 2 [K], a hardly relevant magnitude in the current
context. After quenching, the clad surface temperature is essentially
commensurate with the coolant temperature. The small temperature
variation, in turn, corresponds to the change in the saturation temper-
ature at the outlet due to variation in the pressure boundary condi-
tion.

The figure also shows some sign of imperfection in the registration
procedure. The sudden jump of variation around the time of quench-
ing can be attributed to a residual misalignment that still exists in
the registered dataset. As the landmark registration is supposed to
remove the phase variation with respect to the time of quenching
(one of the landmarks), temperature variation of this magnitude at
the particular time should not have been observed.
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3.6.4 Principal Components of the Reflood Curve

The time-dependent clad temperature, pressure drop, and liquid car-
ryover were decomposed in their respective functional principal com-
ponents (fPCs) to better quantify the mode of variations of the whole
time-dependent curves. Therefore, the variance decomposition was
also carried out on the fPC scores associated with the fPCs. Because Explained variance

each fPC is associated with a particular mode of variation over the
whole transient, it parsimoniously describes the overall variation of
the time-dependent curve in a smaller set of numbers. The fPC anal-
ysis of all the time-dependent curves for each type of output showed
that the first two respective fPCs account for more than 85% of the
overall functional variations (see Fig. 3.12).
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Figure 3.12: The proportion of explained variance for each fPC extracted from selected time-
dependent outputs. The points with a connecting line are the cumulative explained
variance, while the horizontal line is variance explained by first two fPCs.

The first fPC of the (registered) clad temperature at the mid-height
of the assembly (in the reflood transient) and the effect of its perturba-
tion around the mean function are shown in Fig. 3.13. The fPC shown 1st fPC of the

(registered)
mid-height clad
temperature
transient

in Fig. 3.13a was obtained by multiplying the eigenfunction ξj(t) with
the square root of the respective eigenvalue, i.e., fPCj =

√
ρj × ξj(t).

As the eigenfunction only represents the shape (mode) of function
variation, this multiplication was done to give it a sense of scale with
respect to the clad temperature variation (as √ρj represents the stan-
dard deviation of the mode j). The perturbation around the mean
function (Fig. 3.13b) is done by adding to and subtracting from the
mean function, the eigenfunction multiplied by twice the correspond-
ing score standard deviation √ρj, i.e., ȳ(t)± 2×√ρj × ξj(t).

This particular fPC corresponds to a mode of variation that relates
to the amplitude of the temperature reversal period (see Section 2.2).
This is the strongest mode of variation, accounting for 55% of the
overall clad temperature variation.
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(b) Perturbation on the mean

Figure 3.13: The 1st fPC of the (registered) mid-height clad temperature tran-
sient and the effect of its perturbation on the mean function.

Fig. 3.14 shows the results for the second fPC of the (registered)
mid-height clad temperature transient and the effect of its perturba-
tion on the mean function. This mode relates to the variation in the2nd fPC of the

(registered)
mid-height clad

temperature
transient

temperature descent after reaching the maximum temperature, prior
to quenching. Visibly, some realizations tend to bring about more con-
vexity in the temperature descent than others. This mode of variation
constitutes 30% of the overall variation.
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(b) Perturbation on the mean

Figure 3.14: The 2nd fPC of the (registered) mid-height clad temperature
transient and the effect of its perturbation on the mean func-
tion.

The previous fPCs were carried on the registered clad temperature1st fPC of the
warping function for

the mid-height clad
temperature

transient

transient where the phase variations in the data set have been re-
moved. It is also interesting to see the phase variations in the data
set separately. This can be done by carrying out the same procedure
on the resulting warping functions associated with each clad temper-
ature realization. Fig. 3.15 shows the 1st fPC and the effect of its per-
turbation on the mean function. The mode corresponds to the overall
shift in the timing of the two landmarks compared to the mean func-
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tion. From the figure, a delay in the maximum temperature tends also
to result in a delay in the time of quenching, and vice versa. However,
the variation in the time of the maximum temperature tends to be
much smaller than the variation in the time of quenching.
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(b) Perturbation on the mean

Figure 3.15: The 1st fPC of the warping function of the clad temperature
transient at the mid-height of the assembly and the effect of its
perturbation on the mean function.

The first fPC of the pressure drop transient curves at the middle
of the assembly is shown in Fig. 3.16. The fPC, taking into account 1st fPC of the

pressure drop
transient at the
middle of the
assembly

77% of the output variation, is mostly responsible for the variation
during the pressure drop rise, where the channel segment is continu-
ously quenched from the bottom. That is, some realizations rise more
quickly (or more slowly) in reaching the equilibrium pressure drop.
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(b) Perturbation on the mean

Figure 3.16: The 1st fPC of the pressure drop transient at the middle of the
assembly and the effect of its perturbation on the mean func-
tion.

The first fPC of the liquid carryover transient curves, shown in
Fig. 3.17, are straightforward to interpret. The fPC, taking into ac- 1st fPC of the liquid

carryover transientcount 93% of the output variation, is the linear change of the average
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liquid carryover during the transient. In other words, the perturbation
on the liquid carryover is accumulated linearly over time.
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Figure 3.17: The 1st fPC of the liquid carryover transient and the effect of its
perturbation on the mean function.

3.6.5 Sobol’ Indices for QoIs based on Principal Components

The fPC score θn,i associated with each realization n and a principal
component i is used as the QoI in a SA similar to what was done
for the conventional QoI in Section 3.6.3. In other words, the variance
of the score is decomposed into the variance contribution associated
with each inpu parameter.

The estimated Sobol’ indices for the first fPC of the (registered) mid-
height clad temperature transient are given in Fig. 3.18. As shown, theSobol’ indices for the

1st fPC of the
mid-height clad

temperature
transient

variation in the amplitude of the temperature reversal was mainly
due to the spacer grid heat transfer enhancement and the DFFB-
related model parameters. The other parameters are proved to be al-
most noninfluential. This result is consistent with the result obtained
when using the maximum clad temperature as the QoI and confirms
the maximum clad temperature as a viable representative QoI during
the temperature reversal period.

Fig. 3.19 shows the Sobol’ sensitivity indices using the scores asso-
ciated with the second fPC of the (registered) mid-height clad temper-
ature transient as the QoI. Contrary to the first component, most ofSobol’ indices for the

2nd fPC of the clad
temperature

transient

the variation in the second fPC can only be explained through inter-
actions between input parameters since the main-effect indices only
summed up to 27% of the total variance. The difference between the
main-effect and total-effect indices are large for all input parameters,
especially for the DFFB-related parameters. These parameter interac-
tions, associated with a particular mode of variation, could not be
captured from the conventional QoIs (e.g., the maximum clad tem-
perature). It could only be speculated from the time-dependent rep-



3.6 application to trace model of feba 85

breakP fillT fillV pwr gridHT iafbWHT dffbWHT dffbVIHT iafbIntDr dffbIntDr dffbWDr tQuench

−0.1

0.0

0.1

0.2

0.3

0.4

Model Parameter

In
d
ex

 V
al

u
e 

[−
]

Sensitivity Index main total

Sum of the main effect indices = 0.91

Figure 3.18: The sensitivity indices with respect to the 1st fPC of the (registered) mid-height clad
temperature transient. Each boxplot represents the bootstrap sample quartile statistics
and the vertical line extends the 95th sample percentile.

resentation of the sensitivity indices showed in Fig. 3.11, but with a
less concise description of the parameter sensitivity.
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Figure 3.19: The sensitivity indices with respect to the 2nd fPC of the (registered) mid-height clad
temperature transient. Each boxplot represents the bootstrap samples quartile statis-
tics and the vertical line extends the 95th sample percentile.

The sensitivity indices with respect to the first fPC of the warping
functions for the mid-height clad temperature transient are shown Sobol’ indices for the

1st fPC of the
warping function for
the clad temperature
transient

in Fig. 3.20. The spacer grid heat transfer enhancement parameter
is the main source of variation in the time-shift of the landmarks,
while two DFFB-related parameters (dffbWHT and dffbIntDr) and the
quenching temperature each contributes around 10% to the total out-
put variation. In comparison, the rest of the parameters have a trivial
effect to the shift. Only a small portion of the output variation is due
to parameter interactions from the fact that the main-effect indices
summed up to a value close to 1.0 (94%).
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Figure 3.20: The sensitivity indices with respect to the 1st fPC of the warping function for the
mid-height clad temperature transient. Each boxplot represents the bootstrap sample
quartile statistics and the vertical line extends the 95th sample percentile.

Fig. 3.21 presents the sensitivity indices with respect to the scores
associated with the first fPC of the pressure drop transient at theSobol’ indices for the

1st fPC of the
pressure drop

transient

middle of the assembly. The inlet mass velocity parameter (fillV) is
the main contributor to the overall output variation (∼ 30%), while
the two interfacial drag parameters of the reflood model amount to
the same combined contribution.

breakP fillT fillV pwr gridHT iafbWHT dffbWHT dffbVIHT iafbIntDr dffbIntDr dffbWDr tQuench

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Model Parameter

In
d
ex

 V
al

u
e 

[−
]

Sensitivity Index main total

Sum of the main effect indices = 0.88

Figure 3.21: The sensitivity indices with respect to the 1st fPC of the pressure drop transient at
the middle of the assembly. Each boxplot represents the bootstrap sample quartile
statistics and the vertical line extends the 95th sample percentile.

Finally, Fig. 3.22 shows the sensitivity indices with the first fPC
of the liquid carryover transient as the QoI. The inlet mass velocitySobol’ indices for the

1st fPC of the liquid
carryover transient

parameter (fillV) is by far the main source of variation in the output
variation (∼ 90%), followed by minor contributions (∼ 9%) from two
DFFB-related parameters (dffbVIHT and dffbIntDr), and the rest of
the parameters have a negligible effect.
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Figure 3.22: The main-effect and total-effect sensitivity indices with respect to the 1st fPC of the
liquid carryover transient. Each boxplot represents the bootstrap sample quartile statis-
tics and the vertical line extends the 95th sample percentile.

The numerical results of the estimated Sobol’ indices presented
above are tabulated in Table B.14 through Table B.20 in Appendix B.4.
To give a measure of uncertainties on the estimates due to MC sam-
pling, the results in the tables are complemented by the 95th bootstrap
percentile confidence interval CIpct [155].

3.6.6 Discussion

The Morris screening method was used to filter out noninfluential
parameters from further analysis (Table 3.2). It was shown that such Screening analysis

resultsreduction was valuable to the downstream analysis by reducing the
size of the problem (i.e., the number of parameters). The screening re-
sults with respect to the average temperature showed that most of the
model parameters related to the IAFB regime have relatively lower
importance than the ones related to the DFFB regime. This finding
confirms that the implementation of the reflood models in TRACE is
consistent with the widely accepted phenomenological view on the
relevance of DFFB for heated channel reflooding at low flooding rate
[156]. Intuitively, most drag related parameters becomes more promi-
nent with respect to the average pressure drop output, though cor-
relation between outputs does not exclude the common importance
of heat transfer-related parameters. Finally, with respect to average
liquid carryover, only four parameters were found to be important. It
is also in accordance with the expected simulated physical process.

Those findings also illustrate the fact that the Morris screening
method could serve as a preliminary analysis of model development
to verify if the model behaves (in terms of parameters importance) as
expected with limited number of code runs. In Ref. [153] the Morris
method was used with this perspective in mind.
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A comparison between the importance rankings obtained by the
two Morris screening method variants showed a consistent result. TheMorris with radial

design vs. trajectory
design

radial design, however, exhibits more erratic variations in the elemen-
tary effect statistics estimations and thus requires slightly more repli-
cations (thus code runs) to stabilize. This is due to the fact that, in the
radial design, grid jump varies from replication to replication and
from parameter to parameter excluding the possible bias due to an
unexplored area of the input parameter space. The trajectory design,
in contrast, uses a constant grid jump which constrains the possible
parameter perturbation. Increasing the number of replications while
keeping the same grid jump might give an impression that the ele-
mentary effects statistics converge quickly, especially if the grid jump
is relatively large. Thus, to exclude this source of bias, different sizes
of grid jump should be considered before a more robust conclusion
on the ranking can be drawn. This, however, entails more code runs.

The elementary effects statistics, however, are deemed qualitative
as they do not quantify exactly the contribution of the parameters
variations to the output variations. The comparison between two pa-Utility of Sobol’

total-effect indices rameters whose value of the first µ∗ is larger than the second is hard
to intuit beyond the fact that the first parameter is relatively more im-
portant than the second. In this regard, the Sobol’ total-effect indices
were found to be useful for screening application in a more quantita-
tive manner, but required more code runs as compared to the Morris
method (∼ 3 ′000 vs ∼ 7 ′000). As explained, the total-effect index of a
parameter is the proportion of output variance due to the variation
of the parameter, including all the possible interactions of any order
with any other input parameters. A parameter with low total-effect
index implies that the parameter is simply less influential with re-
spect to the selected output. By setting a cut-off value, a parameter
was classified as either influential and noninfluential in a quantita-
tive and consistent manner with reference always to the same output
variance. Nevertheless, the selection of the cut-off value is admittedly
subjective and the results need to be further verified. This was done
through uncertainty propagation using influential and noninfluential
parameter subsets which is presented in Fig. 3.8.

With respect to the Sobol’ indices, the parameters driving the vari-Sensitivity with
respect to

conventional QoIs
ations of the maximum clad temperature and the time of quenching
were found to be different (Figs. 3.9 and 3.10). Since the two events
occurred at two separate instants of the reflood transient, the results
indicated that the shape of the temperature curves varied in a com-
plicated manner. This variation, however, was insufficiently character-
ized by the two conventional reflood QoIs. Indeed, the importance of
the model parameters varied across the transient (Fig. 3.11).

The depiction given in Fig. 3.11 might give a misleading impression
that the parameters themselves were time-dependent or were being
perturbed at different times in the transient. This was not the case;Time-dependent

sensitivity
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the parameters were constant and perturbing them at the start of the
transient will affect the whole course of the transient. To increase
the interpretability of the effect of parameter perturbation, different
features of the transient output variations were explored using fPCA.

The model parameters influenced the amplitude of the clad tem-
perature reversal of the reflood transient (Fig. 3.13) with minor inter-
actions among themselves (Fig. 3.18). These parameters were mainly Mid-height clad

temperature
transient, variation
and sensitivity, 1st

fPC

related to the spacer grid heat transfer enhancement model [128] and
the DFFB-related heat and momentum transfer parameters [28]. As
the model was found to be largely additive with respect to this part
of the transient, temperature data from the experiments could in prin-
ciple be used to inform these parameters although such an applica-
tion would require further investigation (e.g., in the case of colinearity
between these parameters).

On the other hand, the temperature descent up to and around the
time of quenching (Fig. 3.14) proved to be influenced by interactions
between parameters (Fig. 3.19). From the reflood modeling point of Mid-height clad

temperature
transient, variation
and sensitivity, 2nd

fPC

view, this can be explained by the fact that the temperature descent
(which occurs at later stage of the transient) is more affected by flow
regime changes. This observation is inferred from the total-effect in-
dex for two parameters of the IAFB flow regime which was found
to be no less influential as compared to the relevant DFFB-related
parameters. Indeed, the conditions and the criteria leading to the
changes from one regime to another in the TRACE code depend indi-
rectly on the simultaneous perturbation of these parameters.

From a numerical point of view, this can also be explained by the
fact that the variance of the clad temperature transient tends to grow
over time up to the quenching. As such, any given parameter pertur-
bation which has a minimal impact at the early phase of the transient
might interact with the others and accumulate their small effects over
time and later be responsible to the growing variance of the output.

The existence of parameter interactions also marks the the fact that
hydrodynamic processes (e.g., wall and interfacial drags) are indeed
coupled with heat transfer processes (e.g., wall and interfacial heat
transfers) in the TH system code TRACE mainly through the void Parameter

interactionsfraction [157]. Thus, the simulation of a reflood process can be ex-
pected to reflect this coupling. It does, however, also complicate the
task of model parameters calibration if done solely on the basis of
temperature transient data because multiple combination of param-
eter values might give a similar clad temperature prediction at this
particular phase of the transient. Hence, to better inform the model,
additional types of data associated with different types of outputs
(e.g., pressure drop and liquid carryover) should be considered.

And although it was shown that a high degree of parameter in-
teractions existed with respect to this particular mode of variation,
the nature of these interactions among the parameters is still poorly
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known. The estimation of the second-order Sobol’ sensitivity indicesSobol’ indices,
second-order would be required. These indices can give a clearer picture on the ac-

tual structure of the parameter interactions. In relation to this, one can
notice the analogy between the different phemonenological phases of
the reflood curve defined in the FEBA evaluation report [123], namely
the mist cooling, the film boiling, and the quenching phase, with the
three fPCs empirically obtained from FDA, namely the temperature
reversal, the temperature descent, and the quenching (the third fPC is
not discussed in this thesis for conciseness but is shown in Ref. [142]).

In other words, GSA using FDA-based QoIs concisely and quan-
titatively shows how the effect of the the entrained droplets (mist)
on the clad temperature, which is implicitly captured by the DFFB-
related parameters, dominates the variation of the clad temperature
during the mist cooling phase (as labeled by the FEBA experimental-
ists). Furthermore, a more intricate picture can be inferred during the
film boiling phase, which happens at a later phase and may relate to
the interpolation in TRACE between the DFFB and the IAFB regimes
(i.e., the inverted slug regime).

The analysis of the clad temperature transient presented above was
conducted after the phase variations in the timing of the two re-
flood landmarks (i.e., maximum temperature and quenching) were re-
moved through registration. The variations of the warping functionsWarping function

for the clad
temperature

transient, variation
and sensitivity

were separately analyzed (Fig. 3.15) and their sensitivity indices were
derived (Fig. 3.20). The results showed that the parameter responsible
for the time shift of the two reflood landmarks was mainly the one
related to the spacer grid heat transfer enhancement model. This is
consistent with the results obtained using the time of quenching as
the QoI. However, Fig. 3.15 also succinctly presented the finding that
although a delay in the time of the maximum temperature implies a
delay in the time of quenching, the variation of the former was much
smaller than the variation of the latter.

The variation of the pressure drop transient at the middle of the as-
sembly (Fig. 3.21) was mainly related to the rate of pressure drop rise
along the segment. Following the sensitivity analysis result (Fig. 3.21),Pressure drop

transient, variation
and sensitivity

the interfacial drag of the IAFB regime became relatively influential
along with the inlet mass flow rate boundary condition. This was not
the case for the clad temperature outputs at different axial locations
and was found to be consistent across all pressure drop outputs. As
such, it might be worthwhile to consider pressure drop output for
model calibration, especially for the parameter iafbIntDr.

Finally, the functional variation of the liquid carryover transient
(Fig. 3.17) showed that the variation in liquid carryover transient was
straightforward to interpret, either faster or slower rate in comparisonLiquid carryover

transient, variation
and sensitivity

with the mean. The sensitivity analysis (Fig. 3.22) results are reason-
able in the sense that the variation could be attributed to the variation
in the amount of liquid (and droplets) being transported (as repre-
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sented by the inlet mass flow boundary condition (fillV) and the
interfacial drag (dffbIntDr)) as well as the variation in the amount
of droplets being evaporated (as represented by the interfacial heat
transfer parameter (dffbVIHT)). However, the analysis showed that
the inlet mass flow rate boundary condition was much larger than
the two reflood model parameters. This puts into question the value
of liquid carryover data to calibrate the two reflood model parame-
ters under the uncertainty of inlet mass flow rate boundary condition
whose variability is assumed to be irreducible.

All in all, the sensitivity indices obtained confirms the consistency
of the phenomenological reflood model implemented in TRACE in
simulating an experimental reflood transient. Moreover, it has been
shown here for the first time how the variability in the parameters
relevant to the simulation of the reflood phenomena affects the output
and to what extent. These quantitative aspects have been confirmed
for different types of QoIs and for different types of outputs.

These results can be compared, to a certain degree, to Ref. [158].
There, the SA was also carried out for the same problem (FEBA ex-
periment) using the same code (TRACE). Yet, the difference in the sen-
sitivity measures (based on the Pearson product-moment correlation),
the difference in the choice of parameters, and the difference in the
a priori ranges of variations for the parameters make direct compar-
ison between the two studies difficult. This underlines the problem
faced in using a global statistical framework for SA; the choices of
the parameters as well as the assumed range of variations to derive a
sensitivity measure have to be consistent across different studies for
the obtained measure to be comparable. These differences, in turn,
might be due to the different objectives of the respective studies.

3.7 chapter summary

The global sensitivity analysis (GSA) methodology part of the pro-
posed statistical framework has been presented in this chapter. The
objective of GSA was to increase the understanding of the relation-
ships between model input parameters and time-dependent output,
within a selected region of interest in the input parameter space. This
understanding is beneficial for the follow-up work presented in Chap-
ters 4 and 5. In Chapter 4, a statistical metamodel is constructed based
only on the influential parameters, thus avoiding an unnecessarily
large number of training samples associated with a large input pa-
rameter space. In Chapter 5, the initial range of variations for (some
of) the input parameters assumed in this chapter are updated based
on available experimental data. There, the results of the SA can pro-
vide some ideas as to which parameters can be informed (the sensi-
tive ones), cannot be informed (the insensitive ones), or will present
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possible complications (the interacting ones) when considering the
available experimental data.

In accordance with the aim of increasing this understanding, a
novel set of QoIs was derived using FDA techniques to character-
ize the overall functional output variation. This allowed us to cap-
ture the most essential features of the model behavior through its
time-dependent output, thus significantly departing from the more
conventional ad hoc QoIs (e.g., minimum, maximum, or time-average
scalar value) that have been used so far in similar SA studies of nu-
clear reactor evaluation models.

The methodology was applied to the running case study of the
simulation of a reflood experiment conducted at the FEBA facility us-
ing TRACE. The value and limitation of screening methods were first
demonstrated for this type of application. Although the two variants
of the Morris method yielded similar results with relatively small
number of code runs, the Sobol’ total-effect indices (also estimated
with small number of runs) provide a more quantitative approach to
screen the noninfluential parameters.

The noninfluential parameters were then excluded from a detailed
variance decomposition. The results were consistent with the expected
phenomenological behavior of the reflood model implemented in the
TRACE code. The method was successful in apportioning the varia-
tion of scalar physical outputs (the maximum temperature and time
of quenching) to the variation of the input parameters.

When considering FDA-based QoIs, which better represents the
whole transient of selected outputs (clad temperature, middle pres-
sure drop, and liquid carryover), it was found that the important
parameters and the nature of their interactions were changing dur-
ing the transient. For instance, during the early phase of the tran-
sient (when the temperature was increasing and during the early
reflooding phase), the simulation model showed weak interactions
among the prominent parameters (namely, the parameters related to
the spacer grid HT enhancement model and the DFFB regime). But,
during the temperature descent and around the quenching, most of
the variation in the clad temperature transient can only be attributed
to parameter interactions. The nature of these interactions, however,
remains to be investigated and is outside the scope of this thesis.

Lastly, this chapter demonstrates the added value of the proposed
FDA-based QoIs for GSA of transient simulation models. The pro-
vided example demonstrates that considering different outputs of the
same transient or different aspects of the same output (as described
by different QoIs) can highlight different model behaviors with re-
spect to the input/output relationship. This confirms the selection of
pertinent QoIs as one of the most crucial steps in a GSA.
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G A U S S I A N P R O C E S S M E TA M O D E L I N G :
E M U L AT I N G C O D E I N P U T S / O U T P U T S F O R FA S T E R
E VA L U AT I O N

Under Bayesian calibration framework, tens, if not hundreds, of thou-
sands code runs are to be expected to appropriately explore the pos-
terior probability distribution using different values of the input pa-
rameters. Such a large number of runs are only feasible for simulation
with a negligible running time. Therefore, to balance the need for vast
number of code runs with the finite computing resources and time,
an alternative approach is required to approximate the inputs/out-
puts relationship of the code for the selected relevant outputs within
a selected input domain of interest.

This chapter describes an approach to construct a fast surrogate
model (metamodel) that approximates (or emulate) the inputs/out-
puts relationship of an expensive code for faster evaluation at any
given input parameters values located in the specified domain. As
argued in Section 1.4.2 this thesis used the one based on Gaussian
stochastic process, which results in a statistical metamodel. A sta-
tistical framework of metamodeling along with necessary notational
conventions are first presented in Section 4.1. The framework casts
the problem of metamodeling as a problem of nonlinear regression
where a set of limited actual code runs (with input parameters values
judiciously selected) is used to predict the code output at any other
input values.

Afterward, a review on several fundamental concepts of multivari-
ate Gaussian random variable and Gaussian stochastic process is pre-
sented in Section 4.2. The section also establishes an intuitive con-
nection between multivariate Gaussian random variable and Gaus-
sian stochastic process. Section 4.3 then presents the formal Gaussian
stochastic process formulation used for metamodeling followed by
the important aspects of constructing it in Section 4.4. Section 4.5
specifically deals with an approach to tackle the case of code with
multiple outputs.

The application of the metamodeling approach to the TRACE model
of the FEBA facility is given in Section 4.6. The suitability of Gaussian
process metamodel on the TRACE model is assessed using different
choices made during the metamodel construction. The results and im-
portant findings of this step are subsequently presented and briefly
discussed. Finally, Section 4.7 summarizes the chapter.

93
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4.1 statistical framework

Consider a general regression problem: Given a deterministic com-Regression problem

puter simulator (which, in essence, is a function) f : x ∈ X ⊆ RD 7→ R

evaluated at DM, an experimental design matrix {xn}Nn=1, yielding
N outputs y = {f(xn) = yn}

N
n=1, the objective of the regression is to

compute (or predict) the value of f(xo) with xo /∈ DM.
The set D ≡ {(DM, y)} = {(xn, f(xn) = yn)}

N
n=1 of N observations

is often referred to as the training data, though the term is used in-Training data,
training samples,

and training outputs
terchangeably with the training outputs y. The experimental design
matrix DM introduced in the previous chapter is interchangeably re-
ferred to as the training samples, inputs, or points in this chapter. As
before, the domain X is often rescaled such that x ∈ [0, 1]D.

To evaluate f at any given xo /∈ DM, the code of course can be
simply run at that input. Unfortunately, the true underlying functionEmulator, surrogate

model, and
metamodel

f(◦) that produces y itself might be too complex and expensive to
evaluate. As such, the response surface of the function has to be re-
constructed or estimated based only on the small training data set
before the prediction is made. The estimated function is chosen to be
a simpler function that can be evaluated much faster (such as polyno-
mials). Although simpler, such an approximation should capture the
most, if not all, important aspects of the inputs/outputs relationship
of the true underlying function. This simpler, approximating function
is often referred to as an emulator, surrogate model, or metamodel.

In this thesis, the metamodel is represented using Gaussian Pro-Gaussian process
metamodel cess (GP), following the seminal works of Sacks et al. [53, 59] and

interpreted through a Bayesian perspective. The advantages of using
GP to represent an unknown function are its ability to model a com-
plicated multi-dimensional function with limited number of param-
eters [159] as well as the provision of prediction error estimate [35,
160]. Furthermore, being a statistical model based on a stochastic pro-
cess, it fits the statistical calibration framework of computer model
presented in the next chapter.

The GP metamodel, like many statistical models, can be interpreted
either in frequentist sense or Bayesian sense. In the frequentist sense,Two interpretations

the stochastic process Y(◦) is one particular realization of an unknown
stochastic process. The prediction at a particular value of xo is made
based on the process as estimated according to the training data. On
the other hand, in the Bayesian sense, a Gaussian process is first set
up as the prior for the stochastic process and the prediction of the
output at xo is made based on the posterior (or conditional) process
as updated by the training data1.

1 The frequentist case is the classical approach first developed as spatial interpolation
tool in geostatistics by Krige dating back to the 1950s [60] and formalized by Math-
eron in the 1960s [61]. In fact, Kriging model (due to Krige) is the more popular
term for GP metamodel. These two terms, Kriging model and GP metamodel, will
be used interchangeably in this thesis.
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Both of these interpretations give equivalent results. The subtle dif-
ference lies in the interpretation of prediction error. In the frequentist
case, the error is defined as the mean squared of error between the
prediction made by the estimated process and the (hypothetical) true
process [161]; while in the Bayesian case the error corresponds to the Prediction error

epistemic uncertainty of the prediction conditional on the observed
data. That is, though the underlying computer simulation itself might
be deterministic, the uncertainty of the prediction at xo stems from
the fact that the simulator was not actually run at that input and
thus the output is not known. The Bayesian perspective, as argued in
Refs. [4, 35, 160], gives a more intuitive interpretation of the predic-
tion error. This perspective is illustrated in Fig. 4.1.
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(a) Prior of functions

x

y

(b) Observed data

●

●

x

y

(c) Posterior function and predic-
tions

Figure 4.1: Gaussian process prior is equivalent to setting a prior over functions. After observing
the data, the process is updated to obtain the posterior process with reduced uncertain-
ties. Uncertainties are attached to each prediction made at arbitrary inputs which lie
outside the observed data (e.g., black points). Dashed lines and gray region represent
the mean and 3× σ, respectively. The scales in the axes are arbitrary.

4.2 gaussian process fundamentals

This section reviews the basics of GP. The connection between the
stochastic process and multivariate Gaussian random variable (Gaus-
sian random vector) is first established. Appendix D.2 gives some ba-
sic concepts of multivariate random variable such as joint, marginal,
and conditional probabilities, while Appendix D.3 gives more detail
on Gaussian random vector (Multivariate Normal (MVN)).

4.2.1 From Multivariate Gaussian to Gaussian Process

To illustrate the notions of joint, marginal, and conditional distribu-
tions, an example of a bivariate random variable, a Gaussian random
vector Z = [Z1,Z2] ∈ R2 is given. It has the following mean vector Random vector, an

example
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and variance-covariance matrix, respectively,(
Z1

Z2

)
∼ N(µ,Σ)

µ = [0, 0]T

Σ =

(
V[Z1] Cov[Z1,Z2]

Cov[Z2,Z1] V[Z2]

)
=

(
0.5 −0.265

−0.265 0.25

) (4.1)

The joint, marginal, and conditional PDFs of random vector Z are
illustrated in Fig. 4.2.

−2 −1 0 1 20.75

−2

−1

0

1

2

0.35

z1

z 2

Figure 4.2: An illustration of bivariate Gaussian distribution of random vec-
tor Z = [Z1,Z2] ∈ R2 having marginal means of 0.0 and vari-
ances of 0.5 and 0.25, respectively and with covariance of about
−0.265. The solid ellipsoids indicate the contour of joint PDF of
random vector [Z1,Z2]. The two solid curves at the x- and y-axes
indicate the marginal PDF of Z1 and Z2, respectively. The dotted
curve shows the conditional density of random variable Z1 given
z2 = 0.35, while the dashed curve shows the conditional density
of Z2 given z1 = 0.75.

The joint density for Gaussian random vector is given in Eq. (D.17).
For the bivariate random variable in the example, the density can beJoint density,

illustrated shown as contour plot in Fig. 4.2. In the figure, the solid ellipsoids
are the iso-contours of the distribution, where each pair of values lies
along the contour line has the same probability density value.

The two marginal densities for the example are shown as the solid
curves plotted in the x and y-axes, respectively. As illustrated, theMarginal density,

illustrated marginalization of the joint distribution can be thought as a projec-
tion of the 2-dimensional distribution into each of the corresponding
dimension.
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Finally, two conditional distributions p(z1 | z2 = 0.35) and p(z2 | z1 =
0.75) are given as examples of conditioning a probability distribution
in Fig. 4.2. They are shown as dotted and dashed curves plotted in Conditional density,

illustratedboth axes. Conditioning can be thought of as slicing the 2-dimensional
distribution. Conditioning two correlated random variables on one,
in general, changes the shape of the distribution of the other vari-
able. From the figure, conditioning shifts the mean and reduces the
variance of the resulting conditional distribution.

GP can often be thought simply as a generalization of finite mul-
tivariate Gaussian random variable into an infinite multivariate one.
To illustrate this idea, the marginal and conditional distributions of An entry to

Gaussian Processa 15-variate MVN distribution are plotted with the random variables
at one common axis (x) while the range of values of the variables are
plotted in another axis (y). This is practically an extension to the bi-
variate case exemplified before. The origin of the underlying 15× 15
covariance matrix is at the moment unimportant, but what the matrix
does is defining how the variables are correlated to each other. Fig. 4.3
shows the depiction. Fig. 4.3a shows the marginal distributions of
random variables z1 to z15. Suppose the variables z2, z4, z7, z9, z12,
and z14 is observed (Fig. 4.3b). Now Fig. 4.3c shows the conditional
distribution of the non-observed variables (the rest). As can be seen,
the conditional probability of the non-observed random variables are
shifted (from the zero-mean unconditional distribution) and their
standard deviation are reduced.
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(a) unconditional (marginal)
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(c) conditional

Figure 4.3: A 15-variate MVN random variable Z. Prior to observing data, the mean and variance
of each variable correspond to the marginal mean (in this case 0) and variance. Condi-
tioning on the observed data shifts the mean and reduces the variance. Illustration is
adapted from Ref. [162].

Gaussian stochastic generalizes this procedure beyond the 15-variate
Gaussian random variable to an arbitrary number of variables at arbi-
trary locations on the real line. It is easy to imagine that the shape of
both marginals and conditionals will become smoother and smoother
with increasing number of random variables in the x-axis, thus re-
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sembling more and more a smooth function. In fact, it is one of the
interpretations of Gaussian process: a distribution over functions [4].

4.2.2 Gaussian Process

Gaussian stochastic process is a particular class of stochastic or random
process. Stochastic process is a collection of random variables, each ofStochastic process

which are indexed with certain underlying rules or ordering. To be
precise, a stochastic process is a set of random variables Y = {Y(i), i ∈
I}, where I is an index set, and it is defined on a probability space
(Ω,F, P), where Ω, F, and P are the sample space, the set of events,
and the assigned probability to the event, respectively [163].

For example, a time series can be modeled using stochastic process
where the random variables are the observations taken at different
time ordered sequentially. In this case the index set is the time indexStochastic process

applications of the observations. A spatial model, as another example, can be mod-
eled as a collection of random variables indexed by their locations in
space. And finally, in the metamodeling application, the random vari-
ables are collection of computational model output values at different
input values.

Gaussian stochastic process (GP, or Gaussian Random Field GRF) is
defined as a collection of random variables Y, any arbitrary number of
which is a multivariate Gaussian random variable [62, 164]. To establishGaussian process

the connection with the notion of random function, the collection of
the random variables Y refers to the collection of values of a random
function Y(◦) at various possible input x in the domain X ⊆ RD.
Specifically, Y(x), for x ∈ X ⊆ RD is a Gaussian process if and only
if for any choice from the finite set of input {x1, x2, . . . , xL; L > 1},
the random vector [Y(x1),Y(x2), . . . ,Y(xL)] is a multivariate Gaussian
random variable [35].

A GP is fully specified by its mean and covariance functions, in-
stead of a mean vector and a covariance matrix. A GP Y(x) on X ⊆ RD

with a given mean function m and covariance K is denoted as

Y(x) ∼ GP (m(x),K(x, x∗)) (4.2)

The mean function of a Gaussian process Y(x) is the function m :

X ⊆ RD 7→ R defined as,Mean function

m(x) = E[Y(x)] (4.3)

The covariance function of a Gaussian process Y(x), on the other
hand, is the function K : (X ⊆ RD)× (X ⊆ RD) 7→ R defined as,Covariance Function

K(xi, xj) = Cov[Y(xi),Y(xj)] (4.4)

Notice that while the covariance function describes the covariance
between pairs of random function values, it is defined only as a func-
tion of the two inputs, xi and xj. The covariance function is also
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sometimes referred to as the covariance kernel function as it defines
the elements of the covariance matrix (see example below). Not all
functions of the pair of inputs xi, xj are valid covariance functions,
but only the ones that yield a valid variance-covariance matrix given
by the condition in Eq. (D.21).

Finally, the process variance is defined as the covariance between
two random function values at the same input, Process variance

K(xi, xi) = Cov[Y(xi),Y(xi)] = V[Y(xi)] (4.5)

For a given finite L, a GP is reduced to a Gaussian random vector
with mean vector µ and covariance matrix Σ,

[Y(xi)] ∼ NL(µ,Σ) ; i = 1, 2, . . . ,L

µ = [m(x1),m(x2), . . . ,m(xL)]
T

Σ =


V[Y(x1)] · · · Cov[Y(x1),Y(xL)]

...
. . .

...

Cov[Y(xL),Y(x1)] · · · V[Y(xL)]


(4.6)

The shape of the random function drawn from a GP is character-
ized by its mean and covariance functions. Brief explanations of these
functions will be provided in the next two subsections. In the mean- Fully specified GP,

an exampletime, an example of a fully specified Gaussian process will be used to
illustrate how samples of functions can be drawn from such a stochas-
tic process. For the example, the following mean and covariance func-
tion will be used

m(x) = 0

K(x, x∗) = σ2 exp
[
−
(x− x∗)2

2θ2

]
= 10 exp

[
−
(x− x∗)2

0.98

] (4.7)

where x is a 1-dimensional input parameter such that x ∈ [−2, 2]. The
mean function is set to constant zero, while the covariance function is
chosen to be the so-called Gaussian covariance function (which will be
detailed in the sequel). The Gaussian covariance function is parame-
terized by the characteristic length scale θ which is set to 0.70. This
parameter is often referred to as the hyper-parameter of the function.
Lastly, σ2 is the variance of the stochastic process and it is set to 10.

To generate random draws of function from the fully specified GP
given in Eq. (4.7), first it must be specified at which input x the func-
tion values are to be drawn. For the present example, x is chosen to be Sample path of a GP

uniformly distributed {−2+ 0.2× i}20i=0. By specifying these locations,
the 21-variates Gaussian random variable can be constructed using
Eq. (4.6) with the elements of variance-covariance matrix computed
by the formula in Eq. (4.7) for all pairs of inputs. Sampling from such
a distribution can be done using algorithm outlined in Appendix D.5.
Examples of five realizations from the GP are shown in Fig 4.4a. A



100 gaussian process metamodeling

realization of a GP on selected input locations is also called a sample
path of the process [35], a term which will be used interchangeably
with the term realization of a GP (or a stochastic process in general).

x

y

(a) Unconditional

x

y

(b) Conditional

Figure 4.4: Five realizations (sample paths) of a Gaussian process specified
in Eq. (4.7) at xi = {−2+ 0.2× i}20i=0. Shaded area indicates the
area enveloped by twice standard deviation of the process (or
95% probability region). In the right panel, the sample paths are
drawn conditional on six observed values (cross symbols).

Suppose now that values of six variables are fully observed as fol-
lows {(xi,yi)}6i=1 = {(−2.0,−0.75), (−1.2, 1.5), (−0.8, 2.75), (0.4, 3.75),
(1.2,−1.3), (1.8,−3.8)}. The conditional 15-variates Gaussian distribu-Conditional sample

path tion can be constructed in the same manner as before with the con-
ditional mean and covariance following Eq. (D.24). Examples of five
sample paths from such conditional distribution are shown in Fig. 4.4b.
Observe that the standard deviations of the observed variables are
zero and the gray areas between them are substantially reduced.

An assumption for a class of stochastic process commonly made
for convenience is stationarity. A stochastic process Y(◦) is called strict-Strongly stationary

process ly/strongly stationary if and only if for any finite set of inputs {x1, x2,
. . . , xL} ∈ X ⊆ RD with L > 1, and for h ∈ RD such that {(x1 + h),
(x2 +h), . . . , (xL +h)} ∈ X, the distribution of random vector [Y(x1 +
h), Y(x2 +h), . . . ,Y(xL +h)] is the same as the distribution of random
vector [Y(x1),Y(x2), . . . ,Y(xL)] [35, 165]. In other words, the process
is invariant under translation.

The weakly stationary process used additional weaker assumption
than the strongly stationary process. A stochastic process Y(◦) is calledWeakly stationary

process weakly stationary if and only if the first two moments of the process
are constant. As such, the weakly stationary process is also referred
to as second-order stationary process.

However, as mentioned before, a GP is fully defined by its mean
and covariance functions. Therefore, if two GPs have the same meanStationary, isotropic

covariance function and covariance functions defined over the same domain then the two
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processes have exactly the same distribution and are the same process.
For the case of GP, the notions of strongly stationary and weakly
stationary coincide. This implies that a stationary GP has a constant
mean and a constant variance, as well as a covariance function that
satisfies the condition of being invariant under translation as follows,

Cov[Y(xi),Y(xj)] = Cov[Y(xi +h),Y(xj +h)] = K(xi − xj) (4.8)

In stationary GP, the covariance of random function values between
two input points is only determined by the distance between the two
inputs and the covariance function is called stationary, isotropic covari-
ance function [62]. The notion of distance used in the above definition
depends on the specific type of the covariance function as will be ex-
plained in the next subsection. Additionally, following Eq. (4.8), the
process variance can be defined as the covariance at zero distance or
K(0), which is constant across input parameter space.

A more flexible class of GP models can be constructed by relaxing
the stationarity assumption. However, stationarity is often assumed Non-stationary

processbecause it requires less assumption than the alternatives, considered
non-informative, and therefore more generic [160]. Moreover, the sta-
tionary process remains important to study as they serve as building
block for more advanced models [35]. For instance, the stationarity as-
sumption can be relaxed simply by considering a non-constant mean
function as proposed in Refs. [166, 167], while keeping the covariance
part stationary. Another alternative is to consider multiple stationary
covariance functions defined for each partitioned region of the whole
input parameter space as proposed in Ref. [168].

4.2.3 Covariance Kernel Function

Covariance kernel function determines the covariation structure of
dependent data. This, in turn, determines the behavior (or shape) of
the sample path of the outputs between input points. For a stationary
covariance function, it is more convenient to separate the constant
stochastic process variance σ2 and the stochastic process kernel corre-
lation function R(◦, ◦) between two input points using the following
relation,

K(xi, xj) = σ2R(xi, xj) (4.9)

where R, the correlation kernel function, is defined such that xi, xj ∈
X ⊆ RD ∀ i, j; and σ2 is the aforementioned stochastic process vari-
ance, which determines the scale of variation magnitude of the out-
put space.

In the following, three different types of stationary correlation ker-
nel functions are presented. These functions, namely Gaussian, power- one-dimensional

correlation kernel, r
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exponential, and Matérn class kernels are widely applied in the simula-
tion metamodeling literature. At first, only 1-dimensional kernel func-
tions denoted by r(xi, xj) are described. Later on, these 1-dimensional
functions are used to create a multidimensional kernel function R(xi, xj)
by means of tensor product.

For each, the correlation function is defined and several sample
paths are drawn to illustrate the effect of using different kernels as
well as respective parameters on the sample path. It is important to
note that it is a sample path of a stochastic process that is used as
a metamodel and thus it is important to study its properties. For a
stationary Gaussian stochastic process, only the correlation function
determines the main properties of sample path, namely its continuity
and differentiability (or smoothness). In particular, the continuity of a
stationary correlation function at the origin guarantees the continuity
of the sample path, and the smoothness of the correlation function de-
termines the smoothness of the sample path. The mathematics behind
these assertions is beyond the scope of this thesis, but an accessible
reference on the topic can be found in [169].

4.2.3.1 Gaussian Kernel

The Gaussian correlation kernel function, also known as the squared
exponential kernel, is given by the following formula [35, 62, 170],

r(xi, xj; θ) = exp
[
−
(xi − xj)

2

2θ2

]
(4.10)

The Gaussian kernel is parameterized by a single hyper-parameter
θ that defines the characteristic length-scale of the process (or the
range parameter). Fig. 4.5 shows the correlation value as function ofCharacteristic

length-scale (range)
parameter

Euclidian distance, (xi − xj)2, between input points according to the
Gaussian kernel, for three different range parameters. Obviously, for
smaller θ the correlation between two inputs drops more quickly over
shorter distance, and vice versa.

The range parameter of a Gaussian kernel determines the range
over which the distance between two input locations affects the out-
put correlation. To be precise, the notion of how similar (or dissim-
ilar) two input locations are is defined relative to the characteristic
length-scale. With a very short range, the output of random func-
tions becomes easily uncorrelated except for a very close (similar)
inputs. The realization of the process, therefore, will exhibit more er-
ratic behavior at short ranges as it allows for changes that are more
abrupt over shorter distance and less dependent of the neighboring
values. On the other hand, with a longer range, the output of ran-
dom function tends to be highly correlated except for very different
input values and thus the realization will exhibit more rigid pattern.
Gaussian kernel, however, always produces smooth realization. That



4.2 gaussian process fundamentals 103

0 1 2 3

(xi − xj)
2

0.0

0.5

1.0

y

θ = 0.1

θ = 1

θ = 10

Figure 4.5: Examples of Gaussian correlation kernels with three different
range parameters.

is, at any given point the Gaussian kernel is continuous and differen-
tiable (see the neighborhood of the origin of Fig. 4.5). The Gaussian
kernel is widely applied in the metamodeling literature and almost
become a default choice for the correlation kernel [171], though as
mentioned in Ref. [62] the overly smooth process can result in ei-
ther physically unrealistic or numerically difficult situations (i.e., the
resulting variance-covariance matrix is ill-conditioned for poorly se-
lected design points).

Fig. 4.6 shows a comparison between realizations of a GP using
Gaussian kernel for three different range parameters. The short range,
illustrated on the left panel, allows for more sudden change in the
output values while the long range on the right shows smoother (and
rigid) pattern for the same input domain (0.0 6 x 6 3.0). Also no-
tice that the realizations with the shorter range produces more local
maxima and minima.
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Figure 4.6: Examples of realizations from GP with Gaussian correlation kernel for three different
values of range parameter. The plotting range of the y-axis for each panel are set to
± 3× σ. Each process has the same process variance, σ2 = 1.0
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4.2.3.2 Power-Exponential Kernel

The Gaussian correlation kernel belongs to a wider class of 2-param-
eter kernel function family called the power-exponential kernel and is
given by [35, 62, 170],

r(xi, xj; θ,p) = exp
[
−

(
|xi − xj|

θ

)p]
for θ > 0.0 and 0 < p 6 2 (4.11)

The parameter θ remains the range parameter of the process, while
the additional parameter p is referred to as the shape parameter of
the process. Specifically, the shape parameter p determines the differ-Shape parameter p

entiability of the process at the origin [169]. Fig. 4.7 shows the corre-
lation value of power-exponential kernel with three different values
of p and θ as function of L1 norm (|xi − xj|).
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Figure 4.7: Examples of power exponential kernel functions for different values of shape parameter
p and range parameter θ as function of L1 norm.

Although, strictly speaking, only when p = 2 is the power-exponential
correlation differentiable at the origin (thus guarantee the smooth-
ness of the realization), the shape parameter dictates the apparent
roughness of the sample path drawn from the process as illustrated
in Fig. 4.6 [62].
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Figure 4.8: Several realizations from GP with power-exponential kernel functions of different
shape p and scale θ parameters.
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It is argued in Ref. [166] that the power-exponential kernel function
is an appropriate choice in metamodeling application due to its flexi-
bility of representing different shape with respect to its regularity and
differentiability mainly controlled through the additional parameter
p. For instance, Gaussian correlation kernel is a special case of the Exponential kernel

power-exponential kernel when p equals to 2. Another special case is
when p = 1 which is called the exponential kernel. In this particular
case, realizations of which are depicted in Fig. 4.8b, the process is
continuous but not differentiable [62].

4.2.3.3 Matérn Class Kernel

The Matérn class correlation kernel is another 2-parameter kernel
family and it is given by the following formula [35, 62],

r(xi, xj; θ,ν) =
21−ν

Γ(ν)

(
2
√
ν|xi − xj|

θ

)ν
Kν

(
2
√
ν|xi − xj|

θ

)
(4.12)

where positive ν and θ are the correlation kernel parameters; Γ(◦)
is the Gamma function; and Kν(◦) is the modified Bessel function
of order ν. In the literature, the value of ν is often restricted to half
integer ν = n + 1

2 ;n ∈ {0, 1, . . .}, because in that case the resulting
modified Bessel function can be written simply as a finite series given
by

Kν(t) = exp (−t)

√
π

2t

n∑
k=0

(n+ k)!
k!(n− k)

1

(2t)k
(4.13)

The Matérn class is considered more flexible than the power-expo-
nential kernel because the shape parameter ν directly controls the
number of differentiability of the process [172]2. However, it was ar- shape parameter ν

gued in [62], that for machine learning application (i.e., regression
and classification) only ν = 3/2 (once differentiable) and ν = 5/2

(twice differentiable) are of practical interest. This is due to the fact
that for ν < 3/2 the process becomes too rough3, while for ν > 7/2 the
smoothness of the process realization cannot be distinguished any-
more from an even smoother process. These two Matérn correlation
kernels are given below [62, 170],

rν=3/2(xi, xj; θ) =

(
1+

√
3|xi − xj|

θ

)
exp

[
−

√
3|xi − xj|

θ

]
(4.14)

rν=5/2(xi, xj; θ) =

(
1+

√
5|xi − xj|

θ
+
5|xi − xj|

2

3θ2

)
exp

[
−

√
5|xi − xj|

θ

]
2 That was not the case for power-exponential kernel because, strictly speaking, the

process in only differentiable at p = 2 (and in fact, infinitely differentiable).
3 In fact, it reduces to the exponential correlation function.
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(4.15)

As the two previous kernels, the parameter θ serves as the range
parameter of the process. Example plots of the Matérn kernel with
different shape and range parameters are shown in Fig. 4.9.
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Figure 4.9: Matérn kernels for two different range parameters θ and, for
each, two different shape parameters ν.

Examples realizations drawn from GPs with Matérn kernel with
different shape and range parameters are shown in Fig. 4.10. As ex-
pected, the realizations from Matérn kernel with ν = 5/2 is smoother
than the ones from ν = 3/2.
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Figure 4.10: Example of sample paths drawn from GPs with Matérn ker-
nel for different range and shape parameters. One realization is
drawn from each combination of the parameters.

4.2.4 Multidimensional Construction

In order to create a valid multidimensional correlation kernel func-
tion from a valid 1-dimensional correlation function given above, aTensor product
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tensor product construction is used as follows,

R(xi, xj) =
D∏
d=1

rd

(
x
(d)
i , x(d)j

)
(4.16)

where rd is a 1-dimensional correlation kernel function for the d-th
input dimension; while x(d)i and x(d)j are a pair of values in the d-th
input dimension.

Although it is possible to mix different types of correlation function
or use different kind of multidimensional construction (see for exam-
ple Ref. [173]), the tensor product with the same correlation function Mixing kernels

for each input dimension is the most well-established and, by far,
the most popular approach in the applied metamodeling literature to
date [35, 53, 59, 159, 160, 166, 170, 171, 174].

Fig. 4.11 shows two examples of realizations of random surface
drawn from a multidimensional GP with the same process variance
(σ2 = 10.0) but with two different correlation kernels. On the left is Random surface

an example of a realization drawn from the GP using two Gaussian
correlation kernel functions in which the characteristic length scale in
the y-direction is four times the scale in then x-direction. On the right
is an example of a realization drawn from the GP using Matérn cor-
relation kernel functions. For this case, the shape parameter is three
times larger in the x-direction than in the y-direction. As such, for
both cases, the surface appears less smooth in one of the direction.

x y

z

(a) Gaussian, θx = 0.5, θy = 2.0

x y

z

(b) Matérn ν = 5/2, θx = 1.5, θy = 0.5

Figure 4.11: Two random surfaces drawn from two different multidimensional GP with the same
process variance of σ2 = 9.0. Differences in the scale (for Gaussian) and shape (for
Matérn) parameters for the inputs yield smoother path in one direction. The color
scheme is the same for both plots with the range of ± 3× σ.
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4.2.5 Process Variance

For stationary GP, the shape of the sample path is determined solely
by the form of the correlation. The role of the process variance ac-
cording to Eq. (4.9) is to determine the scale of the magnitude of
the output variation. Fig. 4.12 gives an illustration of the realizations
drawn from a set of GPs with the same kernel correlation function
(i.e., Gaussian kernel with θ = 1.0), but with different values of pro-
cess variance. As shown, the visible features of the realizations remain
very similar to each other. What has changed, however, is the scale of
the variation in the output space.
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Figure 4.12: Realizations of GP with Gaussian correlation kernel for three different values of pro-
cess variance. The plotting range of the y-axis for each panel is set to ± 3× σ.

4.2.6 Mean Function

Mean function is the drift term in the GP model. Strictly speaking, in-
corporating other than a constant mean function to the specification
of a GP introduces non-stationarity to the process. But as the known
mean function can always be removed from the formulation (i.e., by
centering), the process, especially with respect to its correlation func-
tion, can still be considered stationary. Fig. 4.13 shows several realiza-
tions drawn from three GPs having the same covariance kernel, but
with three different mean functions. As it can be seen, the process are
centered differently for the three GPs. The choice of the mean func-
tion determines the behavior of the conditional process (where it is
constrained by the observed data) in the region far away from the
available data.

The use of the mean function provides an opportunity to incorpo-
rate prior knowledge of the process before observing any data or to
improve the resulting model performance for extrapolation purpose
[162, 167]. However, without a very specific knowledge of how a pro-
cess is expected to behave, it is difficult to completely specify a justi-
fiable mean a priori. Indeed, it was argued in Ref. [160] that the use
of either zero or constant mean in GP to model a process signifies a
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Figure 4.13: The effect of using three different mean functions (in dashed lines) on the realiza-
tion of GP having the same covariance kernel (Gaussian). The scales in the axes are
arbitrary.

vague or the least informative prior to the unknown. This eventually
leads to the most generic formulation.

4.3 gaussian process metamodel

To formalize the use of GP in the metamodeling of a simulator, con-
sider once again the regression problem of predicting the output at
an arbitrary input f(xo); xo /∈ DM given {(DM, y)}; where f, DM,
and y are the function representing the simulator, the design matrix,
and the training output, respectively. A GP metamodel makes the
prediction as

Y(xo) = µ(xo) +Z(xo) (4.17)

The equation above, the Kriging model, consists of two components:

• The mean/drift/trend term, µ : x ∈ X ⊆ RD 7→ R, is a determinis-
tic function. The choice of the trend term distinguishes different Mean term

classes of Kriging model. Simple Kriging (SK), refers to a class of
Kriging whose arbitrary trend function is fully specified. Univer-
sal Kriging (UK), on the other hand, is a class of Kriging where
a general polynomial model is assumed, but its coefficients are
unknown [166, 167, 175],

µ(x) =

J∑
j=0

βjhj(x) (4.18)

where hj are polynomials basis functions; and βj are the as-
sociated unknown coefficients. Ordinary Kriging (OK) is a spe-
cial case of UK where the trend is set as an unknown constant
(h0(x) = 1; J = 0).
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• The bias or residual term is a stochastic process. In particular, it
is modeled using a zero-mean, stationary Gaussian stochasticResidual term

process,

Z(x) ∼ GP(0,σ2R(x, x∗)) (4.19)

where σ2 and R are the process variance and a stationary corre-
lation function (such as the ones presented in Section 4.2.3), re-
spectively. The residuals, being modeled as a GP, are correlated
and this correlation is a function of the input parameters. As
such, a Kriging model can be thought of as a generalized linear
model whose elements of the correlation matrix are specified ex-
plicitly by a parametric function [176]. Note that the predictor
in Eq. (4.17) becomes a stochastic process due to this term.

According to the above, a GP metamodel contains several parame-
ters called the hyper-parameters. This term is used to distinguish themHyper-parameters

from the input parameters associated with the original simulation
model. The hyper-parameters of a GP metamodel are the ones asso-
ciated with the chosen trend function (Eq. 4.18); the ones associated
with the selected correlation functions (Section 4.2.3); and the process
variance σ2. The total number of hyper-parameters depends on the
number of model parameters as well as the selected structure of mean
and correlation functions. For instance, for a D-parameter simulation
model represented by a GP metamodel with linear first-order mean
and power-exponential correlation function (Eq. (4.11)), the total num-
ber of the hyper-parameters Ψ = (β,σ2,θ, p) is 3D+ 2; while for the
same model represented by a GP metamodel with a constant mean
and Gaussian correlation functions (Eq. (4.10)), the total number of
hyper-parameters Ψ = (µ,σ2,θ) is D+ 2.

As mentioned earlier, two classes of Kriging models can be dis-
tinguished depending on what is specified on the trend term: Sim-
ple Kriging and Universal Kriging. Simple Kriging is the simpler case
where all the hyper-parameters involved are known. In that case the
prediction of the output at an arbitrary input location is straightfor-
ward as shall be seen below.

Following the formulation above, a GP metamodel, implies that the
computer code outputs at every input locations are jointly Gaussian.
As such, the code outputs at the training inputs DM = {xi}Ni=1,Y(DM) =Simple Kriging

(Y(x1),Y(x2), . . . ,Y(xN)) and the output at an arbitrary input xo, Y(xo)
are distributed jointly as an (N+ 1)-dimensional Gaussian,[

Y(DM)

Y(xo)

]
∼ N

([
µ(DM)

µ(xo)

]
,σ2

[
R(DM, DM) R(DM, xo)

R(xo, DM) R(xo, xo)

])
(4.20)

where:

• µ(DM) is the vector of mean values at the training points,

µ(DM) = [µ(x1), . . . ,µ(xN)]T (4.21)
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• µ(xo) is the mean at an arbitrary test location.

• R(DM, DM) is the N×N correlation matrix between outputs at
the training points,

R(DM, DM) =


R(x1, x1) · · · R(x1, xN)

...
. . .

...

R(xN, x1) · · · R(xN, xN)

 (4.22)

• R(DM, xo) = R(xo, DM)T is the N× 1 vector of correlation be-
tween outputs at the training points and the output at the test
point,

R(DM, xo) = R(xo, DM)T = [R(xo, x1), . . . ,R(xo, xN)]T (4.23)

• R(xo, xo) is the correlation of the output at the test input with
itself. By definition this correlation is equal to 1.

Provided that the outputs at the training inputs are fully observed
(i.e., the code is actually run at those inputs), then the output at the
test input Y(xo) given the observed outputs Y(DM) = y = (y1, y2, . . . ,
yN)

T is a conditional Gaussian random variable,

Y(xo)|Y(DM) = {yi}
N
i=1 ∼ N

(
mSK(xo), s2SK(xo)

)
(4.24)

wheremSK and s2SK are the mean and the variance of the distribution,
respectively. They are also often referred to as the simple Kriging mean
and simple Kriging variance, respectively.

The simple Kriging mean (or the Kriging predictor) is expressed as
follows Simple Kriging

mean
mSK(xo) = µ(xo)+RT (xo, DM)R−1(DM, DM)(y−µ(DM)) (4.25)

The simple Kriging variance, on the other hand, is expressed as Simple Kriging
variance

s2SK(xo) = σ
2(1− RT (xo, DM)R−1(DM, DM)R(xo, DM)) (4.26)

The expressions for the mean and the variance above are obtained
through the conditioning operation of the Gaussian random vector in
Eq.( 4.20) (See Appendix D.3). In practice, the Kriging mean are used
as a predictor of the code output at an arbitrary input location, while
the variance is used as a measure of error of that prediction.

The simple Kriging model has several interesting features:

• The Kriging predictor given by the mean in Eq.(4.25) is a lin-
ear predictor. In other words, the centered predictor (mSK(xo) − Linear predictor

µ(xo)) is a weighted linear combination of the centered data
(y − µ(DM)). The weights depends on the correlation function
R(◦, ◦), the design of training points DM, and the distance be-
tween the test point and the training points.
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• The variance collapses at the training points, that is plugging-
in xi ∈ DM into Eq.(4.26) will yield s2SK(xi) = 0, ∀i. As such,Kriging as an

interpolant the Kriging predictor is also an interpolant, which exactly fits
the observed data (i.e., deterministic code output at the training
inputs). See Fig. 4.1c for an illustration.

• The variance on a given test point does not depend on the ob-
served data. Strictly speaking, it is only dependent on the pro-Variance as function

of distance between
test and training

points

cess variance σ2 and the correlation function R(◦, ◦). Further-
more, the variance on a given test point is also equal or less
than the process variance, the difference of which depends on
the distance between xo and the training points DM. The closer
xo is to the training points, the smaller the variance at that point.
See the difference between two black points in Fig. 4.1c in rela-
tion to their relative position to the data.

• Being the variance of a conditional Gaussian distribution, the
Kriging variance can be intuitively interpreted as the posterior
uncertainty of the prediction given the observed data. The natureVariance as measure

of epistemic
uncertainty

of this uncertainty is epistemic as, in the case of this thesis, the
computer code that underlies the observed data is deterministic.
That is, the uncertainty associated with the prediction at an ar-
bitrary input is due to the lack of knowledge because the code
itself is not run at that point, though the prediction is informed
by the observed data as contained in the training data.

As mentioned in Section 4.2.6, adding a mean function in the GP
metamodel formulation can provide an opportunity for a more flexi-
ble metamodel in the extrapolatory region, where prediction is made
at a point far away from the training points. Although there is practi-Ordinary and

Universal Kriging cally unlimited number of possible mean functions, the function is of-
ten represented simply by fixed basis function whose coefficients are
unknown (Eq. (4.18)). This leads to the Universal Kriging formulation
(Ordinary Kriging for constant mean function), where extra hyper-
parameters are introduced in the metamodel. Even by restricting the
mean function to be within this family, the possibility over the choice
of such function is still wide. The questions about the degrees, the
interaction terms, etc., are now part of the metamodel construction.
All of these eventually result in an even more complex metamodel.

The literature, however, is split on the usefulness of adding a mean
function in the metamodel formulation. Ref. [176] reported that Krig-Simple vs. Ordinary

vs. Universal
Kriging

ing with complex trend function gave a better prediction performance
for the 2-dimensional non-linear test problem used in the article, while
Ref. [166] argued that using mean function of one-degree polynomial
allows for a global (i.e., extrapolatory) non-stationary model which
did not affect the metamodel performance on the test function. On the
other hand, Ref. [177] noted that adding a mean function within the
Universal Kriging framework affects the prediction in the extrapola-
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tory situation, while any formulation yielded the same performance
in the interpolatory situation. Ref. [167] concurred with the conclu-
sion and further warned that in high-dimensional problem with small
training samples size, all problems tend to be extrapolatory and a mis-
specification of the mean function bears the risk of large error in the
prediction. The studies in Refs. [160, 178] provided less convincing
results of using mean functions and thus suggested the use of either
zero or constant mean function for simplicity. And indeed, in this
work, the mean function is assumed to be zero by first standardizing
the output.

All the Kriging models above assume that the correlation function
has been selected and its hyper-parameters are fully known. In most Model selection,

model fittingpractical situations, there are different choices of correlation functions
to choose from. Its hyper-parameters are also not known a priori and
have to be estimated from a set of observations. These two problems,
model selection and model fitting, will be discussed in the next section.

4.4 practical aspects of gp metamodel constructions

Three basic tasks involved in the construction of a valid metamodel
outlined in Section 4.3: selecting the design/training points (i.e., gen-
erating DM), model fitting (i.e., estimating the hyper-parameters Ψ),
and model validation (i.e., assessing whether the constructed meta-
model is appropriate for its intended use: to replace the expensive
simulator code).

4.4.1 Selection of Design/Training Points

The metamodeling of deterministic simulator f to obtain the surro-
gate f̃ is based on the training data

(
DM = {xn}Nn=1, y = {f(xn)}Nn=1

)
,

the design matrix and the corresponding outputs from the actual sim-
ulator runs. The accuracy of f̃, in turn, is determined by the configu-
ration of DM, the sample sizeN, and the true underlying relationship
of f [179].

The selection of points in the input parameter space, which deter-
mines the geometrical configuration of DM, is aimed at exploring the
whole input parameter space X, at least in the region where the im-
portant features of the model (e.g., region of strong non-linearity) are
located. As this region (or regions) is often not known in advance, Grid approach

the most straightforward approach that explore the parameter space
is by using the grid approach with a fine discretization shown in
Fig. 4.14 [175]. In practice, with a constraint on computational bud-
get, the amount of actual code runs is limited. The objective is then to
select the limited points more judiciously to obtain as much informa-
tion about the model as possible with as few points as possible [54,
58].
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Figure 4.14: Grid approach to select training points becomes prohibitively expensive for high-
dimensional problem. Shown here is grid in 2-dimensional input parameter space
and the code is supposed to be evaluated at each vertex. In larger-dimension, the
problem is worsened with requirement of N = (∆+ 1)D code runs, where ∆ is the
discretization level assumed uniform for all parameters and D is the number of pa-
rameters.

Some techniques to select the training points are borrowed from
the design of (physical) experiments. Deterministic computer code,Design for computer

experiment however, lacks random error and (hidden) nuisance parameters that
renders techniques such as randomization, replication, and blocking
irrelevant [35]. On the other hand, computer experiment tends to in-
volve many more input parameters compared to its physical counter-
part, which is constrained by cost. A good design for (deterministic)
computer experiment, therefore, are constructed based on different
set of principles. First, due to the deterministic nature of the underly-
ing code, the design should avoid any repetition of observation. Sec-
ond, due to the lack of knowledge about the underlying inputs/out-
puts relationship of the model, the design should spread the avail-
able points evenly across input parameter space [35]. In other words,
the design should be model-free without assuming any explicit form
of inputs/outputs relationship. Third and finally, the design should
have a good low dimensional projection properties4 [180, 181]. It is
further argued in [181] that due to the effect sparsity principle (in
relation to parameter interaction), a design with good 2-dimensional
projection property is enough to construct an accurate metamodel.
Design for computer experiment that roughly follows these princi-
ples are generically termed "Space-Filling" [35, 58, 180–182].

Simple random sampling (SRS) (Fig 4.15a) is the simplest and most
generic approach to generate design of computer experiment. WhileExamples of design:

SRS, LHS, and
Quasi-random

sequence

technically non-repetitive, the samples generated by SRS are not guar-
anteed to be well-separated; clusters tends to form around one region
of parameter space while leaving other part of the region unexplored.

4 Good coverage, no cluster, and does not induce artifical correlation in the projection
of the design.
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The latin hypercube sampling (LHS) initially developed for the analy-
sis of computer experiment in lieu of SRS [183] has become a popular
alternative in computer experiment [184]. LHS guarantees that values
for each input dimension is different (Fig. 4.15b) (i.e., has an excellent
1-dimensional projection). The projection in higher dimension, how-
ever, is still not guaranteed to be optimal. Its improvement to provide
a better uniformity properties in all dimension have been continu-
ously proposed in the literature [35, 54, 181, 182, 184]. More recently,
the use of quasi-random sequence originally applied to accelerate the
convergence of Monte Carlo integration (see for instance Ref. [185])
has also been applied for constructing experimental design. Fig. 4.15c
is an example of such design, generated using Sobol’ quasi-random
sequence.
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Figure 4.15: Examples of experimental design for metamodel training in 2-dimensional input pa-
rameter space. Any 2-dimensional projection from higher dimension is represented in
the same manner.

It is also worth noting that the literature has no consensus regard-
ing the extend to which the design of experiment is important for
metamodel accuracy [184]. Several authors (such as in Refs. [175, 180, On the importance

of sample size181]) emphasized the design utmost importance while others (such
as in Refs. [58, 178, 186]) considered it to be less important, especially
compared to the training sample size. Those three latter studies re-
ported that while a better design might be important for a relatively
small sample, the importance of sample size will eventually eclipse
the importance of a more efficient design (especially when such a con-
vergence study can be afforded). That is, the accuracy of the resulting
metamodel converges to the same value with increasing sample size
regardless of the design. On the other hand, the size of training sam-
ple at which the metamodel accuracy becomes acceptable, is different
from application to application and, as noted in Ref. [187], is closely
related to the complexity of the underlying function. The paper pro-
poses the sample size of N = 10×D as a rule of thumb for starting
point. As the complexity of the underlying function is not known in
advance, an empirical study for each case has to be carried out to
assess whether the resulting metamodel is acceptable.
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As a final remark on the subject of design, all the designs consid-
ered in this thesis belong to a strategy called one-stage or one-shot
strategy [188, 189]. The strategy means that the training samples areOne-shot vs.

sequential design generated at once and a metamodel is constructed and applied only
based on that. Generating training samples of larger size might be
necessary, but the larger samples will be generated essentially from
scratch without using the results obtained from the smaller samples.
Sequential design is the alternative approach where the new design
points are added sequentially to the initial batch of training set. In
essence, it adaptively samples the input parameter space around the
more interesting region (with more variation thus more difficult to
approximate) based on the previously constructed metamodel. The
newly found point is then augmented and a new metamodel is con-
structed and the process is repeated until the required level of accu-
racy is attained. Though it potentially leads to a more efficient design
(fewer samples required overall), it also adds additional complexity
to metamodel construction (see for example Refs. [189, 190]).

4.4.2 Model Fitting/Training

In most metamodeling applications, the values of the hyper-param-
eters for a selected GP metamodel are not known a priori. The param-
eter estimation process, a term interchangeably used with fitting, train-
ing, and learning, applies mathematical techniques to a set of training
data to estimate the values of the hyper-parameters [68]. In the fol-
lowing it is assumed that a particular correlation function has been
selected and that the mean function µ(◦) is known, with values at
training points denoted in the following simply as µ. In other words,
it starts from the Simple Kriging formulation.

To estimate the values of the hyper-parameters Ψ of a chosen struc-
ture of mean and covariance functions, it should be first acknowl-Likelihood function

edged that under GP model, the distribution of the observed data
given a Gaussian process (y | Y(x);Ψ) is Gaussian, such that its PDF
is of the form

L(Ψ; y) =
1

(2π)N/2(σ)N/2|R|1/2
exp

[
−
(y − µ)TR−1(y − µ)

2σ2

]
(4.27)

The term above is called the likelihood function. The slight change of
perspective from a conditional density function to a common function
is due to the fact that the data is already observed [191]. For compact-
ness, the N×N correlation matrix between outputs at the training
points R(DM, DM) is written simply as R; and the N-dimensional
vector of the mean value at the training points as µ. Finally, it is
also implied in the formulation that the chosen GP is fully specified,
through its hyper-parametrization Ψ such that the notation Y(x) is re-
moved from the expression. The hyper-parameters Ψ, in turn, include
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σ2 and other hyper-parameters related to the correlation kernel func-
tion R5.

Starting from the likelihood formulation, a common approach to
estimate the hyper-parameters values is by selecting the ones that
maximize the likelihood for a given observed data y. This estima- Maximum likelihood

estimation /
empirical Bayes

tion procedure, the maximum likelihood estimation, is also known
in the literature as empirical Bayes [175] where the estimation is de-
rived strictly from available data. The procedures is as follows: First,
the hyper-parameters related to R, noted Θ, are initially assumed to
be known to estimate σ2 by minimizing the negative log likelihood6

(which is equivalent to maximizing the likelihood),(
σ̂2|Θ

)
= arg min

σ2

(
− lnL(σ̂2; Θ̂)

)
(4.28)

yielding

σ̂2 =
(y − µ)TR−1

Θ (y − µ)

N
(4.29)

The estimated σ̂2 are then fed back into Eq. (4.27) to obtain the so-
called concentrated/profile likelihood [192, 193]. The term is due to the Concentrated

(profile) likelihoodfact that the full likelihood has been further conditioned by setting
some of the parameters (in this case σ2) to a constant (in this case,
its maximum likelihood estimates). This procedure eases the numeri-
cal difficulty of finding simultaneously the maximum likelihood esti-
mates of all the hyper-parameters in high-dimensional space. Finally,
the estimate of Θ̂ is obtained through the maximum of the (profile)
likelihood,(

Θ̂|σ̂2
)
= arg min

Θ

(
− lnL(Θ̂; σ̂2)

)
(4.30)

The computation of Eq. (4.30) can then be carried out using an uncon-
strained optimization algorithm, such as the Newton’s, quasi-Newton,
or one of the global stochastic (e.g., genetic algorithm) methods. Re-
view of different types of optimization algorithms can be found in
Ref. [194].

Having estimated the hyper-parameters, the Kriging predictor is
expressed as,

m̂SK(xo) = µ(xo) + rT
o,Θ̂R−1

Θ̂
(y − µ) (4.31)

As before, for compactness, the N× 1 correlation vector between out-
puts at the test and the training points R(xo, DM) is written simply as

5 e.g., for Gaussian kernel there is one hyper-parameter θ for each input while for
power-exponential kernel there are two hyper-parameters, p and θ, for each input.

6 Logarithm is often taken on the likelihood to avoid underflow error when dealing
with a very small number.
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ro. The subscript Θ̂ appears in r and R which implies that the correla-
tion functions are evaluated using the maximum likelihood estimated
values of the hyper-parameters.

The variance associated with the predictor is expressed as

ŝ2SK(xo) = σ̂
2(1− rT

o,Θ̂R−1
Θ̂

ro,Θ̂) (4.32)

Eqs. (4.31-4.32) are the same as Eqs. (4.25-4.26), except now the
hyper-parameters are replaced by their Maximum Likelihood (ML)
estimates. This implies that the uncertainties associated with the MLUncertainty on Ψ

estimates are not incorporated into the Kriging predictor and vari-
ance [195]. That is, the uncertainties of the predictor (its variance)
given the observed data is also conditional on a particular values
of hyper-parameters which underestimate the true Kriging variance
[196].

Full Bayesian treatment of this problem acknowledges this addi-
tional source of uncertainty and considers the hyper-parameters as
nuisance parameters. It assumes a prior over the hyper-parameters,Full Bayesian

treatment compute the posterior based on the training data, and then use the
posterior to average (integrate) the hyper-parameters out from the
Kriging predictor and variance [83, 88, 93, 195]. This increases the
computational cost as well as the complexity of the analysis with
mixed results [182]. As noted in Bayarri [93], whose ultimate goal was
model calibration against experimental data, the answers provided by
either analysis (ML estimates and full Bayesian) are equivalent as the
effect of model parameters uncertainties tends to dominate the effect
of hyper-parameters uncertainties.

Metamodel fitting estimates the optimal hyper-parameters values
relative only to the training data. Its robustness, which depends on
the training data, the estimation technique, and the underlying com-
plexity of the simulator, is subjected to the validation process pre-
sented in the next section.

4.4.3 Model Validation and Selection

Metamodel is always fitted based on a relatively small training data,
much smaller than the space of all possible inputs/outputs. As such,Metamodel

validation its validation is a necessary step in applying the metamodel with con-
fidence at any given input as a surrogate of the original computer
simulator. Metamodel validation is defined as a process to determine
whether a metamodel has a sufficient range of accuracy within its
domain of applicability, consistent with its intended use [68]. As the
metamodel is based on a deterministic simulator, the output of run-
ning the simulator at an input not used in the fitting process provides
the ground truth for assessing the metamodel performance. Different
validation metrics can be defined based on this comparison that high-
light different inadequacies in line with the intended use. Because ex-
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haustively comparing the metamodel prediction and the actual simu-
lator output for all possible inputs is not feasible, a validation strategy
is devised, dealing with the approach in generating validation data
and in using them to assess the metamodel [197].

The gold standard of validation strategy is by an independent valida-
tion (holdout) data [178]. In this strategy, a separate validation dataset Validation (holdout)

samples strategy(samples) is created by generating randomly a new set of validation
inputs at which the simulator is evaluated. The metamodel assess-
ment is then made by comparing the prediction made by the meta-
model and the output produced by the actual simulator runs. The
strategy is straightforward, but because the simulator has to be run
at the new validation inputs, the cost of generating the validation
dataset is high for an expensive simulator. In addition to that, the
results can also be sensitive to the size of validation samples [198].

For a computationally expensive simulator, it is not always possible
to generate large (if any at all) independent validation samples. The Cross-validation

strategycross-validation is an alternative approach to validate a metamodel in
this situation [197, 199]. In cross-validation, a batch of samples is re-
moved from the available training samples, used the remaining train-
ing samples for fitting and the subsamples for assessing the meta-
model (essentially becomes the validation samples). The procedure is
repeated by selecting randomly the elements for the removed batch.
The most extreme case of this approach is the so-called leave-one-out
(LOO) cross-validation, where a single training point is removed for
validation purpose and exhaustively repeating the procedure. Cross-
validation does not require additional simulator runs to generate val-
idation samples. It also incorporates in its results, to a certain extend,
the sensitivity due to perturbation in the training samples. However,
it can potentially be expensive if numerous metamodel fitting are to
be carried out (such as in the case of the LOO approach). Furthermore,
if an experimental design with a particular geometrical structure is
used, removing one or more points might destroy its property7. The
fitting, in turn, is carried out in sub-optimal manner [199, 200] and
the prediction becomes rather pessimistic (i.e., with larger error).

The second part of the strategy is to define a validation metric in
line with the intended use of the metamodel. Because the metamodel Validation metric

in this thesis is going to be used to explore the posterior probability
across the model parameter space, the aim is to construct a meta-
model that has a decent global accuracy8. Global accuracy measures
the metamodel performance over many different input values across
its parameter space, on average. The accuracy of the metamodel for
a particular input, however, can still be poor and in the case of GP
metamodel is defined probabilistically.

7 This is indeed the case for an optimized latin hypercube design.
8 as opposed to the (local) accuracy in a particular region of input parameter space

such as during design optimization.
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A particular validation metric that quantifies such global accuracy
is the predictivity coefficient Q2 [199]. Assuming that the independentPredictivity

coefficient Q2 validation samples strategy is adopted, let DM∗ = {x∗n}
Nvalid
n=1 denote

the set of validation inputs at which the computer simulator is eval-
uated, yielding Nvalid outputs y∗ = {f(x∗n) = y∗n}

Nvalid
n=1 . The predic-

tivity coefficient of a metamodel ŷ(◦) (trained using different set of
sample) is given by,

Q2(ŷ∗, y∗) = 1−
∑Nvalid
n=1 (y∗n − ŷ∗n)

2∑Nvalid
n=1 (y∗n − ȳ∗)2

(4.33)

where y∗ is the outputs at validation inputs produced by the simula-
tor; ŷ∗ is the predictions at validation inputs made by the metamodel,
i.e., {ŷ(x∗n) = ŷ∗n}

Nvalid
n=1 ; and ȳ∗ is the sample mean of the simulator

output in the validation samples. The predictivity coefficient can be
interpreted as the proportion of the output variance explained by the
metamodel relative to the variance of the validation samples.Q2 with
values close to 1.0 implies a highly accurate metamodel.

Finally, the validation procedure above assumed the design of ex-
periment for training, the correlation function, and the form of mean
function have been chosen. These are additional metamodeling choicesOn model selection

and metamodeling
choices

an analyst has to made upfront and there is no general rule to se-
lect which one for which application. Different studies reported one
proper metamodeling choice that is supported by a particular case
(or some cases) and presented them as generic advice. The danger of
taking such advices at face value, as noted in Ref. [178], is that the
results might be anecdotal. More importantly, they might not apply
to the particular case being studied. The most pragmatic approach
in assessing the appropriateness of such choices is thus to carry out
empirical study for the particular case being studied. In other words,
different design of experiments (ideally with replications), different
correlation functions, and different mean functions (if applied) are
to be tested for the same problem and the best choices are selected
based on the comparison of validation metrics.

Metamodel promises much faster evaluation of the simulator out-
put at any given input, but for it to be used with confidence, some
time has to be invested to properly design, fit, and validate it.

4.5 dealing with multivariate output

The previous discussion on GP metamodel dealt with a single output
(univariate) case. Many computer simulations produce multivariate
outputs9. A typical TRACE simulation, for example, produces flowMultivariate

outputs variables as functions of time and space as its raw outputs. This
is indeed the case for the reflood simulation problem presented in

9 In this thesis, the number of outputs are referred to as the dimension of the output
parameter space.
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Chapter 2. As outlined in Chapter 3, some techniques can be used to
transform the raw outputs into quantities of interest (the maximum,
etc.) that are useful to answer the questions at hand. However, in the
calibration setting, some of these outputs have corresponding mea-
surement data and need to be represented by the metamodel in their
original form for a direct comparison.

An approach proposed in Ref. [68] is to represent the multiple out-
puts by separate metamodels. That is, one metamodel is developed to Separate univariate

metamodelrepresent each one of the multiple outputs individually. Yet, for a very
high-dimensional output (from tens to thousands), this approach is
impractical as the numbers of metamodel to train becomes too nu-
merous. Furthermore, the outputs produced by the computer simu-
lation are often highly correlated to each other. As such, developing
individual metamodels to represent the correlated outputs separately,
especially when they are numerous, is wasteful.

To cope with the problem of high-dimensionality of the outputs,
this thesis adopted a linear model of coregionalization (LMC) [201, Extension to

multivariate case202] coupled with a principal component analysis (PCA) [88, 203] to
construct a tractable, multivariate version of GP metamodel. The orig-
inal LMC was formulated to model multivariate data in geostatistics
that covary together (over a region) in a linear fashion, while PCA is
used here as a data-driven dimensional reduction tool. The resulting
model consists of few independent, univariate GP metamodels, each of
which is the one presented in the previous section.

4.5.1 Linear Model of Coregionalization (LMC)

The function that represents the computer code simulation f is now
cast in its multivariate version, f : X ⊆ RD 7→ RP where P is the di-
mension of the output parameter space. The LMC of the P-dimensional Linear model of

coregionalizationGP metamodel Y can be written as,

Y(x) = µ(x) +Φw(x) + ε (4.34)

where µ is the P-dimensional mean vector of the multivariate process;
Φ is a P ×Q matrix, with Q 6 P; ε is a P-dimensional vector of li-
nearization error; and w(x) = (wi(x)) is a Q-dimensional vector with
univariate GPs as its elements,

wi(x) ∼ GP(0,σ2iRi(x, x∗)) (4.35)

where σ2i and Ri are the process variance and correlation function
associated with each element of the vector, respectively. The term
Φw(x) describes the covariation between the multivariate outputs
as function of model parameters.
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4.5.2 Principal Component Analysis

PCA is then used as a data-driven approach to obtain the components
of the LMC in Eq. (4.34). The term data-driven is used as the compo-
nents are derived directly from the training data. The raw outputs
of the training runs are first concatenated row-wise resulting in an
N× P matrix Y(DM),

Y(DM) =


...

yn
...


yn = [yn,1, . . . , yn,p, . . . , yn,P]

= [y(xn)1, . . . ,y(xn)p, . . . ,y(xn)P]

(4.36)

where y(xn)p is the p-th output dimension, evaluated using the n-th
training sample. Note that the notation above is similar to Eq. (3.2)
but now the dimension of the output yp is not only restricted to
time, nor do they have to be of the same (physical) dimension. In
the formulation below, the raw training outputs is always assumed to
be dependent on the training samples and thus the notation DM is
suppressed.

The sample mean of the raw outputs is used to substitute the mean
in the LMC formulation,

µ(x) = ȳT (4.37)

The sample mean is obtained by taking the column-wise average of
Eq. (4.36),

ȳ = [ȳ1, . . . , ȳp, . . . , ȳP]

ȳp =
1

N

N∑
n=1

y(xn)p
(4.38)

Note that by the above, the mean of the LMC is a constant vector.
As the PCA deals with the data covariance matrix, the raw outputs

in Eq. (4.36) should first be centered,

Y∗ = (Y − jNȳ) (4.39)

where jN is the N-dimensional vector of ones.
The centered raw outputs Y∗ is then decomposed by means of sin-

gular value decomposition (SVD) yielding,

Y∗ = USVT (4.40)

where U is the N×N orthogonal, left singular matrix; S is the N× P
diagonal matrix of singular values; and V is the P × P orthogonal,
right singular matrix.
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The column vector elements of V are the principal components
(PCs) of the data set which describe the main directions of the data set,
along which the variance of the data set is the largest. PCs are sorted Principal component

in descending order such that the first PC (leftmost in V) contains the
largest variance (Fig. 4.16a). The singular values are related to the ex-
plained variance of the eigenvectors (i.e., their respective eigenvalues)
by the following,

λ = diag
(

S2

N− 1

)
(4.41)
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Figure 4.16: PCA of a bivariate data set. A highly correlated bivariate data
set can be transformed into a new orthogonal coordinate sys-
tem according to the principal directions of the data set. The
principal directions redistribute the partial variance such that
the total variance is preserved in the transformed coordinate.
Above, three selected points in the data set in both coordinates.

Projection of the data into the PCs results in principal component Principal component
scorescores (PC scores),

W = Y∗V = US (4.42)

where W is theN×P matrix of principal component scores. A unique
set of P principal component scores are associated with each points
in the multivariate data set. The scores describe the locations of the
multivariate data points in the new coordinate system as defined by
the principal components (Fig. 4.16b).

Often the results of PCA are reformulated in terms of principal
component loadings and standardized scores,

V∗ =
1√
N− 1

VS (4.43)

W∗ =
√
N− 1U (4.44)
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where Y∗ = W∗V∗T holds10. This reformulation gives a magnitude
to the unit-norm principal components according to their respective
standard deviation (square-root of variance Eq. (4.41)), it also results
in standardized PC scores with variance of 1.0. In the context of re-
gression of PC scores used later in metamodeling, the latter property
improves the numerical stability of the maximum likelihood estima-
tion of the hyper-parameters.

Dimension reduction takes place when only a small numbers of
PCs are kept. That is, only the first Q columns of V∗ are retainedDimension

Reduction with Q � P. Such selection is justified by a certain amount of par-
tial variance explained by those few first Q principal components. In
the illustration of Fig. 4.16, the dimension reduction can be carried
out by simply using the first principal component (horizontal axis of
Fig. 4.16b) to describe the data set.

Back to the formulation of LMC, the matrix Φ in Eq. (4.34) is sub-
stituted by the set of empirical orthogonal basis functions obtained
from the first Q PC loadings of the data set, and is defined as

Φ = (v∗1, . . . , v∗q, . . . , v∗Q) (4.45)

where v∗q is the P-dimensional column-vector taken from the q-th
column of matrix V∗; and Q << P. This empirical orthogonal ba-
sis functions expansion is obviously related to the ones presented in
Chapter 3. The analysis done here, however, used the point-wise data
formulation as opposed to functional formulation.

4.5.3 Multivariate Gaussian Process Metamodel

The multivariate output formulation of a GP metamodel based on the
previous discussion is summarized as the following equation, where
a prediction at an arbitrary input xo ∈ X is made,

Y(xo) = ȳ +Φ∗Qw∗(xo) +Φ∗>Qe (4.46)

where ȳ is the P-dimensional vector of sample mean (Eq. (4.38)). The
other elements in the equation are described below.
Φ∗Q, a P ×Q matrix, is the first Q columns of the PC loadings

retained to reconstruct the multivariate output. Specifically, Φ∗Q is,

Φ∗Q = (φ∗1,φ∗2, . . . ,φ∗Q) = (v∗1, v∗2, . . . , v∗Q); Q� P (4.47)

where v∗i is the P-dimensional column vector of the i-th PC loading
taken from Eq.( 4.45).

w∗ is the Q-dimensional vector of standardized PC scores for each
of the retained PC loading, modeled as a set of univariate, indepen-
dent, zero-mean GPs,

w∗ = [w∗1, w∗2, . . . , w∗Q]; Q < P

w∗i (◦) ∼ GP(0,σ2iRi(◦, ◦))
(4.48)

10 W∗ 6= Y∗V∗ as V∗ is not orthogonal any longer, but W∗ = (N− 1)Y∗V∗S−2.
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where w∗i is the standardized PC scores of the i-th PC loading; σ2i and
Ri(◦, ◦) are the process variance and the correlation function associ-
ated with the GP of w∗i , respectively.

The observed data from the N training samples is related to each
of the wi by,

w∗i (DM) ≡ w∗i =
√
N− 1Y∗S−1v∗i ; i = 1, · · · ,Q (4.49)

That is, the observed data for the i-th standardized PC score is the
projection of the standardized data on the i-th PC loading. Condi-
tioning the GP of wi by the observed data yields,

w∗i (xo)|w
∗
i ∼ N(mSK,i(xo), s2SK,i(xo)); i = 1, · · · ,Q (4.50)

where mSK,i and s2SK,i are the simple Kriging mean and variance,
respectively (Eq. (4.25) and Eq. (4.26)), associated with the i-th stan-
dardized PC score. The simple Kriging formulation is used here as
the assumed process is already centered (zero-mean).
Φ∗>Q, a P × (P −Q) matrix, is the unretained columns of the PC

loadings,

Φ∗>Q = (φ∗Q+1,φ∗Q+2, · · · ,φ∗P) = (v∗Q+1, v∗Q+2, · · · , v∗P) (4.51)

where φ∗Q+i is the P-dimensional column vector of the unretained
i-th PC loading taken from Eq.( 4.43).

Finally, following Ref. [90], e is the (P−Q)-dimensional vector of in-
dependent identically distributed normal random variable with mean
0 and variance 1. In other words, truncation error in Eq. (4.46) due to
the unretained PC loadings are modeled as a set of independent nor-
mal random variables with the variance given by the PC loadings.

The multivariate output evaluated at xo conditioned by the training
data is thus distributed as P-variate Gaussian random variable,

Y(xo)|Y(DM) = Y ∼ NP(µP(xo),ΣP×P(xo))

µP = ȳ +Φ∗QmSK(xo)

ΣP×P =Φ∗Qdiag(s2SK(xo))Φ
∗T
Q +Φ∗>QIΦ∗T>Q)

mSK = [mSK,1(xo),mSK,2(xo), · · · ,mSK,Q(xo)]

s2SK = [s2SK,1(xo), s
2
SK,2(xo), · · · , s2SK,Q(xo)]

(4.52)

The model above assumed that the hyper-parameters associated with
a selected correlation function are known. In practice, they are not
and thus estimated from the data itself using Maximum Likelihood
Estimation (MLE) as outlined in Section 4.4.2. Additionally, the theo-
retical underestimation of the Kriging variance explained in that sec-
tion also applies here when the ML estimates are plugged into the for-
mulation. In practice, however, Ref. [93] noted that the uncertainties
associated with the model parameters often eclipse the uncertainties
induced by the metamodel hyper-parameters.
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4.6 application to the trace model of feba

In this section, a GP metamodel of the TRACE model of the FEBA
facility is constructed and assessed. As before, only the results from
analyzing the TRACE model of the FEBA test No. 216 are presented.
Following the results of SA from Chapter 3, only the 12 most influen-
tial parameters are being considered in the following. The resulting
GP metamodel of the TRACE model will then be used for the param-
eter calibration problem tackled in the next chapter.

4.6.1 Simulation Experiment

The construction of GP PC metamodel of the FEBA TRACE model
was carried out in three steps following the recommendation in the
statistical/machine learning literature [62, 204]: training, validation,
testing as summarized in Fig. 4.17 below.
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2. Validation and Selection

TRACE

Testing

Runs

x1

x2 f̂ (x)

Prediction

f̂(xvalidi ) ≈ yvalidi Q2(f̂(x
valid
i ), yvalidi )

Prediction

Model

Selection

Model

Fitting

f̂(xtesti ) ≈ ytesti{ytesti }ntest
i=1

{yvalidi }nvalid
i=1

3. Testing

{ytraini }ntrain
i=1

d1

d2 v1

Design

Generation

Training

Runs

Dimension

Reduction

Validation

Runs

Dimension

Reduction

Dimension

Reduction

Validation Met-

ric Calculation

Final Error

Assessment

x1

v1

{xvalidi }nvalid
i=1

{xtraini }ntrain
i=1

{xtesti }ntest
i=1 Model

Selection

Figure 4.17: Flowchart of the simulation experiment for constructing a GP PC metamodel of the
TRACE model of the FEBA facility

In the training step, a metamodel was constructed (i.e. trained) based
on a training data set. The training data set consists of a set of trainingTraining,

experimental design inputs and its code output counterparts (from actual code runs). The
set of training inputs was generated using an experimental design
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algorithm (of which several of them were considered: simple random
sampling, latin hypercube, optimized latin hypercube, and Sobol’ se-
quence). Following the recommendation in Ref. [187] the starting sam-
ple size was 120 (or 10×D, with D the number of dimensions) and
increased in multiples of two (240, 480, and 960). Furthermore, to take
into account the effect of random variation in the training data set of
each design and size, five replications of each data set were generated
for training and five different metamodels were trained.

Metamodels predicting different types of outputs (i.e., clad tem-
perature, pressure drop, and liquid carryover) were constructed sep-
arately. These different outputs were themselves of a multivariate na- Dimension

reductionture: liquid carryover was a time-dependent quantity, while clad tem-
perature and pressure drop were time- and space-dependent quanti-
ties. As such, PCA was carried out on the raw outputs to reduce their
dimensionality and the metamodel was trained with respect to a few
retained PC scores.

Carrying out PCA for each type of outputs results in pairs of stan-
dardized PC scores and PC loadings (see Section 4.5). A GP meta-
model was then trained with respect to the standardized PC scores
for a selected number of retained PC loadings. Therefore, there were
multiple GP metamodels representing the standardized PC scores as-
sociated with each of the retained PC loadings for each of the output
types.

Several covariance kernel functions were considered for construct-
ing a metamodel: Gaussian, Matérn 3/2, Matérn 5/2, and power-
exponential kernels. The hyper-parameters associated with each ker- Model fitting

nel were estimated (i.e., fitted) by MLE as implemented in the R pack-
age DiceKriging [170]. Following the hyper-parameters estimation
for each GP PC metamodel, a metamodel of the TRACE model was
fully trained and ready for making prediction in arbitrary inputs. To
make prediction back in the original physical space, the full out-
put space had to be first reconstructed using linear combinations
of the predicted standardized PC scores and the PC loadings (See
Eq. (4.52)).

A validation step was conducted to assess and compare the predic-
tive performance of different metamodels constructed with different
experimental designs and covariance functions, taking into account
the effects of randomness in the experimental design generation and
of training sample size. The validation step was conducted by means Model validation

and selectionof independent validation data sets, a separate set of TRACE out-
puts from actual runs (preferably large enough) for the metamod-
els to predict. The predictivity coefficient defined in Eq. (4.33) mea-
sured the discrepancy between the output from the validation data
set and from the prediction by the metamodel, and thus the qual-
ity of the metamodel. However, to have a more intuitive measure of
performance directly related to the output in the physical space (as
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opposed to the reduced space of the principal components), the root-
mean-square-error (RMSE) of the reconstructed prediction was also
used. It is defined below,

RMSErec. =

 1

NvalidP

Nvalid∑
n=1

P∑
p=1

(
yn,p − ŷn,p

)20.5

ŷn = ȳ +Φ∗QmSK(xn) = [ŷn,1, . . . , ŷn,p, . . . , ŷn,P]

(4.53)

where Nvalid is the number of validation data; P is the number of
dimension of the output space; ynp is the value of the output di-
mension p at validation input n; ŷn,p is the predicted value of the
output dimension p at validation input n; and ŷn is the mean of the
reconstructed multivariate output at validation input n predicted by
the GP PC metamodel (see the explanation of Eq. (4.52) for detail).
This error combined the error due to the misprediction of the stan-
dardized PC scores by the metamodel as well as the error due to the
truncation of the PCs. The best setting of the metamodel (the experi-
mental design and the covariance function) was then selected based
on the RMSE and one additional metamodel was trained using an
increased number of training samples.

Finally, the ultimate performance of the metamodel were assessed
in the testing step based on yet another large number of test data set,
separately generated. The purpose of this step was to further confirmTesting

the previous results on another data set and to give a more robust
idea of the expected error of the metamodel in the application setting.

The settings used in the simulation experiment for constructing
and assessing the GP PC metamodel are summarized in Table 4.1.

4.6.2 Dimension Reduction by principal component analysis (PCA)

As mentioned, the different outputs considered in this study (i.e., clad
temperature, pressure drop, and liquid carryover) were of multivari-
ate nature. For instance, the clad temperature output was defined
both in time instance and axial location. Considering eight different
axial locations for the thermocouples and 1 ′000 [s] transient (to ensure
that all runs were quenched) with time step size of 0.1 [s], the dimen-
sionality of this output amounted to 80 ′000. Fig. 4.18 shows three
different clad temperature outputs from three different TRACE runs.
It shows the contour plot of clad temperature as function of time and
axial location in the x- and y- axes, respectively. Though not shown
here, the other two types of output were of similar nature: pressure
drop was also defined in time instance and in four axial segments
(with dimensionality of the output amounting to 40 ′000), while liq-
uid carryover output was defined only in time (with dimensionality
amounting to 10 ′000).
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Table 4.1: Simulation experiment settings for constructing and assessing the
GP PC metamodel of the TRACE model of FEBA test No. 216

description value

Inputs/Outputs

Number of inputs 12

Number of outputs:

Clad temperature 8 (axial locations) ×10 ′000 (time-steps) = 80 ′000

Pressure drop 4 (axial segments) ×10 ′000 (time-steps) = 40 ′000

Liquid carryover 10 ′000 (time-steps)

Dimension reduction principal component analysis (PCA)

Training

Experimental Designs Simple random (SRS), latin hypercube (LHS),

optimized latin hypercube (Opt. LHS), Sobol’ sequence

Sample sizes 120, 240, 480, 960, 1 ′920 (only for testing)

Replication 5

Covariance kernels Gaussian, Matérn 3/2, Matérn 5/2, power-exponential

Model fitting Maximum Likelihood Estimation (MLE)

Validation

Strategy Independent data set (holdout)

Experimental design Latin hypercube

Sample size 5 ′000

Validation metric Q2 (Eq. (4.33)) and RMSE (Eq. (4.53))

Testing

Strategy Independent data set (holdout)

Experimental design Latin hypercube

Sample size 5 ′000
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Figure 4.18: Examples of multivariate clad temperature output [K] at eight different locations as
function of time, presented as “images”, taken from three different training runs.
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PCA was used to reduce this significant number of output dimen-
sions. Fig. 4.19 shows the sample mean surface and the first two PCs
(loadings) estimated using 1 ′920 training samples. These two PCs ex-
plained about 83% of the output variance in training samples. This
implied that any realization of the training samples could be recon-
structed by using the mean surface added by linear combination of
the PC multiplied by a unique set of scalars (the standardized PC
scores) associated with that realization, such that on average (over
many realizations) the reconstruction would be 83% accurate with
respect to the RMSE. In other words, “images” in Fig. 4.18 can be
reconstructed by overlapping the mean surface and the multiples of
PCs “images” shown in Fig. 4.19.
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Figure 4.19: PCA results for the clad temperature output

Fig.4.20 summarizes the convergence behavior of the reconstruc-
tion error for the three types of output with increasing number of PCs
(up to the first 10, out of 80 ′000, 40 ′000, and 10 ′000 PCs obtained for
the respective outputs) used for the reconstruction. The plots were
obtained from reconstructing the outputs in the validation data set
(with sample size of 5 ′000) using a set of PCs derived from the train-
ing data set and by computing the average of the squared error over
all realizations in the validation data set.
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(c) Liquid carryover output

Figure 4.20: The reconstruction error, in terms of RMSE, as a function of the number of PCs used
in the reconstruction of the output space for three different output types.
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Because the PC scores used in the reconstruction were exact, the
plot shows the magnitude of error to be expected from the dimension
reduction procedure for each type of outputs. It also shows that the
benefit of using larger number of PC is increasingly marginal.

4.6.3 GP PC Metamodel Construction: Training, Validation, and Selection

Following the PCA of the multivariate output, GP metamodels were
constructed with respect to the standardized PC scores for each of
the output types. The effect of several factors potentially affecting the
predictive performance of the GP metamodels were also investigated,
including training sample size as well as the choice of experimental
design and covariance kernel function.

It was found that higher PCs tends to be harder to fit. That is, more GP PC metamodel,
clad temperature
output

and more training samples were required to have a GP metamodel of
good predictive accuracy. Fig. 4.21 shows the predictivity coefficient
Q2 as function of the training sample size for three different PCs GP
metamodels with respect to the clad temperature output. The Q2 was
calculated based on the validation data set of 5 ′000 data points (i.e.,
independent TRACE runs). The multiple points per training sample
size correspond to GP metamodels constructed using different experi-
mental designs, covariance kernel functions, and the five replications.
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Figure 4.21: Convergence of PC metamodel with increasing number of training samples with re-
spect to the PCs scores associated with the clad temperature output and the Q2 vali-
dation metric. The number inside parentheses is the explained variance of the output
by the PC and the cumulative explained variance of the first 10 PCs is about 96%.

The leftmost panel of the plot shows that indeed the GP metamodel
for the first standardized PC score is the easiest to fit, requiring only
a small size of training sample. On the other hand, the rightmost
panel of the plot shows that not even the largest number of training
samples considered is enough to have a GP metamodel with decent
performance for the 10th PC. Furthermore, the plot also shows that
the variations in the performance tends to become smaller with in-
creasing sample size.



132 gaussian process metamodeling

1
2
0

2
4
0

4
8
0

9
6
0

SRSLHSOpt. LHSSobol' Seq.

G
aussian

M
atérn 3/2M

atérn 5/2

P
ow

E
xp

G
aussian

M
atérn 3/2M

atérn 5/2

P
ow

E
xp

G
aussian

M
atérn 3/2M

atérn 5/2

P
ow

E
xp

G
aussian

M
atérn 3/2M

atérn 5/2

P
ow

E
xp

25 30 35 4025 30 35 4025 30 35 4025 30 35 40

C
ov

arian
ce K

ern
el F

u
n
ction

PC Reconstruction Error [K]

Figure
4.22:The

effect
of

training
sam

ple
size,experim

entaldesign,and
covariance

function
on

the
predictive

perform
ance

(in
term

s
of

R
M

SE)
of

G
P

PC
m

etam
odelw

ith
respect

to
the

clad
tem

perature
output

T
C

.
7

PC
s

w
ere

used
for

the
reconstruction.



4.6 application to the trace model of feba 133

Fig. 4.22 summarizes the effect of different training sample sizes,
types of experimental design, and types of covariance kernel function
on the performance of the constructed GP PC metamodels to predict
the clad temperature output. The training samples were replicated
five times for each size and for each design. The predictive perfor-
mance was assessed in terms of the RMSE which was computed by
retaining the first seven PCs and using the validation data set. There-
fore, the RMSE shown in the figure represents the combined error
due to PC truncation and misprediction of the PC scores.

The size of the training sample was the most important factor in
determining the predictive performance of a GP PC metamodel. The
choice of covariance function had some effects on the perfomance
especially between the smoother covariance functions (i.e., the Gaus-
sian and the Mateŕn 5/2) and the less smooth ones (i.e, the power
exponential and the Mateŕn 3/2). GP metamodel constructed using
the Gaussian covariance kernel function, in particular, exhibited sig-
nificant variation in the performance of training sample replications
compared to the other covariance kernel functions. Finally, the choice
of experimental design for the training sample had a negligible effect
on the predictive performance of the GP metamodel.

The GP PC metamodel to predict the pressure drop output showed
the same behavior of being more difficult to fit for the higher PCs
(See Fig. 4.23). The GP metamodel for the first standardized PC score GP PC metamodel,

pressure drop outputremained the easiest to fit. However, the metamodel of the higher PC
better converged than that for the clad temperature output. That is,
a metamodel with decent predictive performance could be obtained
for all first 10 standardized PCs scores using the considered sample
sizes. Those 10 PCs carried close to 100% of the total output variance.
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Figure 4.23: Convergence of PC metamodel with increasing number of training samples with re-
spect to the PCs scores associated with the pressure drop output and theQ2 validation
metric. The number inside parentheses is the explained variance of the output by the
PC and the cumulative explained variance of the first 10 PCs is about 99%.
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Finally, the liquid carryover output was found to be the easiest to
construct. While the predictive performance of the GP metamodelGP PC metamodel,

liquid carryover
output

with respect to the pressure drop output converged faster across the
first five PC scores (Fig. 4.23), those PCs of the liquid carryover output
contained almost all of the total output variance (Fig. 4.24).
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Figure 4.24: Convergence of GP metamodel with increasing number of training samples with re-
spect to the standardized PCs scores associated with liquid carryover output and the
Q2 validation metric. The number inside parentheses is the explained variance of the
output by the PC and the cumulative explained variance of the first five PCs is about
99%.

The effect of different training sample sizes, types of experimen-
tal design, and types of covariance kernel function on the predictive
performance of the constructed GP PC were also investigated with re-
spect to the pressure drop and the liquid carryover outputs. Ten and
five PCs were used to compute the predicted reconstruction error for
the pressure drop and the liquid carryover outputs, respectively. The
findings for these two outputs were also similar to the ones for the
clad temperature output: the training sample size was the most im-
portant factor in determining the predictive performance, there was
a relatively minor effect of the choice of covariance kernel functions
especially in terms of the performance variation (with an exception
of the Gaussian kernel function which has the worst performance in
terms of consistency across replications), and the choice of experi-
mental design was relatively noninfluential. Figs. B.19 and B.20 in the
appendix summarize these effects for the two outputs.

4.6.4 GP PC Metamodel Testing

Based on the results presented above, a final set of GP metamodels
was constructed with a larger training set of 1 ′920 samples using a
power-exponential covariance kernel function based on a Sobol’ se-
quence (the best options found). Furthermore, 7, 10, and 5 PCs were
used in the reconstruction of the clad temperature, pressure drop,
and liquid carryover outputs, respectively. As such there were 22 sep-
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arate GP PC metamodels. An additional (i.e., testing) data set of size
5 ′000 was then independently generated (with actual TRACE code
runs) and used as the basis for testing the predictive performance of
the final model. This additional step was done to avoid any possible
bias due to the fact that the validation data set was already used to
select the final metamodel.

The validation metric Q2 of the metamodels with respect to the
standardized PCs scores computed on the testing data set converged
for all types of output (Fig. 4.25). In other words, the size of the test-
ing dataset was found to be (or more than) sufficient to assess the
predictive performance of the selected metamodel.
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Figure 4.25: Convergence of the predictive performance of the metamodel with respect to the stan-
dardized PCs scores for each output type. Shown above are the first 10 PCs for the
clad temperature and pressure drop outputs and the first five PCs for the liquid car-
ryover output. For the clad temperature output, the predictivity coefficient falls below
0.75 after the first seven PCs.

There were two main sources of error that dictated the predictive
performance of a GP PC metamodel. The first was due to the repre-
sentation of the full output dimension with only a few selected PCs
(i.e., the dimension reduction) and the second was due to the mis-
prediction of the standardized PC scores by the GP metamodel (i.e.,
the functional approximation). Fig. 4.26 illustrates these errors by pre-
senting the predicted and observed reconstruction error (in terms of
RMSE) for each realization in the testing data set. Note that the ob-
served reconstruction error was obtained using the reference standard-
ized PC scores of the testing data set, while the predicted reconstruc-
tion error was obtained using the standardized PC scores as predicted
by the GP metamodels.

The extend of the x-axis signifies the range of error due to the PC
truncation. The farther a data point is from the left, the larger the er-
ror is due to the dimension reduction. On the other hand, the extend
of the y-axis, specifically the vertical distance between the data points
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(c) Liquid carryover (CO) output

Figure 4.26: Errors, predicted and observed, due to the dimension reduction procedure (PCA) and
the functional approximation (GP) for the three types of output.

and the line, signifies the error due to the misprediction of the stan-
dardized PCs scores by the GP metamodel. Data points which are
located along the line implied a perfect prediction by the GP meta-
model. The farther a data point is from the line, the larger the er-
ror is due to the metamodel approximation. As can be seen, no data
point is located below the line as the truncation error sets the limit of
the metamodel predictive performance. Furthermore, though some
data points (i.e., realizations) might be mispredicted and lie over a
wide range of value, the cloud of the data points is only concentrated
around a particular range of value. Table 4.2 numerically summarizes
the results of the testing step. For comparison the standard deviation
of the testing data set for each output is also given.

Table 4.2: Predictive performance of the selected GP PC metamodel on the
testing dataset of size 5 ′000

Output PCmax
Predictivity Coefficient Reconstruction Error Test Data

Q2 PC1 Q2 PCmax RMSEobs RMSEpred Std. Dev.

TC 7 ≈ 1.0 0.77 20.17 [K] 22.43 [K] 254.0 [K]

DP 10 ≈ 1.0 0.74 55.57 [Pa] 77.95 [Pa] 9200.0 [Pa]

CO 5 ≈ 1.0 0.77 0.16 [kg] 0.27 [kg] 30.4 [kg]

4.6.5 Discussion

The selection of the number of PCs to retain is usually done by justi-
fying the amount of total variance explained by the selected PCs. ThePCA as a dimension

reduction tool notion of reconstruction error more intuitively explains the notion of
explained variance. The error represents the difference between the
original data and reconstructed data using only a small number of
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PCs. The series of plots shown in Fig. 4.20 also illustrates the limit
of PCA as a dimension reduction tool. The method performs best for
the liquid carryover output and worst for the clad temperature out-
put. The latter is mostly due to the fact that the clad temperature out-
put includes a sharp discontinuity (i.e., quenching). PCA, being a lin-
ear transformation, deals with this strong non-linearity sub-optimally.
That is, a significantly large number of PCs are required to resolve the
discontinuity and bring the reconstruction error closer to 0.

However, as indicated in Figs. 4.21, 4.23, and 4.24, constructing a PC
metamodel is increasingly difficult for higher PCs for all output types.
In other words, as the relationship between model parameters and the GP PC metamodel,

limitationstandardized PC scores becomes increasingly non-linear, large num-
ber of training samples are required to train the GP metamodel to
attain a decent predictive performance. At the same time, the benefit
of adding PCs becomes increasingly marginal (Fig. 4.20). In addition,
some degree of error should be expected in the prediction of the PC
scores by the metamodel, especially the higher ones. As such, unless
the score is perfectly predicted, this error might offset the potential
benefit of adding PCs for the reconstruction.

A pragmatic approach is thus to choose the number of retained PCs
based on some target error or number of TRACE runs that can be af-
forded. To put the error into context, the reconstruction error of an GP PC metamodel,

errors in contextoutput can be compared to the standard deviation of the output in the
test data itself. This standard deviation, in turn, serves as a measure
of the output variation due to the variation in the input parameters.
For the clad temperature output, retaining seven PCs for the GP PC
metamodel gives a reconstruction error of about 22 [K] (RMSE). This
value is small in comparison with the standard deviation of the out-
put in the test data, 254 [K] (less than 9%, Table 4.2). The same is true
for the two other outputs. For the pressure drop output, 10 PCs gives
a reconstruction error of about 78 [Pa], compared with the test data
standard deviation of 9200 [Pa] (less than 0.9%); for the liquid carry-
over output, five PCs gives a reconstruction error of about 0.27 [kg],
compared with the test data standard deviation of 30.4 [kg] (less than
0.9%). Note that those numbers are based on a training sample of
size 1 ′920 and a testing sample of size 5 ′000. As shown in Fig. 4.25,
the size of the testing sample is more than enough to obtain stable
estimates for these errors.

Another important finding in this study is the major importance of
the training sample size on the predictive performance of the GP PC
metamodel. The choice of covariance function has some effect in the Effects of training

sample size,
experimental design,
and covariance
function

predictive performance and its variation across replications. Insofar
the choice is between the smoother functions (e.g., the Gaussian, the
Mateŕn 5/2) and the rougher ones (e.g., the power-exponential, the
Mateŕn 3/2), with the performance of the smoother kernels tending
to be more variable. The Gaussian covariance kernel showed a partic-
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ularly inconsistent predictive performance over multiple replications
for all types of output, and thus should be avoided. The choice of
experimental design, on the other hand, has a marginal effect on the
predictive performance.

It is also worth noting that a GP PC metamodel is a global statistical
metamodel. This implies that its predictive performance is definedGP PC metamodel, a

statistical metamodel over all output space (such as through the use of Q2 and RMSE as
the validation metrics.) and over many realizations. That is, a good
metamodel accurately predicts the output for an arbitrary input, on
average. This also means that the metamodel has to some extent a “hit-
and-miss” property: most realizations are accurately predicted, some
realizations can be mispredicted, and some small proportion of that
can be grossly mispredicted as was illustrated in Fig. 4.26. Fig. 4.27
illustrates this idea further for the clad temperature output.
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Figure 4.27: GP PC metamodel is a global statistical metamodel which gives
global accurate prediction on average. Some realizations are bet-
ter predicted than others, due to both the limitation in the
approximations incurred by using PC and GP (e.g., around
quenching). Solid and dashed lines are TRACE runs and GP
PC predictions, respectively.

A prediction made by a fully specified GP metamodel is, accord-
ing to Eq. (4.25), a straightforward matrix operation. In R throughComputational cost

the package DiceKriging, the operation to predict a standardized
PC score for an arbitrary input takes about 0.05 [s]. For a full out-
put reconstruction, this operation has to be repeated for multiple PCs
scores before being multiplied with the PC loadings. The actual time
required for this full reconstruction is specific to a particular imple-
mentation and to a particular programming language. Though only
rudimentary investigations were carried out, the cost of evaluating
the metamodel for an arbitrary input is still expected to be much less
than running an actual TRACE simulation (6−14 [min]). For instance,
the most naive implementation in R takes, on average, less than 5 [s] to
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predict and reconstruct all outputs (clad temperature, pressure drop,
and liquid carryover) for a given input.

However, it is also important to take into account the computa-
tional cost required to train, validate, and test the metamodel. The
training, validation, and testing data sets have to be generated from
actual TRACE runs. As explained, the size of the training sample
data should be as large as the computational budget of running the
actual codes allowed. In this regard, it is also worth noting that the
model fitting step during training is an optimization problem that be-
comes computationally expensive for large training sample of large
dimensions (large number of input parameters). Again, further study
is required to have a more quantitative cost measure with respect to
this optimization.

Finally, for any given training sample size, the predictive perfor-
mance of the metamodel is assessed in the validation and testing
steps. The former is aimed for selecting the best metamodel (among
metamodels constructed with different settings), while the latter is
aimed for estimating the true error expected from using the selected
metamodel as a surrogate. The study used a large validation and test-
ing data sets (each with 5 ′000 data points), but according to Fig. 4.25,
that many points might not have been necessary. The size of valida-
tion/testing data set can be optimized by first making a plot similar
to the one in Fig. 4.25 but with an initial small number of samples
to first check the convergence of the error estimate before creating
unnecessarily large set upfront.

4.7 chapter summary

The functional approximation part of the proposed statistical frame-
work has been presented in this chapter. The goal of such an approx-
imation was to evaluate the output of a computer simulation code
for an arbitrary input (much) faster. The approximation is based on
Gaussian stochastic process resulting in a statistical metamodel. As
the dimensionality of the output is large, in the order of tens of thou-
sands, a dimension reduction step is adopted by means of PCA (an
approach similar to what was adopted in Chapter 3).

The results obtained on the TRACE model of FEBA is reasonable.
Though the prediction error can at times be large, the metamodel
gives an overall good performance on average for the three types of
multivariate output (clad temperature, pressure drop, and liquid car-
ryover). The metamodels for both pressure drop and liquid carryover
outputs have less than 0.9% prediction error (RMSE), while the meta-
model for the clad temperature output has less than 9% prediction
error (RMSE); these errors are relative to the standard deviation of
the respective outputs in the testing data set. The larger error for pre-
dicting the clad temperature output highlights the limitation of the
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approach for outputs that exhibit strong non-linearity and disconti-
nuity (such as the quenching in the clad temperature transient). This,
in turn, is due to the use of PCA as the (linear) dimension reduction
tool. As such, a first step of improvement in this regard can be aimed
toward replacing PCA with another, more advanced dimension re-
duction tool.

Using the GP PC metamodel as the surrogate for TRACE run, the
prediction for arbitrary model parameters values can be made much
faster (< 5 [s] per metamodel evaluation vs. 6− 15 [min] per TRACE
run). As such the metamodel constructed in this chapter can be used
as the basis for Bayesian model calibration which requires tens if
not hundreds of thousands function evaluations. However, it is also
important to note that the time required for the construction of the
metamodel as well as for its convergence study has to be taken into
account. The training, validation, and testing data have to be gene-
rated from actual code runs. Additionally, the model fitting step to
estimate GP metamodel hyper-parameters is an optimization prob-
lem that can easily become expensive for large training sample of
large dimensions (large number of input parameters).

On a different note, the study confirms that the size of the train-
ing data is the main factor in determining the predictive performance
of the metamodel. As a result, the size of the training data should
be as large as the computational budget allowed. At the same time,
the choice of covariance function has some impact especially in rela-
tion to the stability of the performance. Regarding this, the power-
exponential and Matérn covariance kernel functions are preferred,
while the Gaussian kernel should be avoided. Finally, the choice of
experimental design has a negligible impact on the predictive perfor-
mance of the metamodel.
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B AY E S I A N C A L I B R AT I O N O F C O M P U T E R M O D E L :
B R I D G I N G M O D E L & D ATA U N D E R U N C E RTA I N T Y

In Chapter 3, a sensitivity analysis method was employed to better
understand the inputs/outputs relationship in a computer simulation
model with uncertain inputs. The method was also able to reduce the
size of the problem by screening out noninfluential inputs. Chapter 4
then developed a fast approximation to evaluate the output at any
given input point, in anticipation of the high cost of the calibration
approach presented in this chapter. The respective methods were ex-
emplified by their application to a TRACE reflood simulation model
whose inputs were uncertain, as assumed in Chapter 2.

This chapter deals with a statistical framework for calibrating the
inputs of a simulation model. The framework casts the calibration
problem as a statistical inverse problem where the initial (prior) un-
certainties of the inputs are updated based on available observed data.
It considers the a priori uncertainties in the inputs and in the exper-
imental data, as well as the possible bias of the model. The inputs
uncertainties are then coherently updated via the Bayes’ theorem re-
sulting in an updated (posterior) probability density. The updated un-
certainty of the inputs can then be propagated through the simulation
model to quantify the prediction uncertainty.

Section 5.1 first presents the statistical framework for the problem
of computer model calibration, while Section 5.2 elaborates further
the formulation of the calibration problem through probabilistic mod-
eling of the data-generating process. This results in the formulation
of the posterior probability density. The posterior density is often a
complex highly multi-dimensional function, which makes it difficult
to work with. Section 5.3 presents a simulation method (i.e., Markov
Chain Monte Carlo (MCMC) simulation) to directly generates repre-
sentative samples from the posterior density. These samples can be
used to approximate the posterior density or for uncertainty propa-
gation. Important aspects of analyzing samples of a Markov chain are
presented in Section 5.4. Section 5.5 then discusses the application of
the approach to the FEBA TRACE reflood simulation model to con-
strain the prior uncertainty range of the model parameters based on
the available experimental data. To do so, different types of exper-
imental data (i.e., clad temperature, pressure drop, and liquid car-
ryover) are used and their ability to constrain the prior range is in-
vestigated. The resulting posterior uncertainty, derived from one set
of experimental condition, is verified by propagating it on the other
FEBA tests. Finally, Section 5.6 concludes the chapter.

141



142 bayesian calibration

5.1 statistical framework

The calibration framework in this thesis is in line with the seminal
work of Kennedy and O’Hagan [83], which is adapted by many in
the applied literature [81, 88, 92, 93, 205]. Meanwhile, the explicit for-Calibration

framework mulation here uses a set of notations adapted from different sources
[35, 83, 112, 205, 206]. Suppose an experiment on a physical system is
being conducted and, in parallel to that, a computer simulator of the
system is available. Let yE be the experimental observation of the sys-
tem response (i.e., the quantity of interest (QoI)) taken at controllable
inputs xc, then its relationship to the true unknown response value yT
is given by

yE(xc,λ) = yT (xc,λ) + ε(λ) (5.1)

where ε is an observation error; and λ is an element of an observa-
tion layout Λ detailed below. The true value, in turn, is linked to the
prediction made by the computer simulator yM by

yT (xc,λ) = yM(xc, x̂m,λ) + δ(xc,λ) (5.2)

where δ is the model bias, defined as the difference between the true re-
sponse value and the simulator prediction made by using x̂m, the best
(“true”) value of the model parameters. This term, if any, representsModel bias

the discrepancy in the prediction due to missing physics, numerical
approximation, etc. Combining the two relationships yields,

yE(xc,λ) = yM(xc, x̂m,λ) + δ(xc,λ) + ε(λ) (5.3)

The goal of model calibration is, broadly speaking, to learn the true
(but unknown) model parameters such that the agreement between
the simulator prediction and the experimental observation is improved
[83, 86]. The parameters involved in the representations above are con-Goal of model

calibration trollable inputs xc, the best value of model parameters x̂m, and an ele-
ment λ of an observation layout Λ. The relationship between elements
of Eq. (5.3) is depicted in Fig. 5.1 below.

An observation layout Λ is an ordered set and it defines which of
the different types of QoI are observed (or predicted) as well as their
locations and time points. In this manner, multivariate QoIs can beObservation layout

represented using vectors [205]. For instance, the observation layout
Λ = {(A, z1, t1), (B, z1, t1), (A, z1, t2)} might be used to signify QoIs
(observed or predicted) of type A at time t1, type B at time t1, and
type A at time t2; all are taken at location z1. The vectors yM(◦,λ)
and yE(◦,λ) for λ ∈ Λ then refer to the model prediction and experi-
mental data given by the element λ of the set Λ, respectively.

Departing from the previous chapters, this chapter categorically
distinguishes two types of input parameters: controllable inputs xc and
model parameters xm. Controllable inputs (or design variables) are pa-Controllable inputs



5.1 statistical framework 143

xc

δ

SimulationReality

yT

yM(xc, x̂m)yE
True

Process

Model Bias

ε

“True”, but unknown
Model Parameters

True
Response

Controllable
Inputs

Measured
Data

Simulator

Observation
Error

Measurement

Figure 5.1: Relationships between elements of the calibration formulation
(adapted from [206]).

rameters that, in the context of a controlled experiment, can be varied
by the experimentalist. Being controllable also implies that the param-
eters can be observed in the actual experiment. Both in the physical
experiment and in the simulation their values are often varied either
to investigate the system (respectively, the simulated system) behav-
ior under the change or to find the setting that gives the best system
performance. An example of such parameters is the parameters re-
lated to boundary conditions of an experiment.

Model parameters refer to parameters that are specific to a particu-
lar parametrization of the model in the simulator. As such, they only
appear in the term yM of Eq. (5.3). Model parameters might or might Model parameters

not have a physical meaning; that is, the parameters have interpreta-
tion outside the context of the physical model in which the parame-
ters reside, or the parameters are simply used to tune the model such
that the prediction agrees better with the observed data (thus become
a measure for model inadequacy of a particular model). The param-
eters are referred to as physical parameters in the former case, and as
tuning parameters in the latter. In the following, however, such distinc-
tion is merely conceptual; these parameters are in practice not known
a priori and not directly observable with respect to the experiment.
The generic goal of model calibration is then to obtain an optimal
value of the model parameters x̂m based on a set of experimental
data taken at particular values of xc and λ. This distinction will be re-
visited in Section 5.2.1. The notion of the true value is usually reserved
for the optimal value of a physical parameter [207] and the term best
or best-fitting value is for a tuning parameter [93]. Contrary to the
controllable inputs, calibrated model parameters should in principle
be applicable for all instances of the simulator application.

The formulation given in Eq. (5.3) contains two unknowns, namely
the best value of the model parameters x̂m and the model bias δ. In Bayesian statistical

calibrationthe Bayesian statistical framework, any unknown is considered uncer-
tain and assigned a prior probability distribution. This prior probabil-
ity assignment also applies for other terms that might also not be per-
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fectly known, such as the controllable inputs xc or the observation er-
ror ε. The goal of calibration is then to update the prior uncertainties
on the model parameters based on a comparison between experimen-
tal data and simulator predictions. As such, the calibration process
becomes a Bayesian inference. Consequently, the process takes into
account multiple sources of uncertainty in the result. Appropriately
acknowledging multiple sources of uncertainty in the calibration pro-
cess can provide a hedge against overfitting, where the calibrated pa-
rameters are overly specific to the data used for the calibration and
not applicable in a different setting of controllable inputs.

Two steps are involved in conducting a Bayesian inference. The first
is a formulation of a probabilistic model for all the terms in Eq. (5.3).
In essence, the resulting model represents a data-generating processBayesian inference

of the observed experimental data, incorporating the elements of Eq. (5.3)
into it. An approach to formulate a probabilistic model is presented in
Section 5.2. The probabilistic model is then conditioned on the given
experimental data to obtain an updated (posterior) probability distri-
bution of the model parameters. Dealing with a high-dimensional
arbitrary probability distribution is difficult and most of the computa-
tions involving the posterior probability distribution resort to directly
generating samples from it. Indeed, the computation of the posterior
distribution or any transformation of it (e.g., variance of a function)
is the second step of the inference and is presented in Section 5.3.

5.2 bayesian formulation of calibration problem

The Bayesian framework for model calibration begins by construct-
ing a probabilistic model of yE given in an additive formulation of
Eq. (5.3). That is, it aims at formulating the data generating process
YE(xc;λ). This model implies that the experimental data yE taken
at particular xc observed at λ is a realization of a stochastic process.
Furthermore, this probabilistic modeling entails casting any uncertain
element in Eq. (5.3) either as random variable or stochastic process.

5.2.1 Probabilistic Model for the Model Bias Term

Recall the relationship between the true system response and its pre-
diction by a simulator (Eq. (5.2)) rearranged below:

δ(xc,λ) = yT (xc,λ) − yM(xc, x̂m,λ)

where the prediction yM is made using the best but unknown value
of the model parameters. As such, the model bias function δ rep-
resents a possible systematic difference between the true system re-
sponse and the simulator prediction that still remains, even from us-Model bias, possible

origins ing a simulator with the best set of model parameter values. Possi-
ble sources for this bias are missing physics in the physical models,
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numerical approximations, or any other simplifications in the simu-
lator whose effects on the prediction are unknown a priori. As such,
the bias term tends to be systematic and dependent on the control-
lable inputs xc and the observation layout Λ [205]. Note that, strictly
speaking, there is a dependence of x̂m on δ, but this dependence is
suppress from the notation; x̂m, though unknown, should in princi-
ple be a unique set of values valid for all xc [92, 93].

The unknown model bias function δ can be represented as a ran-
dom function D(◦),

(YT − yM(xc, x̂m,λ)) ≡ D(xc,λ) (5.4)

Casting the unknown model bias term as a stochastic process is the
salient feature of Bayesian calibration framework proposed by Kennedy
and O’Hagan [83]. In particular, a stationary Gaussian process (GP) Gaussian process

formulationD(xc,λ) on XC ⊆ RDc and on Λ is used to represent the term:

D(◦, ◦) ∼ GP(mδ(◦, ◦;ψδ),Kδ((◦, ◦), (◦, ◦);ψδ)) (5.5)

where mδ and Kδ are the mean function and the covariance function
of the GP, respectively; and ψδ is the hyper-parameters associated
with the specification of the GP for the model bias function (e.g., its
covariance kernel, {σ, θ,p}, see Chapter 4). Under a GP formulation,
the notion of systematic bias mentioned previously is described statis-
tically in terms of the mean and the covariance of the GP [205].

For a selected values of xc and λ, the GP becomes a Gaussian ran-
dom variable,

D(xc,λ) ∼ N(mδ(xc,λ;ψδ), s2δ(xc,λ;ψδ)) (5.6)

where s2δ is the standard deviation at controllable input xc observed
at λ, under the parametrizationΨδ of the GP. Finally, for observations
on multiple combinations of the controllable inputs or the complete
observation layout Λ, the GP becomes a multivariate Gaussian ran-
dom variable, taking into account correlations of the bias at different
elements of the observation layout,

D(xc,Λ) ∼ N(mδ(xc,Λ;ψδ),Σδ(xc,Λ;ψδ)) (5.7)

where Σδ is the (symmetric) covariance matrix of the bias at control-
lable input xc observed on Λ, under the parametrization Ψδ of the
GP. The size of the matrix is P× P, with P the product of the number
of different combinations of the controllable inputs and the number
of elements in the observation layout.

Incorporating a bias term in the calibration procedure is important
to avoid overfitting in the model parameters estimates. To illustrate Model with

negligible bias,
illustrated

this idea, consider a calibration process for a simulator whose bias
is negligible, with a single uncertain model parameter and a single
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controllable input xc as shown in Fig. 5.2a. The thin black lines be-
tween the two bounding thick black lines indicate the simulator pre-
dictions at different values of the model parameter. As can be seen,
the range of the model parameter values can in principle be con-
strained to match the observed data (crosses) within the observation
uncertainty. Furthermore, the range of the model parameters will in-
creasingly become smaller with increasing number of data (such that
the associated observation uncertainty becomes increasingly narrow
as well). In other words, the calibrated model parameter converges to
the “true” value [93, 207, 208]. This parameter value will be valid for
prediction outside the calibration domain (i.e., extrapolation at differ-
ent values of controllable inputs where no data has been observed).

●
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●

xc

y

(a) Simulator with negligible bias and
calibrated simulator.

●

●

●

xc

y

(b) Simulator with non-negligible bias
and calibrated simulator.

Figure 5.2: Illustration of predictions made by computer simulator with and
without non-negligible bias, both with an uncertain model pa-
rameter and a controllable input xc. Crosses are the observed
data along with the associated uncertainty taken at different con-
trollable inputs xc. Bold lines are the simulator prediction using
the maximum and minimum of the uncertain model parameter,
thin lines are the prediction with different values of the model
parameter, and dotted lines are the prediction outside the cali-
bration domain using model parameter calibrated without a bias
term. The scales in the axes are arbitrary.

On the other hand, some simulators would have an apparent bias
such that their predictions would remain inconsistent with the ob-
served data, regardless of the choice of the model parameter values
(Fig. 5.2b). Calibration can still be conducted such that the discrep-Model with

non-negligible bias,
illustrated

ancy between data and prediction is minimized in some sense (i.e.,
some kind of best-fitting model parameter value). The calibrated pa-
rameter would be able to predict calibration data well, but not for pre-
diction outside the calibration domain. The situation becomes more
problematic when more precise data becomes available such that un-



5.2 bayesian formulation of calibration problem 147

certainty associated with the observed data becomes narrower. In that
situation, the uncertainty associated with the calibrated model param-
eter will also become narrower up to a point value (in this particular
example). This illustrates the two symptoms of overfitting the model Overfitting

parameter: the calibrated model parameter is biased (i.e., having a
wrong value) and its uncertainty is degenerate (i.e., increasingly sure
on the wrong value with higher precision of the observed data). The
latter symptom is particularly troublesome as it inflates the degree of
confidence one has on the prediction.

The situation of a biased model is prevalent in complex physics-
based simulators, whose constituent physical models were developed
using scientific theory and supported by experimental data. This ap- Physics-based

simulatorsproach forms the scientific basis for making prediction, especially
in the region outside the calibration domain [209]. It is hoped that
such an approach would be more robust than using purely statistical
model of observed data [93, 205]. However, certain degree of simpli-
fications from numerical approximation to ignored physical process
due to a lack of knowledge are expected to persist [2]. Furthermore,
the strong scientific foundation and the experimental data support of
physical models often only apply to the separate constituent models
of a complex simulator [48]. In practice, the simulator consolidates nu-
merous models to simulate the behavior of a (more) complex system
outside the calibration domain. As such, it can also be expected that
the predictions from such simulators would exhibit certain degree of
bias (from the true value) that is unknown a priori.

One might argue that if a model is known to be biased it simply
requires more developmental effort to correct the bias by putting ad-
ditional models for the missing physical processes. However, as ar-
gued in [11, 209], this approach might not be the best solution as
additional models often require even more model parameters to be
calibrated and thus call for even more supporting data that cannot
be met. Additionally, as noted in [48, 93, 208], it is often impractical
(nor realistic) for an analyst to revise the inner workings of a large
complex simulator. Yet, to wait until a better simulator is available
before making any prediction is simply not constructive.

In a Bayesian framework, the statistical description of the model
bias term can potentially alleviate the problem of overfitting. Because Statistical

description of the
model bias

the model parameters and the model bias are not fully identifiable
according to Eq. (5.2)1, having more precise data will not make the
uncertainty associated with the calibrated model parameters to col-
lapse (i.e., its distribution becomes degenerate) [93, 208]. Whether the
calibrated model parameters and the associated uncertainties are ap-
plicable for extrapolation outside the calibration domain, however,
depends on whether the bias term is modeled properly [86, 92, 93,

1 that is, without further prior information, arbitrary choice of x̂m fits the data per-
fectly well for arbitrary choice of δ. In other words, the two terms are confounds.
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207–209]. Thus, such a statistical description of the model bias is not
a magic bullet in the calibration of a biased model. It does, however,
provides additional flexibility in incorporating either prior knowl-
edge or a prior expectation regarding model deficiency.

At this point, it is worth revisiting the meaning of calibrated pa-
rameters in a simulator with bias. In a simulator without bias it is
straightforward to justify that the calibrated model parameters as
the “true” parameter values of the specified model. If the model isPhysical parameters,

“true” values physics-based then they also correspond to physical parameters. As
argued in [207, 208], physical parameters often have meaning outside
the world described by the model where the parameters reside. More-
over, having a true value, such physical parameters would generally
be applicable to extrapolation outside the calibration domain.

On the contrary, as illustrated in one of the examples above, cali-
brated model parameters in a simulator with bias act as best-fitting
parameters that allow the simulator to fit, in some sense, the calibra-
tion data. Incorporating model bias term might help in alleviating theTuning parameters,

best-fitting values problem of overfitting, but the a priori arbitrariness of the model bias
term confounds with the model parameters itself, making the result-
ing calibrated model parameters more difficult to interpret [210]. As
such, in practice, it is important to emphasize that calibrated model
parameters in a simulator with bias will simply be optimal under
particular assumptions (e.g., criteria, model bias term) [48]. Ref. [208]
went further by arguing that such model parameters (tuning) had
limited scientific values and would not help for extrapolation.

Regarding this dichotomy, the present thesis takes a more prag-
matic view: the distinction is rather irrelevant. It is awkward to dis-
cuss the true and wrong values of model parameters if the model it-
self is considered biased (i.e., to a certain extent wrong). In such cases,A pragmatic view

the notion of true parameter values is hard to justify, the model pa-
rameters might not have strict physical meaning and may not be of
interest in their own right. And yet, in a complex physics-based sim-
ulator (where possible systematic bias cannot be excluded), many of
these model parameters are being used in conditions different from
their calibration domain, regardless of the conceptual distinction (e.g.,
Refs. [28, 92]). Thus, the calibration of model parameters based on
the available experimental data should be aimed at guaranteeing that
the simulator remains applicable outside its calibration domain2. The
Bayesian framework accommodates this aim of calibration in a flex-
ible manner by taking into account multiple sources of uncertainty
through selection of prior uncertainties both for the model param-
eters and for the model bias term, which eventually results in the
associated posterior uncertainties.

2 or more eloquently in the words of Leamer [40], the resulting posterior uncertainty
associated with the calibrated model parameters is:“...wide enough to be credible
and the corresponding interval of inferences is narrow enough to be useful”.
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5.2.2 Probabilistic Model for the Observation error

Now recall the relationship between the true system response and its
observation through a measurement given in Eq. (5.1),

yE(xc,λ) = yT (xc,λ) + ε

The observation error term ε represents any possible error during the
measurement process, either from the imprecision of the instrument
or any other residual variability of the experiment. This variability, in Observation error,

possible originsturn, might be due to the inherently stochastic nature of the physi-
cal process (irreducible) or unrecognized and uncontrolled variables
(reducible) [83].

Because this term is considered unknown, a stochastic process is
defined on the observation layout,

E(λ) ∼ p(ε|ψε,λ) (5.8)

where ψε is the parametrization of the PDF describing the observa-
tion error ε at λ. That is, it depends on which response is observed,
as well as where and when it is observed.

An important assumption made on the distribution of the observa-
tion error is that it is independent conditional on the true value of the
system response. One can argue that the measurement data points Conditional

independencetaken from a spatio-temporal physical process would have (perhaps
complicated) correlation structure among them. But intuitively, as ar-
gued in [211], this structure becomes much simplified once the true
value is known; it can mainly be attributed to the residual variability
and instrument precision with a simpler description. The true system
response itself is already separately formulated in terms of the simu-
lator prediction and a model bias term (Eq. (5.2)). As such, any pos-
sible complicated structure of the error (either bias or correlation) is
already assigned to the model bias formulation and assuming a sim-
pler measurement error model (i.e., independent) is sufficient [211].
In any case, as noted in [83, 93], it will be difficult to distinguish two
correlation structures separately for the model bias term and obser-
vation error based on the data alone.

The particular distribution of the observation error is often assumed
to be a Gaussian in the applied literature [83, 93, 209, 211, 212], Gaussian

observation error
E ∼ N(0,σ2obs(λ)) (5.9)

or equivalently following the conditional independence assumption
explained above,

(YE|YT = yT (xc,λ)) ∼ N(yT (xc,λ),σ2obs(λ)) (5.10)

where σ2obs is the variance of the Gaussian distribution and is the only
hyper-parameter of this observation error specification. The value of
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the variance depends on the element of the observation layout λ.
Eq. (5.9) implies that the observation is taken without bias and the
error is independent (but need not be identically distributed) Gaus-
sian random variable.

5.2.3 Probabilistic Model for the Simulator

For a deterministic simulator yM, the probabilistic modeling of the
bias term δ and the observation error term ε are enough to formulate
a probabilistic model for the experimental observation YE. However,
following the development taken in Chapter 4, a Gaussian process
(GP) can also be used to represent a deterministic simulator using an
explicit formulation of a stochastic process. The prediction made by
the simulator at particular values of xc, x̂m, and λ is then given by,

YM(xc, x̂m,λ) ∼ N(m(xc, x̂m,λ;ψm), s2(xc, x̂m,λ;ψm)) (5.11)

where m and s2 is the kriging mean and the kriging variance, respec-
tively (see Section 4.3); and ψm is the hyper-parameters associated
with the specification of the GP (e.g., its covariance kernel).

This step is taken especially if the simulator is computationally ex-
pensive to evaluate and only a limited number of simulator runs can
be afforded [83, 92, 93]. The probabilistic model in Eq. (5.11) then
becomes an approximation to the actual simulator (i.e., a GP meta-
model). Furthermore, as explained in Chapter 4, the uncertainty asso-
ciated with a prediction by the metamodel at an arbitrary input point
stems from the fact that the simulator itself was not run at that input.
This prediction is based on the outputs of which the simulator was
run (i.e., the training data)3.

5.2.4 Posterior of the Model Parameters

Summarizing the above discussions for a deterministic simulator yM,Data generating
process, general

YM ≡ YM ∼ p(yM | x̂m, xc,λ) = δd(yM − yM(x̂m, xc,λ))

(YT − YM) ≡ D(xc,λ) ∼ p(δ |ψδ, xc,λ)

(YE − YT ) ≡ E(λ) ∼ p(ε |ψε,λ)

(5.12)

where δd is the Dirac delta function indicating that the simulator
prediction is exact (i.e., a degenerate density).

Suppose that the form of the densities in Eq. (5.12) are already
given, then the stochastic process YE is obtained by adding the terms
on the right hand side of Eq. (5.2). Assuming that they are indepen-

3 The statement “conditional on the training data” in Eq. (5.11), i.e.,
YM(xc, x̂m;λ)|Y(DM) has been implicitly assumed.
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dent, the PDF of YE is defined as the convolution of the terms [213],

p(yE|ψδ,ψε, x̂m, xc,λ) = . . .

(p(yM(x̂m, xc,λ)) ∗ p(δ |ψδ, xc,λ) ∗ p(ε |ψε,λ))(yE)
(5.13)

where ∗ is the symbol for the convolution operation. This formula-
tion implies that the deterministic simulator is embedded into the
probabilistic model YE.

Following the Gaussian distribution formulations for the model
bias, the observation error, and the simulator approximation, a nor- Data generating

process, Gaussianmal likelihood for the calibration problem can be obtained as follows,

YE = YM +D+ E

YM(xc, x̂m,λ) ∼ N(mM(xc, x̂m,λ;ψm), s2M(xc, x̂m,λ;ψm))

D(xc;λ) ∼ N(mδ(xc,λ;ψδ), s2δ(xc,λ;ψδ))

E(λ) ∼ N(0,σ2obs(λ))

(5.14)

As such, the data generating process YE under the Gaussian formula-
tion above is

YE ∼ N(m∗, s2∗)

m∗(xc, x̂m,λ;ψm,ψδ) = mM(xc, x̂m,λ;ψm) +mδ(xc,λ;ψδ)

s2∗(xc, x̂m,λ;ψm,ψδ,σ2obs) = s
2
M(xc, x̂m,λ;ψm) + s2δ(xc,λ;ψδ) + σ2obs(λ)

(5.15)

where m∗ and s2∗ are the mean and the standard deviation of the ex-
perimental data generating process under the Gaussian formulation,
respectively.

Given a set of experimental data y taken at xc and observed on
an observation layout Λ, the likelihood function is then defined as Likelihood function

follows

L(x̂m,ψδ,ψε; y, xc,Λ) ≡ p(yE = y|xc = xc, x̂m,ψδ,ψε,Λ) (5.16)

Under the Gaussian formulation, the likelihood function is obtained
by using the Gaussian density of Eq. (5.15) for p. Note that if the
set of experimental data is simultaneously given on the observation
layoutΛ then the covariance matrix Σ∗ is used instead of the standard
deviation s2∗ ,

Σ∗(xc, x̂m,Λ;ψm,ψδ,ψε) =ΣM(xc, x̂m,Λ;ψm) + . . .

Σδ(xc,Λ;ψδ) + Σobs(Λ;ψε)
(5.17)

where ΣM, Σδ, and Σobs are the P × P covariance matrices of the
simulator approximation, the model bias term, and the observation
error, with P the dimension of the experimental data.
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According to the Bayes’ theorem, the joint posterior probability of
the model parameters xm and the hyper-parameters associated withJoint posterior

density the model bias and the observation error is given as,

p(x̂m,ψδ,ψεy |y, xc,Λ) = . . .

L(x̂m,ψδ,ψεy ; y, xc,Λ) · p(x̂m) · p(ψδ |Λ) · p(ψεy |Λ)

p(yE = y | xc = xc,Λ)

(5.18)

where p(x̂m), p(ψδ;Λ), and p(ψεy ;Λ) are the prior probabilities for
the model parameters, the model bias hyper-parameters, and the ob-
servation error parameters, respectively.

The denominator of the Eq. (5.18) is a normalizing constant with
respect to the model parameters and the hyper-parameters such that
Eq. (5.18) is a valid probability density (i.e., integration over the do-
main yields the value 1.0). As such, it is defined as a multidimen-Normalizing

constant sional integral of the following,

p(yE = y | xc = xc;Λ) =

∫
L(x̂m,ψδ,ψε; y, xc,Λ) · . . .

p(x̂m) · p(ψε |Λ) · p(ψδ |Λ)dx̂mdψεdψδ

(5.19)

The specifications of the likelihood and the associated priors com-
pletely specify the Bayesian statistical calibration framework for the
model parameters. The full Bayesian formulation for the model pa-
rameters calibration given in Eq. (5.18) involves numerous parame-
ters. Besides the model parameters and controllable inputs, the com-
plete formulation above also involves additional parameters associ-
ated with the statistical models: ψδ, ψobs, and ψm the (hyper-)para-
meters for the model bias, the observation error, and the simulator ap-
proximation, respectively. By simultaneously calibrating them against
experimental data, the uncertainties due to the specifications of the
model bias, the observation error, and the simulator approximation
up to their (hyper-)parametrization are taken into account. In princi-
ple, the hyper-parameters are now also part of the calibration prob-
lem, increasing the size (in dimension) and the complexity of it. Be-
fore presenting a simulation method to make inference on the model
parameters, a modularized approach [186] to simplify the problem
is introduced beforehand in the following, assuming the Gaussian
formulation.

5.2.5 Modularization of the Bayesian Framework

The formulation presented above is naturally compartmentalized into
three distinct modules: the GP metamodels for the simulator approx-Modularization,

motivation imation and the model bias term, and a multivariate Gaussian dis-
tribution for the observation error. In a modularized approach, in-
stead of simultaneously calibrating all the parameters involved with
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experimental data, the hyper-parameters associated with each of the
modules are separately estimated and then fixed in the downstream
analysis. The main reason for this simplification is the concern that
the parameters involved might be poorly identifiable with respect
to the experimental data, especially between parameters (and hyper-
parameters) in the different modules. This, in turn, causes difficulty
in making inference about the model parameters [186]. Moreover,
there is a computational incentive in limiting the number of hyper-
parameters in the calibration. Though the simulation method of Sec-
tion 5.3 tends to have less severe dependence on the problem dimen-
sion, more parameters often also increases the complexity of the prob-
lem and causes the method to converge slowly. A lack of identifiabil-
ity is an example of such an increase in complexity not present in the
calibration problem of a lower dimension.

Consider first the modularization of the metamodel for the sim-
ulator approximation. It is natural to consider the outputs of actual Modularization of

the metamodelsimulator runs (and not the experimental data) to be the basis of meta-
model construction. Moreover, experimental data tends to be scarce,
while the simulator runs would be relatively easier to generate across
the range of inputs. Indeed, this what was done in Chapter 4, where
the training of the metamodel was separated from the calibration of
the model parameters. The training step, where the hyper-parameters
associated with the metamodel were estimated using Maximum Like-
lihood Estimation (MLE), was done only on the basis of simulator
runs (i.e., the training data). Afterward, the metamodel was required
to accurately predict the simulator outputs for arbitrary inputs (both
model parameters and controllable inputs) within a predefined range
via an independent validation step using additional simulator runs.
The estimated hyper-parameters of the GP metamodel was kept con-
stant during the validation step and the performance of the meta-
model was not assessed with respect to the experimental data.

Modularizing the model bias term is more intricate due to inherent
confounding between this term and the unknown best model param-
eters. Model bias is defined as the difference between true response Modularization of

the model bias termvalue and the simulator prediction using best, but unknown model
parameters (Eq. (5.2)). The model bias itself is unknown (uncertain) a
priori. As such, without further information, experimental data alone
cannot be used to distinguish between the model bias term and the
model parameters. When GP is used to represent the uncertain model
bias, this problem typically becomes worse as it introduces multiple
hyper-parameters associated with the GP specification.

Due to this confounding, modularizing the model bias term is com-
monly carried out such that the hyper-parameters associated with
the GP of the bias term can be fixed prior to the calibration of the
model parameters. There are no consensus in the literature on how
exactly such fixed values of the hyper-parameters are obtained. How-
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ever, Refs. [83, 92, 93, 214] provide a common theme in the modular-
ization of the model bias term through MLE of the hyper-parameters
based on an initial fitting the difference between the simulator pre-
diction (evaluated using selected value, or values, from the prior of
the model parameters) and the experimental data. Refs. [93, 214], for
instance, adopt a pragmatic approach where a GP for the model bias
term is fitted (and their corresponding hyper-parameters estimated)
based on the differences between simulator prediction using the prior
mean of the model parameters and the experimental data across con-
trollable inputs and on the observation layout. This provides an initial
estimate of the bias. Afterward, depending on what expectation or
assumption are put on the bias term, the estimated associated hyper-
parameters can still be allowed to vary in the downstream analysis.

Lastly, one of the main sources for estimating the parameters of
the experimental observation error model (i.e., the variance under
Gaussian formulation) is the replications under the same experimen-
tal condition. If those are not available then alternative sources must
be consulted. For instance, experimentalist would have an idea onModularization of

the observation error
model

the extent of the observation error and often, these figures can be
found in the experiment report. If these are not to be found and point
estimate of these parameters cannot be justified, then prior distribu-
tion on the parameters should be assigned. In this case, many analy-
sis in the applied literature assume prior distribution with different
degree of informativeness for the scale parameter (e.g., exponential,
half-Cauchy, inverse-Gamma, etc.) [88, 93, 209].

The modularization approach represents a series of compromises
between having a full uncertainty analysis and having a more tractable
formulation of the model parameters calibration problem [83]. SuchModularization, a

compromise compromises then become part of the modeling decision in order to
simplify a particular calibration problem: fixing the hyper-parameters
associated with the GP metamodel Ψm at estimated values implies
that the uncertainty in the simulator approximation is not taken into
account completely; fixing the hyper-parameters associated with the
GP model for the bias term Ψδ at estimated values implies that the
uncertainty in the bias is not taken into account completely; and fix-
ing the parameters associated with the Gaussian distribution of the
observation error Ψε at estimated values implies that the uncertainty
in the observation error is not taken into account completely.

Meanwhile, completely taking into account all sources of uncer-
tainty up to their level of hyper-parameters (and parameters for the
observation error model), at the cost of increasing model complexity,
might not be necessary. Indeed, as it was reported in Refs. [83, 92, 93,Modularization,

justification 186, 205], the effect of the additional sources of uncertainty at that
level were relatively minor on the calibration results. This is due to
the fact that the variation in the simulator prediction is largely deter-
mined by the uncertainty about the model parameters and the control-
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lable inputs rather than the uncertainty about the hyper-parameters.
Hence, it is more important in the simplified analysis to recognize
what is being compromised above and to recognize properly the
sources of uncertainty in the calibration at the level of metamodel
(i.e., simulator approximation), model bias, and observation error in
the first place.

5.3 Markov Chain Monte Carlo (MCMC) simulation

The formulation of the Bayesian calibration of a computer model
presented above results in a joint posterior PDF for all the param-
eters involved in the resulting probability model p(x |y) (Eq. (5.18)
in Section 5.2.4). This density contains all the information (and con- Posterior

uncertainty of the
model parameters

sequently, the uncertainties) regarding the model parameters condi-
tioned on the observed data and the assumed data-generating pro-
cess. The uncertainties associated with the model parameters can then
be represented using different summary statistics, many of which in-
volve integration.

For example, the uncertainties associated with a model parameter
xd can be represented by its variance, which is defined as

V[Xd] ≡ E[X2d] − E2[Xd]

=

∫
X

x2d p(xd, x∼d |y)dx−

 ∫
X

xd p(xd, x∼d |y)dx

2

where x = {xd, x∼d} stands for the the set of model parameters xm
in Sections 5.1 and 5.2; and the integrations are carried out over the
domain X. An alternative way to summarize the uncertainties of a
model parameter is through its θ-quantile Qθd, which for parameter
xd is defined as

Qθd : P(Xd 6 Qθd) ≡
∫Qθd

inf Xd

∫
X∼d

p(xd, x∼d |y)dx∼d dxd = θ

In this manner, the 95% confidence interval of the parameter is writ-
ten as Q0.025

d 6 Xd 6 Q0.975
d .

Though these summaries might be of interest, in an application set- Posterior
uncertainty of the
model prediction

ting, the model parameters uncertainties are often propagated through
the simulation model to obtain the uncertainty in the prediction. Hence,
the output from a simulation model y = f(x) is expressed as a ran-
dom variable Y from the transformation of a random variable X |y by
the function f

Y = f(X | y) ; pX |y(x) = p(x |y)

where the PDF of X |y is the posterior density p(x |y). The actual
PDF of Y follows the rule of transformation of random variable and it
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represents the uncertainty in the output due to the uncertainty in the
input parameters conditioned on the data. This uncertainty can also
be summarized with various statistics and, as before, many of these
involve integration. For instance, the variance of the output:

V[Y] =

∫∞
−∞ f2(x)p(x|y)dx−

(∫∞
−∞ f(x)p(x|y)dx

)2
The posterior density p(x |y) and the function f(x), however, are

in practice highly multidimensional functions and performing their
integration numerically is harder with an increasing number of input
parameters. At the same time, conducting MC simulation for estimat-Challenges in

dealing with
posterior density

ing the integrals (as was done in Chapter 3 in the estimation of the
Sobol’ indices) is not straightforward in this case. The multiplication
of likelihood p(y | x) and prior density p(x) will, in general, yield
an arbitrary posterior density not available in a closed-form expres-
sion ready to be sampled from. As a result, generating independent
samples from the posterior density required for the MC estimation
becomes a difficult task.

This section presents an approach, the so-called MCMC simulation,
to directly generate samples from an arbitrary PDF. These samples
are useful for estimating various quantities given as examples above.
This technique works with less severe dependence on the dimension
of the input parameter space.

Although in the context of Bayesian data analysis the PDF of inter-
est is the posterior PDF [215], generating samples from an arbitrary
PDF is a general problem. As such, in the following, a generic nota-
tion for an arbitrary PDF p(x) is used instead of p(x |y).

5.3.1 Motivation

Consider the following problem: Generate a set of samples {xn}
N
n=1

from a random variable X, given the PDF p : X ⊆ RD 7→ R>0. It isProblem statement

assumed that the PDF can be evaluated at any given x ∈ X, at least
up to a proportionality constant. That is,

p∗(x) = Cp(x) (5.20)

The proportionality constant in the above equation is the normalizing
constant such that p is a valid PDF,

∫
p(x)dx = 1 ⇔ C =

∫
p∗(x)dx.

Carrying out the integration of p∗ can be problematic in its own right
especially for a highly multidimensional function (such as the nor-
malizing constant of a posterior density given in Eq. (5.19)). There-
fore, generating a set of samples simply by knowing p∗ instead of p
is advantageous.

The generated samples can then be used, among other things, to
evaluate different summary statistics (such as expectation, variance,
etc.) of x itself or of any function under the PDF.
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In the rest of the section, the term model input parameter space X
is replaced by the term state space, the range of possible values of the
random variable X; a more appropriate term in the context of generic
problem of generating samples from a distribution.

Generating samples from an arbitrary multidimensional density
function is generally a difficult task. Intuitively, for a given sample A correct sampling

size, correctly generating samples from a density means that the sam-
ple values have to be distributed proportionally to its PDF. There
should be more samples in the region where the PDF value is high,
and less in the the region where the PDF value is low. For a complex
multidimensional density function, these locations are not known a
priori and might have to be identified exhaustively [98].

In one dimension, the most common way of generating sample
from a given density is by inverse transform sampling coupled with a
random number generator. The approach requires the quantile func- Inverse transform

samplingtion of the PDF. To obtain the quantile function, the density has to
be integrated and its normalizing constant has to be computed. Ap-
pendix D.4 provides a more detail account on the topic. Many univari-
ate random variables are widely studied and the analytical solutions
to their quantile functions are available [216]. However, the method is
not readily extendable to distributions of higher dimension. Addition-
ally, though sampling algorithms exist for several multivariate densi-
ties (notably, the multivariate normal density – See Appendix D.5),
this will not be the case for an arbitrary PDF of higher dimension.

To illustrate the difficulty to generate samples from an arbitrary
multivariate probability distribution, consider the following unnor- Illustration

malized bivariate PDF parametrized by the location parameters µ1,µ2
and the scale parameters σ1,σ2 [217]:

p∗(x1, x2) =
exp (−(x1 − µ1)/σ1) exp (−(x2 − µ2)/σ2)

(1+ exp (−(x1 − µ1)/σ1) + exp (−(x2 − µ2)/σ2))3

x1, x2 ∈ R;µ1,µ2 ∈ R; andσ1,σ2 ∈ R+

(5.21)

Fig. 5.3 shows the contour plot of the joint density as well as the
marginal density for each of the variate, for selected range of values
of its parameters.

A straightforward approach to generate samples from a given mul-
tivariate density is done by first discretizing the state space of the den- Discretized grid

approachsity function and evaluate the density at the discretized points. Sup-
posed the domain of the density has been discretized uniformly in
each dimension with a level ∆ resulting in {(x1,i , x2,j); i, j = 1, . . . , I}
with I the number of discretized points. At the discretized levels, the
probability for each value of (x1,i , x2,j) is approximated by p(x1,i , x2,j)

= p∗(x1,i , x2,j)/
∑
i,j p
∗(x1,i , x2,j)

4. The set {p(x1,i , x2,j); i, j = 1, . . . , I)}

4 strictly speaking, each density value has to be multiplied by the hypervolume of the
grid to obtain the probability mass, but the term cancels out in computing p.
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Figure 5.3: Joint and marginal densities plots of the unnormalized PDF in
the example. The parameters used in the example are: µ1 =

5,µ2 = 2,σ1 = 1.25, and σ2 = 3.

constitute a complete discrete probability distributions. Generating
samples from such a probability distribution is straightforward in a
modern computing environment [98].

Fig. 5.4 illustrates this procedure for the example given above. First,
the state is windowed in X ∈ [−25, 25]2 before being discretized in
∆ = 50 levels. This results in 2 ′601 discretized points at which theDiscretized grid

approach illustrated density is evaluated (Fig. 5.4a). Next, the density values are taken to
be the probability for each of the 2 ′601 discretized points. Together
they make up a complete discrete probability distribution from which
samples can be readily generated.

Fig. 5.4a shows 5 ′000 samples generated from the discrete distribu-
tion. Darker points indicate that the values have been sampled mul-
tiple times following the actual underlying PDF (the contour of the
analytical joint density is overlaid). Figs. 5.4b and 5.4c show the his-
tograms for each of the marginals. The figure shows that the gener-
ated samples are indeed approximately distributed as the given PDF.

The main issue with the discretized grid approach, conceptually
simple as it is, is the curse of dimensionality similar to the one men-
tioned in the previous chapters. The number of density evaluationsCurse of

dimensionality grows exponentially with the number of dimension. As a rule, for a
given discretization level ∆ and a given dimension D, the number of
density evaluations is (∆+ 1)D.

Moreover, many of the evaluations on the grid exemplified above
are potentially wasteful for carrying out an integration over the den-
sity, especially if the cost for evaluating the density is non-negligible.
Assuming a well-behaved function of interest inside the integral, some
regions of the state space will contribute more to the integration than
the others. In fact, this “region of space where it matters” is relatedIntegration over a

density, typical set
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Figure 5.4: Sampling from a multivariate density by discretizing the state space in grids. Each
dimension of the state space is discretized into ∆ = 50 levels. The density is then
evaluated at the discretized points. (Left) 5 ′000 samples are generated following the
resulting discrete probability distribution; (Center and Right) The histograms of the
marginals approximately follow the shape of the respective analytical marginal density.
The marginal densities have been normalized to match the peak of the histogram.

to the mathematical notion of the typical set of a distribution [98].
Loosely speaking, it can be thought of as the region of state space
where the probability mass (density times volume) is concentrated.
Consequently, any integration over the whole state space of a density
can be approximated by an integration over this typical set [98]. Al-
though the location of the typical set for the example above is rather
trivial (the region around the center of the density), it will not be
the case for an arbitrary high-dimensional PDF (such as a posterior
density)5. Having samples that are representative of a typical set is a
particularly challenging task in conducting MC integration over an ar-
bitrary high-dimensional PDF6. At the same time, if such samples can
be obtained then the performance of MC integration in high dimen-
sion would potentially be more efficient, requiring less function eval-
uations for the same accuracy level, than that of the grid approach7.

To circumvent these issues, a sampling technique based on the the-
ory of stochastic process is adopted [215, 218]. Specifically, by con- Markov Chain

Monte Carlostructing a Markov chain of the input parameters values, the resulting
process will eventually converge to a stationary distribution which
coincides with the distribution according to the given density (i.e.,
target density). Instead of blindly evaluating the density at every cor-

5 And in fact, the region around the mode of a distribution becomes less representative
of the typical set in high-dimension as it becomes smaller in comparison to other part
of the state space where the density value, albeit small, is non-negligible. This is yet
another example of the curse of dimensionality.

6 Recall that in Chapter 3, the MC integrations for Sobol’ indices estimation were
conducted over a uniform density thus it was only the property of the function of
interest that mattered.

7 Deterministic numerical integration is either based on or and improvement of the
discretized grid approach.
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ner of the state space, such a Markov chain will be directed to explore
the typical set of the distribution. As such, this family of techniques
potentially has less severe dependence to the dimension of the state
space. Generating such samples for the purpose of Monte Carlo (MC)
simulation by simulating a Markov chain is termed Markov Chain
Monte Carlo (MCMC).

The following briefly presents the basics of Markov chain and its
importance in solving the problem of generating samples from an ar-
bitrary PDF. Markov chain in continuous state space as well as some
important related concepts and theorems are first presented, with-
out proof and in a somewhat lax manner. A more precise statements
of these concepts and theorems are difficult without measure theory
which for the purpose of this thesis is irrelevant. Appendix D.8 pro-
vides the definitions and illustrations of some of these concepts for
a discrete state Markov chain where more intuitive matrix notation
and graphical representation are applicable. Finally, two methods to
construct a Markov chain for the purpose of MC simulation are intro-
duced and illustrated.

5.3.2 Markov Chain

A Markov chain is a discrete-time stochastic process. Recall that from
Chapter 4, a stochastic process is a collection of random variables
{X(i); i ∈ I} where I is an index set. The term discrete-time refers toDiscrete-time

stochastic process the fact that the possible values of the index set I are discrete. The
term time is used by convention but by no means exclusively referred
to the physical time. In this thesis, a more fitting alternative term
would be step or iteration.

Specifically, a continuous-state Markov chain on state space X ⊆ RD,
D being the dimension of the state space, is defined as a sequence of
random variables {X(i); i > 0} where the indices represents successive
time, steps, or iterations, such that the conditional probability of X(i)

given the previous iterations follows the Markov assumption. That is,Markov chain

P(X(i+1) ∈ A |X(i) = x(i), . . . ,X(0) = x(0)) = . . .

P(X(i+1) ∈ A |X(i) = x(i)), A ⊆ X
(5.22)

Put differently, the future value depends on the preceding values only
through the present one [105, 219].

A Markov chain is fully specified by three components:

• The state space X ⊆ RD, the set of values which can be taken by
the random variables X(i).

• The initial distribution of X(0), given by the density π(0)(x).

• The transition probability kernel (density) T(x, x ′) a function T :

X × X 7→ R. For any given x, T(x, ◦) defines the conditional
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probability density of X(i) given X(i−1) = x with the following
properties:

T(x, x ′) > 0, ∀ x, x ′ ∈ X∫
X
T(x, x ′)dx ′ = 1, ∀ x ∈ X

(5.23)

As T(x, ◦) is a PDF, then for any given x it also follows that,

P(X(i) ∈ A |X(i−1) = x) =

∫
A
T(x, x ′)dx ′ ; A ⊆ X (5.24)

The distribution of X(i) due to the transition from the previous iter-
ation X(i−1), is given by the transition probability kernel T operated
on the density function of the previous iteration π(i−1) such that,

π(i)(x ′) =

∫
X
π(i−1)(x) T(x, x ′)dx ≡ (π(i−1)T)(x ′) (5.25)

where π(i)(x ′) is the PDF of X(i). The rightmost definition signifies
that the integration of the density function with the transition kernel
is taken as an operator on the density function π(i−1) resulting in
π(i) [220, 221]. As such, given the initial distribution of the chain X(0)

and the transition kernel T , the distributions of all the other Markov
chain iterations are determined by repeating the integration for each
successive iterations. This, in terms of the transition operator, is

π(i)(x) = (π(0)T i)(x)

≡
∫
· · ·

∫
X

π(0)(x(0)) T(x(0), x(1)) . . . T(x(i−1), x)dx(0) . . . dx(i−1)

(5.26)

A density π∗ is said to be stationary with respect to a transition
kernel T if the density is invariant under transition. Specifically, Stationary density

(π∗T)(x) = π∗(x) (5.27)

In other words, once the chain reaches the stationary density, it will
stay there and the chain itself becomes stationary.

The notion of stationary density of a Markov chain is central to
the application of Markov chain for generating samples from an ar-
bitrary probability density. Under certain conditions (i.e., irreducible, Fundamental

theorem of Markov
chain

aperiodic, and Harris recurrent – See Appendix D.8) for the transition
kernel T , a stationary density π∗ exists, is unique and is the limiting
density of the stochastic process, such that

lim
i→∞ |(πT i) − π∗| = 0, ∀π ∈ D (5.28)

where D is the set of all possible PDFs on X. It implies that regard-
less of the starting density, some transition kernels will converge to
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a unique stationary density. This in turn, is of practical importance
when the transition kernel in an MCMC algorithm is designed such
that the given target density is the stationary density. This statement
of the existence, the uniqueness, and the convergence of a stationary
density is the fundamental theorem of Markov chain [220, 222].

Although the previous theorem provides the mathematical founda-
tion for constructing an MCMC algorithm, it is the property of theCentral Limit

Theorem sample path8 of a finite length, {x(i)}Ii=1, that matters when conduct-
ing an actual MCMC simulation [222]. By adding additional condi-
tions on T9, another theorem states that for a given Markov chain
{X(i)}Ii=1 with stationary density π∗ and for any function f : X 7→ R

the following asymptotic result holds,

lim
I→∞ 1

I

I∑
i=1

f(X(i)) − Eπ∗ [f] ∼ N

(
0,
σ2f
I

)
(5.29)

That is, the difference between the sample mean and the expected
value converges in distribution to the normal distribution with vari-
ance σ2f/I. σ

2
f is the variance of the function evaluated under the

stationary density of the chain. The theorem implies that for a long
enough chain (assuming that the stationarity has been attained), the
function f integrated along the target PDF π∗ and consequently the
QoIs as exemplified in the opening of this section can be estimated
with the sample mean of f evaluated at the points of the sample path
{x(i)}Ii=1. Finally, the theorem provides a basis for estimating the error
of an estimate computed by MCMC samples of a finite size.

Though similar to that of MC standard error [223], it is important to
note that successive realizations of the Markov chain are not, by con-
struction, independent and identically distributed. The consequence
of this will be revisited when the topic of analyzing samples of a
Markov chain is discussed in Section 5.4.

In generating samples from a target density, the engineering isDetailed balance
condition done somewhat in reverse: “Given a target density πt, construct T

such that its stationary density π∗ converges to πt”. Thus it is worth-
while to note the detailed balance condition which is a central condition
for an MCMC algorithm. A Markov chain with transition kernel den-
sity T(◦, ◦) satisfies the detailed balance condition if there exists a
probability density π such that,

π(x) T(x, x ′) = π(x ′) T(x ′, x) ∀ x, x ′ ∈ X (5.30)

As a result, the chain is said to be reversible. Formally, for A ⊆ X,Reversible Markov
chain

P(X(i) ∈ A |X(i−1) = x) = P(X(i) ∈ A |X(i+1) = x) ∀ x ∈ X (5.31)

8 Recall that from Chapter 3, a sample path is a realization of a stochastic process and
in this case, a realization of a Markov chain.

9 Namely, irreducible, aperiodic, Harris recurrent, and geometrically ergodic. Thus,
the chain is called (geometrically) ergodic.
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A reversible chain is a stationary chain [222]. Consequently, in an
MCMC algorithm, if the transition probability T satisfies the detailed
balance condition with respect to the target distribution πt, it ensures
the reversibility of the process and ultimately the stationarity of the
chain. Finally, by imposing the conditions (see Footnote 9), the station-
ary distribution of the chain π∗ converges to the target distribution
πt and the quantities of interest exemplified in the opening of this
section can be estimated.

5.3.3 Markov Chain Monte Carlo

Consider once more the problem set up at the start of the section:
Generate samples from a target probability distribution with a den- The objective

revisitedsity p(x), known up to a proportionality constant (Eq. (5.20)).
By acknowledging the theorems above, the task is then to construct

a Markov transition kernel such that the target density p becomes
the stationary distribution of the Markov chain. Thereafter, based on MCMC algorithms

such kernel, a realization of the chain is generated long enough for
the limiting distribution of the chain to be reached, i.e., to obtain sam-
ples representative of the target density p. As a result, the samples
generated from the realization of the chain converges, in distribution,
to the target density. This, in essence, is the objective of MCMC algo-
rithms as defined in Ref. [222].

One might think that the task of constructing a Markov transition
kernel would be difficult, especially considering the wide range of
possible target distributions which might call for different classes of
transition kernels. However, there exists a class of algorithms for gen- Metropolis-Hastings

algorithm, originerating Markov chains that guarantees its convergence (in distribu-
tion) to any target distribution as its stationary distribution10. The
Metropolis-Hastings algorithm and its various extensions remains the
most universal class of algorithms to generate such Markov chains
[224]. The method was first applied for a statistical mechanics prob-
lem by Metropolis et al. [101]11 and later generalized by Hastings
[102]12.

The MH algorithm prescribes two main components for construct-
ing transition kernels of a Markov chain that converges to the target
distribution: a proposal probability density q(x∗ | x) and an acceptance
probability α. The proposal probability density is responsible for gen- Metropolis-Hastings

algorithm, proposal
density

erating a proposal transition or candidate move x∗ for the Markov
chain at each iteration and it is in general a density conditional on
the previous state. This density is chosen such that it is easier to sam-
ple and indeed it is often selected from well-known densities such as

10 see [105, 224] for more rigorous treatment on the convergence properties.
11 There is apparently a controversy surrounding the attribution of the algorithm solely

to Metropolis, especially when his role was claimed to be nothing more “other than
providing computer time” [225].

12 There is, to the best of the author’s knowledge, no controversy here.
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the Gaussian or uniform densities. This proposal move, in turn, will
be accepted with a probability,

α = min
(

p(x∗)

p(x(i−1))
× q(x

(i−1) | x∗)

q(x∗ | x(i−1))
, 1.0

)
= min

(
p∗(x∗)

p∗(x(i−1))
× q(x

(i−1) | x∗)

q(x∗ | x(i−1))
, 1.0

) (5.32)

Where p(x∗) and p(x) are the values of the target density at theMetropolis-Hastings
algorithm,
acceptance
probability

proposed state and the previous state, respectively; and q(x(i−1) | x∗)
(q(x∗ | x(i−1))) is the value of the proposal density at the previous
(proposed) state conditional on the value of the proposed (previ-
ous) state. Notice from the ratio, that the proportionality constant
in Eq. (5.20) cancels out and only the unnormalized density p∗ is re-
quired. As such, the potentially difficult multidimensional integral in
Eq. (5.20) has been dispensed with by this formulation. The accep-
tance probability is formulated to satisfy the detailed balance condition
(Eq. (5.30)) for any valid proposal probability distribution. This, in
turn, guarantees the stationarity of the process [226].

If the proposal move is accepted it becomes the current state of the
chain, otherwise the chain remains at its current state for the given
iteration. To generate a Markov chain of certain length (i.e., certain
number of samples), the steps are repeated multiple times until the
required length of the chain is met. Algorithm 2 summarizes the steps
for constructing a Markov chain with the MH algorithm.

Algorithm 2 Metropolis-Hastings Algorithm
Generate samples from p(x) ∝ p∗(x) given proposal density q(x∗ | x)
in I iterations
Require: I > 0, p∗(x), and q(x∗ | x(i−1))
x(0) ← x0 ; ∀x0 ∈ X
for i = 1 to I do

sample x∗ from q(x | x(i−1))

α← min
(

p∗(x∗)
p∗(x(i−1))

× q(x
(i−1) |x∗)

q(x∗ |x(i−1))
, 1.0

)
sample u from U[0, 1]
if u < α then
x(i) ← x∗

else
x(i) ← x(i−1)

end if
end for

In the original paper of Metropolis et al., the proposal distribution
was chosen to be a symmetric distribution such that q(x∗ | x(i−1)) =
q(x(i−1) | x∗). As a result the terms associated with the proposal den-Random walk MH

algorithm sity in Eq. (5.32) cancel each other. Consequently, any proposal move
that yields an “improvement” on the target density evaluation will
be accepted, otherwise it will only be accepted according to its accep-
tance probability. This particularly simple MH algorithm results in a
random walk Markov chain and it is termed the random walk MH [224].
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To illustrate the application of the MH, particularly the random
walk MH, for generating samples from an arbitrary target distribu- Random walk MH

algorithm,
illustrated

tion, consider again the example of generating samples from the PDF
given in Eq. (5.21). For this example, the proposal distribution is cho-
sen to be a bivariate normal with a variance (the scale parameter) of
2.0 equal in both dimensions and without correlation. The initial state
of the chain x(0) is set to be at the origin.

The first three iterations of the random walk MH algorithm are il-
lustrated in Fig. 5.5. At the first iteration (Fig. 5.5a), a proposal move
is drawn from the bivariate normal distribution (centered at the ori-
gin). The proposal move brings the state closer to the center of the
target density, thus it is accepted (Fig. 5.5b). A new proposal move is
generated from the bivariate normal centered at the newly accepted
state. This time, because the proposal move moves farther away from
the center of the target density, it is rejected. The chain remains at the
current state and a new proposal move is drawn (Fig. 5.5c). Note that
this kind of proposal move will not always be rejected outright but is
subject to chance based on the acceptance probability.
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Figure 5.5: Illustration of the first three iterations in Markov Chain simulation by random walk
MH algorithm to sample the density given in Eq. (5.21) whose contours showed in
solid lines. The proposal density is an independent bivariate normal distribution with
σ2 = 2.0 whose contours showed in dashed lines, centered at current state.

By repeating those steps multiple times, the chain traverses the
state space according to the target distribution. Fig. 5.6a illustrates
the chain traversing the 2-dimensional state space of the density of
Eq. (5.21) for the first 250 iterations. In the long run, the chain will
spend more time in the regions where the density is high and less
time where the density is low13. Therefore, the resulting samples gen-
erated by the chain will be distributed according to the target distribu-
tion. Figs. 5.6b and 5.6c are the 1-dimensional trace plots for the chain
after 50 ′000 iterations. A trace plot shows the evolution of the chain trace plot

13 The goal of an MCMC algorithm is not, on the other hand, to obtain the parameter
value which maximizes the target distribution, at least not only. It seeks to explore
the state space in proportion to value of the density function [215].
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during the iterations and it is often the first graphical diagnostic tool
to spot any possible issue of convergence of a Markov chain [224].
In this particular case, the plots show that the chain seemingly con-
verges to particular region of the input state space and within this
region (i.e., the so-called typical set [98]) the chain randomly moves
from one state to another. It also indicates that x1 are centered differ-
ently than x2, and x2 has a relatively larger dispersion than x1.
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Figure 5.6: Illustration of a Markov chain simulation to generate samples from the target density
of Eq. (5.21). (Left) The chain traverses the state space. At each iteration, a move is
proposed and accepted in a probabilistic manner. (Center and Right) The trace plots.

After the iterations are completed, the resulting samples should
be distributed according to the target distribution. Indeed, this is
the case for the MCMC simulation. Fig. 5.7 shows that the resulting
samples are distributed according to the target distribution both as
the joint as well as its marginal. The joint distribution, in particular,
shows that the samples generated by MCMC simulation are corre-
lated according to the correlation contain in the density of Eq. (5.21).
Note that, in practice, the correct distribution of the resulting sam-
ples cannot be verified by comparing it to the analytical formula.
The whole point of generating samples via MCMC simulation is ex-
actly because such arbitrary high-dimensional distributions are hard
to characterize.

Although the theorems that underlie the application of MCMC al-
gorithm guarantee the convergence of the chain to the target distri-
bution, its rate of convergence is problem dependent. For many MH
algorithms, the choice of proposal distribution is particularly impor-
tant in determining the convergence rate of the algorithm in reach-
ing the target distribution as its stationary distribution. For instance,
Fig. 5.8 illustrates the case where the scale parameter of the proposal
distribution is set to be much larger than the actual scale of the target
distribution. As shown, because the proposal moves can jump fromOver-dispersed

proposal
distribution.

one side of the state space to another, they are rarely accepted and
the chain stucks at the same values for a long period. For the same
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Figure 5.7: Results of samples generated by a Markov chain simulation for the target density given
in the example. After 50 ′000 iterations, the samples resemble the actual shape of the
distribution both as a joint (Left) and as marginal distributions (Center and Right). The
marginal densities have been normalized to match the peak of the histogram.

length of the chain as before (50 ′000), the resulting distribution of the
samples (Fig. 5.8b) hardly resembles the target distribution.
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Figure 5.8: Convergence issue due to an over-dispersed proposal distribu-
tion (σ2 = 100.0).

Fig. 5.9 shows the behavior of the chain in the case of a variance
parameter for the proposal distribution that is too small in compar-
ison to the scale of the target density. In this case, any proposal Under-dispersed

proposal distributionmove around the previously accepted state would almost always be
accepted and the chain traverses the state space very slowly (see
Fig. 5.9a). Consequently, the resulting samples from the chain (with
the same length of 50 ′000 samples in this example) would not be rep-
resentative of the target distribution as illustrated in Fig. 5.9b. It is
important to note that, in both cases, the chain would eventually con-
verge in distribution for both parameters. But this convergence might
not be attained for a Markov chain of a practical length.
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Figure 5.9: Convergence issue due to an under-dispersed proposal distribu-
tion (σ2 = 0.01).

In fact, the optimal choice of the scale parameters for the proposal
distribution is closely related to the characteristic length scale of the
target distribution [98]. In practice, there would be little information,Tuning and adaptive

MH algorithms if any, on the characteristic length scale for each parameter of a given
density. As such, some tuning is required regarding the proposal dis-
tribution. This is the main motivation for the development of various
adaptive MH algorithms. In such algorithms, the proposal distribution
(and thus the transition kernels) are adapted during the iteration to
optimize the performance of the algorithm [224].

Instead of delving into any of the particular improvements on the
MH algorithm (such as through the adaptive schemes)14, this the-
sis adopted a relatively new MCMC algorithm based on an ensemble
Markov chain. The algorithm has the potential of requiring minimal
tuning to any given particular problem. The main ideas presented
above (i.e., proposal move and its acceptance probability) remain cen-
tral in an ensemble MCMC algorithm.

5.3.4 Affine-Invariant Ensemble Sampler (AIES)

Affine-invariant ensemble sampler (AIES) is an MCMC algorithm pro-
posed by Goodman and Weare [108]. Its main motivation is exactlyAIES, motivation

where the previous section left off: the difficulty in tuning or adapt-
ing MH algorithm to make them applicable to a wide class of target
distribution. The situation is typically worsened for a highly corre-
lated distribution of high dimension where some of the length scales
of the target distribution are very small forcing an adaptive algorithm
to spend the majority of its time tuning the scale of the proposal dis-

14 Ref. [106] provides an overview of adaptive MC algorithms, while Refs. [227–229]
are examples of adaptive algorithms.
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tribution, eventually resulting in a high overhead computational cost
for adaptation [109].

Through an affine transformation (to be defined further below), a
target distribution with a highly skewed aspect ratio15 can be made
less skewed and thus easier to be sampled from [230]. By ensuring
the algorithm to be affine-invariant, the performance of the algorithm
would then be equal under all affine transformations of the target dis-
tribution. Finally, implementing such a transformation to an ensem-
ble sampler16 results in an algorithm that requires minimal tuning
with respect to each of the state space dimensions (explained below).

AIES belongs to a class of MCMC algorithms that generates a
Markov chain on the state space of ensembles (i.e., ensemble samplers)
[108]. An ensemble ~X is a collection of L random variables {Xl}

L
l=1 Ensemble sampler

called walkers, each of which is in RD. That is, Xl = [Xl,1,Xl,2, . . . ,Xl,D].
The ensemble of Lwalkers are independent of each other with respect
to the target distribution p(◦). Specifically,

p(~x) = p(x1) · p(x2) · . . . · p(xL) (5.33)

Eq. (5.33) implies that the target distribution is being independently
sampled by L walkers.

A Markov chain of an ensemble, in turn, is a sequence of ensembles,

{~X
(i)

} for i > 0 that follows the Markov property while preserving the
condition in Eq. (5.33). Consequently, the Markov property lies on
the state space of the ensemble17, while the sequence of each walker
{X

(i)
l } itself needs not be Markovian [108].
In AIES, the transition between states of an ensemble is conducted

by carrying out an affine transformation to the ensemble. The transi- Affine
Transformationtion (thus the transformation) is carried out at the level of individual

walkers one at a time. In other words, an affine transformation fa is
defined such that,

fa : Xl 7→ Yl = MXl + b (5.34)

When applied to an ensemble of multivariate random variables ~X,

~Y = [MX1 +b, MX2 +b, . . . , MXL +b] (5.35)

where M is aD×D invertible matrix; and b is aD-dimensional vector.
In the context of MCMC simulation, ~Y would represent the proposal
move of the chain transition whose acceptance is subject to chance as
will be discussed further below.

15 Loosely defined as the ratio between different characteristic length scales of different
dimensions.

16 Sampler of many particles creating many paths, as opposed to a sampler of a single
particle in the conventional MCMC algorithm, such as the previous MH algorithm.

17 If each walker is in RD then an ensemble of L walkers can be thought of to be in
RDL.
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Suppose X is a multivariate random variable with a state space
X ⊆ RD and has a multivariate PDF p. Let Y = MX+ b, then the
PDF of Y, according to the change of variables rule [213], is given by

g(y) =
1

|det M|
p(M−1(y−b)) =

1

|det M|
p(x) ∝ p(x) (5.36)

In other words, barring a proportionality constant, Y is distributed
the same way as X. An ensemble MCMC algorithm is called affine-
invariant if the transition kernel of the algorithm follows the same
transformation:Affine-invariant

algorithm
T(~y, ~y∗) = CM,bT(~x,~x∗) (5.37)

where T(~y, ~y∗) is the transition kernel of the transformed variable;
T(~x,~x∗) is the transition kernel of the original variable; and CM,b is a
normalizing constant of the transition kernel, independent of the vari-
able. This implies that the algorithm sees no difference between sam-
pling the transformed variables or the original variables. An affine-
invariant algorithm thus requires no modification under any affine
transformation of the variables [108, 109, 231].

One particular implementation of an AIES MCMC algorithm is the
so-called stretch-move [108, 109]. As mentioned, the transition betweenAIES, stretch-move

iterations of an ensemble starts at the level of individual walkers. That
is, the update is carried out one walker at a time and for stretch-move
it proceeds as follows.

Let X
(i−1)
l be the walker l at iteration (i− 1) that need to be up-

dated. Let ~X
(i−1)

∼l , called a complementary ensemble, be the ensemble ofComplementary
ensemble walkers at iteration (i− 1), complementary to X

(i−1)
l . Specifically,

~X
(i−1)

∼l = [X
(i)
1 , . . . ,X(i)

l−1,X(i−1)
l+1 , . . . ,X(i−1)

L ] (5.38)

where all the walkers k < l have been updated to their respective new
states. Finally, let ~x(0) = [x

(0)
1 , . . . , x(0)L ] be the initial state of the chain,

arbitrarily chosen within the support of X.
In transitioning the ensemble to ~x(i), a proposal move is made for

one walker at a time and it follows an affine transformation:Proposal move

x∗l = xj + z(x
(i−1)
l − xj) (5.39)

where x∗l is the proposal move for the walker l at the current itera-
tion; x(i−1)l is the walker to be updated (i.e., walker l at the previous
state (i− 1)); xj is the complementary walker, randomly selected from
the complementary ensembles of ~x

(i−1)
∼l ; and z is the scaler of the

transformation (i.e., the stretcher), randomly generated from,

q(z) ∝ z−0.5, z ∈ [a−1,a] (5.40)

where a is a free positive parameter, and where the value of 2.0 is
widely used as default for many applications [104, 108, 109, 231, 232].
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Fig. 5.10 illustrates how a move is proposed in stretch-move for a
single walker in an ensemble of 10 walkers, in a 2-dimensional state
space. First, a walker in the ensemble will be updated while the rest Stretch-move,

illustratedof the walkers becomes its complementary walkers (Fig. 5.10a). Sec-
ondly, a complementary walker is randomly selected among the en-
semble of complementary walkers (Fig. 5.10b). Thirdly and finally, a
proposal scaler is randomly generated according to g and a proposed
move is made according to Eq. (5.39) (see Fig. 5.10c).

Complementary walkers

A walker

(a) A walker in an ensemble
of complementary walk-
ers

A randomly selected
complementary walker

(b) A complementary walk-
er is randomly selected

A proposal move

z = 0.75

(c) A move is proposed

Figure 5.10: Illustration of a stretch move update for a single walker in a 2-dimensional state space.

The probability of accepting this proposal move is given by, Acceptance
probability

α = min

(
p∗(x∗l )

p∗(x
(i−1)
l )

× zD−1, 1.0

)
(5.41)

where p∗(x∗l ) and p∗(x(i−1)l ) are the values of the (unnormalized) tar-
get density at the proposed and previous states, respectively; and D
is the dimension of the state space. As with the MH algorithm, if ac-
cepted, the proposal move becomes the current state of the walker;
otherwise, it remains in the previous state. The steps are then re-
peated for the current iteration until all the walkers in the ensemble
have been updated. Algorithm 3 summarizes the steps in the stretch-
move AIES MCMC algorithm.

To illustrate the application of the AIES algorithm for generating AIES algorithm,
illustratedsamples from an arbitrary target distribution, consider again the ex-

ample of generating samples from the unnormalized PDF given in
Eq. (5.21). The number of walkers is set to be 100 and the algorithm
is run for 500 iterations. In other words, there is 50 ′000 target density
evaluations. The initial state of the chain ~x(0) is set to be at the origin
for all walkers.
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Algorithm 3 Affine-Invariant Ensemble Sampler (Stretch Move)
Generate samples from p(x) ∝ p∗(x) using L walkers in I iterations.
Require: I > 0, L > I+ 1, p∗(x), and q(z)

~x(0) = [x
(0)
1 , . . . , x(0)L ]← ~x0 ; ∀~x0 ∈ XL

for i = 1 to I do
for l = 1 to L do

pick randomly xj from ~x
(i−1)
∼l

sample z from q(z) (e.g., Eq. (5.41))
x∗ ← xj + z(x

(i−1)
l − xj)

α← min
(

p∗(x∗)

p∗(x
(i−1)
l )

× zD−1, 1.0
)

sample u from U[0, 1]
if u < α then
x
(i)
l ← x∗

else
x
(i)
l ← x

(i−1)
l

end if
end for

end for

Fig. 5.11a shows the evolution of each individual walker traversing
the state space of variable x1. The Markov property of an ensemble isensemble samples,

trace plot not guaranteed for each individual walker. Thus, it is more suitable
to graphically diagnose the chain by plotting all the individual walk-
ers together. It is shown here that after an obvious initial phase, the
ensemble seems to converge and to stay around a particular region
of the state space. The width of the darker region, indicating region
of the state space visited more often, shows the dispersion of the vari-
able. This is confirmed by plotting the running empirical mean and
standard deviation of the ensemble (Fig. 5.11b). The values 5.0 and
2.3 shown in the plot are the analytical mean and standard deviation
of x1, respectively. Though not shown, x2 has a similar behavior.
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Figure 5.11: Trace plots of individual walkers and the running mean and
standard deviation for x1.
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After the iterations are completed, the resulting samples should
be distributed according to the target distribution. Fig. 5.12 shows ensemble samples,

marginalthat the resulting samples are distributed according to the target
distribution both as a joint as well as its marginal. Shown here are
the samples with the aforementioned “initialization phase” removed
from the final tally. It was estimated from the plot to last for about
100 iterations. Thus the final number of samples presented below is
(500− 100)× 100 = 40 ′000 samples.
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Figure 5.12: Results of samples generated by AIES. After 500 iterations of an ensemble of 100 walk-
ers (for a total 50 ′000 target density evaluations), the samples resembles the actual
shape of the distribution both as the joint distribution (Left) and as marginal distribu-
tions (Center and Right). The marginal densities have been normalized to match the
peak of the histogram.

The AIES algorithm requires minimal tuning to generate samples
from an arbitrary target distribution. The intuition behind this is that AIES algorithm,

intuitioninstead of trying to adapt the proposal distribution during the itera-
tions (possibly with several associated tuning parameters), a proposal
move relies on the information carried by the previous positions of
the complementary ensemble. With a large number of walkers, thus
with larger computational cost per iteration, more information will
automatically be available per iteration regarding the landscape of
the distribution. And although the parameter a in Eq. (5.40) is one
potential tuning parameter, most applications work well with the de-
fault value of 2.0. As such, the algorithm required mainly the decision
on the number of walkers L and total number of iterations I (these
two yields the total number of target density evaluations L× I).

The specific distribution of the ensemble at the beginning, however,
might cause a relatively long “initialization phase” noted above (com-
pared to the total length of the iterations). This is especially the case AIES algorithm,

possible problemsif the chain starts at very atypical values of the distribution. Having
a large ensemble implies a larger “inertia” for each of them to move
and settle to a more typical region of the state space. The algorithm
was also recently reported to badly scale with the number of dimen-
sions and to eventually fail in a high dimension (D > 50) either by a
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very slow convergence or, more importantly, by a biased convergence
(i.e., convergence to a wrong value) [230, 233]. The number of dimen-
sions concerned in this thesis, however, is still far below the value
cited above.

There are two important issues not discussed in detail in either
of the illustrations above, namely the convergence and the required
length of the chain. These issues are of practical importance for any
MCMC algorithm. For instance, the “initialization phase” of the AIES
algorithm is an indication of a particular lack of convergence to sta-
tionarity in the initial part of the chain. It needs to be detected and
removed lest it would bias the estimation using its samples. Rigorous
proof of stationarity is difficult to obtain in practice and instead, anal-
ysis is often based on empirical diagnostic with heuristics. Afterward,
the main question is on how long the chain needs to be to obtain a
small enough statistical error on the MCMC estimate. Analyzing a re-
alization of a Markov chain for Monte Carlo application is the subject
of the next section.

5.4 diagnosing MCMC samples

Consider once more Eq. (5.29), the central limit theorem (CLT) for the
MCMC. Let {X(i)}Ii=1 be a stationary Markov chain of length I with
a stationary distribution πt (i.e., the target distribution). The chain is
used to estimate the expectation of a function f under πt such that
f̂ = 1/I

∑
i f(X

(i)). The asymptotic error of the estimator is as follows

lim
I→∞ f̂− Eπt [f] ∼ N

(
0,
σ2f
I

)
where σ2f is the variance of a given function f evaluated under the
stationary distribution of the chain. As mentioned, by construction,
the successive realizations in a Markov chain are not independent.
Before discussing in Section 5.4.1 the implication of this correlation

on the statistical error σ
2
f

I , several important concepts are introduced
below18.

The autocovariance of the function f is defined as the covariation
between the function f evaluated using the chain at the iteration i andAutocovariance

iteration j. That is,

Cov
[
f(X(i)), f(X(j))

]
≡ E

[(
f[X(i)] − E[f]

)
·
(
f[X(j)] − E[f]

)]
(5.42)

Assuming a stationary chain, the covariance becomes only a function
of the separation between the two iterations irrespective at which
particular point in the chain the function is evaluated. In other words,

Cov
[
f(X(i)), f(X(i+t))

]
≡ Cf(t) (5.43)

18 Note that the dependence on πt in the discussion below is implicitly assumed and
suppressed from the notation.
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where Cf is the autocovariance function of f and t is the lag of the
covariance function. Note that according to the notation above the
covariance function Cf is always defined with respect to a given
function f, as indicated in the subscript. Such function includes func-
tion that returns a particular dimension of a multivariate chain, e.g.,
f(X(i)) = X

(i)
d , with d a dimension of the multivariate chain.

The autocorrelation function ρf of f is the normalized autocovari-
ance function defined as, Autocorrelation

function

ρf(t) ≡
Cf(t)

Cf(0)
(5.44)

where Cf(0) is the lag-0 autocovariance and is equal to the process
variance V[f] for a stationary process.

Autocovariance (and autocorrelation) measures the strength of the
covariance (and correlation) between samples in a Markov chain. By
definition, both functions are symmetric about the origin. They also
tend to decay with increasing lag as illustrated in the figure below for
three different Markov chains with different autocorrelations.
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Figure 5.13: Illustration of autocorrelation functions for three different
Markov chains. The Markov chain at the top has the strongest
autocorrelation shown as solid line in the right plot. The corre-
lation between samples dies off much slower than the other two
chains.
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5.4.1 Autocorrelation in Equilibrium and Thinning

Assuming that the stationary chain has been attained, the asymptotic
results of Eq. (5.29) applies. To derive the expression for σ2f in the
equation, consider that the variance of the MCMC estimator f̂ for the
expected value of f computed by a Markov chain {X(i)} of length I is,

V[ f̂ ] = E

(1
I

I∑
i=1

(
f[X(i)] − E[f]

))2 (5.45)

By using nested sum, the definition can be rewritten as,

V[ f̂ ] = E

 1
I2

I∑
i=1

I∑
j=1

(
f[X(i)] − E[f]

)
·
(
f[X(j)] − E[f]

)
=
1

I2

I∑
i=1

I∑
j=1

E
[(
f[X(i)] − E[f]

)
·
(
f[X(j)] − E[f]

)]

=
1

I2

I∑
i=1

I∑
j=1

Cov
[
f(X(i)), f(X(j))

]
where the definition of covariance between two random variables
have been applied to arrive to the last line above.

Assuming that the chain {X(i)} is stationary then the covariance
function is simply a function of the separation between the two itera-
tions i and j,

V[ f̂ ] =
1

I2

I∑
i=1

I∑
j=1

Cov
[
f(X(i)), f(X(j))

]

=
1

I2

I∑
i=1

I∑
j=1

Cf(|i− j|)

≈ 1

I2

I∑
i=1

∞∑
t=−∞Cf(|t|) =

1

I

∞∑
t=−∞Cf(|t|)

where Cf is the (stationary) autocovariance function associated with
function f. The approximation in the last line above is valid assuming
that Cf decays as the separation t = i− j becomes larger [219]. Noting
that the covariance function Cf is a symmetric function about zero,

V[ f̂ ] =
1

I

(
Cf(0) + 2

∞∑
t=1

Cf(t)

)

=
2Cf(0)

I

(
1

2
+

∞∑
t=1

ρf(t)

)
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where ρf is the autocorrelation function of f defined in Eq. (5.44).
Rearranging the term, the variance of the MCMC estimator f̂ is, Integrated

autocorrelation time

V[ f̂ ] =
2τint,f

I
Cf(0) τint,f ≡

1

2
+

∞∑
t=1

ρf(t) (5.46)

where τint,f is the integrated autocorrelation time (or, in this thesis, sim-
ply the autocorrelation time).

Comparing with Eq. (5.29), Eq. (5.46) can be interpreted in two
ways. First, the use of a Markov chain of length I to estimate the Effective sample size

expectation of f inflates the estimator variance by a factor 2τint,f. In
other words, σ2f ≡ 2τint,fCf(0). Or, equivalently, the number of inde-
pendent samples required in the computation of the MC sampling
variance is only a factor of 1

2τint,f
of the total number of MCMC sam-

ples I. In other words, N ≡ I
2τint,f

with N the number of independent
samples (or effective sample size). From this latter interpretation, the au-
tocorrelation time gives a measure of the number of MCMC iterations
required to generate a single independent sample.

In either interpretation, the statistical error associated with the MC
estimation is larger for an estimation using MCMC samples than us-
ing independent samples due to the inherent correlation. Moreover, Determining the

length of a chainin the case of MCMC, the autocorrelation time τint,f directly affects
the statistical error. As such, this quantity is useful in either deter-
mining the required length of the chain in a MCMC simulation or
assessing the statistical error of a chain of a given length.

That is, the minimum length of the chain can be determined such
that the statistical error of the estimator of f V[f̂]0.5 is smaller than a
fraction ε of the true standard deviation V[f]0.5 [232],(

V[f̂]

Cf(0)

)0.5

=

(
V[f̂]

V[f]

)0.5

=

(
2τint,f

I

)0.5

6 ε⇔ I >
2τint,f

ε2
(5.47)

where I is the number of MCMC samples. For a single particle MCMC
this number is also the number of MCMC iterations19. For an ensem-
ble sampler, the total number of samples is a multiplication between
the number of iterations I and the number of walkers L such that,

I >
2 τint,f

ε2 L
(5.48)

The autocorrelation time gives a measure of the required length of the
chain to reach a target statistical error. For instance, 10 ′000 MCMC
iterations are relatively long for a single particle chain having an au-
tocorrelation time of 5 (ε ≈ 3%), but much shorter in comparison to
a chain having an autocorrelation time of 100 (ε ≈ 14%). In the latter
case, in such a relatively short chain, the reliability of the estimation
of the autocorrelation time itself can actually become suspect.

19 hence the notation I.
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The autocovariance function of f can be estimated from a realiza-
tion of a Markov chain {x(i)}Ii=1 using the following estimator [219,
232],Estimating

autocorrelation time

Ĉf(t) =
1

I− t

I−t∑
t=1

(f(x(i)) − f̄) (f(x(i+t)) − f̄) (5.49)

where f̄ = 1/I
∑
i f(x

(i)) is the sample mean of f. The autocorrelation
function estimator follows,

ρ̂f(t) =
Ĉf(t)

Ĉf(0)
(5.50)

Finally, the estimator of the autocorrelation time is given by,

τ̂t,f =
1

2
+

I∑
t=1

ρ̂f(t) (5.51)

Direct estimation of the autocorrelation time using the above estima-
tor is usually unstable due to the statistical noise associated with large
lag t. For a large t, the data of iterations that are far separated be-
comes too sparse to have a reliable estimate of the autocovariance
function value. A “windowing” technique is proposed in [219] to sta-
bilize the estimation and is implemented in the routine ACOR [234,
235] used in this thesis.

The notion of independent samples (or effective sample size) men-
tioned above are coupled with the practice of thinning or sub-sampling
the MCMC samples [236]. Thinning the chain means that only 1On thinning the

chain MCMC sample is kept for every k iterations, with k an integer. Often,
the integer k is chosen to be close to, or at least the same order of mag-
nitude as, twice the autocorrelation time τint,f. Historically, thinning
was mainly motivated by the limited storage and memory to store all
the samples, especially for a long running MCMC simulation. As the
end purpose of conducting MC estimation requires the use of inde-
pendent samples, it was argued that by thinning, only samples that
matters (i.e., independent) were kept for further analysis.

On the other hand, the practice of thinning is questioned by several
authors [236, 237]. The argument against thinning is relatively easy
to intuit: there can be much a smaller number of samples left after
thinning that often worsen the accuracy of the estimator.

Thinning can be justified in the case of expensive “post-processing”
of the MCMC samples. That is, if the function f is expensive to eval-
uate. For example, in the context of Bayesian data analysis, the poste-
rior samples obtained via MCMC simulation might need to be prop-
agated through a computationally expensive code for the purpose of
forward uncertainty quantification by an ordinary MC simulation. In
this case, only calculations of a few samples might be afforded and,
as required by MC simulation, such selection of samples should be in-
dependent of each other which, in turn, can be achieved by thinning
the chain first.
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5.4.2 Initialization Bias and Burn-in

The results above hold for MCMC samples obtained from a stationary
chain. As illustrated in Fig. 5.11a, the MCMC samples at the begin-
ning of the chain are taken from a lower probability region of the
target probability distribution and thus are less representative of the
distribution. After some period, however, the apparent “initial tran- Burn-in

sient” eventually dies off and the chain settles in a more typical re-
gion of the parameter space. The colloquial term burn-in period is
used to characterize this initial part of the chain. By burn-in the chain,
it is meant that the samples of that period are discarded.

As opposed to the previous discussion on autocorrelation in equi-
librium that causes inflation of MC statistical error, the presence of Initialization bias

burn-in period in an MCMC simulation can cause a systematic bias on
the MC estimator [219]. Therefore, for a short chain, it is important to
remove the burn-in period lest the estimator will be heavily affected
by initialization bias. In a single particle MCMC algorithm discard-
ing the samples corresponding to the burn-in period is generally not
necessary as the total number of iterations tends to be much larger
than this period and the simulation can be extended to wash out that
initialization bias.

On the other hand, in an ensemble sampler, burn-in period might
contain much larger biased samples relative to the total number of
samples due to the use of multiple walkers within an iteration [109,
231, 232]. Multiple walkers can be initialized from low probability
regions. Furthermore, although an iteration computationally costs
more, the number of iterations in an ensemble sampler is relatively
shorter than in a single particle sampler. As such, determining the
length of burn-in period – and discarding the corresponding samples
– is more important for ensemble samplers.

Burn-in period can be associated with the relaxation period of an
infinitely long Markov chain [219]. In that case, the autocorrelation
function of Eq. (5.44) can often be expressed as an exponential law,
i.e., ρf(t) ≈ exp (−t/τexp,f). Under this assumption, the exponential
autocorrelation time of a function f can be defined as follow, Exponential

autocorrelation time

τexp,f = lim
t→∞ t

− ln |ρf(t)|
(5.52)

The time represents the rate of convergence of a Markov chain with
respect to the given function f, starting from arbitrary initial values to
its stationary distribution [219]. It can be used to determine the num-
ber of iterations to discard before the chain is considered stationary.

The relationship between exponential correlation time and station-
arity only strictly holds for exponential correlation functions. Fortu-
nately, most infinitely long chains have exponential correlation func-
tions [219]. In addition, although the exponential autocorrelation time
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is different from (twice) the integrated autocorrelation time20, in prac-
tice, the two are often assumed to be the same [109, 232] or at least
having the same order of magnitude [219].

In this thesis, they are both estimated using the definition of the in-
tegrated autocorrelation time (Eq. (5.46)). That is, the autocorrelationDetermining the

number of iterations
to discard

time is first estimated for the whole chain and is used, after multipli-
cation by a conservative factor of 20 [219], to determine the length of
the burn-in period. Afterward, assuming that the stationary chain has
been attained, the autocorrelation time is re-estimated and is used as
the basis for assessing the autocorrelation between successive realiza-
tions (and if applies, for thinning).

In the end, it is important to acknowledge that the burn-in period
as determined by the autocorrelation time is a heuristic. It is useful toBurn-in, a heuristic

avoid initialization bias from a Markov chain of a finite length espe-
cially in the case of ensemble samplers. Moreover, a suspiciously long
burn-in period can give an indication of a more serious underlying
problem either in the posterior formulation or the sampler. It cannot,
however, establish the fact that a Markov chain has indeed settled in
its stationary (and simultaneously, its target) distribution [105, 219].

Finally, note that the initial transient is mainly due to selecting val-
ues with low posterior probability to initialize the chain. In a simpleBurn-in, alternatives

problem, perhaps it can be straightforward to determine a value that
lies in a high probability region of the posterior. This is not the case
for a more complex high-dimensional problem and some arbitrary
values are often selected instead. Thus, some authors [232, 236] pro-
posed instead to tune the initial values such that they are more rep-
resentative of the posterior PDF and make do without burn-in. This
tuning, however, requires additional preliminary calculations.

5.5 application to the TRACE model of FEBA

In this section, a Bayesian calibration on the parameters of the TRACE
reflood model is conducted and assessed on the basis of the data from
a test series of the FEBA reflood experiment. Following the results of
Chapter 3, only the eight most relevant reflood model parameters are
considered in the calibration (while the uncertainties of the four pa-
rameters related to boundary conditions are optionally taken into ac-
count). Furthermore, following the developments in Chapter 4, a GP
metamodel is used to substitute the code run of the TRACE model.
There were six experimental runs conducted in the test series that
corresponded to different experimental boundary conditions. The cal-
ibration is conducted solely on test No. 216, the base experimental
run. The calibration results are then assessed by means of propagat-
ing the resulting model parameters posterior uncertainties and com-

20 except in the case of exponentially decaying autocorrelation function.
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paring the prediction uncertainties with the data from the other five
experimental runs.

5.5.1 Simulation Experiment

The application of the Bayesian calibration framework on the TRACE
reflood model parameters against the FEBA experimental data is based
on six different statistical formulations, in the following referred to as
calibration schemes. These schemes are distinguished by their respec-
tive assumptions:

• w/ Bias, All. The first calibration scheme assumes that the
TRACE model is an imperfect simulator of the reflood phe-
nomena in the FEBA experiment. As such it considers a model
bias term (as described further below) in the calibration process.
Furthermore, in this scheme, all available types of experimen-
tal data are considered. The data includes the clad temperature
measurements at different time points and at different axial lo-
cations (will be succinctly referred to below as the TC output or
data), the pressure drop measurements at different time points
and at different axial segments (referred to as the DP output
or data), and the collected liquid carryover measurement at dif-
ferent time points (referred to as the CO output or data). As
mentioned, following the results of the previous chapter, only
the eight most influential reflood model parameters are consid-
ered for the calibration.

• w/ Bias, TC; w/ Bias, DP; and w/ Bias, CO are three variants
of the scheme w/ Bias, All in which only one type of experi-
mental data (respectively, output) is considered at a time for the
calibration. The purpose of these schemes is to investigate the
effect of using different types of data from the same test to con-
strain the model parameters prior uncertainties. The calibration
is still conducted for the eight reflood model parameters and
considering the model bias term.

• w/o Bias scheme is similar to the scheme w/ Bias, All; it uses
all available types of experimental data to calibrate the eight
reflood model parameters, except that no model bias term is in-
cluded in the formulation. In essence, this scheme assumes that
the TRACE model perfectly describes the reflood phenomena
in the FEBA test No. 216.

• w/ Bias, no dffbVIHT is the last calibration scheme considered;
it is conducted to investigate the effect of excluding, from the
calibration process, an influential parameter (dffbVIHT) that is
later found from the scheme w/ Bias, All to be strongly cor-
related. Except for calibrating only the remaining seven reflood
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model parameters, this scheme used similar assumptions as the
first scheme.

The six calibration schemes above aim to update the prior uncer-
tainties of the model parameters using the experimental data from
FEBA test No. 216. The six posterior PDFs are then directly sampled
using an ensemble MCMC sampler to obtain six different sets of pos-
terior samples. To avoid the excessive computational cost of having
to run TRACE hundreds of thousands of times, the GP metamodel
developed in Chapter 4 is used to substitute the TRACE model.

These different sets of samples are then analyzed to assess the effect
of using different calibration schemes in constraining the prior uncer-
tainties of the model parameters. Finally, the same posterior samples
are used in forward uncertainty quantification (UQ) on the TRACE
model of different FEBA tests corresponding to different boundary
conditions, namely system pressures and reflood rates. This final ex-
ercise aims to assess how the posterior uncertainties from the differ-
ent calibration schemes perform under boundary conditions different
from that of the calibration data.

In the following, the important terms of Eq. (5.3) will be discussed
in the context of the present application to the TRACE model before
detailing each calibration scheme. Afterward, the MCMC sampler as
well as a method to evaluate and compare different posterior predic-
tion uncertainties are presented.

5.5.1.1 Experimental Data and Observation Layout

The experimental data of FEBA test No. 216 used for the calibra-
tion was extracted from the experimental report [123], which was
provided to the participants of the PREMIUM benchmark [124].

The experimental data provided for the clad temperature (TC) con-
sists of 33 time points for each of the eight different axial locations of
the thermocouples along the test section. Recall that by convention inClad temperature

(TC) data the experiment, TC1 corresponds to the thermocouple measurement
at the top of the test section (≈ 4.1 [m]), while TC8 corresponds to the
measurement at the bottom (≈ 0.3 [m]) (see Table 2.2).

Due to the strong discontinuity of the clad temperature around the
point of quenching, the model bias term cannot be modeled using a
stationary GP (see Section 5.5.1.3) as it severely violates the constant
variance assumption as function of time and axial location (at the very
least, before and after the quenching occurs). To keep using a simple
stationary GP formulation, the model bias term is modeled only for
the part of the transient before the quenching. Thus, the calibration is
also conducted using only the data prior to quenching. This is further
justified by the fact that after quenching there is almost no relevant
variation in the temperature transient.

Because of the different timing of quenching along the test section,
the number of data points available for calibration changes per axial
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location. Based on these data points, an observation layout for the TC
data can be defined,

ΛTC = {(z1, t1), (z1, t2), (z2, t1), . . . , (z2, t7),

(z3, t1), . . . , (z3, t12), (z4, t1), . . . , (z4, t17),

(z5, t1), . . . , (z5, t21), (z6, t1), . . . , (z6, t24),

(z7, t1), . . . , (z7, t25), (z8, t1), . . . , (z8, t27)}

(5.53)

where z denotes the axial location and t denotes the time point. The
total number of data points associated with the TC data is 133.

The reported experimental uncertainty associated with the clad
temperature measurement is ±0.5% of the measured value in [oC]. In
this thesis, this statement of uncertainty is translated into a Gaussian
probability distribution such that the uncertainty covers the 99.7%
probability (i.e., 3-σ level). Let yE,TC be the vector of TC data ob-
served at ΛTC, then the experimental uncertainty is given as,

E(ΛTC) ∼ N(0,ΣE,TC)

ΣE,TC = diag

((
0.005
3

yE,TC

)2) (5.54)

The dimension of the multivariate Gaussian random variable above
is 133, i.e., the length of the observation layout ΛTC. The random
variable is independent but not identically distributed as the variance
changes for each measurement point.

The experimental data provided for the pressure drop (DP) con-
sists of 18 time points for each of the 4 different axial segments of
the pressure drop measurements. Recall that in the experiment, the Pressure drop (DP)

databottom segment corresponds to the segment 0.0− 1.7 [m], the middle to
1.7−2.3 [m], the top to z = 2.3−4.1 [m], and the total to 0.0−4.1 [m]. In
the following, the bottom, middle, top, and total segments are simply
indices of the DP output; z1, z2, z3, z4, respectively. The observation
layout for the DP data is then defined as follows,

ΛDP = {(z1, t1), . . . , (z1, t18), (z2, t1), . . . , (z4, t18)} (5.55)

where z denotes the axial segment and t denotes the time point. The
total length of the observation layout ΛDP is 72.

The reported experimental uncertainty associated with the pres-
sure drop measurement is ±10% of the measured value in [Pa]. As
before, this statement of uncertainty is translated into a Gaussian
probability distribution covering the 99.7% probability (i.e., 3-σ level).
Let yE,DP be the vector of DP data observed at ΛDP, then the experi-
mental uncertainty is given as a multivariate Gaussian,

E(ΛDP) ∼ N(0,ΣE,DP)

ΣE,DP = diag

((
0.1
3

yE,DP

)2) (5.56)
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where the random variable is a 72-dimensional multivariate Gaus-
sian.

Finally, the experimental data provided for the liquid carryover
(CO) initially consisted of 16 time points. However, because the col-Liquid carryover

(CO) data lecting tank was saturated at 10 [kg] only the transient up to that mass
is of interest. By excluding the data points where the tank has been
saturated, only 7 data points are available for calibration. Based on
these data points yE,CO, the observation layout for the CO data is
defined as,

ΛCO = {(t1), . . . , (t7)} (5.57)

where t denotes the time point.
A large uncertainty was indicated for the liquid carryover measure-

ment that possibly includes biased measurement as the measured
mass in the collecting tank does not always correspond to the liquid
carryover of the reflood transient [21]. The suggested level of uncer-
tainty for the benchmark was ±0.5 [kg]. To cover the reported uncer-
tainty and the possible bias, the reported level is assumed to be 1-σ
level of an independent identically distributed multivariate Gaussian,

E(ΛCO) ∼ N(0, Iσ2E,CO) (5.58)

where I is an identity matrix of size 7, i.e., the length of the observa-
tion layout ΛCO; and σE,CO is the standard deviation of the distribu-
tion, taken to be 0.5 [kg].

Finally, the observation layout for each output (data) type can be
combined into a single long vector of the full observation layout, Λ =

{ΛTC,ΛDP,ΛCO}. The total number of data points and the length of
the observation layout Λ used in the calibration are thus 212.

5.5.1.2 Gaussian Process Approximation for TRACE Simulations

Following the results of Chapter 4, three separate multivariate GP
metamodels are used to approximate the TRACE predictions for each
type of output (TC, DP, and CO). The hyper-parameters associated
with these metamodels are separately estimated using actual TRACE
runs Y based on a design of experiment DM (see the details in Sec-
tion 4.6). After being estimated, the hyper-parameters of the GP meta-
model are kept constant in the application of the metamodel.

Under the GP formulation, the simulator prediction for a given
input xo (containing both the controllable inputs xc and the model
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parameters xm) becomes a probabilistic model. The prediction of the
TC output at the observation layout ΛTC is formulated as follows,

YM,TC(xo)|Y ∼ N(µM,TC(xo),ΣM,TC(xo))

µM,TC = ȳTC +Φ∗QTC,TCmSK,TC(xo)

ΣM,TC =Φ∗QTC,TCdiag(s2SK,TC(xo))Φ
∗T
Q,TC +Φ∗>QTC,TCIΦ∗T>QTC,TC)

mSK,TC = [mSK,TC,1(xo),mSK,TC,2(xo), · · · ,mSK,TC,QTC(xo)]

s2SK,TC = [s2SK,TC,1(xo), s
2
SK,TC,2(xo), · · · , s2SK,TC,QTC(xo)]

(5.59)

where the notations above follow the convention of Section 4.5.3. Ac-
cording to Section 4.6, the number of retained principal components
for the TC output QTC is selected to be 7.

Recall that the SVD was conducted on the full TRACE simulation
output (in the case of the temperature output: at eight axial levels
and at 10’000 time-steps) for the dimension reduction. However, some
points of the full simulation output do not have a corresponding ex-
perimental data. As such, for the calibration, the observation layout
ΛTC is used to select the elements of the output mean vector ȳTC, the
eigenvectors Φ∗QTC,TC, and the unretained eigenvectors Φ∗>QTC,TC
such that they contain only the points in time where data are actu-
ally observed. The resulting dimension of the Gaussian distribution
is thus 133.

Similar formulations are used for the GP metamodels with respect
to the DP and CO outputs. According to Section 4.6, the numbers of
retained principal components are 10 and 5 for the DP and TC out-
puts, respectively. Again, only the points in time which coincide with
the observed data are selected according to the respective observation
layout.

5.5.1.3 Modeling the Model Bias Term

According to Section 5.2.1, model bias term is represented using a
Gaussian process (GP). A model bias term is formulated for each
type of data (or output). The formulation of a Gaussian process (GP)
for the model bias term is adapted from [93, 112, 238]:

1. Generate N realizations of the TRACE simulation for FEBA test
No. 216 (randomly) varying only the 4 parameters related to
the boundary conditions (namely, breakP, fillT, fillV, and
pwr), while keeping the other 8 model parameters at their re-
spective nominal values. Each output type of the TRACE sim-
ulations are selected at its respective observation layout (ΛTC,
ΛDP, and ΛCO). For each simulation the vectors of values are
denoted ŷM,TC, ŷM,DP, and ŷM,CO for the TC, DP, CO output,
respectively.
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2. Assume the vectors (yE,TC − ŷM,TC), (yE,DP − ŷM,DP), and
(yE,CO − ŷM,CO) to be realizations from stationary GPs on the
observation layouts (i.e., as function time and space). Note that
as the observation layouts comprise discrete points in time and
space the GPs collapse to multivariate Gaussian distributions.
The power-exponential covariance function is selected for the
covariance kernel and its hyper-parameters (i.e., σ2. p, θ) are
estimated using the R package DiceKriging.

3. The mean of the bias term of each output is taken to be the
difference between the data yE,◦ and the nominal prediction
ŷM,◦, while the covariance matrix of the bias term is taken to
be the covariance matrix constructed at the observation layout
using the estimated hyper-parameters above. The constructed
covariance matrix takes into account correlations of the model
bias in time and space. In the present analysis the values of the
hyper-parameters estimated in the previous step are kept con-
stant during the subsequent phases of the calibration process.

The above model bias term formulation is only partially Bayesian
as it uses the data to make the initial estimation. But as argued in
Ref. [93] it is a pragmatic way to carry out the analysis as there is
no independent data to formulate the bias. Several additional as-
sumptions are made in this thesis to fully formulate the bias term.
By varying the parameters related to the boundary conditions in the
construction of the term implies that the experimental uncertainty in
the boundary conditions is included in the model bias term. In the
FEBA experiment, the effect of these uncertainties on the experimen-
tal data was not directly observed as there was no replication of the
experiment at the same controllable inputs and the experimental un-
certainty with respect to each type of data was taken as given from
the benchmark specification.

By using the mean for the bias term defined above, any difference
between the nominal TRACE prediction and the experimental data is
corrected. This is an indirect way of putting a strong prior preference
for the TRACE nominal prediction such that the model parameters
should not dramatically be shifted to correct the mismatch between
the experimental data and the TRACE prediction. In other words, it
is a way to keep as much as possible the nominal TRACE prediction,
which was already based on a long running V&V activities. Ref. [93]
also recommends to allow the variance of the process to vary, but
as the calibration conducted here is based only on the data from a
single FEBA test, the variance is kept constant. In fact, this represents
a pessimistic assumption in the sense that the data is not allowed to
reduce the bias by altering the model parameters. This is in line with
the definition of the the mean used before.

All in all, the calibration using this proposed model bias term thus
aims to update the prior uncertainties of the model parameters as-
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suming that the nominal prediction is centered around the data while
keeping the variance unchanged.

Based on the above discussion, the model bias term for the TC
output is expressed as,

DTC ∼ N(mδ,TC,Σδ,TC)

mδ,TC = (yE,TC − ŷM,TC)

Σδ,TC = σ2TCRTC(ΛTC,ΛTC)

(5.60)

where mδ,TC and Σδ,TC are the mean vector and the covariance matrix
of the model bias term with respect to the TC output, respectively;
while σ2TC and RTC are the process variance and correlation function
of the process representing the bias term, respectively. The bias term
is a multivariate Gaussian random variable with the dimension of
133, equals to the length of the observation layout ΛTC.

Similar formulations apply for the model bias terms with respect to
the DP and CO outputs. As a final note, the formulation of the model
bias term is supposed to include explicitly different controllable in-
puts xc to take into account possible change in the bias as function of
the inputs. However, the present study considers for the calibration
only the data from FEBA test No. 216 corresponding to a single com-
bination of controllable inputs. Therefore, the parametrization of xc
is dropped from the following notation.

5.5.1.4 Calibration Schemes

Having defined the elements of the generic calibration formula of
Eq. (5.3) within the context of the present problem, the explicit for-
mulation for each calibration scheme introduced at the beginning of
this section can now be presented.

The calibration scheme w/ Bias, All combines the formulation of
the calibration schemes w/Bias, TC, w/Bias, DP, and w/Bias, CO. As w/ Bias, TC

such, in the following the latter three calibration schemes are first
presented. Combining the terms of the above according to Eq. (5.3)
gives a similar formulation as Eq. (5.15), but specifically for the TC
data generating process. That is, the process corresponding to the
scheme w/ Bias, TC is,

YE,TC|xm ∼ N(µTC(xm),ΣTC(xm))

µTC(xm) = µM,TC(xm) + mδ,TC

ΣTC(xm) = ΣM,TC(xm) + Σδ,TC + ΣE,TC

(5.61)

where µTC and ΣTC(xm) are the 133-dimensional mean vector and
the 133× 133 covariance matrix associated with the TC output/data,
respectively. The mean vector µTC consists of the mean vector of
the GP metamodel prediction µM,TC (Eq. (5.59)); and the mean vec-
tor of the model bias term mδ,TC (Eq. (5.60)). The covariance ma-
trix ΣTC(xm) comprises the covariance matrix of the GP metamodel
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prediction (Eq. (5.59)); the covariance matrix of the model bias term
Σδ,TC (Eq. (5.59)); and the covariance matrix of the experimental un-
certainty for TC data (Eq. (5.54)).

The data generating processes for the DP (respectively, CO), cor-
responding to the calibration scheme w/ Bias, DP (respectively, w/
Bias, CO), can be defined in a similar manner.

The data generating processes for the TC, DP, and CO data above
are combined to arrive at the process corresponding to the calibration
scheme w/ Bias, All. The main assumption in combining the dataw/ Bias, All

generating processes is independence between types of data [205].
That is, no a priori relationship between different types of data is
assumed. This assumption greatly simplifies the problem and thus
the joint process becomes a concatenation of the Gaussian random
vector

YE,{TC,DP,CO}|xm ∼ N(µTC,DP,CP(xm),ΣTC,DP,CO(xm))

µ{TC,DP,CO}(xm) = [µTC(xm),µDP(xm),µCO(xm)]

Σ{TC,DP,CO}(xm) = diag(ΣTC(xm),ΣDP(xm),ΣCO(xm))

(5.62)

where µ{TC,DP,CO} is a 212-dimensional vector from the concatena-
tion the mean vectors of TC, DP, and CO; and Σ{TC,DP,CO} is the
212× 212 corresponding covariance matrix, which is the block diago-
nal matrix diag(ΣTC(xm),ΣDP(xm),ΣCO(xm)).

The calibration scheme w/o Bias has a similar data generating pro-
cess to that of the scheme w/ Bias, All, except that the mean vectorsw/o Bias

and the covariance matrices of the model bias term for each types of
data have been removed from the formulation. Specifically, for the TC
data, the vector mδ,TC and the covariance matrices Σδ,TC are removed
from Eqs. (5.61). Similar approach applies for the DP and CO data.

Lastly, the calibration scheme w/ Bias, no dffbVIHT has the same
data generating process as Eq. (5.62), except that the parameter dffbVIHT
is not part of xm. In discussion below, this also implies that the pa-w/ Bias, no

dffbVIHT rameter is assigned no prior probability.
Given the experimental data yE,TC, yE,DP, and yE,CO for the TC,

DP, and CO, respectively, the likelihood functions with respect to
each of the calibration schemes above can be defined following Eq. (5.16).
The likelihood is from the Gaussian density (the formula for the den-Likelihood functions

sity is given in Appendix D.3). Note that the model parameters are
embedded inside the likelihood function through the mean and the
covariance of the GP metamodel prediction.

The posterior PDF is then formulated by assigning the prior PDF
for the eight (respectively seven for the scheme w/ Bias, no dffbVIHT)
important reflood model parameters xm from Table 2.5. The poste-Posterior PDFs

rior PDF is defined for each of the calibration schemes using the re-
spective likelihood functions. For instance, the posterior PDF for the
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model parameters under the calibration scheme w/ Bias, TC up to a
constant is written as,

pTC(xm|yE,TC) ∝ LTC(xm; yE,TC) · p(xm) (5.63)

where LTC is the likelihood function associated with the data gen-
erating process in Eq. (5.61). The five other likelihood functions and
posterior PDFs are defined similarly. Table 5.1 summarizes the differ-
ent calibration schemes considered in this study.

Table 5.1: Bayesian calibration schemes conducted for the TRACE reflood model parameters
against data from FEBA test No. 216.

No. Calibration Scheme Model Bias
Term

Types of Output Reflood Model
Parameters (total number)

TC DP CO

1 w/ Bias, All ! ! ! ! All (8)

2 w/ Bias, TC ! ! All (8)

3 w/ Bias, DP ! ! All (8)

4 w/ Bias, CO ! ! All (8)

5 w/o Bias ! ! ! All (8)

6 w/ Bias, no dffbVIHT ! ! ! ! Excluding dffbVIHT (7)

5.5.1.5 MCMC Simulation using Ensemble Sampler

Each calibration scheme above results in a likelihood function, which
when combined with the prior PDFs of the model parameters, yield
a posterior PDFs. The 8-dimensional (respectively seven for the w/

Bias, no dffbVIHT scheme) posterior PDFs contain all the informa-
tion on the model parameters conditional on the experimental data
and the assumed prior uncertainties, under the assumed respective
calibration scheme. To characterize the posterior uncertainties of the
model parameters, samples are directly generated from the respective
posterior PDF by means of MCMC simulation.

Although the use of GP metamodels alleviate the burden of having
to run TRACE directly, evaluating the likelihood function requires an
inversion of the covariance matrix. The computational cost of matrix
inversion is still not negligible, especially considering the expected
number of evaluations. Furthermore, although the AIES MCMC algo-
rithm (Algorithm 3) is straightforward to implement, it is not readily
applicable for using multiple CPU [109].

A parallelization of the AIES sampler was originally developed and
implemented in the python package emcee [109]. The main design
philosophy of emcee (and its ported R package rgw [239] used in this
thesis) is that of a portable sampler. That is, the user simply has to
code the posterior formulation (the likelihood and the prior) in the
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respective generic computing environment (R or python), without the
need to put the probabilistic model within a new framework21.

In the present study, 2 ′000 iterations are carried out for an ensem-
ble of 1 ′000 walkers. The initial state of the ensemble is a tight ran-
dom scatter around the nominal model parameter values. The total
number of iterations depends on the convergence of the MCMC sim-
ulation (discarding the initialization bias) and the required level of
statistical error as detailed in Section 5.4. For the present study, they
are assessed after-the-fact and the results is indeed found to be suffi-
cient. Meanwhile, there is no clear cut rule for choosing the number of
walkers L [109]. Larger number of walkers requires a higher compu-
tational cost per iteration but yields more independent samples per
iteration. At the same time, larger number of walkers might cause
more of the initial calculations to be discarded as more calculations
are required to settle the ensemble in the typical region of the poste-
rior distribution. A thousand walkers were selected considering the
available computational resources at the time of the analysis.

The MCMC simulation for each calibration schemes results in 2×
106 posterior samples of the model parameters. These samples are
then further post-processed to remove the initialization bias and to
reduce the autocorrelation among successive iterations.

5.5.1.6 Evaluating Calibration Results

The results of the MCMC simulations are sets of samples directly
drawn from the respective posteriors. These multivariate samples
are visually represented as corner plot depicting the joint posterior
samples as a set of 1-dimensional (univariate) and 2-dimensional
(bivariate) marginals of the posterior distribution (see Section 5.5.3).
From the univariate marginal of each model parameter posterior un-
certainties, the constraining ability of the data and the calibration
scheme can be quickly, if not rigorously, assessed. From the bivariate
marginals, the correlation structure between the model parameters, if
any, can also be quickly assessed.

To investigate the implication of the different calibration schemes
on the TRACE predictions, simulation campaigns of FEBA test No.
216 are conducted using samples from the posterior PDFs. Further-
more, to assess if the posterior uncertainties are applicable for the
simulations of reflood experiments with different boundary condi-
tions, the simulation campaigns are extended to the five additional
FEBA tests. In other words, these five additional FEBA tests becomes
the validation data sets. Finally, the campaigns are conducted both

21 Such as the approach adopted in the more established WinBugs [240], Jags [241], and
Stan [242]. These samplers, however, has more extensive capabilities for conducting
a Bayesian data analysis and tends to be faster as they port the user-specified prob-
abilistic models to a lower level language (e.g., C++). Furthermore, being older, they
have a larger and more diverse user base.
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with and without considering the correlation structure in the poste-
rior samples to investigate the effect of the model parameter correla-
tions.

The uncertainty propagation campaigns therefore consists of the
campaigns on each FEBA test using model parameters posterior un-
certainties derived from different calibration schemes with and with-
out consideration of the correlation among model parameters. For
each of these campaign, actual TRACE runs are carried out using
1 ′000 posterior samples. These samples are directly drawn from the
pool of posterior samples obtained from different calibration schemes.
The results of the propagation are represented in series of plots of
prediction with the associated uncertainty bands for the three output
types (TC, DP, and CO) similar to the ones presented in the result
section of Chapter 2. From these plots the different propagation cam-
paigns can be compared.

At the same time, the numerous plots are unwieldy to deal with.
To circumvent this issue, a more quantitative means of aggregating
the results of different prediction uncertainties is required. Although
formal Bayesian approaches are available to assess the quality of the
prediction using the model parameters posterior uncertainty22, this
thesis adopts a more pragmatic assessment method based on the pos-
sibilistic theory proposed in [246].

The aim of the method is to quickly compare the applicability of
the different posterior uncertainties in making prediction. Loosely
speaking, the applicability is measured by the width of the predic-
tion uncertainty as well as its coherence (in the most general sense
of the word) with experimental data. The method was applied to
synthesize the results of different participants in the context of bench-
marking, namely the BEMUSE [246] and the PREMIUM [21] projects.
The method consists of three steps: information modeling, information
evaluation, and information synthesis. For the comparison purpose in
this thesis, only the first two steps above are applied and discussed
in the following.

In the information modeling, the information in a prediction un-
certainty of a QoI Y is represented by an interval (lower and upper
uncertainty bounds: LUBY and UUBY , respectively) and a reference
value yref.. A source of information src for a particular QoI Y consists
of such an interval and, optionally, a reference value. If for the QoI Rectangular model

Y only the bounds LUBY and UUBY are supplied then a rectangular
model can be defined,

πsrc,Y(y) =

1.0, LUBY 6 y 6 UUBY

0.0, otherwise
(5.64)

22 Formal computer model validation metrics, Bayesian or otherwise, is a research topic
in its own right, see for instance the validation metrics proposed in [243–245]. Their
application is outside the scope of this thesis.
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where π is the possibility measure, whose minimum and maximum
are 0.0 and 1.0, respectively.

The presence of a reference value yref. between two bounds LUBY
and UUBY allows the triangular model to be defined,Triangular model

πsrc,Y(y) =


y−LUBY
yref.−LUBY

, LUBY 6 y < yref.

UUBY−y
UUBY−yref.

, yref. 6 y 6 UUBY

0.0, otherwise

(5.65)

These two information models are illustrated in Fig. 5.14.

UUBYLUBY

1

0 y

π

(a) Rectangular model

UUBYLUBY

1

0

π

yyref.

(b) Triangular model

Figure 5.14: Information modeling to represent uncertainty propagation re-
sults for a QoI Y.

In the following, the rectangular model is used to represent a com-
plete ignorance with respect to the QoI Y, πign,Y using a minimumIgnorance

lower uncertainty bound LUBY,min. and a maximum upper uncer-
tainty bound UUBY,max.. That is,

πign,Y(y) =

1.0, LUBY,min. 6 y 6 UUBY,max.

0.0, otherwise
(5.66)

The information evaluation part of the method comprises two in-
dices to evaluate the quality of information in a given source. Infor-Informativeness

mativeness, associated with a source src and a QoI Y is defined as,

InfY(src) =
|πign,Y |− |πsrc,Y |

|πign,Y |
= 1−

1

2

UUBY − LUBY
UUBY,max. − LUBY,min.

(5.67)

where | ◦ | denotes the area under an information model. Informative-
ness measures the precision of the uncertain prediction, regardless of
the position of the reference value within the bound; it takes value be-
tween 0.5 (the widest uncertainty range of a source, the same as the
maximum and minimum bounds) and 1.0 (the narrowest uncertainty
range of a source, practically 0). Fig. 5.15 illustrates Inf calculation.

Calibration score between a source src and the observed value yobs.

for a QoI is defined as,Calibration score

CalY(src) = πsrc,Y(yobs.) (5.68)
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UUBY,max.LUBY,min.

1

0
UUBYLUBY

yref. y

π

src1

(a) Narrower prediction uncertainty

yref. UUBY,max.

UUBY

LUBY,min.

1

0
LUBY

y

π

src2

(b) Wider prediction uncertainty

Figure 5.15: Informatives of two different information sources. Wider uncer-
tainty interval gives lower informativeness, and vice versa. Thus
InfY(src1) > InfY(src2)

that is, the calibration score is the possibility of the observed value
yobs. under the information model of the source src. It measures the
discrepancy between the observed value and the uncertain prediction
represented by an interval and a reference value. Following Eq. (5.65),
the score severely penalizes the observed data that falls outside the
prediction interval; assigning calibration score of 0.0. The score is at
maximum of 1.0 for yobs. = yref.. It does not, however, takes into
account the possible uncertainties associated with yobs..

UUBY,1LUBY,1

1

0

src1

yobs.yref.,1 y

π

(a) CalY(src1) ≈ 1.0

LUBY,2UUBY,2

1

0
yref.,2

src2

yobs.

y

π

(b) CalY(src2)

UUBY,3LUBY,3

1

0

src3

yobs.yref.,3

y

π

(c) CalY(src3) = 0

Figure 5.16: Calibration scores of three different sources with the same observed data yobs.:
CalY(src1) > CalY(src2) > CalY(src3)

For multiple QoIs Y = [Y1, . . . , YD] of the same source, both infor-
mativeness and calibration score can be aggregated by,

InfY (src) =
1

D

D∑
d=1

InfYd(src) CalY (src) =
1

D

D∑
d=1

CalYd(src)

(5.69)

Translating from the Bayesian (probabilistic) framework, the bounds
of the prediction interval of the above LUB and UUB can be taken
to be two percentiles of the prediction probability distribution that
cover a selected probability. For instance, the criteria used in the Application of the

methodpresent study, selecting a symmetric 95% probability interval implies
the LUB and UUB to be the 2.5-th and 97.5-th percentiles, respec-
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tively. The choice is rather arbitrary but as long as the criteria is ap-
plied consistently across different prediction uncertainties, the value
of the method for comparison is preserved. Furthermore, the 2.5-th
and 97.5-th percentiles of the prior prediction distribution are taken
to be the LUBmin. and UUBmax. and the reference value yref. is taken
to be the median value of each posterior prediction distribution. Fi-
nally the experimental data is taken to be the observed value yobs.

without considering the associated uncertainty following the original
paper [246]. Once again, this lack of consideration is less of an issue
for comparing between different uncertain predictions.

5.5.2 MCMC Convergence

The calibration schemes explained above were each run for a total of
2 ′000 iterations using 1 ′000walkers. This results in a total of 2 ′000 ′000
posterior samples. These initial samples require further post-process-
ing to remove the initialization bias and the autocorrelation in the
samples. In the following, only the results from the calibration scheme
with model bias term and considering all types of output (scheme w/

Bias, All) are discussed. Though not shown, the results from other
schemes are similar.

Fig. 5.17 shows the trace plots for each of the 8 model parame-
ters in the calibration scheme w/ Bias, All. To avoid over-plotting,
the plot only shows the trajectories for the last 100 iterations (out of
1 ′240 post-burn-in iterations) and for 400 walkers (out of 1 ′000 walk-
ers). As can be seen, the walkers traverse the model parameter space
and spend more time during the iterations in the region where the
values of the model parameters allows the simulator to best repro-
duce the experimental data (thus the region becomes darker in the
plots). Furthermore, it can be inferred that some parameters are more
constrained by the data (e.g., gridHT) than the others (e.g., tQuench).

To check the convergence of an ensemble samplers, it is a com-
mon practice to investigate the running statistics of the ensemble (i.e.,
statistics over all walkers per iteration) instead of the individual walk-
ers [109, 232]. The running average and standard deviation for each
model parameter are shown in Fig. 5.18. From the figure, it is clear
that after some initial transient (i.e., the burn-in period), the running
statistics converge for all parameters. Note also that the number of
iterations spent in the burn-in period for an ensemble sampler can be
large (here up to 760 iterations).
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Figure 5.18: Ensemble average and standard deviation as function of the
number of iterations for calibration with model bias term. Ver-
tical lines indicate the iterations for burn-in (i.e., approximately
20 times the autocorrelation time).

Although the length of the burn-in period can be inferred directly
from Fig. 5.18, a more rigorous criteria can be obtained via the au-
tocorrelation time of the running statistics. Table 5.2 summarizes the
estimated autocorrelation time for the running statistics and for each
model parameter. The autocorrelation times of the average tend to be
longer than the ones of the standard deviation. The longest autocorre-
lation time of all the parameters (shown in the table in bold) becomes
the basis for determining the length of the burn-in period. As rec-
ommended in [219] a multiple (in this case 20) of the autocorrelation
time is deemed enough to remove the initialization bias. The obtained
length of the burn-in period is shown as vertical lines in Fig. 5.18 (at
iteration 760); those iterations are subsequently discarded.

After such period, the autocorrelation time is re-estimated to as-
sess if the sampler faces difficulty in sampling the posterior PDF. A
particularly long autocorrelation time, even after burn-in, gives an
indication of a sampler that is trapped in a particular region of the
parameter space [231, 232] and thus requires longer iteration to have
representative samples. As can be seen in Table 5.2 (τpost-burn-in) the
times are smaller after burn-in.

Additionally, the remaining samples are to be used for forward UQ.
The MC simulation for forward UQ requires independent (specifi-
cally, iid) samples. To obtain a set of independent samples, the re-
maining samples are thinned on the basis of the re-estimated auto-
correlation time (see Section 5.4.1. The largest autocorrelation time of
all parameters is used for thinning and 32 ′000 independent posterior
samples are obtained for forward uncertainty propagation. Though it
results in a much smaller sample size, the associated statistical error
relative to the standard deviation of the model parameter estimates
are at most 0.6% (Eq. (5.48)).
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Table 5.2: Estimated autocorrelation times for the eight model parameters
with respect to the ensemble running average and standard de-
viation, for the calibration scheme w/ Bias, All. The bold term
indicates the largest autocorrelation time used to determine the
length of burn-in period.

No. Parameter
Average Standard Deviation

τpre-burn-in τpost-burn-in τpre-burn-in τpost-burn-in

1 gridHT 32.2 3.4 15.1 13.3

2 iafbWHT 15.9 11.3 12.2 10.9

3 dffbWHT 25.6 15.0 13.4 8.4

4 dffVIHT 33.2 11.2 14.1 7.2

5 iafbIntDr 28.6 19.4 10.7 8.0

6 dffbIntDr 37.8 8.8 14.3 11.4

7 dffbWDr 13.6 9.4 25.1 3.3

8 tQuench 26.7 6.6 14.1 8.0

5.5.3 Calibration Results

For each calibration scheme, the posterior samples can be analyzed
to investigate the constraining power of the data and the possible
correlation structure of the parameters. The posterior samples of the
calibration scheme w/ Bias, All is presented in this section, while
the graphical representation of the posterior samples from the other
calibration schemes can be found in Appendix B.6.

The results of calibrating the 8-parameter model with the calibra-
tion scheme w/ Bias, All is presented in a corner plot shown in
Fig. 5.19. A corner plot [247] depicts the univariate (1-dimensional) Corner plot

and the bivariate (2-dimensional) marginals of the posterior samples
and it provides information on the possible correlation structures
between pairs of model parameters. That is, it projects the multi-
dimensional posterior distribution into each of the 1-dimensional and
2-dimensional subspaces (see the illustration for Gaussian marginals
in Chapter 4).

The univariate marginals are shown as the diagonal elements of the
plot. Solid lines indicate the 95% symmetric credible intervals com- Corner plot,

diagonal element,
univariate marginal

puted from the univariate samples23, while dashed and dotted lines
indicate nominal parameter values and posterior median parameter
values, respectively. Note that the range for each of the model pa-
rameters in the plot corresponds to the respective prior uncertainty
range.

23 That is, the interval between the 2.5-th and the 97.5-th percentiles of the posterior
samples.
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The bivariate marginals of the posterior distribution are shown as
the off-diagonal elements of the plot. Because correlation is symmet-Corner plot,

off-diagonal element,
bivariate marginal

ric, only the lower half portion of the plot is shown. In this adap-
tion of corner plot, hexagonal binning [248] is used to represent the
large number of posterior samples. In the off-diagonal elements of
Fig. 5.19, lighter color shading indicates the region of the parameter
space that is denser with sampled points. The correlation between
each pairs of parameters can be preliminary inferred from the shape
of the bivariate marginals while the exact number for the color scale
is unimportant.

In Fig. 5.19, the most constrained parameters (from either side of
the prior range) are the iafbIntDr, dffbIntDr, dffbVIHT, dffbWHT.
Some parameters are mostly constrained on one side (most notably
gridHT), while tQuench is the least constrained by the data and the
calibration scheme.

Although most pairs are largely uncorrelated, the parameter dffbIntDr
is strongly correlated with dffbWHT, dffbVIHT, and iafbIntDr. The
parameter iafbWHT is also correlated with tQuench. Because of the
strong correlation between dffbVIHT and dffbIntDr, the calibration
scheme w/ Bias, no dffbVIHT was conducted to investigate the ef-
fect. Some correlations (like the one between dffbWHT and dffbVIHT)
are approximately elliptical while the others (like the one between
iafbIntDr and dffbIntDr) appear more nonlinear. However, for most
of the strongest correlated parameters, regions of high sample density
can be identified. This, in turn, implies that the posterior parameters
values that are consistent with the experimental data are largely con-
tained within a small, bounded region of the parameter space, much
smaller than the prior parameter space.

Table 5.3 summarizes the prior and posteriors model parameters
uncertainties. The posteriors presented are from all the calibration
schemes considered. The three numbers inside the brackets corre-
spond to the 2.5-th percentile, the median (for the prior also the the
nominal values), and the lower 97.5-th percentile, respectively. That
is, the interval constructed by the percentiles corresponds to the sym-
metric 95% credible interval covering 95% probability.

From the table, it can be seen that considering additional outputs
in the calibration tends to constrain even more the posterior range of
the parameters (see also Figs. B.21, B.22, and B.23). Furthermore, the
calibration scheme in which the parameter dffbVIHT was excluded
tends to have a tighter posterior uncertainty range for the parameters
that were correlated with the parameter dffbVIHT (i.e., dffbIntDr and
iafbIntDr), while the range for the dffbVIHT remains at its initial
prior range (see Fig. B.24). Finally, the posterior of the calibration
scheme without model bias term tends to have a tight range and to
be concentrated at either end of the prior range. Additionally, the
median posterior values of the parameters are shifted far away from
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their initial nominal values. Most of the initial nominal values actually
fall outside the 95% credible intervals (see Fig. B.25).

5.5.4 Calibration Evaluation

The implication of the model parameters posterior uncertainty on the
prediction is investigated by propagating the uncertainty through the
TRACE simulations of FEBA test No. 216 (the calibration data) as well
as the other five FEBA tests. Samples of size 1 ′000 are picked directly
from the joint posterior samples and are used to execute the TRACE
simulations. Furthermore, the uncertainties related to the boundary
conditions (4 additional parameters, namely breakP, fillV, fillT,
and pwr) are also propagated alongside the posterior samples from
each calibration scheme. Finally, for the selected calibration schemes,
the uncertainty propagation is also conducted without taking into ac-
count the correlation structure of the model parameters posterior un-
certainties. In other words, only the information from the posterior
univariate marginals is used for the propagation and the parameters
are considered independent of each other. However, the bias term
used in some of the calibration schemes is not included in the propa-
gation for the present comparison purpose.

Figs. 5.20, 5.21, and 5.22 show the propagation of the uncertainties
for the clad temperature (TC), the pressure drop (DP), and the liquid
carryover (CO) outputs, respectively. The model parameters posterior
uncertainties used in these figures are the ones obtained from the cali-
bration scheme with model bias term and considering all types of out-
put (i.e., w/ Bias, All in Table 5.1). The dark gray band corresponds
to the model parameters prior uncertainties propagation, while the
two lighter bands correspond to the posterior uncertainties, with and
without taking into account the correlation structure of the posterior
samples. Finally, solid lines, dashed lines, and crosses correspond to
the simulation with the nominal parameters values, the median of the
posterior runs, and the experimental data, respectively.

Fig. 5.20 shows the uncertainty propagation for the time-dependent
TC outputs at all axial levels with the posterior samples generated
by the calibration scheme w/ Bias, All. The posterior uncertainties
of the clad temperature prediction are narrower as compared to the
prior uncertainties across all axial elevations and at all time points. All
uncertainty bands, however, show similar behavior regarding their in-
flation going from the bottom part of the assembly to the top of the
assembly, and from the start of the transient to the time of quenching.
While it is true that the bias term is not included in the propagation,
there is also an apparent “rigidity” associated with the TRACE re-
flood curve which cannot be arbitrarily bend. This is well illustrated
by the panel of TC2 in Fig. 5.20 which shows that having the uncer-
tainty band to envelop the experimental data points in the early phase
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of the transient would require a realization of the reflood curve that
increases the discrepancy in the later phase of the transient, especially
near the time of quenching. Lastly, the median of the posterior pre-
dictions (dashed lines) coincides almost perfectly with the prediction
of the nominal TRACE run (solid lines).

Not considering the correlation between model parameters in the
posterior samples results in wider uncertainties in the clad tempera-
ture prediction. While the prediction lower uncertainty bound in this
case is much narrower than that of the prior, the prediction upper un-
certainty bound is closer to the upper uncertainty bound of the prior.
That is, the prediction upper bound is less constrained.

Fig. 5.21 shows the uncertainty propagation for the time-dependent
DP outputs for each of the axial segments. The posterior samples cor-
respond to the calibration scheme w/ Bias, All. Once again the pos-
terior uncertainties propagation result in narrower uncertainty bands
as compared to that of the prior. However, the difference between
taking and not taking into account correlation between model param-
eters is less striking for this type of output. Moreover, all uncertainty
bands cover most of the experimental data.
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FEBA Test No. 216, Psys = 4.1 [bar], Flooding Rate = 3.8 [m.s−1], Calibration scheme w/ Bias, All

Figure 5.21: Propagation of the model parameters uncertainty on FEBA test No. 216 for the pres-
sure drop output (DP) at different axial segments. The uncertainty bands refer to
the symmetric 95% probabilities. Solid lines, dashed lines, and crosses indicate the
simulation with the nominal parameters values, the median of the posterior, and the
experimental data, respectively. The posterior samples are from the calibration scheme
w/ Bias, All.

Fig. 5.22 shows the propagation for the time-dependent CO out-
put up to the saturation of the measurement tank at 10 [kg] with the
posterior samples corresponding to the calibration scheme w/ Bias,

All. Unlike the previous two types of output, the nominal TRACE
prediction exhibits a large bias compared to the experimental data.
While the large prior uncertainty manages to cover the experimen-
tal data points, all of the points fall outside the posterior uncertainty
bounds both with and without taking into account correlation among
parameters. As shown in Section 2.6, the TRACE prediction for this
particular output was shown exhibited strong bias. Hence, because
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the bias term is not included in the propagation, the parameters un-
certainty cannot cover the initially large discrepancy due to the bias.
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Figure 5.22: Propagation of the model parameters uncertainty on FEBA test
No. 216 for the liquid carryover output (CO). The uncertainty
bands refer to the symmetric 95% probabilities. Solid lines,
dashed lines, and crosses indicate the simulation with the nom-
inal parameters values, the median of the posterior, and the
experimental data, respectively. The posterior samples are from
the calibration scheme w/ Bias, All.

Similar plots for the propagation of the model parameters poste-
rior uncertainties obtained from all calibration schemes are presented
in Appendix B.7. The appendix includes the propagation on all the
FEBA tests. Fig. 5.23 summarizes the effect of the uncertainty prop-
agation by plotting the calibration score vs. informativeness (see Sec-
tion 5.5.1.6).

In each panel, the vertical lines correspond to the informativeness
of the prior relative to a rectangular (i.e., representing a state of igno-
rance) model, which is 0.5 uniformly across output types and FEBA
tests. The horizontal lines correspond to the calibration score of the
prior uncertainty bands and the nominal TRACE run as its reference
simulation value. As can be seen the scores are slightly different from
test to test and from output type to output type. Finally, the results
of propagating the posterior samples obtained from each calibration
scheme to the TRACE FEBA model are plotted. Increasing the infor-
mativeness is equivalent to narrowing the uncertainty band; while
increasing the calibration scores indicates that the prediction and its
uncertainty are closer to the experimental data.

For the TC output, and except for FEBA test No. 216 (the calibra-
tion data), there is an apparent linear relationship between calibration
score and informativeness. That is, the propagation that results in nar-
rower uncertainty band (high informativeness) tends to have a higher
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failure in enveloping the experimental data (low calibration score)24.
The results of the scheme w/o Bias, in particular, have among the
lowest calibration score with respect to the TC output and the highest
informativeness. On the other hand, for the same level of informative-
ness, the results of the scheme w/ Bias, All have higher calibration
scores across all the FEBA tests.

This relationship does not hold for the DP output. There, all the
calibration scores fall near the initial calibration score, while having
a higher informativeness. Furthermore, there is less variation in in-
formativeness; the points tend to be clustered together especially in
comparison with that of TC.

Finally, most calibration schemes result in much lower calibration
score with respect to the CO output, some even fall to zero. That is,
the resulting uncertainty bands completely fail to envelop a single
experimental data points. At the same time, the results of the scheme
w/o Bias (and with the exception of FEBA test No. 218), manage to
improve the prediction of the output, both in terms of calibration
score and informativeness;

Considering correlation between the model parameters in the prop-
agation affects the calibration score and the informativeness. It consis-
tently increases the informativeness (tightening the uncertainty band)
and lowers the calibration score across all the FEBA tests. The effect
can be observed across outputs, calibration schemes, and FEBA tests;
though it is especially strong for the scheme w/ Bias, All and for
the TC output.

Comparing results across FEBA tests shows that the informative-
ness and the calibration score of each calibration scheme remain sim-
ilar. In particular, the maximum informativeness with respect to the
TC, DP, CO outputs are about 0.7, 0.5, 0.5, respectively, for all the
FEBA tests. This indicates that the uncertainty band in the prediction
due to the posterior uncertainties (obtained on the basis of a single
test) are relatively insensitive to the boundary conditions of the tests.

Lastly, for FEBA test No. 216, Fig. 5.23 also shows the results of
the calibration schemes with bias where only the TC, DP, CO out-
puts were considered separately. As expected, these schemes have
a lower informativeness than when considering all types of output
together. And using only a particular type of output causes the infor-
mativeness with respect to the other outputs to be particularly lower.
Moreover, the increase in informativeness from taking into account
multiple types of output is not followed by a large decrease of the
calibration score. This is especially true for the DP (and TC) output
where the improvement of the informativeness is significant when
compared to the results of calibration using experimental data other
than the DP output (and TC output, respectively) itself. This con-

24 Recall that a failure in enveloping experimental data points is assigned to have a
zero calibration score.
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firms that considering different model parameters is responsible for
the improvement with respect to each output type as was previously
showed by sensitivity analysis.

5.5.5 Discussion

5.5.5.1 On the Convergence of the MCMC Simulation

It is not uncommon to run a single particle MCMC simulation up
to 100 ′000 iterations (or beyond) for computer model calibration [80,
249]. In such case, the length of the burn-in period is generally much
smaller than the total number of iterations and the corresponding
samples do not need to be discarded25.

In the case considered here, the total number of iterations is only
2 ′000 and the length of the burn-in period was estimated at 40% of
the total number of iterations26. The relatively long burn-in period
with respect to the total number of ensemble iterations is consistent
with the observations of Refs. [109, 231, 232], each of which applied
an AIES ensemble sampler to conduct a Bayesian calibration of a com-
puter model. Therefore, determining the burn-in period was indeed
mandatory; if the samples associated with this initial transient were
not discarded then the model parameter estimates would be heavily
biased. Despite discarding a lot of the initial samples, the resulting
statistical error associated with each model parameter estimate ob-
tained by the MCMC simulation is less than 1% relative to the true
standard deviation of the respective parameter.

Finally, note that the only free parameter to deal with in this par-
ticular application of the ensemble sampler was the total number of
iterations; no adjustment to the sampler itself during the iteration was
required.

5.5.5.2 On the Identifiability of the Model Parameters

The resulting posterior samples, as presented in the corner plots (Figs.
5.19, B.21, B.22, B.23, B.24, and B.25) and as summarized in Table 5.3,
demonstrate different constraining ability of the data on the model
parameters prior uncertainties depending on the calibration scheme.
These calibration results are to be expected according to the sensitiv-
ity analysis conducted in Chapter 3.

For instance, the pressure drop output is mainly sensitive to the
parameter iafbIntDr as shown by Tables B.9–B.12; and the pressure
drop data can, in turn, mainly inform the same parameter as demon-
strated in Fig. B.22. Meanwhile, although the liquid carryover out- Constraining ability

of the data
25 A rule of thumb argues for discarding at most 20% of the total number of samples

in a single particle samplers [219].
26 Note that, despite the lower number of iterations for an ensemble sampler, the com-

putational cost of the sampler in terms of the number of likelihood evaluations is on
par with a single particle sampler.
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put is sensitive to the model parameters dffbVIHT and dffbIntDr as
shown in Tables B.13 and B.20, the importance of the two parameters
are eclipsed by the variation in the inlet velocity boundary condition
fillV27. Thus, as indicated in Fig. B.23 the constraining power of the
liquid carryover data is fairly limited; the posterior uncertainties as-
sociated with the important parameters remain wide.

The results are similar when considering only the clad temperature
data for the calibration. The parameters gridHT and dffbWallHT are
well constrained by the temperature data. The parameter gridHT, in
particular, is constrained only at the upper end of the uncertainty
bound. From this calibration exercise, it turns out that decreasing the
spacer grid heat enhancement below a certain value will not decrease
the overall heat transfer any longer. Thus, below that value the en-
hancement is insensitive with respect to the clad temperature output.

By definition, a model parameter that is not sensitive to a simu-
lation output cannot be informed by the experimental data of that
output. That is, the parameter is non-identifiable with respect to that
output [250]. Considering other type of output data can potentiallyNon-identifiability,

multiple types of
data

solve the problem. And indeed, when considering all types of data,
the prior uncertainties of the model parameters was shown to be
simultaneously constrained (Fig. 5.19). For instance, the parameters
iabfIntDr and dffWallHT are non-identifiable with respect to the tem-
perature and pressure drop data, respectively (Figs. B.21 and B.22,
respectively). But, as shown in Fig. 5.19, the calibration using both
types of experimental data solves the non-identifiability problem for
both parameters.

There are, however, several parameters that simply could not be
constrained by the considered experimental data. The uncertainties,Non-identifiability,

insensitive
parameters

especially the lower bounds of the parameters iafbWHT, dffbWDr and
tQuench remained close to their initial values, while their upper bounds
were only marginally smaller. These parameters were found to be
of marginal importance among the selected influential parameters
(see Appendices B.2 and B.4). Although it is straightforward to con-
clude that insensitive parameters simply cannot be constrained by
the experimental data, and the most influential ones are strongly con-
strained, it stays unclear which among the parameters of intermediate
importance – as indicated by sensitivity measures of Chapter 3 – can
be well constrained by the experimental data.

The calibration results also showed that strong correlation was pres-
ent among the model parameters. In the case of the calibration againstNon-identifiability,

correlation the TC data (Fig. B.21), the parameter dffbVIHT was shown to be
correlated with multiple parameters, particularly with the parame-
ter dffbIntDr. In the case of the calibration against the DP data
(Fig. B.22), the parameters iafbWHT and tQuench were found to be

27 Recall from Section 5.5.1.3 that the variation of the boundary conditions, including
that of the inlet velocity fillV, is included in the model bias term.
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strongly correlated. Considering multiple types of experimental data
(Fig. 5.19) did not seem to break these correlations.

Both cases are examples of another form of parameter non-ident-
fiability. Though these parameters were sensitive with respect to the
outputs – as the parameters posterior uncertainties were clearly in-
formed and affected by the calibration process –, changes in one of
those parameters could be offset by the changes in the other and any
of the combinations still reproduce the experimental data. As a result,
the univariate posterior marginal uncertainties of these parameters re-
mained large.

This is especially true when comparing the correlation between
the parameters iafbWHT and tQuench and between the parameters
dffbVIHT and dffbIntDr. In the former, due to the correlation over
the whole range of both parameters, more precise estimates of either
(with respect to the prior) cannot be extracted; while in the latter, the
upper bounds of both parameters remained large.

If a more precise estimate of a parameter is of interest then a
straightforward solution is to remove an influential parameter that
is strongly correlated from the calibration process [251] and to keep it
at its prior uncertainty. This approach was investigated in this thesis Calibration,

excluding a
correlated parameter

because of the strong correlation between two important parameters,
namely dffbVIHT and dffbIntDr. The calibration scheme w/ Bias,

no dffbVIHT, in which the parameter dffbVIHT was excluded from
the calibration process, further constrained the uncertainty of the pa-
rameter dffbIntDr (Fig. B.24).

5.5.5.3 On the Calibration with and without the Model Bias Term

The last calibration scheme investigated was the w/o Bias scheme in
which no model bias term was incorporated in the calibration process
and the only sources of uncertainties were the ones associated with
the reported experimental data (see Section 5.5.1.4). The results as
presented in Fig. B.25 showed a peculiar behavior. For many model
parameters, their nominal values were found to be outside the 95%
posterior uncertainty range. Recall that these nominal values were ob-
tained by calibration against experimental data from different SETFs.
Therefore, the results imply that the previous calibration results are
not able to simulate the reflood experiment of FEBA; and that there
are different model parameter values that allow TRACE to simulate
the experiment better.

Moreover, the posterior samples of the parameters were concen-
trated either on one or both sides of the prior uncertainty range.
The parameters iafbWHT and tQuench, for instance, were concentrated
on both sides of their prior uncertainty range; while the parameters
dffbWHT and dffbVIHT were concentrated on one side only. The lack
of model bias term in the calibration formulation did force the pa-
rameters to change dramatically – and at times up to the limit of the
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prior uncertainties – in order to compensate any discrepancy between
the simulator predictions and the experimental data, beyond the ex-
perimental uncertainty. That is, though these distributions might look
peculiar, they were the ones found to be consistent with the experi-
mental data under the calibration formulation.

5.5.5.4 On the Propagation of the Posterior Uncertainties

In this section and the next, some aspects of the different calibration
schemes and the role of the correlation among model parameters in
the posterior samples are discussed in detail. As such, the discus-
sion is focused on the propagation of posterior uncertainties obtained
from the calibration schemes w/ Bias, All, w/o Bias, and w/ Bias,

no dffbVIHT and only for the TC1 (the clad temperature at the top of
the assembly) and CO outputs. This choice is motivated by the sig-
nificant difference observed between the different uncertainty prop-
agation campaigns for these schemes and outputs. The uncertainty
propagation of interest are shown in details in Appendix B.7. Some
relevant figures to illustrate the discussion are reproduced below.

Fig. 5.24 shows the uncertainty propagation results for the TC1
output. The uncertainty band from the calibration scheme w/ Bias,

All (and to a lesser extend the one from the scheme w/ Bias, no

dffbVIHT) shows a consistent shape with the nominal TRACE predic-
tion. The band from the scheme w/o Bias is dramatically different
(Fig. 5.24b); it bears no resemblance whatsoever with the nominal
TRACE prediction. Moreover, the nominal TRACE prediction falls
completely outside the uncertainty band.
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Figure 5.24: Uncertainty propagation results for TC1 output (the clad temperature at the top of
the assembly) of FEBA test No. 216 with the posterior of the model parameters from
3 different calibration schemes. The uncertainty bands from darkest to lightest shades
correspond to the prior, posterior (independent), and posterior (correlated) model
parameters uncertainties, respectively.

Fig. 5.24 also illustrates that the posterior samples from the cali-
bration scheme w/ Bias, All are indeed strongly correlated, ignor-
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ing the correlation changes significantly the uncertainty bands of
the prediction. In essence, the posterior samples are a set of “collect-
ively-fitted” values that are consistent with the calibration data [252] .
Within the calibrated (and correlated) region of the parameter space,
changes in the model parameter values would not alter the perfor-
mance of the model against the calibration data. In this illustration,
the correlation among parameters tighten the uncertainty band while
keeping the experimental data within it. Removing the correlation
structure – and using only the posterior range of the univariate marginals
– gives realizations that can significantly differ from the calibration
data and thus widen the uncertainty band.

Moreover, as it was suspected, the parameter dffbVIHT is respon-
sible for the strong correlation; ignoring the correlation structure in
the uncertainty propagation of the results from the scheme w/ Bias,

no dffbVIHT shows only a marginal difference for the propagations
with and without the correlation structure. And because an impor-
tant parameter was removed from the calibration – and keeping its
uncertainty at the prior range – wider prediction uncertainty bands
were produced.

At the same time, allowing the parameter dffbVIHT to change dra-
matically from the initial nominal parameter value also allowed the
calibration scheme w/o Bias to correct the bias in the prediction of
liquid carryover as indicated in Fig. 5.25b. Now the nominal TRACE
prediction mostly falls outside the posterior uncertainty band. By con-
struction, the other two schemes allowed the nominal prediction to
be within their respective posterior uncertainty bands although the
bands did not (or only marginally) cover the experimental data.
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Figure 5.25: Uncertainty propagation results for CO output of FEBA test No. 216with the posterior
of the model parameters from 3 different calibration schemes. The uncertainty bands
from darkest to lightest shades correspond to the prior, posterior (independent), and
posterior (correlated) model parameters uncertainties, respectively.

This is supported by the sensitivity analysis conducted in Chapter 3
where it was shown that the parameter dffbVIHT was important for
the CO output and became increasingly important for the TC output
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at higher elevations. This can be physically understood as the param-
eter dffbVIHT is responsible for the heat transfer between the vapor
phase and the interface and contributes to the variation in the avail-
able entrained liquid and droplets being carried away through the
top of the assembly. These droplets, in turn, are an important heat
sink for the clad. Thus, an increase in the heat transfer coefficient en-
hances the heat transfer at the top of the assembly and accelerates
the evaporation of the available droplets (thus the lower clad tem-
perature) while simultaneously decreases the amount of liquid being
carried away (thus the slower rate of liquid carryover collection).

5.5.5.5 On the Effect of Boundary Conditions

When comparing the uncertainty propagation results of the output
TC1 across FEBA tests, another peculiar finding can be observed.
Fig. 5.26 shows the uncertainty propagation with respect to the out-
put TC1 for FEBA test Nos. 216, 220, and 222 using the model pa-
rameters posterior uncertainties from the calibration scheme w/ Bias,

All. It is normal for test No. 216, the test used for the calibration, to
be well predicted and covered by the posterior model parameters un-
certainties (Fig 5.26a). Surprisingly, the prediction for test No. 220
(Fig 5.26b) looks even better. The experimental data for test No. 222
falls outside the uncertainty band (of the correlated posterior sam-
ples), but the shape of the experimental data is very similar to that of
the uncertainty band.
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(a) Test No. 216, Psys = 4.1 [bar],
Vin = 3.8 [cm · s−1]

600

800

1000

0 200 400 600

Time [s]

C
la

d
 T

em
p
er

at
u
re

 [
K

]

(b) Test No. 220, Psys = 6.2 [bar],
Vin = 3.9 [cm · s−1]
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(c) Test No. 222, Psys = 6.2 [bar],
Vin = 5.8 [cm · s−1]

Figure 5.26: Uncertainty propagation results for TC1 output (the clad temperature at the top of the
assembly) of FEBA tests No. 216, 220, and 222 with the posterior uncertainties of the
model parameters from the calibration scheme w/ Bias, All. The uncertainty bands
from darkest to lightest shades correspond to the prior, posterior (independent), and
posterior (correlated) model parameters uncertainties, respectively.

On the contrary, the uncertainty propagation with respect to the
output TC1 for FEBA test Nos. 216, 220, and 222 using the model
parameters posterior uncertainties from the calibration scheme w/o
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Bias look significantly off compared with both the experimental data
and the nominal TRACE prediction (Fig. 5.27).

In the case of the uncertainty propagation with respect to the out-
put TC1 for FEBA test Nos. 214, 218, and 223, the model parameters
posterior uncertainties from the calibration scheme w/ Bias, All pro-
duces significantly different results compared with the experimental
data (Fig 5.28). The experimental data of test Nos. 218 and 223, in
particular, are very much different than the nominal TRACE predic-
tion and the corresponding uncertainty band. Neglecting the correla-
tion structure between the model parameters inflates the uncertainty
band and increases the coverage of the experimental data but the
experimental data still exhibits a dissimilar transient behavior. This
suggests that the observed phenomena might be of a different nature,
and that there is a missing physical process in the simulation of re-
flood test with lower system pressures (and to some extent higher
inlet velocity as indicated by test Nos. 214 and 222). In the case of a
very strong bias between the nominal TRACE prediction and the cor-
responding experimental data, a calibration scheme w/ Bias does not
allow to better reproduce the experimental data by making significant
adjustments to the model parameters.

And yet, the uncertainty propagation with respect to the output
TC1 using the model parameters posterior uncertainties from the cal-
ibration scheme w/o Bias do not look terribly off from FEBA test Nos.
214, 218, and 223. While the resulting uncertainty bands still fail to
cover most of the experimental data, the upper uncertainty bounds
of each test looks conspicuously similar to the experimental data. As
mentioned the experimental data of TC1 for these three tests do not
exhibit a typical reflood curve. At the same time, there is a poten-
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(b) Test No. 220, Psys = 6.2 [bar],
Vin = 3.9 [cm · s−1]
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(c) Test No. 222, Psys = 6.2 [bar],
Vin = 5.8 [cm · s−1]

Figure 5.27: Uncertainty propagation results for TC1 output (the clad temperature at the top of
the assembly) of FEBA tests No. 216, 220, and 222 with the posterior uncertainties of
the model parameters from the calibration scheme w/o Bias. The uncertainty bands
from darkest to lightest shades correspond to the prior, posterior (independent), and
posterior (correlated) model parameters uncertainties, respectively.
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(a) Test No. 214, Psys = 4.1 [bar],
Vin = 5.8 [cm · s−1]
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(b) Test No. 218, Psys = 2.1 [bar],
Vin = 5.8 [cm · s−1]
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(c) Test No. 223, Psys = 2.2 [bar],
Vin = 3.8 [cm · s−1]

Figure 5.28: Uncertainty propagation results for TC1 output (the clad temperature at the top of the
assembly) of FEBA tests No. 214, 218, and 223 with the posterior uncertainties of the
model parameters from the calibration scheme w/ Bias, All. The uncertainty bands
from darkest to lightest shades correspond to the prior, posterior (independent), and
posterior (correlated) model parameters uncertainties, respectively.

tial for TRACE to properly reproduce the data through a significant
adjustment of the nominal values of some model parameters (e.g.,
dffbVIHT) as it was allowed by the calibration scheme w/o Bias.

Therefore, it is worth investigating in a further study whether a
proper parametrization with respect to system pressure and reflood
rate have been implemented in TRACE. This study suggests that a dif-
ferent reflood closure model adjustment might be required to prop-
erly simulate reflood in the upper part of a dry assembly, in a low
system pressure (here it is 2.1 [bar]) or with higher reflood rate (i.e.,
test Nos. 214 and 222).
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(a) Test No. 214, Psys = 4.1 [bar],
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(b) Test No. 218, Psys = 2.1 [bar],
Vin = 5.8 [cm · s−1]
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(c) Test No. 223, Psys = 2.2 [bar],
Vin = 3.8 [cm · s−1]

Figure 5.29: Uncertainty propagation results for TC1 output (the clad temperature at the top of the
assembly) of FEBA tests No. 214, 218, and 223 with the posterior uncertainties of the
model parameters from the calibration scheme w/o Bias.
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5.6 chapter summary

The model calibration part of the proposed statistical framework has
been presented in this chapter. The goal of the present chapter was to
quantify the a posteriori uncertainty of the model parameters based
on experimental data. The quantification followed a Bayesian calibra-
tion framework.

The Bayesian calibration framework has been detailed in this chap-
ter and consisted of two parts: the formulation of a probabilistic
model for the calibration; and the computation of the formulated
model to obtain the posterior uncertainty of the model parameters. A
generic calibration formulation was presented along with a descrip-
tion on each of its element. Afterward, the computational aspects of
a posterior distribution were presented. MCMC simulation was used
in this thesis to directly obtain samples from the posterior, which are
useful for the characterization of the posterior uncertainty or for un-
certainty propagation.

The calibration framework was applied to the running case study
of the simulation of a reflood experiment using TRACE conducted at
the FEBA facility (test No. 216). Five calibration schemes that result
in five likelihood (thus posterior) formulations were considered. The
schemes considered different type of experimental data (TC, DP, CO,
or all together), and included (or not) a model bias term in their for-
mulation. The five schemes calibrated the 8 most influential reflood
parameters. An additional scheme was introduced to investigate the
effect of removing a strongly correlated parameter from the calibra-
tion process. The formulated posterior PDFs were then sampled using
an implementation of the AIES MCMC ensemble sampler to obtain
different sets of posterior samples. Finally, these sets of samples were
propagated through all the TRACE models of the FEBA tests with
different system backpressure and reflood rate boundary conditions.

The MCMC simulation was shown to converge in exploring the
posterior parameter space. The resulting independent samples – read-
ily used for uncertainty propagation – were large enough to yield
model parameter estimates with statistical error of less than 1% of
the true standard deviation of the respective parameter.

Two types of parameter non-identifiability were encountered dur-
ing the calibration process: parameter non-identifiability due to insen-
sitivity with respect to a type of data and non-identifiability due to
correlation between parameters. The former was solved by simultane-
ously considering different types of output to which the parameter of
interest was sensitive. The latter was more challenging as considering
different types of data did not seem to solve the non-identifiability is-
sue (the univariate marginals of the parameter of interest remained
large). However, even without precise estimates of each parameter,
the correlation structure among model parameters provided a set
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of “collectively-fitted” values that was consistent with the calibration
data. Specifically, as long as the correlation structure was kept, prop-
agation with parameters with large univariate marginal uncertainties
would still produce predictions that were consistent with that data.

This posterior correlation structure and the posterior range were
specific to the calibration data (here FEBA test No. 216). One of two
strongly correlated parameters could be argued to be an extraneous
parameter with respect to the calibration data. Its presence would al-
low many combinations of parameter values to reproduce the data
with a tighter prediction uncertainty. However, if the calibration data
was deemed not sufficiently large or comprehensive enough then care
should be taken to avoid overfitting. Excluding one of the correlated
parameters allowed for a more precise estimation of the other param-
eters that were previously correlated. But at the same time, as the
uncertainty of the excluded parameter was kept at its prior, the pos-
terior uncertainty band of the outputs remained relatively wider.

The calibration scheme with model bias term and incorporating
all types of outputs was able to constrain the prior uncertainties of
the model parameters while keeping the nominal TRACE parameters
values within the posterior uncertainty interval. That was in contrast
with the results of the calibration scheme without a model bias term,
in which the posterior uncertainties were concentrated on either or
both sides of the prior range, and at times not including the nomi-
nal TRACE parameter values. This results implied that the previous
calibration results (i.e., during the model development) were not con-
sistent with the data of FEBA; and that there were different model pa-
rameter values that would allow TRACE to better simulate the FEBA
experiments. This illustrated the value of incorporating the model
bias term in order to avoid overfitting, especially considering the fact
that the calibration conducted here was based on one test run only.
The calibration scheme without model bias was found slightly more
informative (having tighter uncertainty band) but less calibrated (in
the sense of the calibration score, i.e., having more experimental data
points outside the uncertainty band) than the calibration scheme with
model bias.
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C O N C L U S I O N S A N D F U T U R E W O R K

The main goal of the present doctoral research was to quantify the
uncertainty of physical model parameters implemented in TH sys-
tem codes and update the uncertainties based on comparison with
experimental data. To that end, a methodology has been developed
and applied to TRACE models of SETF experiments dedicated to re-
flood; a relevant phenomenon to consider in the safety analysis of
LWRs.

The methodology consisted of three statistical methods for sensitiv-
ity analysis, metamodeling, and Bayesian calibration. Starting from the
TRACE code modeling of the FEBA facility for reflood experiment
and a preliminary selection of uncertain input parameters, a set of
sensitivity analysis methods were applied to assess the sensitivity
of the code output to each selected input parameter and select the
model parameters that were truly important for the reflood simula-
tion. In anticipation of the high computational cost associated with
the Bayesian calibration, a Gaussian process (GP) metamodel of the
TRACE model of FEBA was then developed and validated. Using the
validated metamodel to substitute the TRACE code run, the selected
model parameters were calibrated against the experimental data of
FEBA which resulted in an a posteriori quantification of the param-
eters uncertainties. Finally, the quantified uncertainties were verified
by means of uncertainty propagation on FEBA tests with boundary
conditions different from the conditions of the calibration data.

This final chapter starts with a chapter-wise summary of the the-
sis, presented in Section 6.1. The main achievements of the thesis are
given in Section 6.2, in which corresponding recommendations for
future work are proposed.

6.1 chapter-wise summary

Chapter 1 introduced the doctoral research through the problem of
uncertainty quantification in nuclear engineering TH analysis; both
as forward and backward (inverse) problems. The particular prob-
lem of inverse uncertainty quantification was then put in the context
of the recently concluded OECD/NEA PREMIUM project; a bench-
mark project comparing different inverse uncertainty quantification
methods used in the community. The chapter then presented a set of
strategies to eventually quantify the uncertainty, namely sensitivity
analysis, statistical metamodeling, and Bayesian calibration. The set

217
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of strategies was consolidated in a statistical framework adapted from
the applied statistical literature, on which a review was conducted.

Chapter 2 presented the reflood experiment at the FEBA facility
that served as the experimental basis for this work. The FEBA facil-
ity was a full-height 5 × 5 bundle of PWR fuel rod simulator. The
particular test series selected corresponded to the case without flow
blockage, under three different values of system backpressure bound-
ary condition (2.1, 4.1, and 6.2 [bar]) and two different reflood rates
(3.8 and 5.8 [cm · s−1]). Three types of time series measurement were
recorded: clad temperature at eight axial locations, pressure drop at
four axial segments, and liquid carryover. The TRACE model of the
facility was developed and a set of 27 initial input parameters per-
ceived to be important for the simulation was selected. Thereafter,
prior uncertainties of the selected input parameters were assigned
and propagated through the TRACE model of FEBA to assess the
prior level of prediction uncertainties on all three types of output
(data). This model then became the running case study in the three
subsequent chapters to which the proposed methods are applied.

Chapter 3 introduced selected global sensitivity analysis (GSA) meth-
ods which were applied to the TRACE model of FEBA. First, the
importance of the initial set of input parameters was quantitatively
assessed through the Morris screening method and the total-effect
Sobol’ indices. The two provided a basis for parameter screening in
which less influential parameters were excluded from further analy-
sis, reducing the size of the problem. After the screening step, only
12 out of the initial 27 input parameters were found to be influential.
Focusing on the 12 most influential parameters, the effect of param-
eter perturbation on the overall time-dependent outputs was investi-
gated. The high-dimensionality of the outputs was reduced by means
of techniques derived from FDA. Finally, main- and total-effect Sobol’
indices, two global sensitivity measures, were estimated for each pa-
rameter with respect to the output in the reduced space. The results
regarding parameter sensitivity with respect to different outputs have
provided a better understanding of the inputs/outputs relationship
in the TRACE model of FEBA.

Chapter 4 detailed the development and validation of a metamodel
based on GP to substitute the TRACE model of FEBA. Though a sin-
gle run of the TRACE model was relatively short (≈ 6− 14 [min]), a
large number of runs in the order of hundreds of thousands was ex-
pected for the Bayesian calibration. Thus, a computationally efficient
metamodel was deemed crucial in the calibration of the model param-
eters. Built upon the results of the previous chapter, the development
was directly focused on the 12 most influential input parameters. The
high dimensionality of the output, in time and in space, was dealt
with PCA, a linear dimension reduction method. The dimension re-
duction method was shown to have difficulty in representing the clad
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temperature output which exhibited strong discontinuity in the vicin-
ity of the quenching. Yet, the average predictive performance of the
metamodel against a test data set of actual TRACE runs was found to
be acceptable, especially in comparison to the initial prediction uncer-
tainty due to the prior input parameter uncertainties. The validated
metamodel, with a cost of less than 5 [s] per evaluation, was then
ready to be used over the prior range of the input parameters in lieu
of directly running TRACE.

Chapter 5, the last of the main chapters of the thesis, finally pro-
ceeded with the a posteriori quantification of uncertainties of the
most influential reflood model parameters on the basis of FEBA test
No. 216. Different posteriors PDFs corresponding to different cali-
bration schemes were formulated and directly simulated using an
AIES ensemble sampler. Five different calibration schemes having
different assumptions were investigated: with or without considering
model bias term, incorporating different types of data, and includ-
ing or excluding a strongly correlated model parameter. Two types
of parameter non-identifiability were encountered: parameter non-
identifiability due to insensitivity with respect to a type of experi-
mental data and non-identifiability due to correlation between param-
eters. The former was solved by considering different types of output
to which the parameter of interest was sensitive. The latter was more
challenging as considering different types of data did not manage
to solve the non-identifiability issue (the univariate marginals of the
parameters remained large). Excluding one of the correlated param-
eters did allow for a more precise estimation of the other parame-
ters that were previously correlated. But at the same time, because
the excluded parameter kept its large prior uncertainty, the poste-
rior prediction uncertainty band was relatively wider. However, even
without precise estimates of each parameter, the correlation structure
among model parameters provided a set of “collectively-fitted” val-
ues that was consistent with the calibration data. Specifically, as long
as the correlation structure was kept, propagation with parameters
with large univariate marginal uncertainties would still produce pre-
diction that was consistent with the calibration data.

The results of different calibration schemes corresponded to differ-
ent level of trade-off between informativeness (the width of the predic-
tion uncertainty band) and calibration score (consistency with the ex-
perimental data and coverage by the uncertainty band). This trade-off
was apparent particularly for the schemes with and without model
bias term and the scheme with bias but excluding a strongly corre-
lated parameter. The scheme without bias resulted in the largest re-
duction of the prior uncertainty for most of the important parameters,
but in which the nominal TRACE parameter values sometimes laid
outside the posterior uncertainty interval. The posterior uncertainties
associated with the scheme resulted in predictions with the highest
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informativeness and the lowest calibration scores across FEBA tests.
The scheme with bias resulted in a more modest reduction of the
prior uncertainty of the parameters, keeping the nominal TRACE pa-
rameter values within the uncertainty interval, but exhibited strong
correlation for some of the parameters. The corresponding prediction
uncertainties, in turn, gave a better calibration score while having
similar level of informativeness. It could be argued that the relatively
worse calibration scores for the scheme with and without bias, in
comparison to that of the prior, was due to the too narrow posterior
uncertainties for the former and the correlation in the posterior uncer-
tainties for the latter. As the calibration was conducted based only on
one FEBA test, this suggested a symptom of overfitting, which was
stronger for the former than the latter. Therefore, in the case of limited
calibration data, it might be prudent to consider instead the scheme
with bias but excluding a strongly correlated parameter, whose cali-
bration scores were consistently high across FEBA tests albeit with rel-
atively lower informativeness compared to the two previous schemes
(but, still much higher than that of the prior).

6.2 main achievements and recommendations for future
work

The thesis proposed the application of a set of methods adapted from
the applied literature with the goal of quantifying the uncertainty
of model parameters in a TH system code. The application of each
method was illustrated and demonstrated on the basis of a reflood
experiment simulation model in the TRACE code. According to Sec-
tion 1.3.2 the listed objectives of the proposed methods were to:

• analyze and better understand the inputs/outputs relationship
in a computer simulation with uncertain input;

• approximate the inputs/outputs relationship of a complex com-
puter simulation for a faster evaluation; and,

• calibrate the physical model parameters against various rele-
vant experimental data.

During the course of this doctoral research, each of these methods
was investigated and applied to the running example of the FEBA re-
flood facility simulation model in the TRACE code. Each of these ap-
plications was aimed to illustrate the particularities – and difficulties
– of applying the method to the TRACE model as well as to demon-
strate the values of the method. Chapters 3–5 provided a detailed
account on the methods and their applications, of which the main
achievements are highlighted below. Given the limited scope and du-
ration of the project, many difficulties found along the way remained
unaddressed, and are the basis for the proposed recommendations.
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The thesis project was initiated by the participation of PSI-LRS to
the OECD/NEA PREMIUM benchmark. The work related to that par-
ticipation also constitutes a portion – and achievement – of the thesis
project.

Four papers were presented in international conferences [23, 112,
142, 153], a journal article was published [253], and two contributions
were submitted [17, 126] to the PREMIUM project and included in
the NEA reports [20, 21].

6.2.1 Contributions to OECD/NEA PREMIUM Project

The TRACE model of FEBA was successfully developed within that
context and became the basis for several follow-up studies. The model TRACE model of

FEBAis stable and is relatively quick to run allowing even a relatively brute
force sensitivity analysis method to be applied. It is now part of the
in-house TRACE code validation database at LRS.

The prior uncertainties of the input parameters were quantified un-
der the supervision of thermal-hydraulics experts at LRS [126]. The Contribution to

PREMIUM, prior
uncertainty
quantification

quantified uncertainties were then propagated both in the TRACE
models of FEBA and PERICLES (another reflood facility not pre-
sented in this thesis). The results of the propagation submitted to
the PREMIUM project were deemed satisfactory as it served the pur-
pose of the prior quantification. That is, the prediction uncertainties
of both facilities were wide but covered the experimental data well,
confirming that the prior range was not underestimated.

Still within the context of PREMIUM, a python scripting tool was
developed to assist conducting computer experiment on the TRACE
model of FEBA. The tool trace-simexp has reached a stable version, trace-simexp

is well documented, and has been applied in several follow-up stud-
ies within and outside the scope of the present doctoral research.

recommendations for future work

Although stable, the current version of trace-simexp has been only
tested so far for the TRACE model of FEBA. Extension to other TRACE
models are feasible. However, depending on the complexity of those
models and the computing infrastructure, further development of the
tool might become unrealistic. In the long run, it would be better to
opt for the use of an integrated uncertainty framework (e.g., UQLab
[254], Dakota [255], OpenTurns [256], Uranie [257]). Typically, such
framework supports an application programming interface (API) to
make a connection with an external simulation model or to a third-
party program. It does require an initial effort of getting acquainted
with the terminologies the framework but in the long run for a generic
complex model these are the preferred solution.
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6.2.2 Implementation and application of GSA methods (to analyze and bet-
ter understand the inputs/outputs relationship in a computer simu-
lation with uncertain input)

The size of the initial selection of input parameters, as exemplified
in PREMIUM, can be large. Lacking prior knowledge, the selectionImplementation and

application of
screening methods

should also include all the parameters that are vaguely perceived
as important. The implementation and the application of screening
methods (Morris screening method and Sobol’ total-effect indices), as
demonstrated in this thesis for the TRACE model of FEBA, allows
for a quick, systematic, quantitative screening of the initial set of in-
put parameters in a global manner (i.e., simultaneous perturbation
over the whole range of parameter uncertainties), and with less as-
sumptions regarding the linearity or monotonicity of the model or
it being additive. The last point motivates the departure from more
conventional GSA methods based on correlation coefficients (such as
Person and Spearman’s)1. In the case studied here, more than half of
the initial parameters were found to be non-influential to the relevant
outputs of the reflood simulation.

In accordance with the aim of increasing the understanding of in-
puts/outputs relationship in a simulation, a novel set of QoIs was de-
rived using FDA techniques to characterize the overall time-dependent
output variation. It was able to capture the most essential features ofApplication of GSA

coupled with FDA the model behavior through its time-dependent output, thus signif-
icantly departing from the more conventional QoIs (e.g., minimum,
maximum, or time-average scalar value) that have been used so far in
similar SA studies of TH simulation model. The resulting QoIs were
then coupled with the GSA methods (Sobol’ main- and total-effect
indices) to investigate, quantitatively, the effect of the input parame-
ters on the overall time-dependent outputs. When considering FDA-
based QoIs, which better represents the whole transient of an output,
it was found that the important parameters and the nature of their
interactions were changing during the transient. The nature of these
interactions, however, remains to be investigated and is outside the
scope of this thesis.

Finally, the implementations of the employed GSA methods were
developed in-house as a python module to allow full internal con-
trol on the implementation. The module gsa-module has been docu-gsa-module

mented and tested against a suite of test functions. It was applied to
obtain all the results presented in Chapter 3.

1 Although these methods, unlike Sobol’ indices, still allow for dealing with correlated
inputs in straightforward manner.
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recommendations for future work

The landmark registration procedure to separate the phase and am-
plitude variations in a functional data set is one of the most straight-
forward procedure available. However, landmarks might not always
be visible and miss-specification might affect the downstream analy-
sis. As seen in this thesis, slight residual variation during quenching
persisted after registration which caused an inflated (artifact) sensi-
tivity indices around the vicinity of quenching. Therefore, a more
automatic registration technique is worth investigating and applied
to different types of functional data of interest in TH simulation.

In this thesis, Monte Carlo (MC) simulation was used to estimate
the Sobol’ sensitivity indices (main- and total-effect). Though it was
considered affordable for the analysis of the TRACE model of FEBA,
this will become a bottleneck for an application of the method to wide
range of computationally expensive transient simulations. In such
cases, an alternative approach to compute the indices is required.

The gsa-module was developed during the course of the thesis with
the idea of implementing the available methods from the literature
in a quick manner; without having to deal with the learning curve
of adopting existing framework. Additionally, such an approach al-
lows for a full control on the implementation. The structure of the
module makes it easy to be extended for other GSA methods. How-
ever, state of the art uncertainty quantification frameworks such as
the ones mentioned above are much more powerful and some are ac-
tively developed with substantial user base. Thus, for an advanced
GSA methods that are already implemented in any such frameworks,
it is worthwhile to simply adopt the frameworks in the future.

6.2.3 Development and validation of a TRACE metamodel (to approximate
the inputs/outputs relationship of a complex computer simulation for
a faster evaluation)

Gaussian process (GP) metamodeling has been demonstrated for the
TRACE model of FEBA, which has high-dimensional outputs. In this
thesis, the high-dimensionality of the outputs was treated by PCA re-
sulting in a GP PC metamodel. The validation and testing steps then
showed that the error of the metamodel across the prior range of in-
put parameters were within a reasonable range. In other words, it
managed to approximate the important features of the inputs/out-
puts relationship of the reflood simulation model in TRACE. Us-
ing the Gaussian process (GP) principal component (PC) as a surro-
gate for TRACE, the prediction for arbitrary input parameter values
could be made much faster (i.e., < 5 [s] per metamodel evaluation vs.
6− 15 [min] per TRACE). The thesis has also demonstrated the appli-
cability of PCA to reduce the high dimension of the output. The tech-
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nique performed best for relatively smooth outputs (in this particular
application, the pressure drop and liquid carryover transients), while
it performed worse for reconstructing an output exhibiting strong dis-
continuity (e.g., the clad temperature output exhibited a discontinu-
ity around quenching). Finally, though many practical aspects were
involved in the construction of the metamodel, the work in the thesis
concluded that the size of the training sample (i.e., the actual number
of code runs) was the most important factor; if they can be afforded,
more runs should be conducted.

recommendations for future work

The worse performance of the PCA on reconstructing the clad tem-
perature output was, in turn, due to the use of PCA as the linear di-
mension reduction. As such, a first step of improvement in this regardAlternative

dimension reduction
technique

can be aimed toward replacing PCA with another more advanced, di-
mension reduction tool. Simulations with high-dimensional outputs,
either in time or space, are typical in TH analysis. It is thus worth
investigating the application of different dimension reduction tech-
niques, linear (extension of PCA, e.g., [258]) or nonlinear (e.g., isomap
[259], locally linear embedding (LLE) [260], or wavelet [261]). Many
of such developments are made in the area of image processing. In-
deed as shown in Chapter 4, a 1-dimensional time-dependent TRACE
simulation output can be represented as an image.

Furthermore, GP metamodel is not the only available metamod-
eling technique. The response surface method was traditionally em-Alternative

metamodeling
techniques

ployed for TH system analysis but more advanced techniques are
currently available such as the ones mentioned in Section 1.4.2. The
investigation on their applicability – the predictive performance and
the computational cost of construction – for a variety of TH models
is of interest in its own right.

Finally, the step proposed in this thesis is to conduct sensitivity
analysis before constructing the metamodel. In that case, metamodel-Alternative

workflow ing error can be excluded from the sensitivity analysis. However, it
is also possible to construct the metamodel before moving on to the
sensitivity analysis step. Some metamodeling techniques allow the
metamodeling and sensitivity analysis to be combined while provid-
ing an estimate of the associated error. In particular polynomial chaos
expansion (PCE) allows the computation of Sobol’ sensitivity indices
by post-processing the resulting coefficients of the expansion [71].

6.2.4 Bayesian calibration of the TRACE reflood model parameters against
various relevant experimental data

Bayesian calibration was successfully applied quantify the uncertainty
of the selected TRACE reflood model parameters on the basis of the
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FEBA experiments. Different posterior distributions of the model pa-
rameters, corresponding to different calibration assumptions, were
formulated and directly sampled from using an MCMC ensemble
sampler. The uncertainty propagation of each resulting posterior sam-
ples was conducted on all FEBA tests and the results were compared
in terms of informativeness (the width of the prediction uncertainty
band) and calibration score (consistency with the experimental data
and coverage by the uncertainty band).

The value of incorporating model bias term in the calibration pro-
cess has also been demonstrated. Without the model bias term, the
calibration results exhibited stronger symptom of overfitting, i.e., al-
though the prediction uncertainty band was narrower, more experi-
mental data points fell outside the band. At the same time, the poste-
rior uncertainties from the calibration scheme with model bias term
resulted in a particular correlation structure that might be overly spe-
cific to the calibration data. Indeed, though better in terms of cali-
bration score with respect to the scheme without model bias term,
the posterior with bias term had consistently lower calibration scores
across all FEBA tests compared to that of the prior. By removing a
strongly correlated parameter from the calibration – and keeping it at
its prior uncertainty – the resulting posterior prediction uncertainty
was found to have a much improved informativeness with similar
level of calibration scores across all FEBA tests compared to that of
the prior. Therefore, it can be argued that the calibration resulted in a
posterior range and a posterior correlation structure which were, by
construction, specific to the calibration data. However, if the calibra-
tion data was deemed not sufficiently large or comprehensive enough
(here it was based on one FEBA test run) then care should be taken to
avoid overfitting. In this particular case, the calibration by excluding
a strongly correlated parameter was proved to be a compromise and
a pragmatic solution.

Another type of parameter non-identifiability was also encountered
during the calibration process. The non-identifiability due to the pa-
rameter insensitivity with respect to a type of experimental data was
solved by employing a calibration scheme that incorporated multiple
types of experimental data simultaneously.

recommendations for future work

It is worth noting that the calibration conducted in the present doc-
toral research was based only on the data from one FEBA test. The
formulation of the model bias term only considered the bias from one
experimental boundary conditions. The applicability of the resulting
posterior uncertainty is only applicable insofar that the assumed bias
from the calibration data is valid for the test data (i.e., all the other
FEBA tests). For FEBA, different experimental conditions leads to dif-
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ferent bias structure of the model, which was apparent in the case
of test Nos. 223 and 218 (i.e., tests with lower system backpressure
compared to test for the calibration). Indeed the propagation of the
posterior uncertainties performed poorly in such situation. Further-
more, a more consistent uncertainty propagation should incorporate
the bias term if the term is used in the calibration.

A more comprehensive calibration procedure should therefore take
into account the difference in the bias structure from different exper-
imental conditions. One possibility is to concatenate all the experi-
mental data of FEBA into a single calibration process resulting in
a posterior uncertainty of model parameters that takes into account
all available experimental boundary conditions of FEBA. However, to
understand better the difference between the conditions, an alterna-
tive approach is the hierarchical modeling [110], which allows the
model parameters to take different posterior uncertainties depending
on the experimental conditions, while at the same time allowing shar-
ing information from the data across different experimental condi-
tions. This approach might give a better insight on the model validity
and reveal its discrepancy for a particular experimental condition in
a more precise manner.

It should be noted that the model parameters are not of primary
interest themselves. Their calibration against experimental data are
aimed at increasing the confidence in their application for the actual
plant analysis (or, to a lesser degree, integral effect test facilities). In
its own right, the presence of correlation in the model parameters
presents a challenge in the application of the posterior uncertainties.
Model parameters uncertainty are typically assumed to be indepen-
dent a priori. After calibration such assumption might not hold any-
more. A consistent propagation of uncertainty should consider the
correlation structure that is informed by experimental data. As was
observed in this thesis, the correlation structure of the posterior might
not be readily represented as a familiar multivariate Gaussian. Once
more, in this thesis, the issue was sidestep by using directly the pos-
terior samples for the uncertainty propagation thus implicitly captur-
ing the correlation structure. On how to summarize this correlation
structure for the purpose of uncertainty propagation remains an open
question

Regarding computational aspects of the Bayesian calibration, MCMC
sampler is the backbone of the method. In this thesis only one kind of
sampler was used and no direct comparison on its performance was
made against different kind of sampler. For robustness, it is necessary
to extend the verification study using different MCMC samplers.



A
T R A C E C O D E G O V E R N I N G E Q U AT I O N S

The hydraulic module of TRACE is based on a two-fluid six-equation
model, solving the conservation equations of mass, momentum, and
energy for the liquid and vapor phases in the coolant [28]. Further-
more, the formulations are given in volumetric term (i.e., per unit
volume basis) with a reference to a select control volume (or node). A
symbol is defined the first time it appears in an equation.

In the subsequent section the angle brackets and the overbar will be
dropped from the void fraction notation Eq. (2.2) and any mention of
void fraction will refer to the above time- and volume (area)-averaged
formulation.

a.1 mass balance equations

The mass balance equations given for liquid and gas phases are,

∂[(1−α)ρl]

∂t
+∇ · [(1−α)ρlvl] = −Γ (A.1)

∂[αρg]

∂t
+∇ · [αρgvg] = Γ (A.2)

where the subscripts indicate the phase, l for the liquid phase and g
for the gas phase (vapor); α is the void fraction; ρl (ρg) is the mass
density of the liquid (gas) phase; and vl (vg) is the flow velocity of the
liquid (gas) phase. The terms in either sides of the two mass balance
equations are explained in Table A.1.

Table A.1: The terms in TRACE two-fluid model mass balance equations (all
are given in volumetric term)

terms liquid phase gas phase

mass rate of change ∂[(1−α)ρl]
∂t

∂[αρg]
∂t

mass convection rate ∇ · [(1−α)ρlvl] ∇ · [αρgvg]

interfacial mass-transfer rate −Γ Γ

Note that the term Γ , the volumetric interfacial mass-transfer rate,
is given with a convention that it is positive for the transfer from
liquid phase to gas phase. This term is defined in Eq. (A.15) below.
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a.2 momentum balance equations

The momentum balance equations are given for liquid and gas phases
as follows,

∂[(1−α)ρlvl]
∂t

+∇ · [(1−α)ρlvl ⊗ vl] + (1−α)∇p

= fi + fwl + (1−α)ρlg − Γvi
(A.3)

∂[αρgvg]
∂t

+∇ · [αρgvg ⊗ vg] +α∇p

= −fi + fwg +αρgg + Γvi
(A.4)

where ∇p is the pressure gradient; fi is the volumetric force due to
shear at the phase interface; fwl is the volumetric force acting on the
liquid phase due to shear at the wall (i.e., fluid-structure contact);
fwg is the volumetric force acting on the gas phase due to shear at
the wall; g is the gravitational acceleration; and vi is the flow velocity
at the phase interface. Table A.2 lists the terms in either sides of the
two momentum balance equations.

Table A.2: The terms in TRACE two-fluid model momentum balance equa-
tions (all are given in volumetric term)

terms liquid phase gas phase

momentum rate of change ∂[(1−α)ρlvl]
∂t

∂[αρgvg]
∂t

momentum convection rate ∇ · [(1−α)ρlvl ⊗ vl] ∇ · [αρgvg ⊗ vg]

pressure gradient (1−α)∇p α∇p

momentum change due to:

interfacial friction fi −fi
wall friction fwl fwg
body force (1−α)ρlg αρgg

interfacial mass-transfer −Γvi Γvi

Note that the formulation in TRACE uses the simplifying assump-
tion of pi = pg = pl. That is, the pressure in a given control volume
is the same in either phases as well as at the interface [28].

For the friction (shear) terms in right hand side, TRACE uses the
following formulations,

fi = Ci(vg − vl)|vg − vl| (A.5)

fwl = −Cwlvl|vl| (A.6)
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fwg = −Cwgvg|vg| (A.7)

where the friction coefficients Ci, Cwl, Cwg for interfacial shear, wall-
liquid shear, and wall-gas shear, respectively are obtained from flow
regime-dependent empirical correlations.

a.3 energy balance equations

The energy balance equations are defined for liquid and gas phases
as,

∂[(1−α)ρl(el + |vl|
2/2]

∂t
+∇ ·

[
(1−α)ρl

(
el +

P

ρl
+

|vl|
2

2

)
vl

]
= qil + qwl + qwsat + qdl + (1−α)ρlg · vl
− Γh′l + (fi + fwl) · vl

(A.8)

∂[αρg(eg + |vg|
2/2]

∂t
+∇ ·

[
αρg

(
eg +

P

ρg
+

|vg|
2

2

)
vg

]
= qig + qwg + qdg +αρgg · vg + Γh′g + (−fi + fwg) · vg

(A.9)

where el (eg) is the liquid (gas) phase internal energy; qil (qig) is
the volumetric interfacial heat transfer on the liquid (gas) phase; qwl
(qwg) is the volumetric wall (sensible) heat transfer on the liquid (gas)
phase; qwsat is the volumetric wall (latent) heat transfer on the liquid
phase; qdl (qdg) is the volumetric direct power deposition on the
liquid (gas) phase; h′l is the bulk liquid enthalpy; and h′g is the gas
phase saturation enthalpy. Table A.3 lists all of the terms in either
sides of the two energy balance equations.

The heat transfer terms between the wall and the phases follow
Newton’s law of cooling,

qwl = hwl awl (Tw − Tl) (A.10)

qwg = hwg awg (Tw − Tg) (A.11)

qwsat = hwsat awl (Tw − Tsat) (A.12)

where Tw, Tl, Tg, Tsat are the wall, liquid phase, liquid phase, and liq-
uid saturation temperatures, respectively; awl (awg) is the volumetric
surface contact area between the wall and liquid (gas) phase (or the
interfacial area concentration); and hwl, hwg, and hwsat are the HTCs
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Table A.3: The terms in TRACE two-fluid model momentum energy equa-
tions (all are given in volumetric term)

terms liquid phase gas phase

energy rate of change ∂[(1−α)ρl(el+|vl|
2/2]

∂t

∂[αρg(eg+|vg|
2/2]

∂t

energy convection
rate

∇·
[
(1−α)ρl

(
el +

P
ρl

+
|vl|
2

2

)
vl

]
∇·

[
αρg

(
eg + P

ρg
+

|vg|2

2

)
vg

]

(sensible) interfacial
heat transfer

qil −fi

(sensible) wall heat
transfer

qwl fwg

(latent) wall heat
transfer

qwsat αρgg

direct heat deposition qdl Γvi

energy loss (gain)
due to:

gravity (1−α)ρlg · vl αρlg · vl
phase change −Γh′l Γh′g

wall and interfacial
friction

(fi + fwl) · vl (−fi + fwg) · vg

between wall and liquid, wall and gas, and wall-saturated liquid, re-
spectively. The volumetric surface contact area as well as the heat
transfer coefficients are obtained from a set of flow regime-dependent
empirical correlations.

Additionally, the heat transfer terms at the interface between the
two phases are also modeled using the same law,

qil = hil ai (Tsg − Tl) (A.13)

qig =
pg

p
hig ai (Tsg − Tg) (A.14)

where hil (hig) is the HTC for liquid (gas) phase at the interface; ai
is the volumetric interfacial surface area; pg is the partial pressure of
the gas phase; and Tsg is the saturation temperature corresponding
to partial pressure of the gas phase.

Finally, the mass-transfer rate at the interface is defined using a
thermal-energy jump condition that results in

Γ =
−(qig + qil) + qwsat

(h′g − h
′
l)

(A.15)

In other words, the net heat transfer rate given to the saturated liquid
phase, is used entirely for phase change.
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a.4 heat conduction equations

Besides the set balance equations that govern the two-phase fluid
flow, TRACE also includes a heat conduction module (known as heat
structure component) to model correctly the heat transfer process in
solid structures (e.g., active fuel, internal passive structures, etc.) and
between the surface of such structures and the contacting fluid.

heat conduction equation, solid structures :

ρsCps
∂T

∂t
−∇ · (ks∇T) = qs (A.16)

where ρs is the solid structure mass density; Cps is the solid structure
thermal capacity; ks is the solid structure thermal conductivity; and
qs is the volumetric heat source term in the solid.

At the contact between fluid and solid material, the total heat flux
is given as,

q ′′ = hwl (Tw − Tl) + hwsat (Tw − Tsat) + hwg (Tw − Tg) (A.17)

where the heat flux at the surface of the structure, q ′′ is partitioned
to different phases of the fluid, either as sensible or latent heat. As
can be seen, Eq. (A.17) couples the heat conduction equation with
energy balance equations of the fluid through the terms defined in
Eqs. (A.10), (A.11), and (A.12).

a.5 closure and flow regimes

In each of the balance equations given above, the right hand side rep-
resents the source and sink terms mainly due to fluid interaction with
solid structure (wall) and the interaction between the phases, among
others. The set of balance equations characterizes exactly the two-
phase flow inside a control volume in a time- and volume-averaged
manner provided that the terms in the right hand side of the equation
(such as, Eqs. (A.5)-(A.7) and Eqs. (A.10)-(A.14)) are correct.
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b.1.2 Pressure Drop Output (DP)
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Figure B.7: Propagation of the 27 input parameters prior uncertainties on
FEBA test no. 214 for the pressure drop output (DP). The un-
certainty bounds correspond to the symmetric (95%) probability;
solid lines and crosses indicate the simulation with the nominal
parameters values and the experimental data, respectively.
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Figure B.8: Propagation of the 27 input parameters prior uncertainties on
FEBA test no. 216 for the pressure drop output (DP). The un-
certainty bounds correspond to the symmetric (95%) probability;
solid lines and crosses indicate the simulation with the nominal
parameters values and the experimental data, respectively.
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Figure B.9: Propagation of the 27 input parameters prior uncertainties on
FEBA test no. 223 for the pressure drop output (DP). The un-
certainty bounds correspond to the symmetric (95%) probability;
solid lines and crosses indicate the simulation with the nominal
parameters values and the experimental data, respectively.
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Figure B.10: Propagation of the 27 input parameters prior uncertainties on
FEBA test no. 218 for the pressure drop output (DP). The uncer-
tainty bounds correspond to the symmetric (95%) probability;
solid lines and crosses indicate the simulation with the nominal
parameters values and the experimental data, respectively.
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Figure B.11: Propagation of the 27 input parameters prior uncertainties on
FEBA test no. 220 for the pressure drop output (DP). The uncer-
tainty bounds correspond to the symmetric (95%) probability;
solid lines and crosses indicate the simulation with the nominal
parameters values and the experimental data, respectively.
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Figure B.12: Propagation of the 27 input parameters prior uncertainties on
FEBA test no. 222 for the pressure drop output (DP). The uncer-
tainty bounds correspond to the symmetric (95%) probability;
solid lines and crosses indicate the simulation with the nominal
parameters values and the experimental data, respectively.
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b.1.3 Liquid carryover Output (CO)
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Figure B.13: Propagation of the 27 input parameters prior uncertainties on
FEBA test nos. 214 & 218 for the liquid carryover output (CO).
The uncertainty bounds correspond to the symmetric (95%)
probability; solid lines and crosses indicate the simulation with
the nominal parameters values and the experimental data, re-
spectively.
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Figure B.14: Propagation of the 27 input parameters prior uncertainties on
FEBA test nos. 223 & 218 for the liquid carryover output (CO).
The uncertainty bounds correspond to the symmetric (95%)
probability; solid lines and crosses indicate the simulation with
the nominal parameters values and the experimental data, re-
spectively.
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Figure B.15: Propagation of the 27 input parameters prior uncertainties on
FEBA test nos. 220 & 222 for the liquid carryover output (CO).
The uncertainty bounds correspond to the symmetric (95%)
probability; solid lines and crosses indicate the simulation with
the nominal parameters values and the experimental data, re-
spectively.
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b.2 screening analysis (27-parameter model)

Table B.1: Parameters importance ranking with respect to average clad tem-
perature output at z ≈ 4.1 [m] (TC1)

No. Parameter
Morris Radial Morris Trajectory Sobol’-Saltelli

Rank µ∗d σd Rank µ∗d σd Rank ŜTd 95%CIpct

1 breakP 8 0.080 0.058 8 0.077 0.046 8 0.008 (0.007; 0.009)

2 fillT 14 0.029 0.045 13 0.021 0.012 13 0.001 (0.001; 0.001)

3 fillV 4 0.170 0.056 4 0.167 0.051 4 0.032 (0.029; 0.036)

4 pwr 7 0.099 0.064 6 0.098 0.038 6 0.010 (0.009; 0.012)

5 nicK 25 0.011 0.037 26 0.002 0.003 25 0.000 (0.000; 0.000)

6 nicCP 17 0.020 0.037 14 0.016 0.013 15 0.000 (0.000; 0.000)

7 nicEM 27 0.005 0.009 24 0.003 0.005 23 0.000 (0.000; 0.000)

8 mgoK 18 0.019 0.096 21 0.005 0.005 21 0.000 (0.000; 0.000)

9 mgoCP 10 0.068 0.078 9 0.060 0.039 9 0.004 (0.004; 0.005)

10 vesEps 26 0.009 0.026 25 0.002 0.004 27 0.000 (0.000; 0.000)

11 ssK 23 0.013 0.038 22 0.004 0.006 22 0.000 (0.000; 0.000)

12 ssCp 13 0.031 0.107 16 0.014 0.013 16 0.000 (0.000; 0.000)

13 ssEm 24 0.011 0.024 20 0.005 0.007 19 0.000 (0.000; 0.000)

14 gridK 11 0.061 0.080 11 0.055 0.021 11 0.003 (0.003; 0.004)

15 gridHT 3 0.206 0.210 3 0.220 0.207 3 0.079 (0.069; 0.091)

16 iafbWHT 12 0.040 0.063 12 0.028 0.033 12 0.001 (0.001; 0.001)

17 dffbWHT 5 0.131 0.146 5 0.124 0.127 5 0.020 (0.017; 0.024)

18 iafbVIHT 22 0.014 0.035 19 0.006 0.009 20 0.000 (0.000; 0.000)

19 iafbLIHT 15 0.028 0.157 18 0.006 0.012 18 0.000 (0.000; 0.000)

20 dffbVIHT 1 0.987 0.489 1 0.939 0.368 1 0.605 (0.547; 0.667)

21 dffbLIHT 21 0.015 0.047 23 0.004 0.006 24 0.000 (0.000; 0.000)

22 iafbIntDr 6 0.112 0.383 10 0.060 0.091 10 0.003 (0.003; 0.004)

23 dffbIntDr 2 0.772 0.541 2 0.765 0.411 2 0.315 (0.284; 0.350)

24 iafbWDr 19 0.018 0.069 27 0.002 0.004 26 0.000 (0.000; 0.000)

25 dffbWDr 20 0.016 0.025 17 0.010 0.009 17 0.000 (0.000; 0.000)

26 transWHT 16 0.022 0.039 15 0.015 0.019 14 0.000 (0.000; 0.001)

27 tQuench 9 0.080 0.079 7 0.078 0.062 7 0.008 (0.007; 0.009)
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Table B.2: Parameters importance ranking with respect to the average clad temperature
output at z ≈ 3.5 [m] (TC2)

No. Parameter
Morris Radial Morris Trajectory Sobol’-Saltelli

Rank µ∗d σd Rank µ∗d σd Rank ŜTd 95%CIpct

1 breakP 9 0.111 0.070 8 0.103 0.051 8 0.013 (0.012; 0.015)

2 fillT 16 0.030 0.051 13 0.020 0.016 13 0.001 (0.001; 0.001)

3 fillV 5 0.193 0.061 5 0.189 0.051 5 0.040 (0.036; 0.045)

4 pwr 8 0.116 0.079 6 0.113 0.045 6 0.014 (0.013; 0.016)

5 nicK 25 0.016 0.069 27 0.003 0.005 25 0.000 (0.000; 0.000)

6 nicCP 15 0.031 0.080 14 0.019 0.014 15 0.001 (0.000; 0.001)

7 nicEM 27 0.008 0.016 23 0.005 0.007 23 0.000 (0.000; 0.000)

8 mgoK 20 0.022 0.112 21 0.006 0.007 22 0.000 (0.000; 0.000)

9 mgoCP 10 0.082 0.109 10 0.070 0.032 10 0.006 (0.005; 0.006)

10 vesEps 26 0.011 0.028 25 0.003 0.006 26 0.000 (0.000; 0.000)

11 ssK 18 0.026 0.124 22 0.006 0.009 21 0.000 (0.000; 0.000)

12 ssCp 14 0.041 0.168 15 0.017 0.016 14 0.001 (0.000; 0.001)

13 ssEm 24 0.016 0.032 20 0.007 0.010 18 0.000 (0.000; 0.000)

14 gridK 12 0.045 0.058 12 0.039 0.013 12 0.002 (0.002; 0.002)

15 gridHT 4 0.425 0.315 3 0.489 0.211 1 0.304 (0.269; 0.342)

16 iafbWHT 11 0.079 0.075 11 0.069 0.045 11 0.005 (0.005; 0.006)

17 dffbWHT 3 0.430 0.265 4 0.409 0.218 4 0.162 (0.144; 0.183)

18 iafbVIHT 17 0.027 0.113 18 0.009 0.013 19 0.000 (0.000; 0.000)

19 iafbLIHT 13 0.045 0.234 19 0.008 0.014 20 0.000 (0.000; 0.000)

20 dffbVIHT 2 0.573 0.275 2 0.551 0.235 3 0.211 (0.189; 0.236)

21 dffbLIHT 21 0.022 0.090 24 0.004 0.007 24 0.000 (0.000; 0.000)

22 iafbIntDr 6 0.153 0.404 9 0.102 0.146 9 0.008 (0.007; 0.010)

23 dffbIntDr 1 0.759 0.529 1 0.747 0.401 2 0.300 (0.269; 0.334)

24 iafbWDr 23 0.021 0.072 26 0.003 0.006 27 0.000 (0.000; 0.000)

25 dffbWDr 22 0.022 0.059 17 0.010 0.011 17 0.000 (0.000; 0.000)

26 transWHT 19 0.024 0.049 16 0.014 0.020 16 0.000 (0.000; 0.000)

27 tQuench 7 0.116 0.065 7 0.108 0.050 7 0.014 (0.012; 0.016)
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Table B.3: Parameters importance ranking with respect to average clad temperature out-
put at z ≈ 3.0 [m] (TC3)

No. Parameter
Morris Radial Morris Trajectory Sobol’-Saltelli

Rank µ∗d σd Rank µ∗d σd Rank ŜTd 95%CIpct

1 breakP 10 0.115 0.077 10 0.104 0.059 9 0.014 (0.013; 0.016)

2 fillT 16 0.033 0.061 14 0.021 0.019 15 0.001 (0.001; 0.001)

3 fillV 6 0.192 0.071 5 0.188 0.056 5 0.040 (0.036; 0.045)

4 pwr 9 0.115 0.078 8 0.112 0.055 8 0.015 (0.013; 0.017)

5 nicK 24 0.021 0.112 27 0.004 0.006 25 0.000 (0.000; 0.000)

6 nicCP 17 0.032 0.050 13 0.023 0.015 13 0.001 (0.001; 0.001)

7 nicEM 27 0.010 0.021 24 0.006 0.008 23 0.000 (0.000; 0.000)

8 mgoK 19 0.027 0.129 21 0.008 0.009 19 0.000 (0.000; 0.000)

9 mgoCP 11 0.093 0.114 11 0.079 0.029 11 0.007 (0.007; 0.008)

10 vesEps 26 0.012 0.045 26 0.004 0.007 26 0.000 (0.000; 0.000)

11 ssK 21 0.026 0.104 22 0.007 0.009 22 0.000 (0.000; 0.000)

12 ssCp 12 0.054 0.247 15 0.019 0.020 14 0.001 (0.001; 0.001)

13 ssEm 25 0.019 0.035 20 0.009 0.012 18 0.000 (0.000; 0.000)

14 gridK 14 0.036 0.037 12 0.030 0.011 12 0.001 (0.001; 0.001)

15 gridHT 2 0.484 0.364 2 0.558 0.235 1 0.384 (0.340; 0.433)

16 iafbWHT 8 0.124 0.122 9 0.108 0.066 10 0.014 (0.012; 0.016)

17 dffbWHT 3 0.479 0.295 3 0.455 0.243 3 0.207 (0.184; 0.234)

18 iafbVIHT 15 0.034 0.120 17 0.012 0.016 17 0.000 (0.000; 0.000)

19 iafbLIHT 13 0.046 0.201 18 0.010 0.019 20 0.000 (0.000; 0.000)

20 dffbVIHT 4 0.422 0.196 4 0.410 0.177 4 0.123 (0.109; 0.138)

21 dffbLIHT 18 0.028 0.096 23 0.006 0.009 24 0.000 (0.000; 0.000)

22 iafbIntDr 5 0.214 0.427 6 0.150 0.207 7 0.021 (0.018; 0.024)

23 dffbIntDr 1 0.675 0.490 1 0.649 0.344 2 0.239 (0.214; 0.267)

24 iafbWDr 22 0.026 0.096 25 0.004 0.008 27 0.000 (0.000; 0.000)

25 dffbWDr 23 0.022 0.049 19 0.010 0.011 21 0.000 (0.000; 0.000)

26 transWHT 20 0.026 0.056 16 0.015 0.020 16 0.000 (0.000; 0.001)

27 tQuench 7 0.146 0.085 7 0.131 0.058 6 0.022 (0.020; 0.025)
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Table B.4: Parameters importance ranking with respect to the average clad temperature
output at z ≈ 2.4 [m] (TC4)

No. Parameter
Morris Radial Morris Trajectory Sobol’-Saltelli

Rank µ∗d σd Rank µ∗d σd Rank ŜTd 95%CIpct

1 breakP 11 0.108 0.083 10 0.098 0.065 10 0.014 (0.012; 0.015)

2 fillT 17 0.038 0.077 13 0.023 0.024 14 0.001 (0.001; 0.001)

3 fillV 6 0.193 0.076 5 0.189 0.064 5 0.039 (0.035; 0.044)

4 pwr 9 0.116 0.109 9 0.109 0.056 9 0.015 (0.013; 0.017)

5 nicK 25 0.028 0.145 26 0.005 0.007 25 0.000 (0.000; 0.000)

6 nicCP 15 0.040 0.089 12 0.027 0.021 12 0.001 (0.001; 0.001)

7 nicEM 27 0.013 0.028 24 0.007 0.010 21 0.000 (0.000; 0.000)

8 mgoK 23 0.030 0.122 20 0.011 0.011 20 0.000 (0.000; 0.000)

9 mgoCP 10 0.109 0.134 11 0.086 0.035 11 0.009 (0.008; 0.010)

10 vesEps 26 0.017 0.057 27 0.005 0.008 26 0.000 (0.000; 0.000)

11 ssK 16 0.039 0.155 22 0.008 0.011 23 0.000 (0.000; 0.000)

12 ssCp 12 0.057 0.177 14 0.022 0.026 13 0.001 (0.001; 0.001)

13 ssEm 22 0.030 0.074 19 0.012 0.016 17 0.000 (0.000; 0.000)

14 gridK 24 0.028 0.041 15 0.019 0.012 16 0.001 (0.000; 0.001)

15 gridHT 2 0.543 0.412 1 0.618 0.246 1 0.459 (0.410; 0.515)

16 iafbWHT 7 0.172 0.158 8 0.152 0.088 8 0.027 (0.024; 0.031)

17 dffbWHT 3 0.473 0.275 3 0.454 0.224 2 0.207 (0.184; 0.233)

18 iafbVIHT 14 0.049 0.181 18 0.014 0.019 19 0.000 (0.000; 0.000)

19 iafbLIHT 13 0.055 0.192 17 0.015 0.027 18 0.000 (0.000; 0.000)

20 dffbVIHT 4 0.293 0.174 4 0.287 0.124 4 0.062 (0.055; 0.070)

21 dffbLIHT 19 0.037 0.130 23 0.008 0.013 24 0.000 (0.000; 0.000)

22 iafbIntDr 5 0.255 0.538 6 0.176 0.245 7 0.028 (0.024; 0.033)

23 dffbIntDr 1 0.618 0.600 2 0.571 0.288 3 0.185 (0.166; 0.207)

24 iafbWDr 18 0.037 0.143 25 0.005 0.011 27 0.000 (0.000; 0.000)

25 dffbWDr 21 0.031 0.074 21 0.010 0.014 22 0.000 (0.000; 0.000)

26 transWHT 20 0.035 0.087 16 0.018 0.023 15 0.001 (0.001; 0.001)

27 tQuench 8 0.166 0.109 7 0.154 0.079 6 0.031 (0.027; 0.035)
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Table B.5: Parameters importance ranking with respect to the average clad temperature
output at z ≈ 1.9 [m] (TC5)

No. Parameter
Morris Radial Morris Trajectory Sobol’-Saltelli

Rank µ∗d σd Rank µ∗d σd Rank ŜTd 95%CIpct

1 breakP 11 0.109 0.097 10 0.097 0.057 10 0.012 (0.011; 0.014)

2 fillT 14 0.053 0.083 12 0.039 0.028 12 0.002 (0.002; 0.002)

3 fillV 5 0.221 0.086 4 0.218 0.061 4 0.050 (0.045; 0.056)

4 pwr 9 0.128 0.108 9 0.119 0.050 9 0.017 (0.015; 0.019)

5 nicK 21 0.037 0.246 26 0.006 0.009 25 0.000 (0.000; 0.000)

6 nicCP 16 0.050 0.152 13 0.031 0.025 14 0.001 (0.001; 0.002)

7 nicEM 27 0.014 0.038 24 0.009 0.012 22 0.000 (0.000; 0.000)

8 mgoK 22 0.037 0.131 19 0.013 0.014 20 0.000 (0.000; 0.000)

9 mgoCP 10 0.122 0.184 11 0.095 0.036 11 0.010 (0.009; 0.011)

10 vesEps 26 0.016 0.049 27 0.006 0.010 26 0.000 (0.000; 0.000)

11 ssK 19 0.041 0.149 21 0.010 0.014 21 0.000 (0.000; 0.000)

12 ssCp 13 0.056 0.142 14 0.025 0.031 13 0.001 (0.001; 0.002)

13 ssEm 25 0.029 0.069 20 0.012 0.017 19 0.000 (0.000; 0.000)

14 gridK 24 0.029 0.088 18 0.015 0.015 17 0.000 (0.000; 0.001)

15 gridHT 1 0.593 0.452 1 0.673 0.254 1 0.539 (0.483; 0.599)

16 iafbWHT 6 0.195 0.182 6 0.186 0.096 5 0.035 (0.031; 0.040)

17 dffbWHT 3 0.440 0.265 3 0.419 0.184 2 0.176 (0.157; 0.199)

18 iafbVIHT 15 0.051 0.221 17 0.015 0.019 18 0.000 (0.000; 0.000)

19 iafbLIHT 12 0.082 0.320 16 0.020 0.033 16 0.000 (0.000; 0.001)

20 dffbVIHT 7 0.180 0.137 7 0.172 0.092 8 0.024 (0.021; 0.027)

21 dffbLIHT 18 0.045 0.186 23 0.010 0.015 24 0.000 (0.000; 0.000)

22 iafbIntDr 4 0.290 0.541 5 0.197 0.258 6 0.034 (0.029; 0.039)

23 dffbIntDr 2 0.512 0.453 2 0.487 0.251 3 0.125 (0.112; 0.140)

24 iafbWDr 17 0.046 0.203 25 0.006 0.011 27 0.000 (0.000; 0.000)

25 dffbWDr 23 0.034 0.087 22 0.010 0.014 23 0.000 (0.000; 0.000)

26 transWHT 20 0.040 0.093 15 0.022 0.028 15 0.001 (0.001; 0.001)

27 tQuench 8 0.171 0.125 8 0.158 0.085 7 0.032 (0.028; 0.037)
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Table B.6: Parameters importance ranking with respect to the average clad temperature
output at z ≈ 1.3 [m] (TC6)

No. Parameter
Morris Radial Morris Trajectory Sobol’-Saltelli

Rank µ∗d σd Rank µ∗d σd Rank ŜTd 95%CIpct

1 breakP 10 0.111 0.101 10 0.094 0.052 10 0.011 (0.010; 0.013)

2 fillT 13 0.091 0.102 12 0.082 0.027 11 0.007 (0.006; 0.008)

3 fillV 5 0.267 0.084 4 0.264 0.061 3 0.072 (0.065; 0.080)

4 pwr 9 0.135 0.068 8 0.133 0.047 8 0.019 (0.017; 0.021)

5 nicK 23 0.033 0.108 25 0.007 0.011 24 0.000 (0.000; 0.000)

6 nicCP 15 0.062 0.183 13 0.034 0.026 13 0.002 (0.001; 0.002)

7 nicEM 27 0.017 0.043 24 0.010 0.012 25 0.000 (0.000; 0.000)

8 mgoK 20 0.041 0.142 19 0.016 0.016 18 0.000 (0.000; 0.000)

9 mgoCP 8 0.137 0.194 9 0.108 0.045 9 0.013 (0.012; 0.015)

10 vesEps 26 0.021 0.061 26 0.007 0.011 26 0.000 (0.000; 0.000)

11 ssK 19 0.044 0.150 20 0.013 0.017 20 0.000 (0.000; 0.000)

12 ssCp 14 0.071 0.200 14 0.028 0.033 14 0.001 (0.001; 0.002)

13 ssEm 25 0.028 0.064 21 0.013 0.017 21 0.000 (0.000; 0.000)

14 gridK 21 0.038 0.135 17 0.019 0.017 17 0.001 (0.000; 0.001)

15 gridHT 1 0.636 0.489 1 0.726 0.267 1 0.611 (0.552; 0.678)

16 iafbWHT 6 0.222 0.167 5 0.219 0.108 5 0.045 (0.040; 0.051)

17 dffbWHT 3 0.356 0.193 3 0.352 0.153 2 0.129 (0.115; 0.146)

18 iafbVIHT 17 0.054 0.224 18 0.016 0.019 19 0.000 (0.000; 0.001)

19 iafbLIHT 12 0.104 0.651 16 0.025 0.042 16 0.001 (0.001; 0.001)

20 dffbVIHT 11 0.110 0.208 11 0.084 0.067 12 0.006 (0.005; 0.007)

21 dffbLIHT 16 0.059 0.239 22 0.012 0.019 22 0.000 (0.000; 0.000)

22 iafbIntDr 4 0.279 0.401 6 0.194 0.250 6 0.034 (0.029; 0.040)

23 dffbIntDr 2 0.377 0.346 2 0.362 0.195 4 0.068 (0.061; 0.076)

24 iafbWDr 24 0.031 0.100 27 0.006 0.013 27 0.000 (0.000; 0.000)

25 dffbWDr 22 0.036 0.107 23 0.010 0.016 23 0.000 (0.000; 0.000)

26 transWHT 18 0.048 0.095 15 0.025 0.033 15 0.001 (0.001; 0.001)

27 tQuench 7 0.178 0.168 7 0.158 0.089 7 0.031 (0.027; 0.035)
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Table B.7: Parameters importance ranking with respect to the average clad temperature
output at z ≈ 0.8 [m] (TC7)

No. Parameter
Morris Radial Morris Trajectory Sobol’-Saltelli

Rank µ∗d σd Rank µ∗d σd Rank ŜTd 95%CIpct

1 breakP 11 0.089 0.109 11 0.072 0.042 11 0.006 (0.006; 0.007)

2 fillT 8 0.169 0.110 7 0.170 0.023 6 0.027 (0.024; 0.030)

3 fillV 2 0.254 0.085 2 0.257 0.043 2 0.068 (0.061; 0.075)

4 pwr 9 0.126 0.068 9 0.122 0.034 9 0.015 (0.014; 0.017)

5 nicK 17 0.060 0.476 24 0.008 0.013 23 0.000 (0.000; 0.000)

6 nicCP 16 0.072 0.339 13 0.032 0.019 13 0.001 (0.001; 0.002)

7 nicEM 27 0.015 0.038 23 0.009 0.011 24 0.000 (0.000; 0.000)

8 mgoK 20 0.057 0.183 17 0.018 0.018 17 0.001 (0.001; 0.001)

9 mgoCP 10 0.125 0.120 10 0.108 0.041 10 0.013 (0.011; 0.014)

10 vesEps 26 0.019 0.041 25 0.008 0.013 25 0.000 (0.000; 0.000)

11 ssK 19 0.058 0.204 21 0.012 0.016 19 0.001 (0.000; 0.001)

12 ssCp 18 0.059 0.175 16 0.024 0.024 15 0.001 (0.001; 0.001)

13 ssEm 25 0.023 0.065 26 0.007 0.013 26 0.000 (0.000; 0.000)

14 gridK 23 0.041 0.109 18 0.016 0.018 18 0.001 (0.000; 0.001)

15 gridHT 1 0.674 0.518 1 0.762 0.301 1 0.705 (0.642; 0.774)

16 iafbWHT 3 0.238 0.237 3 0.227 0.115 4 0.050 (0.044; 0.056)

17 dffbWHT 4 0.236 0.190 4 0.226 0.130 3 0.062 (0.055; 0.071)

18 iafbVIHT 12 0.085 0.922 20 0.014 0.022 20 0.000 (0.000; 0.001)

19 iafbLIHT 15 0.076 0.241 15 0.027 0.040 16 0.001 (0.001; 0.001)

20 dffbVIHT 14 0.083 0.350 12 0.034 0.045 14 0.001 (0.001; 0.002)

21 dffbLIHT 13 0.085 0.393 19 0.015 0.023 21 0.000 (0.000; 0.000)

22 iafbIntDr 5 0.236 0.472 8 0.142 0.178 8 0.021 (0.018; 0.024)

23 dffbIntDr 6 0.215 0.288 6 0.185 0.116 7 0.021 (0.018; 0.023)

24 iafbWDr 24 0.031 0.104 27 0.006 0.011 27 0.000 (0.000; 0.000)

25 dffbWDr 22 0.050 0.174 22 0.011 0.018 22 0.000 (0.000; 0.000)

26 transWHT 21 0.056 0.110 14 0.030 0.035 12 0.002 (0.001; 0.002)

27 tQuench 7 0.213 0.226 5 0.191 0.095 5 0.044 (0.039; 0.050)
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Table B.8: Parameters importance ranking with respect to the average clad temperature
output at z ≈ 0.3 [m] (TC8)

No. Parameter
Morris Radial Morris Trajectory Sobol’-Saltelli

Rank µ∗d σd Rank µ∗d σd Rank ŜTd 95%CIpct

1 breakP 9 0.091 0.173 10 0.045 0.042 10 0.003 (0.003; 0.004)

2 fillT 1 0.749 0.256 1 0.774 0.031 1 0.549 (0.497; 0.606)

3 fillV 3 0.270 0.134 3 0.272 0.045 3 0.072 (0.065; 0.081)

4 pwr 6 0.219 0.037 4 0.230 0.012 4 0.047 (0.043; 0.053)

5 nicK 22 0.040 0.121 22 0.013 0.019 21 0.001 (0.001; 0.001)

6 nicCP 13 0.077 0.321 12 0.036 0.024 11 0.002 (0.002; 0.002)

7 nicEM 27 0.009 0.018 25 0.006 0.008 24 0.000 (0.000; 0.000)

8 mgoK 18 0.054 0.093 15 0.031 0.021 13 0.002 (0.001; 0.002)

9 mgoCP 7 0.131 0.255 7 0.095 0.040 7 0.010 (0.009; 0.011)

10 vesEps 23 0.032 0.238 23 0.010 0.019 23 0.000 (0.000; 0.000)

11 ssK 20 0.045 0.149 21 0.014 0.023 22 0.001 (0.001; 0.001)

12 ssCp 14 0.069 0.252 16 0.026 0.022 17 0.001 (0.001; 0.001)

13 ssEm 26 0.011 0.031 26 0.004 0.006 26 0.000 (0.000; 0.000)

14 gridK 21 0.045 0.104 20 0.015 0.027 20 0.001 (0.001; 0.001)

15 gridHT 19 0.050 0.116 18 0.025 0.035 16 0.001 (0.001; 0.002)

16 iafbWHT 4 0.225 0.714 5 0.180 0.095 5 0.033 (0.030; 0.038)

17 dffbWHT 8 0.107 0.156 8 0.082 0.068 8 0.009 (0.007; 0.010)

18 iafbVIHT 24 0.024 0.097 24 0.008 0.014 25 0.000 (0.000; 0.000)

19 iafbLIHT 11 0.085 0.192 11 0.038 0.054 14 0.002 (0.001; 0.002)

20 dffbVIHT 17 0.057 0.146 14 0.032 0.042 12 0.002 (0.001; 0.002)

21 dffbLIHT 10 0.087 0.255 17 0.025 0.038 19 0.001 (0.001; 0.001)

22 iafbIntDr 5 0.224 0.694 6 0.113 0.132 6 0.012 (0.010; 0.013)

23 dffbIntDr 16 0.062 0.174 13 0.033 0.054 15 0.001 (0.001; 0.002)

24 iafbWDr 25 0.012 0.037 27 0.003 0.006 27 0.000 (0.000; 0.000)

25 dffbWDr 15 0.065 0.194 19 0.016 0.029 18 0.001 (0.001; 0.001)

26 transWHT 12 0.084 0.169 9 0.058 0.047 9 0.005 (0.004; 0.005)

27 tQuench 2 0.533 0.338 2 0.512 0.134 2 0.272 (0.244; 0.303)
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Table B.9: Parameters importance ranking with respect to the average bottom pressure
drop output (DP Bot., the segment between z = 0.0 [m] and z = 1.7 [m])

No. Parameter
Morris Radial Morris Trajectory Sobol’-Saltelli

Rank µ∗d σd Rank µ∗d σd Rank ŜTd 95%CIpct

1 breakP 6 0.181 0.095 7 0.176 0.049 6 0.032 (0.028; 0.036)

2 fillT 7 0.173 0.096 6 0.178 0.030 7 0.029 (0.026; 0.033)

3 fillV 2 0.460 0.094 2 0.465 0.067 2 0.213 (0.191; 0.238)

4 pwr 11 0.125 0.071 11 0.129 0.039 11 0.016 (0.014; 0.018)

5 nicK 21 0.045 0.298 26 0.007 0.011 25 0.000 (0.000; 0.000)

6 nicCP 16 0.051 0.098 15 0.038 0.021 15 0.002 (0.001; 0.002)

7 nicEM 27 0.015 0.041 25 0.008 0.011 26 0.000 (0.000; 0.000)

8 mgoK 23 0.039 0.151 23 0.010 0.013 21 0.000 (0.000; 0.000)

9 mgoCP 8 0.151 0.155 9 0.136 0.048 9 0.019 (0.017; 0.022)

10 vesEps 26 0.019 0.055 27 0.006 0.010 27 0.000 (0.000; 0.000)

11 ssK 22 0.043 0.135 21 0.011 0.014 20 0.000 (0.000; 0.000)

12 ssCp 12 0.099 0.142 12 0.083 0.027 12 0.007 (0.006; 0.008)

13 ssEm 25 0.025 0.046 20 0.011 0.014 22 0.000 (0.000; 0.000)

14 gridK 20 0.045 0.081 18 0.029 0.016 17 0.001 (0.001; 0.001)

15 gridHT 4 0.209 0.303 4 0.224 0.263 3 0.076 (0.065; 0.087)

16 iafbWHT 9 0.139 0.200 8 0.141 0.135 10 0.019 (0.017; 0.023)

17 dffbWHT 10 0.137 0.158 10 0.135 0.124 8 0.026 (0.022; 0.030)

18 iafbVIHT 19 0.047 0.217 19 0.014 0.018 19 0.000 (0.000; 0.000)

19 iafbLIHT 14 0.082 0.316 16 0.030 0.042 18 0.001 (0.001; 0.001)

20 dffbVIHT 13 0.084 0.170 13 0.062 0.064 13 0.004 (0.003; 0.005)

21 dffbLIHT 18 0.048 0.156 22 0.011 0.016 23 0.000 (0.000; 0.000)

22 iafbIntDr 1 0.976 0.794 1 0.876 0.636 1 0.531 (0.475; 0.593)

23 dffbIntDr 3 0.382 0.374 3 0.364 0.203 4 0.066 (0.059; 0.075)

24 iafbWDr 24 0.038 0.164 24 0.009 0.011 24 0.000 (0.000; 0.000)

25 dffbWDr 15 0.065 0.094 14 0.050 0.020 14 0.003 (0.002; 0.003)

26 transWHT 17 0.049 0.098 17 0.029 0.035 16 0.001 (0.001; 0.002)

27 tQuench 5 0.203 0.206 5 0.190 0.165 5 0.050 (0.042; 0.058)
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Table B.10: Parameters importance ranking with respect to the average middle pressure
drop output (DP Mid., the segment between z = 1.7 [m] and z = 2.3 [m])

No. Parameter
Morris Radial Morris Trajectory Sobol’-Saltelli

Rank µ∗d σd Rank µ∗d σd Rank ŜTd 95%CIpct

1 breakP 6 0.223 0.091 7 0.220 0.059 7 0.051 (0.045; 0.057)

2 fillT 9 0.186 0.084 10 0.181 0.052 9 0.035 (0.031; 0.040)

3 fillV 2 0.548 0.146 2 0.541 0.093 1 0.298 (0.268; 0.333)

4 pwr 5 0.230 0.076 5 0.238 0.070 6 0.056 (0.050; 0.063)

5 nicK 20 0.037 0.320 26 0.005 0.008 25 0.000 (0.000; 0.000)

6 nicCP 18 0.041 0.088 16 0.028 0.020 16 0.001 (0.001; 0.001)

7 nicEM 27 0.012 0.028 24 0.007 0.010 23 0.000 (0.000; 0.000)

8 mgoK 25 0.023 0.080 21 0.008 0.011 22 0.000 (0.000; 0.000)

9 mgoCP 12 0.112 0.148 12 0.090 0.040 12 0.010 (0.009; 0.011)

10 vesEps 26 0.015 0.043 27 0.004 0.007 27 0.000 (0.000; 0.000)

11 ssK 23 0.035 0.119 22 0.008 0.011 21 0.000 (0.000; 0.000)

12 ssCp 13 0.096 0.165 14 0.074 0.027 14 0.006 (0.006; 0.007)

13 ssEm 24 0.025 0.044 20 0.014 0.014 18 0.000 (0.000; 0.000)

14 gridK 16 0.048 0.079 15 0.037 0.012 15 0.001 (0.001; 0.002)

15 gridHT 7 0.219 0.289 4 0.240 0.238 4 0.086 (0.073; 0.099)

16 iafbWHT 10 0.179 0.154 9 0.184 0.108 10 0.033 (0.029; 0.038)

17 dffbWHT 8 0.203 0.175 8 0.202 0.132 8 0.050 (0.043; 0.057)

18 iafbVIHT 17 0.046 0.207 19 0.016 0.019 19 0.000 (0.000; 0.000)

19 iafbLIHT 15 0.061 0.237 18 0.017 0.027 20 0.000 (0.000; 0.000)

20 dffbVIHT 11 0.175 0.209 11 0.159 0.097 11 0.022 (0.019; 0.025)

21 dffbLIHT 21 0.036 0.141 23 0.008 0.012 24 0.000 (0.000; 0.000)

22 iafbIntDr 1 0.668 0.692 1 0.549 0.523 2 0.250 (0.219; 0.284)

23 dffbIntDr 3 0.510 0.448 3 0.477 0.259 3 0.120 (0.107; 0.134)

24 iafbWDr 19 0.041 0.194 25 0.005 0.009 26 0.000 (0.000; 0.000)

25 dffbWDr 14 0.085 0.072 13 0.080 0.019 13 0.007 (0.006; 0.008)

26 transWHT 22 0.036 0.067 17 0.024 0.029 17 0.001 (0.001; 0.001)

27 tQuench 4 0.234 0.155 6 0.231 0.133 5 0.068 (0.059; 0.078)
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Table B.11: Parameters importance ranking with respect to the average top pressure drop
output (DP Top, the segment between z = 2.3 [m] and z = 4.1 [m])

No. Parameter
Morris Radial Morris Trajectory Sobol’-Saltelli

Rank µ∗d σd Rank µ∗d σd Rank ŜTd 95%CIpct

1 breakP 10 0.147 0.067 10 0.140 0.052 10 0.023 (0.020; 0.026)

2 fillT 12 0.116 0.058 12 0.112 0.045 12 0.015 (0.013; 0.016)

3 fillV 2 0.427 0.099 2 0.418 0.091 2 0.186 (0.167; 0.209)

4 pwr 9 0.184 0.096 9 0.179 0.060 9 0.034 (0.030; 0.038)

5 nicK 25 0.016 0.045 27 0.004 0.006 25 0.000 (0.000; 0.000)

6 nicCP 21 0.028 0.041 17 0.018 0.013 17 0.001 (0.000; 0.001)

7 nicEM 27 0.010 0.020 24 0.005 0.007 22 0.000 (0.000; 0.000)

8 mgoK 23 0.022 0.096 23 0.005 0.008 23 0.000 (0.000; 0.000)

9 mgoCP 14 0.081 0.098 14 0.063 0.032 14 0.005 (0.005; 0.006)

10 vesEps 26 0.012 0.031 26 0.004 0.006 26 0.000 (0.000; 0.000)

11 ssK 20 0.030 0.119 21 0.006 0.008 21 0.000 (0.000; 0.000)

12 ssCp 15 0.063 0.136 15 0.041 0.019 15 0.002 (0.002; 0.002)

13 ssEm 24 0.018 0.033 20 0.009 0.011 18 0.000 (0.000; 0.000)

14 gridK 13 0.109 0.030 13 0.110 0.019 13 0.012 (0.011; 0.014)

15 gridHT 7 0.280 0.257 6 0.313 0.203 3 0.143 (0.125; 0.164)

16 iafbWHT 11 0.134 0.108 11 0.125 0.065 11 0.016 (0.014; 0.019)

17 dffbWHT 6 0.292 0.194 7 0.283 0.152 6 0.086 (0.075; 0.099)

18 iafbVIHT 17 0.036 0.132 18 0.012 0.014 19 0.000 (0.000; 0.000)

19 iafbLIHT 16 0.048 0.249 19 0.009 0.015 20 0.000 (0.000; 0.000)

20 dffbVIHT 4 0.333 0.175 4 0.324 0.152 7 0.086 (0.075; 0.098)

21 dffbLIHT 22 0.024 0.066 22 0.005 0.010 24 0.000 (0.000; 0.000)

22 iafbIntDr 3 0.416 0.520 3 0.327 0.355 5 0.096 (0.082; 0.112)

23 dffbIntDr 1 0.670 0.545 1 0.624 0.342 1 0.204 (0.182; 0.230)

24 iafbWDr 19 0.034 0.155 25 0.004 0.008 27 0.000 (0.000; 0.000)

25 dffbWDr 5 0.322 0.069 5 0.323 0.040 4 0.110 (0.098; 0.123)

26 transWHT 18 0.035 0.065 16 0.024 0.029 16 0.001 (0.001; 0.001)

27 tQuench 8 0.188 0.112 8 0.181 0.101 8 0.042 (0.037; 0.048)
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Table B.12: Parameters importance ranking with respect to the average total pressure
drop output (DP Tot., the segment between z = 0.0 [m] and z = 4.1 [m])

No. Parameter
Morris Radial Morris Trajectory Sobol’-Saltelli

Rank µ∗d σd Rank µ∗d σd Rank ŜTd 95%CIpct

1 breakP 10 0.178 0.064 10 0.173 0.034 10 0.031 (0.028; 0.035)

2 fillT 11 0.150 0.056 11 0.148 0.022 11 0.022 (0.020; 0.025)

3 fillV 3 0.484 0.076 3 0.477 0.043 1 0.231 (0.208; 0.258)

4 pwr 9 0.189 0.063 9 0.190 0.032 9 0.035 (0.031; 0.039)

5 nicK 23 0.025 0.157 26 0.004 0.006 25 0.000 (0.000; 0.000)

6 nicCP 19 0.034 0.046 16 0.025 0.015 17 0.001 (0.001; 0.001)

7 nicEM 27 0.010 0.024 24 0.006 0.007 23 0.000 (0.000; 0.000)

8 mgoK 24 0.023 0.077 22 0.006 0.009 22 0.000 (0.000; 0.000)

9 mgoCP 13 0.104 0.108 13 0.088 0.034 13 0.009 (0.008; 0.010)

10 vesEps 26 0.013 0.037 27 0.004 0.006 27 0.000 (0.000; 0.000)

11 ssK 20 0.031 0.117 21 0.006 0.008 21 0.000 (0.000; 0.000)

12 ssCp 15 0.076 0.112 15 0.060 0.020 15 0.004 (0.004; 0.005)

13 ssEm 25 0.020 0.036 20 0.010 0.011 20 0.000 (0.000; 0.000)

14 gridK 14 0.083 0.036 14 0.081 0.016 14 0.006 (0.006; 0.007)

15 gridHT 6 0.245 0.272 4 0.276 0.224 4 0.114 (0.098; 0.132)

16 iafbWHT 12 0.144 0.119 12 0.143 0.083 12 0.021 (0.018; 0.023)

17 dffbWHT 5 0.245 0.174 5 0.244 0.139 5 0.066 (0.057; 0.076)

18 iafbVIHT 17 0.038 0.161 19 0.013 0.015 19 0.000 (0.000; 0.000)

19 iafbLIHT 16 0.050 0.182 18 0.014 0.021 18 0.000 (0.000; 0.000)

20 dffbVIHT 4 0.245 0.139 6 0.242 0.122 8 0.048 (0.042; 0.055)

21 dffbLIHT 22 0.027 0.078 23 0.006 0.010 24 0.000 (0.000; 0.000)

22 iafbIntDr 1 0.610 0.618 2 0.514 0.465 2 0.209 (0.183; 0.238)

23 dffbIntDr 2 0.602 0.500 1 0.564 0.303 3 0.164 (0.146; 0.184)

24 iafbWDr 21 0.030 0.133 25 0.005 0.008 26 0.000 (0.000; 0.000)

25 dffbWDr 7 0.219 0.058 7 0.224 0.031 7 0.051 (0.046; 0.058)

26 transWHT 18 0.036 0.067 17 0.025 0.029 16 0.001 (0.001; 0.001)

27 tQuench 8 0.205 0.133 8 0.201 0.118 6 0.051 (0.045; 0.059)
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Table B.13: Parameters importance ranking with respect to the average liquid carryover
output (CO)

No. Parameter
Morris Radial Morris Trajectory Sobol’-Saltelli

Rank µ∗d σd Rank µ∗d σd Rank ŜTd 95%CIpct

1 breakP 8 0.091 0.046 8 0.089 0.027 8 0.008 (0.008; 0.010)

2 fillT 17 0.021 0.045 14 0.012 0.011 15 0.000 (0.000; 0.000)

3 fillV 3 0.628 0.070 2 0.644 0.025 1 0.396 (0.358; 0.439)

4 pwr 14 0.025 0.052 11 0.020 0.025 12 0.000 (0.000; 0.001)

5 nicK 22 0.016 0.084 27 0.003 0.004 25 0.000 (0.000; 0.000)

6 nicCP 23 0.015 0.028 19 0.008 0.010 16 0.000 (0.000; 0.000)

7 nicEM 27 0.006 0.013 24 0.004 0.005 23 0.000 (0.000; 0.000)

8 mgoK 18 0.018 0.101 23 0.004 0.006 22 0.000 (0.000; 0.000)

9 mgoCP 11 0.037 0.078 12 0.020 0.025 11 0.001 (0.001; 0.001)

10 vesEps 26 0.009 0.021 26 0.003 0.004 27 0.000 (0.000; 0.000)

11 ssK 20 0.017 0.066 21 0.005 0.006 21 0.000 (0.000; 0.000)

12 ssCp 13 0.027 0.103 15 0.012 0.014 14 0.000 (0.000; 0.000)

13 ssEm 25 0.012 0.022 20 0.006 0.008 20 0.000 (0.000; 0.000)

14 gridK 10 0.045 0.066 10 0.040 0.011 10 0.002 (0.001; 0.002)

15 gridHT 5 0.178 0.158 4 0.196 0.131 4 0.055 (0.049; 0.063)

16 iafbWHT 9 0.087 0.070 9 0.083 0.038 9 0.007 (0.006; 0.007)

17 dffbWHT 6 0.153 0.117 6 0.150 0.075 5 0.023 (0.020; 0.026)

18 iafbVIHT 15 0.024 0.111 18 0.009 0.010 19 0.000 (0.000; 0.000)

19 iafbLIHT 12 0.035 0.207 17 0.009 0.014 18 0.000 (0.000; 0.000)

20 dffbVIHT 2 0.645 0.252 3 0.637 0.196 2 0.282 (0.254; 0.313)

21 dffbLIHT 24 0.015 0.051 22 0.004 0.006 24 0.000 (0.000; 0.000)

22 iafbIntDr 4 0.203 0.364 5 0.150 0.169 6 0.019 (0.016; 0.021)

23 dffbIntDr 1 0.678 0.468 1 0.668 0.341 3 0.229 (0.206; 0.255)

24 iafbWDr 21 0.017 0.060 25 0.003 0.005 26 0.000 (0.000; 0.000)

25 dffbWDr 19 0.018 0.036 16 0.010 0.010 17 0.000 (0.000; 0.000)

26 transWHT 16 0.022 0.046 13 0.013 0.017 13 0.000 (0.000; 0.000)

27 tQuench 7 0.123 0.064 7 0.121 0.047 7 0.016 (0.014; 0.018)
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b.3 convergence of the sobol’ indices

The convergence of the Sobol’ indices’ estimator can be investigated
from their evolutions as functions of the number of samples. Shown
in Fig. B.16 is the evolution (trace plot) of the estimated main-effect
indices with the maximum clad temperature as the QoI. The Saltelli et
al. estimator performs poorly compared to the Janon et al. estimator
for this particular output. This means that a larger number of samples
are required to obtain a stable ranking.
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Figure B.16: Evolution of the main-effect sensitivity indices for all input
paramters using two different estimators as a function of the
number of Sobol’ sequence samples. The QoI is the maximum
clad temperature

If the main purpose of the SA is simply to rank the parameter
importance with respect to a particular QoI, then the Janon et al. esti-
mator visibly requires fewer samples and the ranking can be reliably
constructed. However, the apparent stabilization of the indices’ esti-
mator is not sufficient to establish a robust estimate of the indices
since MC estimation entails uncertainty due to finite number of sam-
ples. Such uncertainty needs to be addressed for all the estimates.

In this work, an empirical convergence study was established us-
ing three different sample sizes (250; 500; 1000), and for each size, the
95% CI length (the difference between the upper and lower bounds)
is determined using the bootstrap technique [155] using 10 ′000 repli-
cations. The results are shown if Fig. B.17 for the maximum clad tem-
perature as the QoI. Note that the comparisons between CI lengths of
different estimates can be made directly as the Sobol’ index itself is
dimensionless. As can be seen, with respect to this QoI, the Janon et
al. estimator is further confirmed as the more efficient estimator. The
uncertainty of indices estimated by the Saltelli et al. estimator is still
high for numbers of samples in the range of thousands. The efficiency
of the Saltelli et al. estimator is also found to be more sensitive to the
choice of estimand (i.e., Sobol’ index of a given input parameter).
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Figure B.17: The 95% percentile boostrapped CI length as a function of the
number of samples for five selected estimated Sobol’ main-
effect indices, with respect to the maximum clad temperature
using two different estimators. The lines shown are the regres-
sion through the origin lines.

However, further investigation also revealed that the efficiency of
an estimator depended on the QoI in a more complex manner than
initially considered. As can be seen in Fig. B.18, where the first prin-
cipal component scores were taken as the QoI, both estimators were
found to be comparable, with the Saltelli et al. estimator being even
slightly more efficient. And as before, the Janon et al. estimator shows
less sensitivity to the choice of estimand in its convergence as com-
pared to the Saltelli et al. estimator.
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Figure B.18: The 95% percentile boostrapped CI length as a function of the
number of samples for five selected estimated Sobol’ main-
effect indices, with respect to the first principal component us-
ing two different estimators. The lines shown are the regression
through the origin lines.



258 additional results

The convergence analysis plots shown in Figs. B.17 and B.18 can be
useful in the planning of the simulation experiments. As can be in-
ferred from both figures, the CI length of a given estimator depends
on the QoI, the estimand, the estimator used, and the number of sam-
ples. The regression lines also indicate the projection of the reduction
in the CI length with increasing number of samples.

As for the total-effect indices, the results obtained using the Jansen’s
estimator confirmed the good efficiency of the estimator, reaching be-
low 10% CI length for 1 ′000 MC samples across all QoI.

b.4 sobol indices (12-parameter model)

Table B.14: Main-effect and total-effect sensitivity indices for 12-parameter
FEBA model with respect to the maximum clad temperature at
the mid-height of the assembly as the QoI.

No. Parameter
Sd STd

Ŝd 95%CIpct ŜTd 95%CIpct

1 breakP −0.011 (−0.057; 0.034) 0.008 (0.008; 0.009)

2 fillT −0.015 (−0.061; 0.030) 0.001 (0.001; 0.001)

3 fillV 0.028 (−0.016; 0.071) 0.044 (0.040; 0.047)

4 pwr 0.009 (−0.038; 0.054) 0.027 (0.025; 0.030)

5 gridHT 0.143 (0.099; 0.186) 0.197 (0.179; 0.215)

6 iafbWHT −0.016 (−0.062; 0.029) 0.008 (0.007; 0.009)

7 dffbWHT 0.206 (0.163; 0.248) 0.262 (0.241; 0.286)

8 dffbVIHT 0.196 (0.153; 0.239) 0.244 (0.224; 0.265)

9 iafbIntDr 0.013 (−0.033; 0.057) 0.031 (0.028; 0.034)

10 dffbIntDr 0.223 (0.181; 0.265) 0.287 (0.264; 0.312)

11 dffbWDr −0.013 (−0.059; 0.032) 0.001 (0.001; 0.001)

12 tQuench −0.016 (−0.062; 0.029) 0.007 (0.007; 0.008)
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Table B.15: Main-effect and total-effect sensitivity indices for 12-parameter
FEBA model with respect to the time of quenching at the mid-
height of the assembly as the QoI.

No. Parameter
Sd STd

Ŝd 95%CIpct ŜTd 95%CIpct

1 breakP 0.003 (−0.044; 0.048) 0.015 (0.014; 0.017)

2 fillT −0.011 (−0.057; 0.036) 0.001 (0.001; 0.001)

3 fillV 0.018 (−0.027; 0.063) 0.028 (0.026; 0.031)

4 pwr −0.001 (−0.048; 0.045) 0.011 (0.010; 0.012)

5 gridHT 0.501 (0.468; 0.532) 0.530 (0.491; 0.572)

6 iafbWHT 0.043 (−0.004; 0.089) 0.063 (0.058; 0.069)

7 dffbWHT 0.101 (0.057; 0.145) 0.142 (0.129; 0.155)

8 dffbVIHT 0.007 (−0.039; 0.052) 0.023 (0.021; 0.025)

9 iafbIntDr 0.032 (−0.015; 0.079) 0.066 (0.060; 0.074)

10 dffbIntDr 0.076 (0.033; 0.120) 0.094 (0.086; 0.101)

11 dffbWDr −0.010 (−0.057; 0.036) 0.000 (0.000; 0.000)

12 tQuench 0.074 (0.028; 0.120) 0.100 (0.091; 0.109)

Table B.16: Main-effect and total-effect sensitivity indices for 12-parameter
FEBA model with respect to the 1st fPC scores of the registered
clad temperature transient at the mid-height of the assembly as
the QoI.

No. Parameter
Sd STd

Ŝd 95%CIpct ŜTd 95%CIpct

1 breakP 0.000 (−0.008; 0.008) 0.019 (0.017; 0.022)

2 fillT 0.001 (−0.005; 0.007) 0.011 (0.008; 0.013)

3 fillV 0.031 (0.017; 0.046) 0.051 (0.047; 0.055)

4 pwr 0.023 (0.012; 0.035) 0.035 (0.031; 0.039)

5 gridHT 0.164 (0.134; 0.195) 0.217 (0.199; 0.236)

6 iafbWHT 0.001 (−0.010; 0.012) 0.031 (0.028; 0.035)

7 dffbWHT 0.225 (0.191; 0.260) 0.268 (0.247; 0.291)

8 dffbVIHT 0.219 (0.187; 0.252) 0.278 (0.256; 0.302)

9 iafbIntDr 0.036 (0.020; 0.052) 0.062 (0.057; 0.068)

10 dffbIntDr 0.212 (0.179; 0.247) 0.269 (0.248; 0.292)

11 dffbWDr 0.002 (−0.002; 0.007) 0.006 (0.004; 0.008)

12 tQuench −0.002 (−0.013; 0.009) 0.035 (0.031; 0.039)
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Table B.17: Main-effect and total-effect sensitivity indices for 12-parameter
FEBA model with respect to the 2nd fPC scores of the registered
clad temperature transient at the mid-height of the assembly as
the QoI.

No. Parameter
Sd STd

Ŝd 95%CIpct ŜTd 95%CIpct

1 breakP 0.008 (−0.015; 0.031) 0.163 (0.139; 0.189)

2 fillT 0.000 (−0.019; 0.019) 0.105 (0.085; 0.126)

3 fillV −0.014 (−0.042; 0.014) 0.200 (0.174; 0.228)

4 pwr −0.006 (−0.031; 0.020) 0.180 (0.153; 0.210)

5 gridHT 0.079 (0.033; 0.126) 0.590 (0.541; 0.643)

6 iafbWHT 0.019 (−0.017; 0.057) 0.374 (0.340; 0.410)

7 dffbWHT 0.007 (−0.034; 0.047) 0.494 (0.455; 0.537)

8 dffbVIHT −0.031 (−0.071; 0.009) 0.434 (0.396; 0.476)

9 iafbIntDr 0.033 (−0.001; 0.069) 0.349 (0.313; 0.389)

10 dffbIntDr −0.010 (−0.059; 0.037) 0.636 (0.591; 0.687)

11 dffbWDr 0.007 (−0.005; 0.020) 0.056 (0.042; 0.071)

12 tQuench 0.112 (0.068; 0.157) 0.525 (0.485; 0.568)

Table B.18: Main-effect and total-effect sensitivity indices for 12-parameter
FEBA model with respect to the 1st fPC scores of the warping
function for the clad temperature transient at the mid-height of
the assembly as the QoI.

No. Parameter
Sd STd

Ŝd 95%CIpct ŜTd 95%CIpct

1 breakP 0.012 (0.004; 0.020) 0.016 (0.015; 0.018)

2 fillT −0.001 (−0.004; 0.001) 0.001 (0.001; 0.002)

3 fillV 0.028 (0.018; 0.039) 0.031 (0.028; 0.033)

4 pwr 0.008 (0.002; 0.014) 0.012 (0.011; 0.013)

5 gridHT 0.496 (0.447; 0.547) 0.524 (0.486; 0.564)

6 iafbWHT 0.042 (0.029; 0.056) 0.050 (0.046; 0.055)

7 dffbWHT 0.122 (0.098; 0.147) 0.152 (0.140; 0.166)

8 dffbVIHT 0.022 (0.011; 0.032) 0.031 (0.028; 0.034)

9 iafbIntDr 0.036 (0.021; 0.050) 0.056 (0.050; 0.062)

10 dffbIntDr 0.106 (0.085; 0.128) 0.120 (0.111; 0.130)

11 dffbWDr 0.000 (−0.001; 0.001) 0.000 (0.000; 0.000)

12 tQuench 0.065 (0.048; 0.083) 0.081 (0.074; 0.088)
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Table B.19: Main-effect and total-effect sensitivity indices for 12-parameter
FEBA model with respect to the 1st fPC scores of the pressure
drop transient at the middle of the assembly as the QoI.

No. Parameter
Sd STd

Ŝd 95%CIpct ŜTd 95%CIpct

1 breakP 0.057 (0.042; 0.072) 0.060 (0.056; 0.066)

2 fillT 0.038 (0.026; 0.050) 0.039 (0.036; 0.042)

3 fillV 0.302 (0.267; 0.341) 0.304 (0.282; 0.329)

4 pwr 0.056 (0.041; 0.071) 0.062 (0.057; 0.067)

5 gridHT 0.019 (0.002; 0.037) 0.078 (0.071; 0.087)

6 iafbWHT 0.029 (0.017; 0.041) 0.038 (0.035; 0.042)

7 dffbWHT 0.019 (0.006; 0.033) 0.048 (0.042; 0.053)

8 dffbVIHT 0.021 (0.011; 0.030) 0.022 (0.020; 0.024)

9 iafbIntDr 0.195 (0.162; 0.229) 0.278 (0.252; 0.305)

10 dffbIntDr 0.097 (0.077; 0.118) 0.106 (0.097; 0.115)

11 dffbWDr 0.000 (−0.001; 0.001) 0.000 (0.000; 0.000)

12 tQuench 0.048 (0.031; 0.065) 0.075 (0.068; 0.083)

Table B.20: Main-effect and total-effect sensitivity indices for 12-parameter
FEBA model with respect to the 1st fPC scores of the liquid car-
ryover transient as the QoI.

No. Parameter
Sd STd

Ŝd 95%CIpct ŜTd 95%CIpct

1 breakP 0.000 (−0.002; 0.001) 0.001 (0.001; 0.001)

2 fillT 0.003 (−0.001; 0.006) 0.003 (0.003; 0.004)

3 fillV 0.901 (0.833; 0.972) 0.907 (0.856; 0.960)

4 pwr 0.005 (−0.001; 0.011) 0.010 (0.009; 0.011)

5 gridHT −0.001 (−0.005; 0.003) 0.005 (0.004; 0.005)

6 iafbWHT 0.000 (−0.001; 0.001) 0.000 (0.000; 0.000)

7 dffbWHT 0.000 (−0.002; 0.002) 0.001 (0.001; 0.001)

8 dffbVIHT 0.048 (0.034; 0.062) 0.055 (0.051; 0.059)

9 iafbIntDr 0.000 (−0.002; 0.002) 0.001 (0.001; 0.002)

10 dffbIntDr 0.025 (0.015; 0.036) 0.028 (0.026; 0.031)

11 dffbWDr 0.000 (−0.001; 0.000) 0.000 (0.000; 0.000)

12 tQuench −0.001 (−0.003; 0.001) 0.001 (0.001; 0.001)
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b.5 gaussian process metamodel construction
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b.6 mcmc samples from different calibration schemes
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b.7 forward uncertainty propagation of mcmc samples

b.7.1 FEBA Test No. 216, clad Temperature Output (TC)
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b.7.2 FEBA Test No. 214, clad Temperature Output (TC)
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b.7.3 FEBA Test No. 223, clad Temperature Output (TC)
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b.7.4 FEBA Test No. 218, clad Temperature Output (TC)
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b.7.5 FEBA Test No. 220, clad Temperature Output (TC)
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b.7.6 FEBA Test No. 222, clad Temperature Output (TC)
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b.7.7 FEBA Test No. 216, Pressure Drop Output (DP)
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Figure B.44: Propagation of the model parameters uncertainty on FEBA test No. 216 for the pres-
sure drop output (DP) at different axial segments. The uncertainty bands refer to
the symmetric 95% probabilities. Solid lines, dashed lines, and crosses indicate the
simulation with the nominal parameters values, the median of the posterior, and the
experimental data, respectively. The posterior samples are from the calibration with
model bias term and considering all types of output (w/ Bias, All).
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Figure B.45: The posterior samples are from the calibration with model bias term, considering all
types of output, but excluding the parameter dffbVIHT (w/ Bias, no dffbVIHT).
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Figure B.46: The posterior samples are from the calibration without model bias term and consid-
ering all types of output (w/o Bias).
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b.7.8 FEBA Test No. 214, Pressure Drop Output (DP)
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Figure B.47: Propagation of the model parameters uncertainty on FEBA test No. 214 for the pres-
sure drop output (DP) at different axial segments. The uncertainty bands refer to
the symmetric 95% probabilities. Solid lines, dashed lines, and crosses indicate the
simulation with the nominal parameters values, the median of the posterior, and the
experimental data, respectively. The posterior samples are from the calibration with
model bias term and considering all types of output (w/ Bias, All).
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Figure B.48: The posterior samples are from the calibration with model bias term, considering all
types of output, but excluding the parameter dffbVIHT (w/ Bias, no dffbVIHT).
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Figure B.49: The posterior samples are from the calibration without model bias term and consid-
ering all types of output (w/o Bias).
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b.7.9 FEBA Test No. 223, Pressure Drop Output (DP)
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Figure B.50: Propagation of the model parameters uncertainty on FEBA test No. 223 for the pres-
sure drop output (DP) at different axial segments. The uncertainty bands refer to
the symmetric 95% probabilities. Solid lines, dashed lines, and crosses indicate the
simulation with the nominal parameters values, the median of the posterior, and the
experimental data, respectively. The posterior samples are from the calibration with
model bias term and considering all types of output (w/ Bias, All).
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Figure B.51: The posterior samples are from the calibration with model bias term, considering all
types of output, but excluding the parameter dffbVIHT (w/ Bias, no dffbVIHT).
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Figure B.52: The posterior samples are from the calibration without model bias term and consid-
ering all types of output (w/o Bias).
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b.7.10 FEBA Test No. 218, Pressure Drop Output (DP)
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Figure B.53: Propagation of the model parameters uncertainty on FEBA test No. 218 for the pres-
sure drop output (DP) at different axial segments. The uncertainty bands refer to
the symmetric 95% probabilities. Solid lines, dashed lines, and crosses indicate the
simulation with the nominal parameters values, the median of the posterior, and the
experimental data, respectively. The posterior samples are from the calibration with
model bias term and considering all types of output (w/ Bias, All).
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Figure B.54: The posterior samples are from the calibration with model bias term, considering all
types of output, but excluding the parameter dffbVIHT (w/ Bias, no dffbVIHT).
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Figure B.55: The posterior samples are from the calibration without model bias term and consid-
ering all types of output (w/o Bias).
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b.7.11 FEBA Test No. 220, Pressure Drop Output (DP)
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Figure B.56: Uncertainty propagation of the parameters uncertainty of FEBA Test No. 220 for the
pressure drop output (DP) at different axial segments. The uncertainty bands refer
to the symmetric 95% probabilities. Solid lines, dashed lines, and crosses indicate the
simulation with the nominal parameters values, the median of the posterior, and the
experimental data, respectively. The posterior samples are from the calibration with
model bias term and considering all types of output (w/ Bias, All).
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Figure B.57: The posterior samples are from the calibration with model bias term, considering all
types of output, but excluding the parameter dffbVIHT (w/ Bias, no dffbVIHT).
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Figure B.58: The posterior samples are from the calibration without model bias term and consid-
ering all types of output (w/o Bias).
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b.7.12 FEBA Test No. 222, Pressure Drop Output (DP)
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Figure B.59: Propagation of the model parameters uncertainty on FEBA test No. 222 for the pres-
sure drop output (DP) at different axial segments. The uncertainty bands refer to
the symmetric 95% probabilities. Solid lines, dashed lines, and crosses indicate the
simulation with the nominal parameters values, the median of the posterior, and the
experimental data, respectively. The posterior samples are from the calibration with
model bias term and considering all types of output (w/ Bias, All).
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Figure B.60: The posterior samples are from the calibration with model bias term, considering all
types of output, but excluding the parameter dffbVIHT (w/ Bias, no dffbVIHT).
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Figure B.61: The posterior samples are from the calibration without model bias term and consid-
ering all types of output (w/o Bias).
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b.7.13 FEBA Test No. 216, Liquid Carryover Output (CO)
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Figure B.62: Propagation of the model parameters uncertainty on FEBA test No. 216 for the liq-
uid carryover outputs (CO) from three different calibration schemes. The uncertainty
bands refer to the symmetric 95% probabilities. Solid lines, dashed lines, and crosses
indicate the simulation with the nominal parameters values, the median of the poste-
rior, and the experimental data, respectively.

b.7.14 FEBA Test No. 214, Liquid Carryover Output (CO)
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Figure B.63: Propagation of the model parameters uncertainty on FEBA test No. 214 for the liq-
uid carryover outputs (CO) from three different calibration schemes. The uncertainty
bands refer to the symmetric 95% probabilities. Solid lines, dashed lines, and crosses
indicate the simulation with the nominal parameters values, the median of the poste-
rior, and the experimental data, respectively.
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b.7.15 FEBA Test No. 223, Liquid Carryover Output (CO)
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Figure B.64: Propagation of the model parameters uncertainty on FEBA test No. 223 for the liq-
uid carryover outputs (CO) from three different calibration schemes. The uncertainty
bands refer to the symmetric 95% probabilities. Solid lines, dashed lines, and crosses
indicate the simulation with the nominal parameters values, the median of the poste-
rior, and the experimental data, respectively.

b.7.16 FEBA Test No. 218, Liquid Carryover Output (CO)
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Figure B.65: Propagation of the model parameters uncertainty on FEBA test No. 218 for the liq-
uid carryover outputs (CO) from three different calibration schemes. The uncertainty
bands refer to the symmetric 95% probabilities. Solid lines, dashed lines, and crosses
indicate the simulation with the nominal parameters values, the median of the poste-
rior, and the experimental data, respectively.
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b.7.17 FEBA Test No. 220, Liquid Carryover Output (CO)
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Figure B.66: Propagation of the model parameters uncertainty on FEBA test No. 220 for the liq-
uid carryover outputs (CO) from three different calibration schemes. The uncertainty
bands refer to the symmetric 95% probabilities. Solid lines, dashed lines, and crosses
indicate the simulation with the nominal parameters values, the median of the poste-
rior, and the experimental data, respectively.

b.7.18 FEBA Test No. 222, Liquid Carryover Output (CO)

0

5

10

15

20

0 50 100 150

Time [s]

L
iq

u
id

 C
ar

ry
ov

er
 [
k
g]

Prior Posterior, Ind. Posterior, Corr.

(a) w/ Bias, All

0

5

10

15

20

0 50 100 150

Time [s]

L
iq

u
id

 C
ar

ry
ov

er
 [
k
g]

Prior Posterior, Ind. Posterior, Corr.

(b) w/ Bias, no dffbVIHT

0

5

10

15

20

0 50 100 150

Time [s]

L
iq

u
id

 C
ar

ry
ov

er
 [
k
g]

Prior Posterior, Ind. Posterior, Corr.

(c) w/o Bias

Figure B.67: Propagation of the model parameters uncertainty on FEBA test No. 222 for the liq-
uid carryover outputs (CO) from three different calibration schemes. The uncertainty
bands refer to the symmetric 95% probabilities. Solid lines, dashed lines, and crosses
indicate the simulation with the nominal parameters values, the median of the poste-
rior, and the experimental data, respectively.
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C O M P U TAT I O N A L T O O L S

c.1 gsa-module: python3 implementation of global sen-
sitivity analysis methods

gsa-module is a Python3 package implementing several global sen-
sitivity analysis methods for computer/simulation experiments. The
implementation is based on a black-box approach where the com-
puter model (or any generic function) is externally implemented to
the module itself. The module accepts the model outputs and the de-
sign of experiment (optional, only for certain methods) and compute
the associated sensitivity measures. The package also includes rou-
tines to generate normalized design of experiment file to be used in
the simulation experiment based on several algorithms (such as sim-
ple random sampling or latin hypercube) as well as simple routines
to post-processed multivariate raw code output such as its maximum,
minimum, or average.

The general calculation flowchart involved in using the gsa-module

can be seen in the figure below.

Samples Generation

Model Execution

gsa-module

csv

Driver Script
Executables

Sensitivity Analysis

Post-processor Modules

Sensitivity Analysis

Computer codes launcher

& Outputs Post-processing

csv

csv csv

samples Module

Simple Random Sampling (srs)◦

L2-discrepancy optimized Latin
Hypercube Sampling (lhs-opt)

◦
Latin Hypercube Sampling (lhs)◦◦

Sobol’ sequence (sobol)◦
Morris factorial sampling (morris)◦

Morris Screening Method (morris)◦
1st-order Sobol’ indices◦
Total-effect Sobol’ indices◦

Externally implemented

Design matrix

Sensitivity measures

Design matrix

Figure C.1: Flowchart of gsa-module.
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main features

• Capability to generate design of computer experiments using
4 different methods: simple random sampling (SRS), latin hy-
percube sampling (LHS), sobol’ sequence, and optimized LHS
using either command line interface gsa_create_sample or the
module API via import gsa_module.

• Sobol’ quasi-random number sequence generator is natively im-
plemented in Python3 based on C++ implementation of Joe and
Kuo [152].

• Randomization of the Sobol’ quasi-random number using ran-
dom shift procedure.

• Optimization of the latin hypercube design is done via evolu-
tionary stochastic algorithm (ESE) [180].

• Generation of separate test points based on a given design using
Hammersley quasi-random sequence [181].

• Capability to generate design of computer experiments for screen-
ing analysis (One-at-a-time design), based on the trajectory de-
sign [44] and radial design [132]

• Capability to compute the statistics of elementary effects, stan-
dardized or otherwise both for trajectory and radial designs.
The statistics (mean, mean of absolute, and standard deviation)
are used as the basis of parameter importance ranking.

• Capability to estimate the first-order (main effect) Sobol’ sensi-
tivity indices using two different estimators (Saltelli et al. [133]
and Janon et al. [148]).

• Capability to estimate the total effect Sobol’ sensitivity indices
using two different estimators (Sobol-Homma [145] and Jansen
[149]).

• All estimated quantities are equipped with their bootstrap sam-
ples.

requirements , installation, and documentation

The module was developed and tested using the Anaconda Python
distribution of Python v3.5. No additional package except the base
installation of the distribution is required.
gsa-module is hosted on BitBucket. Installation instruction and de-

tailed documentation can be found in the project page.

license

gsa-module is licensed under the MIT License.

https://www.anaconda.com/distribution/
https://bitbucket.org/lrs-uq/gsa-module
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c.2 trace-simexp: computer experiment for trace code

A computer experiment, loosely defined, is a multiple computer model
runs using different values of the model parameters. Its design, in
particular the selection of the design points at which the model will
be evaluated; as well as its analysis, in particular the analysis of the
output variation in relation to the inputs variation, are useful for sen-
sitivity and uncertainty analyses of the model subjected to the exper-
imentation.

An important prerequisite of carrying out such experiment is the
availability of a supporting tool able to handle the related logistical as-
pects. A Python3-based scripting utility has been developed to assist
in carrying such experiments for the thermal-hydraulics system code
TRACE. The scope of the utility is ranging from the pre-processing
of the TRACE input deck amenable for batch parallel execution to
the post-treatment of the resulting binary xtv / dmx file amenable to
subsequent sensitivity and uncertainty analyses.

A user interacts with the utility via command line interface. A set
of of command line applications corresponding to each of the three
processes involved. For reproducibility, an explicit set of parameters
are required to be supplied and after successful execution of each,
a log file is produced. The log files are also used as a connection
between two successive steps. The general flowchart of the processes
involved in trace-simexp package is Fig. C.2.
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Figure C.2: Flowchart of trace-simexp.
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main features

• Complete separation of the processes in 3 different steps: prepro,
exec, and postpro. Interaction is conducted via command line
interface.

• Specification of a computer experiment for TRACE by the users
is done through a set of input files (list of parameters file, design
matrix file, and list of graphic variables file).

• Three modes of parameter perturbation are supported: additive,
multiplicative, and substitutive.

• Four categories of TRACE variables in the input deck can be per-
turbed: spacer grid, material properties, sensitivity coefficient,
and components.

• For TRACE components, five are supported: PIPE, VESSEL, POWER,
FILL, BREAK.

• Iso-probabilistic transformation of the normalized design ma-
trix is available for uniform, discrete, log-uniform, and normal
distributions.

requirements , installation, and documentation

The module was developed and tested using the Anaconda Python
distribution of Python v3.5. No additional package except the base
installation of the distribution is required.
trace-simexp is hosted on BitBucket. Installation instruction and

detailed documentation can be found in the project page.

license

trace-simexp is licensed under the MIT License.

https://www.anaconda.com/distribution/
https://bitbucket.org/lrs-uq/trace-simexp


D
S O M E U S E F U L M AT H E M AT I C A L R E S U LT S A N D
R E C I P E S

d.1 the sobol’-saltelli method for estimating variance-
based sensitivity indices

Sobol’ [41] and Saltelli [133] proposed an alternative approach that
circumvent the nested structure of Monte Carlo (MC) simulation to
estimate sensitivity indices (see Algorithm 1). The formulation starts
by expressing the expectation and variance operators in their integral
form. As the following formulation is defined on a unit hypercube
of D-dimension input parameter space where each parameter is a
uniform and independent random variable, explicit writing of the
distribution within the integration as well as the integration range
are excluded for conciseness.

First, the variance operator shown in the numerator of Eq. (3.24) is
written as

Vd[E∼d[Y|Xd]] = Ed[E
2
∼d[Y|Xd]] − (Ed[E∼d[Y|Xd]])

2

=

∫
E2∼d[Y|Xd]dxd −

(∫
E∼d[Y|Xd]dxd

)2 (D.1)

The notation E∼◦[◦|◦] was already explained in Section 3.4.1, while
E◦[◦] corresponds to the marginal expectation operator where the
integration is carried out over the range of parameters specified in
the subscript.

Next, consider the term conditional expectation shown in Eq. (D.1),
which per definition reads

E∼d[Y|Xd] =

∫
f(x∼d, xd)dx∼d (D.2)

Note that x = {x∼d, xd}, such that∫
E∼d[Y|Xd]dxd =

∫ ∫
f(x∼d, xd)dx∼ddxd =

∫
f(x)dx (D.3)

Following the first term of Eq. (D.1), by squaring Eq. (D.2) and
by defining a dummy vector variable x′∼d, the product of the two
integrals can be written in terms of a single multiple integrals

E2∼d[Y|Xd] =

∫
f(x∼d, xd)dx∼d ·

∫
f(x∼d, xd)dx∼d

=

∫ ∫
f(x′∼d, xd)f(x∼d, xd)dx′∼ddx∼d

(D.4)
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Returning to the full definition of variance of conditional expecta-
tion in Eq. (D.1),

Vd[E∼d[Y|Xd]] =

∫ ∫
f(x′∼d, xd)f(x∼d, xd)dx′∼ddx∼d

−

(∫
f(x)dx

)2 (D.5)

Finally, the main-effect sensitivity index can be written as an inte-
gral as follows:

Sd =
Vd[E∼d[Y|Xd]]

V[Y]

=

∫ ∫
f(x′∼d, xd)f(x∼d, xd)dx′∼ddx−

(∫
f(x)dx

)2∫
f(x)2dx−

(∫
f(x)dx

)2 (D.6)

The integral form given above dispenses with the nested structure
of multiple integrals in the original definition of main-effect index.
The multidimensional integration is over (2×D− 1)-dimension and
it is the basis of estimating sensitivity index using Monte Carlo (MC)
simulation in this thesis, hereinafter referred to as the Sobol’-Saltelli
method. The same procedure applies to derive the total-effect index
which yields,

STd =
E∼d[Vd[Y|X∼d]]

V[Y]

=

∫
f2(x)dx−

∫ ∫
f(x∼d, x′d)f(x∼d, xd)dx′ddx∫

f2(x)dx−
(∫
f(x)dx

)2 (D.7)

d.2 multivariate random variable (random vector)

A collection of finite D continuous random variables (or random vec-
tor) X = [X1,X2, · · · ,XD] ∈ X ⊆ RD is jointly continuous if a non-
negative joint probability density function pX : X ⊆ RD 7→ R>0 exists
such that, for any set of B ∈ X ⊆ RD, the probability of X belonging
to B is defined as,

P(X ∈ B) =
∫
x∈B

pX(x)dx (D.8)

Additionally, the joint density function is also required to sum up
to 1.0 over the whole domain X for it to be a valid probability den-
sity function. In other words, the probability of X belonging to the
domain X is 1.0,

P(X ∈ X) =
∫
x∈X

pX(x)dx = 1.0 (D.9)

In this thesis, the type of random variable is restricted to continu-
ous random variable and the term probability is often used referring to
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the probability density. When the distinction is required (such as in the
definition Eq. (D.8) and the condition Eq. (D.9) above) the notations
used are p and P for density and probability, respectively. Further-
more, the density function of random vector X written as pX(x) is
shortened simply to p(x) as it is often clear from the context. partitioning random

vectorNow suppose that X is partitioned into two disjoint sets XA and
XB whose number of elements card(XA) and card(XB) are non-zero
such that X = [XA,XB]; p(x) = p(xa, xb); and XA ∈ XA ⊆ RD1 ,
XB ∈ XB ⊆ RD2 , with D1 +D2 = D. marginal probability

The marginal probability of XA is defined as

p(xA) =

∫
p(xA, xB)dxB (D.10)

where the integration is carried out only on the domain of random
variables XB, XB ⊆ RD2 . Note that if card(XA) > 1 then p(xA) itself
is a joint probability. The marginal probability of XB follows suit,

p(xB) =

∫
p(xA, xB)dxA (D.11)

where now the integration is carried out only on the domain of ran-
dom variables XA, XA ⊆ RD1 . conditional

probabilityThe conditional probability of XA given (or conditioned on) XB is
defined as,

p(xA|xB) =
p(xA, xB)
p(xB)

(D.12)

for p(xB) > 0. That is, the notion of conditional probability cannot be
defined given an impossible event, p(xB) = 0. The definition of the
conditional probability of XB given (or conditioned on) XA follows
suit,

p(xB|xA) =
p(xA, xB)
p(xA)

(D.13)

for p(xA) > 0.
Random variables XA and XB are said to be independent of each

other if and only if their joint probability p(xA, xB) is defined as, independence

p(xA, xB) = p(xA)p(xB) (D.14)

that is, it is the product of the marginals p(xA) and p(xB). The ran-
dom variables XA and XB are said to be dependent otherwise. Also,
following Eq. (D.12) and Eq. (D.13), the two random variables are in-
dependent from each other if and only the marginal is equal to the
conditional, p(xA) = p(xA|xB) and p(xB) = p(xB|xA).

Random variables XA and XB are said to be exchangeable if and exchangeability

only if their joint probability is symmetric [262], that is

p(xA, xB) = p(xB, xA) (D.15)
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The exchangeability of random variables (Eq. (D.15)) combined
with the definition of conditional probability (Eqs. (D.12) and (D.13))
lead to the Bayes’ Theorem,Bayes’ Theorem

p(xA|xB) =
p(xB|xA)p(xA)

p(xB)

p(xB|xA) =
p(xA|xB)p(xB)

p(xA)

(D.16)

d.3 gaussian random vector (multivariate normal ran-
dom variable)

A Gaussian random vector is a vector with random elements that are
jointly Gaussian. That is, the random variables have a multivariate
normal (MVN) distribution. It is the most widely studied and applied
multivariate random variable. There are a couple of reasons for this.
From a practical viewpoint, the MVN distribution is tractable and
its special properties are well known [263]. From an epistemological
viewpoint, modeling a variable as a MVN distribution is a particu-
lar way of quantifying uncertainty about that variable. Specifically, if
only the mean and variance are of interest then the MVN distribu-
tion is the most consistent and parsimonious distribution to describe
the variable [95]. This section reviews the definition and some of the
most important properties of MVN random variable relevant in the
present study.

A D-dimensional random vector Z whose elements are random
variables, Z = [Z1, · · · ,ZD] ∈ RD, is said to have an MVN distribu-
tion with mean vector µ ∈ RD and variance-covariance matrix Σ, ifmultivariate normal

distribution its joint probability density function is given by,

p(z;µ,Σ) =
1

(2π)D/2|Σ|1/2
exp

[
−
1

2
(z− µ)TΣ−1(z− µ)

]
(D.17)

The joint distribution of a Gaussian random vector is parameterized
and fully specified by the mean vector µ and the variance-covariance
matrix Σ. The symbol “;” separates the value of the variates z from
the parameters of the distribution. A D-dimensional random vector
Z distributed as a joint Gaussian is denoted by,

Z ∼ ND (µ,Σ) (D.18)

The mean vector µ is defined as,mean vector

µ = [E[Z1], · · · , E[ZD]]
T (D.19)

where E[◦] is the expectation operator, such that E[Z] =
∫
z zp(z)dz.

The variance-covariance matrix Σ is an element in the space of sym-
metric positive semi-definite (PSD) D×D matrices SD++, which is de-
fined as

SD++ = {Σ ∈ RD×D : Σ = ΣT , zTΣz > 0, ∀z ∈ RDand z 6= 0} (D.20)
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The diagonal elements of the variance-covariance matrix, Σi,i, de-
scribe the variance of a single random variable, while the off-diagonal variance-covariance

matrixelements, Σi,j, describe the covariation between a pair of random vari-
ables,

Σ =


V[Z1] · · · Cov[Z1,ZD]

...
. . .

...

Cov[ZD,Z1] · · · Z[ZD]

 (D.21)

where V[◦] is the variance operator, such that V[Z] = E[(Z− E[Z])2];
and Cov[◦, ◦] is the covariance operator, such that Cov[Z,Z∗] = E[(Z−

E[Z])(Z∗ − E[Z∗])].
Suppose that the D-dimensional random vector Z is partitioned

into two sub-vectors (disjoint sets) of D1-dimensional random vector
ZA and D2-dimensional random vector ZB, such that Z = [ZA,ZB]
and D = D1 +D2 (see Appendix D.2). Then the Gaussian random Gaussian random

vector partitionvector [ZA,ZB] is written,[
ZA

ZB

]
∼ N

([
µA

µB

]
,

(
ΣA,A ΣA,B

ΣB,A ΣB,B

))
(D.22)

where µA and µB are the D1-dimensional and D2-dimensional mean
vectors of ZA and ZB, respectively; and ΣA,A, ΣA,B, ΣB,A, ΣB,B are
the D1 ×D1, D1 ×D2, D2 ×D1, and D2 ×D2 sub-matrices of the
partitioned covariance matrix, respectively. So for instance,

ΣA,B =


Cov[Z1,ZD1+1] · · · Cov[Z1,ZD]

...
. . .

...

Cov[ZD1 ,ZD1+1] · · · Cov[ZD1 ,ZD]


The marginal density of ZA follows an MVN distribution given by,

Gaussian identity:
marginal density

p(zA) =
1

(2π)D1/2|ΣA,A|1/2
exp

[
−
1

2
(zA − µA)

TΣ−1
A,A(zA − µA)

]
(D.23)

The results are analogous for the marginal of ZB, p(zB) of which all
the subscripts A are replaced by B.

The conditional density of ZA conditioned on ZB, again, also fol-
lows an MVN distribution given as, Gaussian identity:

conditional density

p(zA|zB) =
1

(2π)D1/2|Σ∗
A,A|

1/2
exp

[
−
1

2
(zA − µ∗A)

TΣ−1∗
A,A (zA − µ∗A)

]
µ∗A = µA +ΣA,BΣ

−1
B,B (xB − µB)

Σ∗A,A = ΣA,A −ΣA,BΣ
−1
B,BΣ

T
A,B

(D.24)

The results are analogous for the conditional ZB given ZA, p(zB|zA)
of which all the subscripts A are replaced by B, and vice versa.
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d.4 inverse transform sampling

The inverse transform sampling provides a simple approach to gener-
ate samples of a univariate non-uniform random variable. The follow-
ing justification of the method is adapted from the proposition that
can be found in (pp. 432, [216]). Here, it is assumed that the (pseudo)-
random number generator for a uniform variable U ∼ unif(0, 1) is
readily accessible.

Let X be a random variable with distribution function F(x) where
F : x ∈ X 7→ [0, 1] and a non-decreasing function. Then:

• If F(x) continuous then F(X) ∼ unif(0, 1)

• For non-continuous F(x) the condition P(F(X) 6 t) 6 t, ∀t ∈
[0, 1] holds nevertheless.

• If F−1(y) = inf {x : F(x) > y, 0 < y < 1} and if U ∼ unif[0, 1] then

F−1(U) ∼ X (D.25)

where F−1 the inverse of F is called the quantile function of X.

The proof of these propositions can be found in [216]. What is im-
portant here is that a non-uniform random variable is distributed as
a transformed uniform random variable and the transformation is
done through the quantile function of the non-uniform random vari-
able. This provides a basis for generating samples of a non-uniform
random variable given in Algorithm 4. The method requires the quan-
tile function F−1(x) and a uniform random generator U ∼ unif[0, 1].

Algorithm 4 Inverse Transform Sampling
Generate N samples of X given F−1(x) and U ∼ unif[0, 1]

Require: N > 0, F−1(x), and U

for n = 1 to N do
sample u from U

x(n) ← F−1(u)

end for

As an illustrative example of this method, consider the problem
of generating samples from a long-tail distribution called the Gum-
bel distribution parameterized by location parameter xo and scale
parameter β [264],

X ∼ Gumbel(xo,β) ; xo ∈ R,β ∈ R>0

p(x) =
1

β
exp [−(z+ exp [−z])]

F(x) = exp [− exp [−z]]

z =
x− xo
β

; x ∈ R

F−1(u) = xo −β ln (ln
1

u
) ; u ∈ [0, 1]

(D.26)
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To generate samples from the above distribution, first generateN sam-
ples from a uniform distribution and then transform the sampled
values using F−1. The resulting transformed values are samples dis-
tributed as the specified Gumbel distribution. Fig. D.1 illustrates this
procedure and its result for x0 = 0.0 and β = 10.0.
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Figure D.1: Illustration of inverse transform sampling for the density given
in Eq.(D.26). First, samples from uniform random variable U ∼

unif(0, 1) are generated. The transformation of the uniform sam-
ples by F−1 (Left) will then yield samples distributed as required
(Right). The analytical density have been normalized to match
the peak of the histogram.

d.5 generating samples from a multivariate normal dis-
tribution

Drawing n number of samples from an m-variate Normal distribu-
tion, X ∼ N(µ,Σ) having an arbitrary m-dimensional mean vector µ
and an arbitrary,m×m covariance matrix Σ can be achieved by using
a (univariate) standard normal random number generator available in
most numerical computing environment. The procedure is as follows
[216]:

1. Factorize the covariance matrix Σ using the Cholesky decompo-
sition,

Σ = LLT (D.27)

where L and LT are the Cholesky factor and its transpose, re-
spectively. L is a lower triangular matrix.

2. Generate vector z = (z1, z2, . . . , zm)T by takingm random draws
from a standard normal random generator, u ∼ N(0, 1).

3. Transform the vector z by the following formula,

x = µ+ Lz (D.28)
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where the m-dimensional vector x is a single realization of the
specified m-variate normal random variable.

4. Repeat Step 2 and Step 3 n times to obtain the desired number
of samples

d.6 landmark registration and time warping function

The most straightforward curve registration procedure is the land-
mark registration/marker registration [265]. Landmarks are salient fea-
tures of a curve that can be observed or expected to occur in a set of
curves. In the context of reflood simulations, examples of such land-
marks are the time of maximum temperature and the time of quench-
ing. A transformation of time for each curve is carried out such that
these features are aligned with respect to a reference curve.

The landmark registration problem can be expressed as the follow-
ing: Let {yi(t); i = 1, 2, · · · ,N; t ∈ [ta, tb]} be a set of continuous func-
tions defined over the domain ta to tb. Let {yref(tref,j); j = 1, · · · ,M}

be a set of M landmarks of a given reference function yref(t). Then
a set of time warping functions {hi(t); i = 1, 2, · · · ,N; t ∈ [ta, tb]} for
each curve in the data set can be defined. These functions have the
following properties:

1. Each hi(t) is defined in the same domain as the domain of the
original curve yi(t). That is, t ∈ [ta, tb];

2. Each hi(t) satisfies the boundary conditions,

hi(ta) = ta

hi(tb) = tb;
(D.29)

3. Each hi(t) is a strictly increasing function. The first implica-
tion of this property is that the time transformation process can-
not alter the ordering of the landmarks. In other words, time
is strictly increasing both in the original and the transformed
frames. The second implication is that the time warping func-
tion is an invertible function such that for the same event there
exists a unique pair of time and its transformed value.

4. Each hi(t) transforms the time tref of the reference curve yref(t)
such that the timing of the M reference landmarks are aligned
with respect to the landmarks of each curve,

hi(tref,j) = ti,j ⇐⇒ h−1i [ti,j] = tref,j; ∀i, j
yi[hi(tref)] = yi(ti) ≡ y∗i (tref); ∀i

(D.30)

where y∗i is the registered function of curve i, whose time scale
is the same as the reference curve; ti,j is the timing of the land-
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mark j of curve i; and h−1i (t), the inverse of the warping func-
tion, is the aligning function, as it aligns the timing of the land-
mark j of curve i to the timing of the same landmark of the
reference curve. The argument tref in y∗i (tref) implies that the
registered curve is in the time scale of the reference, which is the
same for all the curves. For instance, if hi(tref,j) > tref,j then
the landmark j for curve i is delayed and the aligning function
accelerates the time for curve i to conform to the reference tim-
ing. On the other hand, if hi(tref,j) < tref,j then the landmark
j for curve i occurs earlier and the aligning function retards the
time for curve i to conform to the reference timing.

The registration problem can then be posed as an estimation prob-
lem of each time warping function hi(t) constrained by the above
properties. Following [140], it is solved by using penalized least square
regression method. In accordance to the functional data analysis (FDA)
framework, the warping function is also represented as a linear com-
bination of B-spline basis functions.

d.7 karhunen-loéve theorem

The Karhunen-Loéve theorem establishes that for any centered mean-
square continuous stochastic process Y defined by a sample space
Ω and on a domain D ⊆ R, there exists a set of basis functions ξj
defined on D such that for all t ∈ D,

Y =

+∞∑
j=1

θj · ξj(t) (D.31)

The scalar coefficients θj in Eq. (D.31) are given for each ω ∈ Ω by
θj(ω) =

∫
D Y(ω)ξj(t)dt and satisfy the following:

E[θj] = 0

V[θj] = ρj

E[θj · θk] = δjkρj
(D.32)

where E[◦] and V[◦] are the expectation and the variance operators,
respectively; δ is the Kronecker delta; ρj is the eigenvalue associate
with basis function ξj(t). Eqs. (D.31) and (D.32) imply that θj is inde-
pendent and identically distributed (i.i.d) with mean 0 and variance
ρj [266].

The basis function, in turn, is defined as the eigenfunction of the
functional operator K[f(◦)] on some function f(◦) applied to ξj(t)

K[ξj(t)] =

∫
D

R(t, s) · ξj(s)ds = ρj · ξj(t); ∀t ∈ D (D.33)

where R(t, s) is the covariance function of the stochastic process Y for
the covariance between time t and s, i.e., R(t, s) ≡ E[Yt · Ys].
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The Karhunen-Loéve theorem is applicable to the functional devi-
ation from the proper mean and therefore allows for each element
of the data set to be represented as a series that is optimal in the
root-mean-square-of-error sense:

yn(t) = ȳ(t) +

+∞∑
j=1

θj,n · ξj(t); n = 1, . . . ,N (D.34)

where ξj(t) is the series of orthogonal eigenfunctions (or fPC), and
the corresponding fPC score θj,n associated with each function real-
ization is defined by the orthogonality condition

θj,n =

∫
D

[yn(t) − ȳ(t)] · ξj(t)dt (D.35)

As can be seen in Eq. (D.34), the transformation is exact if the set
of eigenfunctions is infinite, but truncation is needed for practical
application. Such details of the actual implementation of functional
principal component analysis (fPCA) can be found in Refs. [49, 142,
154].

d.8 discrete-state markov chain

This section of the appendix complements the most important theo-
rems of Markov chain in relation to MCMC simulation presented in
Section 5.3.2. In the following some of the important notions are first
introduced for the discrete-state Markov chain. It provides a more
intuitive entry to the theory of Markov chain through matrix nota-
tion and a graphical representation. The associated theorems are pre-
sented without proof though the list of references are provided.

A Markov chain on a discrete-state space S is defined as a sequence
of random variables {X(i); i > 0} where the indices represents succes-
sive iterations, such that the conditional probability distribution of X(i+1)

follows the Markov assumption. That is,Markov chain

X(i+1) | X(i),X(i−1), . . . ,X(0) = X(i+1) | X(i) (D.36)

Put differently, the future value depends on the past only through the
present value [105, 219].

A discrete-state Markov chain is fully defined by its joint probabil-
ity [219].

P(X(i+1) = x(i+1),X(i) = x(i), . . . ,X(0) = x(0)) =

P(X(0) = x(0)) ·P(X(1) = x(1) | X(0) = x(0)) · . . .
·P(X(i+1) | X(i) = x(i))·

(D.37)

The specification consists of three main components:
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• The state space S which is the set of all possible outcomes of
the random variables {X(i)}. The state space considered here is Discrete state space

discrete with D elements, S = {x1, x2, . . . , xD}.

• The initial probability distribution π(0). This is the (marginal) Initial distribution

probability distribution of X(0) (or the marginal distribution of
the chain at i = 0). That is,

π(0) = {P(X(0) = x)} = {πx} ∀x ∈ S (D.38)

In discrete-state Markov chain, the distribution can be expressed
as a D-dimensional vector.

• The transition probability matrix P which is a D×D matrix with
elements px,y > 0.0 and

∑
y px,y = 1.0. Each element is the Transition

probabilityconditional probability between two states. That is,

px,y = P(X(i+1) = y|X(i) = x) ∀x,y ∈ S (D.39)

The transition probability matrix is said to be stationary if it Stationary
transition
probability

does not depend on a particular iteration i. In practice, most
MCMC algorithms rely on a stationary transition probability
[105].

As an example of a discrete-state Markov chain, consider a 3-state
Markov chain representing changes of human health condition with
S = {Healthy, Sick, Dead} and a transition probability matrix P,

P =

P(H|H) P(S|H) P(D|H)

P(H|S) P(S|S) P(D|S)

P(H|D) P(S|D) P(D|D)

 =

0.75 0.20 0.05

0.65 0.15 0.20

0.00 0.00 1.00

 (D.40)

The Markov chain is graphically represented in Fig. D.2 using a state
transition diagram.

H S

D

0.20

0.65

0.20

0.15

0.05

0.75

1.0

Figure D.2: An illustration of a 3-State Markov chain with the transition
probability given by the matrix P in Eq. (D.40).
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The probability of transition from state x to y in one iteration is
given by,

P(X(i+1) = y) =
∑
x∈S

P(X(i) = x) ·P(X(i+1) = y|X(i) = x)

⇔ π
(i+1)
y =

∑
x∈S

π
(i)
x px,y ∀y ∈ S

⇔ π(i+1) = π(i) P

(D.41)

Thus, given the three main components, the marginal probability dis-
tribution at any given iteration can be defined recursively. That is, theMarginal

distribution of state
at iteration n

probability distribution at iteration n is given by π(n) = π(0)Pn.
A Markov chain is said to be irreducible if each state in the state

space S can be reached eventually from any other state [221, 222].
Irreducibility is a property of the transition probability matrix P (i.e.,Irreducibility

having an irreducible transition probability matrix). Formally,

∀x,y ∈ S, ∃n > 0 for which p(n)x,y > 0 (D.42)

Based on this definition the transition matrix of Eq. (D.40) is not ir-
reducible as the state of being Dead does not allow transition to any
of the two other states. An example of irreducible chain is given in a
graphical representation of Fig. D.3. Note that while state B is not di-
rectly connected to state A, the state can eventually be reached from
state B through the connection of state C (in this case, n is equal to 2).

A B

C

Figure D.3: An illustration of an irreducible 3-State Markov chain.

A period of a state x ∈ S denoted as dx is defined for each state in
the chain as follows [219],period of a state

dx = GCD {n : p
(n)
x,x > 0,n > 0} (D.43)

where GCD stands for the Greatest Common Divisor of the set.
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In an arbitrary discrete-state Markov chain, different states might
have different periods. A state is called aperiodic if its period is equal periodic, aperiodic

chainto 1 and it is called periodic otherwise. If a chain has the same pe-
riod d > 1 for each of its states then the chain is called periodic (see
Fig. D.4a for a periodic chain with period 3). A periodic chain exhibits
a non-stochastic behavior in their dynamic. On the contrary, a chain
having the same period of 1 for each of its states is called a aperiodic
chain (see Fig. D.4b for an example of a aperiodic chain).

A B

C
(a) Periodic chain

A B

C

(b) Aperiodic chain

Figure D.4: Examples of periodic and aperiodic chains. (Left) an example of
a periodic 3-state Markov chain. In this case, all states have the
the same period of 3 iterations. (Right) an example of aperiodic
3-state Markov chain, that is all states are aperiodic.

Some distributions are stationary with respect to a transition proba-
bility matrix [219, 221, 222]. Specifically, π∗ is stationary for P if, Stationary

distribution
π∗ = π∗P (D.44)

Put differently, the distribution is invariant under transition. Conse-
quently, if stationary distribution exists, once the chain reaches the
stationary distribution, it will remain there and the chain itself be-
comes stationary. Stationary distribution need not exist for a given P, Stationary Markov

chainbut in the application of MCMC algorithms, the existence of station-
ary distribution is guaranteed [105].

As an example of a stationary distribution, consider once more the
transition probability matrix P in Eq. (D.40). For this transition, the
distribution π = [0.0, 0.0, 1.0] is stationary with respect to P such that

π = πP ⇔ [0.0, 0.0, 1.0] = [0.0, 0.0, 1.0]

0.75 0.20 0.05

0.65 0.15 0.20

0.00 0.00 1.00

 (D.45)

Stating that a stationary distribution is being dead, eventually and
definitely.

The notions of irreducibility, aperiodicity, and stationarity are cob-
bled together to arrive at an important result in the discrete-state
Markov chain and it is stated here without proof [221]. Let P be a Fundamental

theorem of Markov
chain

transition probability matrix, irreducible and aperiodic, then P has
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exactly one stationary distribution π∗ and for any initial distribution
π(0)

lim
I→∞ |π(0)PI − π∗| = 0 (D.46)

That is, the chain converges in distribution to the stationary distribu-
tion regardless of its initial distribution. The theorem also indicates
the existence of a limiting distribution limI→∞ π(0)PI.Ergodic theorem

Furthermore, under the above condition,

lim
I→∞ 1I

I∑
i=1

I{X(i)=x} = πx ∀x ∈ S (D.47)

where I is the indicator function where it is 1.0 if the condition in the
subscript holds, and 0 otherwise. In other words, the chain converges
in probability. These theorems provide the justification for using sam-
ples generated from a Markov chain (whose properties stated above)
as samples for Monte Carlo calculation. For proofs of these theorems,
refer to [222].

In generating samples from a target distribution, the engineering isDetailed balance
condition done somewhat in reverse (“Given a distribution, construct P”). Thus

it is worthwhile to note the detailed balance condition which is a central
condition for an MCMC algorithm. A Markov chain with a transition
probability matrix P satisfies the detailed balance condition if there
exists a probability distribution π such that,

px,yπx = py,xπy ∀x,y ∈ S (D.48)

As a result, the chain is said to be reversible. Formally,Reversible chain

X(i+1) | X(i) = x ∼ X(i) | X(i+1) = x ∀x ∈ S (D.49)

A reversible chain is a stationary chain. Consequently, in an MCMC
algorithm, if the transition probability satisfies the detailed balance
condition with respect to the target distribution, it ensures the re-
versibility of the process and ultimately the stationarity of the chain.
Finally, imposing the conditions of irreducibility and aperiodicity, the
stationary distribution of the chain converges to the target distribu-
tion. For proof of this theorem see Refs. [222, 267].
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aies affine-invariant ensemble sampler.

bemuse Best-Estimate Methods – Uncertainty and Sensitiv-
ity Evaluation.

bwr boiling water reactor.

chf critical heat flux.

ci confidence interval.

dffb dispersed flow film boiling.

fda functional data analysis.

feba Flooding Experiments with Blocked Arrays.

fftbm Fast Fourier Transform-Based method.

fpc functional principal component.

fpca functional principal component analysis.

gp Gaussian process.

gsa global sensitivity analysis.

hpdi highest posterior density interval.

ht heat transfer.

htc heat transfer coefficient.

iafb inverted annular film boiling.

iid independent and identically distributed.

lbloca large break loss-of-coolant accident.

lhs latin hypercube sampling.

lmc linear model of coregionalization.

loca loss-of-coolant accident.

lrs Laboratory for Reactor Physics and Systems Be-
havior.

lwr light water reactor.
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mc Monte Carlo.

mcmc Markov Chain Monte Carlo.

mh Metropolis-Hastings.

ml Maximum Likelihood.

mle Maximum Likelihood Estimation.

mvn Multivariate Normal.

nea Nuclear Energy Agency.

npp nuclear power plant.

oat one-at-a-time.

oecd Organization for Economic Cooperation and De-
velopment.

pc principal component.

pca principal component analysis.

pce polynomial chaos expansion.

pct peak clad temperature.

pdf probability density function.

post-chf post-Critical-Heat-Flux.

premium Post-BEMUSE Reflood Models Input Uncertainty
Methods.

psi Paul Scherrer Institut.

pwr pressurized water reactor.

qoi quantity of interest.

rmse root-mean-square-error.

rpv reactor pressure vessel.

sa sensitivity analysis.

se standard error.

setf separate effect test facility.

srs simple random sampling.

stars Steady-state and Transient Analysis Research for
Swiss Reactors.

svd singular value decomposition.
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th thermal-hydraulics.

trace TRAC/RELAP Computational Engine.

uq uncertainty quantification.

usnrc the United States Nuclear Regulatory Commis-
sion.

v&v verification and validation.

wgama Working Group on the Analysis and Management
of Accidents.
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