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Abstract

The growing desire to improve resource efficiency and environmental impact of indus-

trial processes is directly linked to optimal management of heat, mass and power flows.

The concept of industrial symbiosis tackles this issue by proposing interplant heat recov-

ery and resource transfer which can bring economical and environmental benefits to each

party. A comprehensive methodology is required which can easily be incorporated in the

planning of industrial clusters. Therefore, a generic hybrid mixed integer linear program-

ming superstructure has been developed to address simultaneous heat, water, and power

optimization in interplant operations. Additional concepts are included in the previously-

proposed water network superstructure (Kermani et al., 2017) to account for the issues

related to interplant heat and mass exchange. A cold utility superstructure is included in

the water network while a steam network superstructure is modified to better represent the

feedwater heaters and heat recovery opportunities. The proposed methodology is applied

to an industrial case study. Results exhibit a large potential for synergies among industrial

sites, even in disparate sectors, and emphasize the importance of a generic approach.
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1. Introduction

Energy and water are essential to all industrial processes. Water serves as production sup-

port and as a main constituent in some manufactured goods (e.g. beverages). Steam is

used as a heating medium and can also be used directly within the process (e.g. steam

stripping). Water, in its liquid and vapor phases, is thus a ubiquitous energy carrier and

acts as an intermediate heat transfer medium at different temperature levels. Steam can

also be used in a Rankine cycle to produce electricity. These complex interactions accen-

tuate the strong interconnectivity of water and energy and the necessity of their simul-

taneous consideration to improve efficiency and hence reduce the environmental impact

of industrial processes. These interactions exhibit even stronger significance in interplant

operations in which waste heat/resources of one plant can be recycled or reused in others.

Although heat-integrated water allocation networks have been extensively studied in re-

cent years (Ahmetović et al., 2015), few authors have proposed interplant methodologies

(Zhou et al., 2012b,a) and those that do are limited to water recovery in interplant opera-

tions without heat recovery since they do not consider process non-water thermal streams.

Interplant heat recovery has also been extensively addressed in the literature as part of "to-

tal site heat integration" (TSHI) methodologies (Klemeš et al., 1997). Liew et al. (2017)

provides a comprehensive overview of conceptual and mathematical methodologies with

emphasis on inter-process (interplant) direct and indirect heat integration. Mathemat-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/211980994?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 M. Kermani et al.

ical methodologies are based on superstructure optimization approaches and generally

make use of mixed integer non-linear programming (MINLP). They have the possibility

of finding the global optimum to the problem, however, lack the insights that are inherent

to conceptual methods, are difficult to solve and cannot be easily applied to real indus-

trial cases. Conceptual methods, on the other hand, cannot handle large problem sizes.

These considerations emphasize the need for a hybrid methodology that can benefit from

both mathematical and conceptual methods. In summary of the aforementioned research

directions, Liew et al. (2017) proposed the current gaps in this domain:

1. Development of methodologies for total site heat and power integration,

2. Incorporation of sustainability and environmental criteria,

3. Optimal design of hot water and hot oil loops,

4. Development of multi-period, multi-objective methodologies,

5. Prioritizing hybrid methodologies to overcome the main weakness of mathematical

approaches by incorporating industrial insights.

As the result, the aim of the current research is to address these gaps (1,3,5) by proposing

a hybrid MILP superstructure for simultaneous optimization of heat, water, and power in

interplant operations.

2. Methodology

The proposed methodology is formulated as a mixed integer linear programming (MILP)

superstructure which is based on the previous work of (Kermani et al., 2017). Given is

a set P of industrial sites (or clusters within each plant). Each site i has a set of water

unit operations (demands: Wd
i , sources: Ws

i ) and set of process thermal streams (hot: Sh
i ,

cold: Sc
i ). Several fresh water sources at different temperatures and qualities and waste

water sinks at different temperatures and disposal qualities are available. In order to ad-

dress the interplant combined heat, water, and power optimization, the methodology is

extended to incorporate thermal utilities. The objective is to minimize the total annu-

alized cost of the system including the operating cost of the thermal utilities and water

consumption together with investment cost subject to heat cascade constraints (Maréchal

and Kalitventzeff, 1996) and water network constraints (Kermani et al., 2017). Figure 1

encapsulates the major elements of the proposed generic superstructure.

Figure 1: Schematic of the proposed mathematical superstructure
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Figure 2: The proposed steam network superstructure

Water network superstructure: The water network superstructure is based on the

source-sink representation (Kermani et al., 2017) and is extended to include the cold util-

ity superstructure. Cooling water and process water are distinguished through introducing

binary parameters which permit/forbid mixing. As proposed by Kermani et al. (2017),

each thermal stream generated in the water network superstructure is assigned a penal-

izing cost which is proportional to its heat load. It is constructed by linearization of the

investment cost of a fictitious heat exchanger to which the water stream belongs. Thermal

water tanks are modeled as mixers/splitters at predefined temperature levels (initially a

plant-specific constraint).

Combined heat and power superstructure: The steam network superstructure is based

on the work of Maréchal and Kalitventzeff (1999). The model was improved by addition

of different types of feedwater heaters and pumping equipment between any two pressure

levels to provide more options for the returning condensate streams. In addition, the

investment cost of turbines, pumps, and boilers are included in the superstructure. This is

necessary in combined heat and power optimization approaches to analyze the worthiness

of extra investment in the power generation system as opposed to producing steam at

required pressure levels through heat recovery. It should be noted that the superstructure

is capable of producing steam at all the pressure levels which is conventional in TSHI

methodologies. However, this is not realistic and will lead to an excessively undersized

utility system. In all cases treated here, steam can therefore only be produced at the

highest pressure level and any demand of steam at lower levels can be satisfied using

a turbine or a letdown unit. The difference lies in the economic viability of electricity

generation. Figure 2 illustrates the proposed superstructure.

Solution strategy: For industrial case studies, the size of the mathematical superstruc-

ture can become very large. To overcome this issue and to incorporate industrial speci-

ficities, a hybrid methodology is applied in which it is required to implement practical

and feasibility constraints a priori. This necessitates communication with industrial ex-

perts and the understanding of the processes involved. As a general practical constraint,

no heat exchange is allowed between plants except by using the water or steam network

as intermediaries. In addition, geographical and physical constraints in interplant mass

and heat exchange are imposed through the concept of forbidden matches (Papoulias and

Grossmann, 1983). Furthermore, the associated linearized costs of water thermal streams

depend on the points between which the linearization is performed which will affect the

solution. As a result, a two-step solution strategy is proposed: first, the MILP model is

solved to minimize the utility consumption without penalty costs. In a second step, the
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Table 1: Operating data for the interplant case study

Water units Tin [◦C] Tout [◦C] flow [kg/s] Process units Tin [◦C] Tout [◦C] heat load [kW]

Petrochemical industry (PC)

A1 40 54.5 60 Ah
9 91 54 3,290

A2 25 43.6 63.2 Dh
2 77 6 3,820

B1 15 72.1 50 Dh
3 93 4 4,620

B6 30 41.0 159 Ac
7 25 60 7,830

C1 15 25.9 112.2 Ac
8 31 79 4,960

C3 15 46.8 31.9 Bc
7 50 66 3,310

Pulp and paper industry (PP)

pulp machine 50 50 10 PPh
1 65 64 7,560

bleaching 70 70 20 PPh
2 95 50 10,920

washing 65 65 35 PPh
3 75 40 2,205

stock preparation 62 62 25 PPh
4 59 30 1,050

recausticization 35 35 20 PPh
5 80 65 630

(a) Fresh water temperature is 15 ◦C. Waste water disposal temperature is 30 ◦C. Refrigeration is available at -10 ◦C.

(b) Forbidden matches in pulp and paper industry are given in (Kermani et al., 2017).

(d) Forbidden matches in petrochemical industry: Outlet of A1, A2, and B6 cannot be mixed in tanks. However they can be recycled in the processes.

solution of the first step becomes the upper bound in the problem which is then formulated

to minimize the total annualized cost of the system.

3. Interplant case study

Figure 3: Integrated grand composite curve for

the optimized interplant case study

The proposed methodology was evaluated

using a case study encompassing two indus-

trial plants: petrochemical and pulp & pa-

per. Water unit operations and thermal pro-

cess streams are shown in Table 1. One wa-

ter tank is available in the petrochemical site

(60 ◦C) and two are available in the pulp &

paper site (35◦C, 62 ◦C). The steam net-

work superstructure is not addressed in this

case due to low temperature levels in the

system. The results are analyzed based on

energy and water consumption and total annualized cost.

Heat integration analysis had not been applied to either plant for the "Business-as-

usual" (BAU) case, and therefore, separate optimization of the two independent plants

showed dramatic reductions in the costs and resource consumptions (Table 2). Applying

Table 2: Results of the interplant case study

Petrochemical Plant Pulp & Paper Plant Two Plants Proposed Approach

BAU (1) SOWE (2) BAU SOWE BAU SOWE

Hot utility (3) [kW] 44,291 7,215 3,392 0 47,683 7,215 0

Cold utility (4) [kW] 29,595 - 14,270 - 43,864 - -

Refrigeration (5) [kW] 8,440 2,112 - - 8,440 2,112 2,112

Fresh water-wastewater [kg/s] 476.3 - 137 - 613.3 - -

Total water consumption (6) [kg/s] 946 457.7 363.3 355 1,310 813 698

Operating cost [USD/y] 13,867,500 3,923,100 2,283,100 1,707,300 16,150,600 5,630,400 3,942,000

Investment cost (7) [USD/y] 0 603,400 0 255,230 0 858,630 1,066,200

Total cost [USD/y] 13,867,500 4,526,500 2,283,100 1,962,530 16,150,600 6,489,030 5,008,200

1 - Business as Usual

2 - Simultaneous Optimization of Water and Energy (SOWE) methodology (Kermani et al., 2017)

3 - Steam at 2 bar

4 - The amount of fresh water to cool down the waste streams to 30 ◦C in BAU.

5 - In BAU: Streams Dh
2

and Dh
3

are cooled down by refrigeration cycle.

6 - Including all the water consumption in the system (in BAU the cooling water is added as well).

7 - The cost of heat exchanger network. It is calculated based by 8000+1200∗ (Area)0.6 (Ahmetović et al., 2015)



A Hybrid Methodology for Combined Interplant Heat, Water, and Power Integration 5

Figure 4: Optimal heat-integrated water allocation network for the interplant case study

the proposed methodology eliminated the hot utility and further reduced the total wa-

ter consumption by 14 %. The total cost was consequently reduced by 23 %. Figure 3

demonstrates how a water thermal stream is exchanging heat between the two industrial

clusters. Figure 4 shows the optimal heat-integrated water network using the proposed

methodology. The results indicate large potential for synergies between industrial sites.

4. Pulp & paper case study

The proposed methodology is applied to a real kraft mill (Kermani et al., 2017). Three

industrial clusters are defined in order to model the geographical constraints of the mill.

The water network and steam network superstructures are included in each cluster (no

heat exchange takes place between the clusters except via water or steam flows):

• Cluster 1: pulp machine, bleaching, washing, ClO2 production sections.

• Cluster 2: digester and recauticizing sections.

• Cluster 3: evaporation, concentration and stripping sections.

In each cluster, due to physical, thermodynamic and insight-based constraints, several for-

bidden matches of type heat/mass are imposed. Among others, cooling of equipment (hot

thermal stream) should be carried out in the water network even if there exists a feasible

cold process thermal stream that can cool down the equipment. Moreover, solid streams

(e.g. chips) should be heated up by steam. In the steam network superstructure, steam is

produced at 52 bar while it can be consumed at 12, 9, 5, 3 bar (HP, MP, LP, LLP). The

condensation level is at 0.07 bar.

The results are compared with the case in which the hot water cycle is not included. In

addition, the steam network was modeled a posteriori based on the demand of steam in

the combined clusters. The preliminary results are shown in Table 3. It can be observed

that the interplant approach decreased the operating cost of the system (-22 %) while in-

creasing the investment cost (13 %) which is mainly due to the cost of the heat exchanger

network. Reducing the steam production for process demands will decrease the electricity

production.
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Table 3: Results of the pulp & paper case study

Traditional approach1 Proposed approach

HP steam [12 bar] kW - -

MP steam [9 bar] kW 10,187 10,187

LP steam [5 bar] kW 32,532 32,532

LLP steam [3 bar] kW 49,520 32,284

Fresh water kg/s 1,005 594

Waste water kg/s 1,060 649

Electricity kW 22,898 18,154

Investment cost USD/y 5,872,000 6,683,000

Operating cost USD/y 27,056,900 20,950,000

Selling of electricity2 USD/y - 13,199,500 - 10,464,700

Total cost USD/y 19,729,400 17,168,300

1 - Not including the hot water cycle, sequential approach.

2 - Selling price of electricity is assumed to be 0.07 USD/kWh

5. Concluding remarks

A hybrid mathematical superstructure for simultaneous optimization of water and energy

was extended to incorporate the thermal utilities (cooling water network, steam network)

as intermediate heat transfer media in interplant operations. The method was applied to

a real industrial kraft mill which resulted in reduced demand for low pressure steam and

showed more than 40 % reduction in fresh water consumption which highlights the impor-

tance of such a combined approach in interplant operations. The potential implications

of this work are broad, extending from total site integration to industrial symbiosis. In

future work, multi-objective optimization will be performed on the superstructure to op-

timize the operating conditions of the system (e.g. pressure levels in the steam network,

temperatures in the water network).
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