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Appendix for “Let’s be Honest:
An Optimal No-Regret Framework for Zero-Sum Games”

Ehsan Asadi Kangarshahi“! Ya-Ping Hsieh”' Mehmet Fatih Sahin' Volkan Cevher !

A. Equivalence Formulations of Optimistic Mirror Descent

In this appendix, we show that the x; iterates in (2) of the main text is equivalent to the following iterates given in (Chiang
et al., 2012; Rakhlin & Sridharan, 2013):

Xt = MDn (itv —Aypl)
{ )N(t+1 = MD (Xt7 Ayt) ’ (Al)
By the optimality condition for (A.1), we have
Vip(xt) = Vip(x¢) — 1 (—Ayi-1), (A2)
Vip(xt) = Vp(Xi-1) = n (= Ayi-1), (A.3)
Vi (xi-1) = Vi(x-1) + 0 (—Aye-2). (A4)

We hence get (2) by applying (A.4) to (A.3) and then (A.3) to (A.2).

B. Optimistic Mirror Descent

In this appendix, we prove Theorem 2, restated below for convenience.
Theorem 1. Suppose two players of a zero-sum game have played T rounds according to Algorithm 1 and 2 with

_ 1
n= m. Then

1. The x-player suffers a O (%) regret:

T

max (zt — z, —Awy) < (log (T-2)+ 1) (20 + logm + logn> | Al max (B.1)
ZEA
t=3

=0 (logT)
and similarly for the y-player.

2. The strategies (zr, wr) constitutes an O (%)-approximate equilibrium to the value of the game:

|V — <ZT, AWT>| § (B2)

(20+logm+logn)|A|maX 1
= O —
T—-2 (T)
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Proof. Define x* as

T
1
x* = arg x%lin <x, —A (T—2 ;yt> > . (B.3)

We define an auxiliary individual regret R} as

T
R = Z<Xt —x*, —Ayy). (B.4)

t=3
Notice that this is the regret on the x; sequence versus y; sequence, while we are playing z;’s and w,’s in the algorithm.

‘We then have

T

RY = Z(xt —x*, —Ay:)
=3

T
= (x3 —x",—Ays) + > _(x; —x", —Ay1)
t=4

T T
< 2Amax + 3 (% =X, — Ay —gi1) + Y (% — X" gio1)
t=4

t=4

where g; = —2(t — 2)Aw; + 3(t — 3)Aw;_1 — (t — 4) Aw;_o. Inserting w; = ﬁ ZEZB y; into the definition of g;, we
get g = —2Ay; + Ay;_1. Straightforward calculation then shows:

T T
RY < 20A|max + Y _(x¢ — X", —Ay; + 24y, 1 — Ays2) + Y _(x; — x*, =24y, 1 + Ay, o)
t=4 t=4
T
= 2| Afmax + Y (x¢ =X, (~Ayi + Ayio1) — (~Ayior + Ayi2))
t=4
1 I
+ p Z (D(x*7xt,1) - D(x",xy) — D(xt,xt,l))
t=4
T-1
= 2[Almax + Z<Xt = X¢+1, Ayt + Ayi-1) + (x4 — x7, Ays — Aya)
t=4
T
* 1 * *
+ (xp — X", —Ayr + Ayr_1) + p Z (D(x ,Xi—1) — D(x", %) — D(xt,xt_1)>
t=4
T—1
< 10[Almax + Z<Xt — X¢q1, —Ay + Ayi—1)
t=4
1 T
+ " Z (D(x*,xt_l) — D(x",x;) — D(xt,xt_l))
t=4
T—1
S 10‘A|max + Z ||Xt - xt-i—lHl : |A|max : Hyt - yt—l”l
t=4
1 T
i —(D(x*7x3) (x*, x7) ) +3 D, xe 1)
n —a
=
S 1O‘A|max + 5 (|A|max : |Xt - Xt+1||% + ‘A|max : Hyt - yt71||%)

t=4
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T

1 _

+ *(D(X*,Xg) (x*, %1 ) + E —D (Xt, Xt—1).
n i—a

Using the fact that ¢/ is 1-strongly convex with respect to the ¢;-norm, we have —D(x,x’) < —1||x — x'|? < 0. Also, we
have D(x*,x3) < logm. Combining these facts in the last inequality gives:

i} logm |A|m“
R% < 10| A|max + + Y lxe — x|}
t=4

‘A| T-1 1 T
+ ;ax Z ||Yt_yt71H§_%Z”Xt71 — x|}
t=4 t=4

Similarly, for the second player we define

T
RE =D (yi—y, ATx) (B.5)

t=3

where y* := arg min,, <y7 AT (ﬁ Zthg xt) > We then have

logn | Almax <
RY, < 10| Almax + T — o llye—yeal?
t=4

‘A| T-1 1 T
+ % Z 1%t — x¢1[|7 — m Z lye-1—yell3.
t=4 t=4

Setting n = ﬁ, we get

X 4 RY < (20+10gm+logn>|A|max. (B.6)
T
Now, recalling that z; = % and wp = E‘ Y% and using the definition of R} and RY., we get
(R RY) (x, Awr) — min (zr, Ay) (B.7)
— = max (x, Awr) — min (z : )
T-—2\7T T XEAm r YEA, Y

Furthermore, by the definition of the value of the game, we have

IHHI Z7 ; Ay < L < max X AVV I B.é;
A, < > N < > ( )
V‘Ve alS() trl\/lally haVe

mln <Zl > <Zl 5 I > ma}: <X, I > ( 9)

Combining (B.7) - (B.9) in (B.6) then establishes (4):

(20 + logm + log n) | Al max
T-—-2 '

‘V — <ZT,AWT>| S

We now turn to (3).
Let R% = max,en,, Zthg (z; — 2, —Aw,) and let R7. := Zf:3 (zy — 2z}, —Aw,) where z; = argmingecna,, (z, —Aw,).
Evidently we have R < li;. Notice that (with w; similarly defined)
(zt — 2y, —Awy) = (z7, Awy) — (24, Awy)
(zy, Awy) — (z¢, AW})

IN
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(20 + logm + log n) | Almax
<

B.10
< — (B.10)
by (B.6) and (B.7). Using these inequalities, we get
T
1, 1 -z 1 .
TSR = Tf2t§<zt_zl“_AWt>
. 1 Z (20—i—logm—l—logn)|A|maX
—T-2 t—2
t=3
(log(T -2)+ 1) (20 + logm + log n) | Al max
<
- T-2
which finishes the proof. O

C. Robust Optimistic Mirror Descent

In this appendix, we prove Theorem 3, repeated below for convenience.

Theorem 2 (O(V/T)-Adversarial Regret). Suppose that ||V fi||. < G for all t. Then playing T rounds of Algorithm 3 with
=g \/ against an arbitrary sequence of convex functions has the following guarantee on the regret:
T
max 3 (x; — x, Vfi(x)) < GVT (18 + 2D%) + GD (3\/5 + 4D)

xEA
=1

~0(VT).

Proof. Define RY}. := Z;le (x¢ —x*, Vfi(x¢)) where x* := arg mingen,, <x, Zle Vft(xt)>. Let V; = 2V fi(x;) —
V fi—1(x¢—1), and let n, = %\ﬁ for some « > 0 to be chosen later. Then

T
}:ZXt—x V fe(xt))

T
< \/EDG—FZ@Q—X*,Vft(Xt ~ Vi +Z Xt_X*a@t71>
t=2

t=2

T T T
<V2DG + Z<Xt — X", Vfi(xs) = Vfro1(x¢-1) Z x¢ — X, Vfio1(x¢1) = Vfima(xe—2)) + Z X¢ —X*7@t71>
t=2 t=2

t=2
T-1 T
S 3\/§DG + Z<Xt — Xt+41; Vft(Xt) - Vft,l(xt,l» + Z % <D(X*7)~(t71) — D(X*’Xt) — D(Xhitfl))
t=2 t=2
< 3\fDG + Z (\[GHXt Xt+1||2 + 9\[C;>

T
+aY \/i(D(x*, %_1) — D(x*,%;) — D(xq, xt_l)).
t=1
Using the joint convexity of D(x,y) in x and y and the strong convexity of the entropic mirror map, we get:

- 1.
—D(x4,%;-1) < —*||Xt —x1])?

t— 1
T

2 2
1/1
+ By (t> l[xc — Xt+1||2
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t—1)2 D?
( ) 1% = g1 + o

<
- 4¢2

and

and

T T
Z (\[ —D(x x;_1) — VID(x", xt)> < Z (mD(X*,xt,l) —\/IED(X*,Xt))

t=2

We can hence continue as

s o (N NV
+aD 4275 -1 — x> + aD? > . (C.1)

Elementary calculations further show

Finally, since (%)2 > % for ¢t > 3, we can further bound (C.1) as

R¥ < 3V2DG + 18GVT + 2aD*VT + 4aD?

T—1 —
G 5 o 45
+ <9;\/%||Xt—xt+1|| 4 §; 4 1% = Xpqa | )
The proof is finished by choosing o = G. O
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