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Abstract—We consider cyber-physical systems (CPSs) com-
prising a central controller that might be replicated for high-
reliability, and one or more process agents. The controller
receives measurements from process agents, causing it to compute
and issue setpoints that are sent back to process agents. The im-
plementation of these setpoints causes a change in the state of the
controlled physical process, and the new state is communicated
to the controllers through resulting measurements. To ensure
correct operation, the process agents must implement only those
setpoints that were caused by their most recent measurements.
However, in the presence of replication of the controller, network
or computation delays, setpoints and measurements do not
necessarily succeed in causing the intended behavior. To capture
the dependencies among events associated with measurements
and setpoints, we introduce the intentionality relation among
such events in a CPS and illustrate its differences with respect
to the happened-before relation. We propose a mechanism,
intentionality clocks, and the design of controllers and process
agents that can be used to guarantee the strong clock-consistency
condition under the intentionality relation. Moreover, we prove
that our design ensures correct operation despite crash, delay,
and network faults. We also demonstrate the practical application
of our abstraction through an illustration with a real-world CPS
for electrical vehicles.

I. INTRODUCTION

A. Motivation

We consider cyber-physical systems (CPSs) comprising

software agents, namely controllers and process agents (PAs),

that coordinate, as shown in Fig. 1, to maintain a physical

process in a desirable state. A PA is a software agent that

interfaces with sensors and actuators, and controls a sub-

process. The controller receives measurements from PAs,

computes and issues setpoints that are implemented by the PAs

through actuators. The communication network might drop,

delay, reorder or retransmit messages. The controller, being

susceptible to crash and delay faults, is a single point of failure

and is usually replicated for high-reliability. The same general

architecture of CPSs is considered in recent papers [1]–[6].

On implementation of a setpoint by a PA, the state of the

sub-process is altered and the new state is communicated

to the controller via a measurement. The controller uses

these measurements to recreate the new state of the entire

process that it then uses to compute setpoints. The setpoints

computed with this state are only valid as long as the recreated

state reflects the actual state of the process. Any subsequent

setpoint implementations change the process state, making

the former setpoints unsafe for implementation. Therefore,

to achieve the desired control, the state of the process at
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Fig. 1. CPS architecture with a central controller and one or more PAs

the time of setpoint implementation must be the same as

that used by the controller for computing the corresponding

setpoints. Thus, before implementing a setpoint, the PA must

be able to ascertain whether the setpoint reflects the state it last

advertised. In other words, it must be able to infer if a received

setpoint was caused by the measurement it last advertised.

Similarly, a controller must be able to ascertain if a measure-

ment received from a PA represents the most recent-state of

that sub-process or the state corresponding to earlier setpoint-

implementations. This causal relationship can be better under-

stood using the notion of control rounds. Software agents must

be able to attribute a round number to received messages, to

compare it with the round number they are currently executing,

and to treat the message appropriately.

Note that, we use the term “state of the process” as a proxy

for the state of the PAs. While the state of the physical process

is continuous and evolving, the state of the PAs is discrete

and only changes upon a setpoint implementation. In real-

time control, the CPS issues setpoints at a rate faster than the

dynamics of the underlying process. Thus, the evolution of the

state of the process between two setpoint implementations is

minimal, thereby justifying our usage of the term.

B. Need for a New Relation

When the controller is replicated, assigning a consistent

round number to events requires consensus between the repli-

cas. Due to network losses and delays, and due to software

faults, consensus might require unbounded time [7], making

it unsuitable for real-time systems such as CPSs.

In literature, this problem is circumvented by using message

labels (that represent the causal order between the messages)

to infer the round number. The causal order between the

messages is derived using the happened-before relation [8].

In the presence of replication of the controller, or random

network or computation delays, messages that intend to cause
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Fig. 2. Illustration of why the happened-before relation is not suitable for
ordering events in a CPS in the presence of replication

a certain effect do not necessarily succeed, due to competing

messages. This is illustrated through the example in Fig. 2.

In Fig. 2, the controller is replicated, and its two replicas

C1 and C2 receive the measurement M0 sent by the PA.

This measurement is used by each replica in the computation

of a setpoint, resulting in SP1 and SP ′

1
in C1 and C2,

respectively. In such a scenario, SP1 and SP ′

1
belong to

the same “generation” or the same “control round”, and are

said to be equivalent. SP1 is received by the PA, and its

implementation results in M1. However, due to a delay at C2,

M1 is received before SP ′

1
is issued. Although M1 can be

said to have happened before SP ′

1
, M1 is nonetheless caused

by an equivalent of SP ′

1
, namely SP1.

In the previous example, we say that SP ′

1
intends to have

caused M1, but it did not succeed because a competing

equivalent event (SP1) was received earlier. In order to for-

mally capture this phenomenon, we introduce the intentionality

relation. This relation enables an implementation that provides

a solution to the ordering problem.

C. Contributions

First, in Section III, we describe an abstraction of CPSs

with one, possibly replicated, central controller, and one or

more local PAs. This abstraction models the execution trace

of a CPS by using two inherent relations: (1) the networking

relation used to represent message exchange and (2) the

computation relation used to represent the computation by

software agents.

Second, in Section IV, we formally define the intentionality

relation (→, read intends) by using the networking relation

and the computation relation. We also give an intuition

for competing events and formally define this notion under

the name, intentional equivalence. Moreover, we show that

physical time, on its own, is inadequate in providing strong

clock-consistency under the intentionality relation [8]. In other

words, if physical time is used to timestamp and to order

events a and b, where TS(a) is the timestamp of event a,

then TS(a) < TS(b) 6⇔ a → b.
Third, in Section V, we describe a mechanism, intentionality

clocks, that uses logical clocks to attribute a round number

to messages and can be used to guarantee strong clock-

consistency under the intentionality relation. We formalize

the desired behavior in terms of two correctness properties:

safety and optimal selection. These properties specify which

messages can be used in computation by software agents, and

which can be discarded. We present the design of a controller

and a PA that use intentionality clocks to guarantee these

correctness properties. All guarantees are formally proven.

Lastly, we demonstrate a practical case study of the concepts

developed throughout the paper by using, as an example, a

real-world CPS for real-time control of electric vehicles (EVs)

[4]. We analyze their design in the light of the intentionality

relation and show that when the controller is replicated, it

violates the optimal selection property. Consequently, the CPS

can enter a deadlock situation which can be avoided by using

the CPS design that we proposed.

II. RELATED WORK

Here, we summarize the different bodies of work that ad-

dressed the problem of ordering events in distributed systems,

and we note their shortcomings with respect to the intentional-

ity relation. The detailed discussion of the shortcomings, along

with examples, can be found in Sections I-B, IV-E and V-A.

We also relate the CPS design we presented to other CPS

designs found in literature.

Ordering events in distributed systems is traditionally done

through a causal order, captured by the happened-before

relation [8]. Providing a causal order adheres to what is

referred to as the real-time causal consistency semantic [9].

This is achieved through one of several mechanisms such as

timestamps, Lamport clocks [8], or vector clocks [10].

As previously mentioned (Section I-B) causal order and the

happened-before relation fail to capture the inherent “round

number” in CPSs. Therefore, we introduce the intentionality

relation. We elaborate, in Section IV-E, on the issues that pre-

vent physical time and timestamping-based labeling schemes

from guaranteeing the strong clock-consistency condition un-

der the intentionality relation.

Lamport clocks and vector clocks are complementary under

the happened-before relation, as Lamport clocks describe this

relation, and vector clocks infer it. Intentionality clocks use

a scalar clock inspired from Lamport clocks. In Section V-A,

we discuss the differences between intentionality clocks and

Lamport clocks in greater detail. Vector clocks were not

considered as an avenue because they only provide a partial

ordering between events in general distributed systems, as not

all labels are comparable.

We use the same model of the CPS as previous work [1]–[5],

with a central, possibly replicated, controller and several PAs.

Some previous works that use the same model [2], [4] assume

the existence of a labeling scheme to achieve their goal. By

providing one such labeling scheme in Section V-A, this paper

complements the existing work in CPS design. We explore

the CPS design in [4] in greater detail in Section VI; and

we show that our system model, formalism, and mechanism

apply to such a system. We also expose the possible issues in a

naive extension of its design, which arise when the controller

is replicated, and that can be avoided with our CPS design.

Several industrial solutions circumvent the ordering problem

by using frameworks, such as the time-triggered architecture



(TTA) [11], which provide synchrony guarantees. However,

using such frameworks requires specialized hardware, in ad-

dition to a complete redesigning of the application to fit the

framework. In contrast, we propose a solution that requires

neither. This facilitates deployment in existing CPSs.

III. CPS MODEL

In this section, we describe the model of the CPS we

consider for defining the intentionality relation and for de-

signing intentionality clocks. CPSs consists of four types of

software agents: sensors, actuators, controllers and PAs. We

consider CPSs with one central controller and one or more

PAs, as shown in Fig. 1. The sensors and actuators interact

with the physical process, by reading and altering its state,

respectively. The software agents, namely controller and PAs,

together achieve the desired control of the physical process.

This model of the CPS is in agreement with the general model

of CPSs considered in literature [1]–[6], and applies to a wide

range of applications such as real-time control of smart grids,

autonomous vehicles, and manufacturing processes.

PAs are low-level software agents responsible for control-

ling a sub-process, i.e., one part of the controlled process. PAs

interface with the sensors and actuators as shown in Fig. 1.

They implement the setpoints received from the controller

through their actuators, read the state of the resources through

sensors and send them as measurements to the controller. The

number of PAs in a CPS is a constant and each PA is denoted

with a unique identifier.

A controller performs high-level control of the physical

process by receiving measurements from PAs and by sending

setpoints to PAs.

We consider crash and delay faults [1] in all the software

agents, namely controller and PAs. Byzantine faults are not

considered. Being a single point of failure, the controller

is often replicated for high-reliability. We assume that the

PAs are not replicated. Hence, a software agent is either a

controller replica or a (non-replicated) PA. All replicas of the

controller have different identifiers. Furthermore, we assume

that the communication network between the software agents

might drop, delay, reorder or duplicate messages. Byzantine

contamination of messages is not considered.

We abstract the execution of a CPS as a trace of events

occurring on different software agents. We define three types

of events that can occur on a software agent: sending event,

reception event, and timeout event. When software agent A
sends a message to agent B, we say that A experiences a

sending event. Upon successful reception of the message by

B, we say that B experiences a reception event. Whereas,

if the message is lost or is delayed beyond a deadline, B
experiences a timeout event. A timeout event could also be

caused by the internal logic of a software agent, such as firing

of a timer (as seen in Section VI) or a response to system

state.

An event is represented by the 4-tuple (sa, pa,m, l) where

(1) sa is the identifier of the agent on which the event occurs,

(2) pa is the identifier of either the PA on which the event

occurred, or the PA for which the event is intended, (3) m is

the message encapsulated in the event, and (4) l is an event

label given by the software agent on which the event occurs.

For sending or reception events, the encapsulated message is

the measurement or setpoint exchanged, and timeout events

encapsulate ⊥, representing the absence of a message.

Let C, P be the set of identifiers of all controller replicas and

PAs, respectively. Then, the set of identifiers of all software

agents is S = C ∪ P . Let M be the set of all messages such

that ⊥∈ M, and L be a partially ordered set of labels. Then,

we denote the set of all events that occur in an execution

trace by E ⊂ S × P × M × L. No two distinct events have

the same 4-tuple (sa, pa,m, l). Furthermore, we require that

the abstract labeling scheme used to obtain L ensures that

labels of events occurring on the same software agent, for the

same PA, are different. In practice, such a labeling of events is

achieved through physical timestamps, a permanent sequence

numbering scheme, Lamport clocks [8], Vector clocks [10],

etc. Also, for CPSs that do not implement any labeling

mechanism on events, the model still applies by successively

numbering all events of each software agent with increasing

integers.

Sending events are considered as output events, as they are

the output of a computation at a software agent. Reception and

timeout events are considered input events1. The set of input

events E i, which includes reception and timeout events, and

the set of output events Eo, which includes sending events,

are such that E = E i ∪ Eo and E i ∩ Eo = ∅. Note that, due

to network retransmissions, a single output event can result in

different input events at the same PA, as each of these input

events will have different labels l.
We consider the following computation model of a con-

troller. In each computation, the controller uses exactly one

input event from each PA and produces exactly one output

event for each PA. Moreover, when the controller computes

by using timeout events for one or more PAs, it is able to

appropriately account for the missing information that it would

have received from the corresponding reception events. Else,

the controller refrains from computation of setpoints until

more reception events occur (measurements are received).

To bootstrap the CPS, we assume that a controller starts

with p sending events, one for each PA. These events are called

initial sending events. The set of all initial sending events is

represented by I.

IV. RELATIONS BETWEEN EVENTS IN A CPS

In this section, we formalize the notion of intentionality, an

intrinsic relation between events in a CPS which captures the

order between measurements and setpoints. First, we define the

sub-relations that constitute intentionality, namely, the network

relation and the computation relation. Then, in Section IV-C,

we define an equivalence relation between events, called as

intentional equivalence. Finally, we define the intentionality

relation in Section IV-D.

For a relation
r
−→ and an event a, we denote by r(a) and

r−1(a) the image and pre-image of a by
r
−→, respectively.

1This dichotomy of input-output events is similar to that of sending-
receiving events used in classic distributed systems literature. We use a
different name because we also have timeout events in our model.



A. Network Relation

Software agents exchange messages using a communication

network. Thus, a network relation (
n
−→) exists between events

at different agents. This relation maps an output event (sending

event) at one agent to an input event (reception/timeout event)

at another agent. Formally, we abstract the properties of a

network relation as follows.

Definition 1 (Network Relation).
n
−→ is a network relation, iff

n
−→⊂ Eo × E i and

• for any a ∈ Eo, there exists b ∈ E i s.t.

1) a
n
−→ b, b.pa = a.pa, and n−1(b) = {a}

2) If a.sa ∈ C, then b.sa = a.pa
3) If a.sa ∈ P, then b.sa ∈ C

• for any b ∈ E i, there exists a ∈ Eo s.t. n−1(b) = {a}

Intuitively, a
n
−→ b if a is a sending event and b is its

corresponding reception event or the corresponding timeout

event that occurs on the intended destination. Notice that for

a sending event that occurs on a controller, the corresponding

input event occurs on a PA, and for a sending event that occurs

on a PA, the corresponding input event occurs on a controller.

B. Computation Relation

A computation performed by a software agent can be repre-

sented as a mapping from a set of input events to a set of output

events. In each computation, a controller uses p measurements,

one from each PA and computes p setpoints, one for each PA.

Upon reception of a setpoint, a PA implements it through the

actuator, then reads the state of the sensor and sends the new

state as a measurement. The set of input events used by a PA

for computation is a singleton set. We abstract the properties

of a computation relation (
c
−→) as follows.

Definition 2 (Computation Relation).
c
−→ is a computation

relation, iff
c
−→⊂ E i × Eo

1) for any a ∈ E i

a) If a.sa ∈ P , then ∃b ∈ Eo : a.sa = b.sa,

a.pa = b.pa, c(a) = {b}, and c−1(b) = {a}
b) If a.sa ∈ C, then

• ∀ i ∈ P, ∃! b ∈ c(a) : b.pa = i
• ∀ b ∈ c(a), b.sa = a.sa
• ∀ b, b′ ∈ c(a), c−1(b) = c−1(b′)
• ∀ b ∈ c(a), ∀ i ∈ P, ∃! a′ ∈ c−1(b) : a′.pa = i

2) for any a ∈ Eo \ I, there exists b ∈ E i s.t. b.pa = a.pa
and b ∈ c−1(a).

C. Intentional Equivalence Relation

In the presence of controller replication and message re-

transmission, certain events that occur in the same “control

round” in a CPS are functionally the same, i.e. they steer the

physical process to a similar state. The intentional equivalence

relation (≡) captures this.

We list the properties that will be used to define this relation.

The intentional equivalence relation is defined as the smallest

relation satisfying the following properties.

1) If a and b are the initial sending events at controller

replicas, and a.pa = b.pa then a ≡ b

2) If a
n
−→ b and a

n
−→ c, then b ≡ c

3) If a ≡ ã, a
n
−→ b and ã

n
−→ c =⇒ b ≡ c

4) If a
c
−→ b, a

c
−→ c and b.pa = c.pa, then b ≡ c

5) If a ≡ ã, a
c
−→ b, ã

c
−→ c and b.pa = c.pa =⇒ b ≡ c

The intuition behind rule (1) is that initial sending events are

computed without any knowledge of the state of the system.

They are polling events and do not steer the system in any

direction. Thus, those sent to the same PA are equivalent.

For rule (2), the underlying intuition is that reception

events and their corresponding timeout events convey similar

information to the controller, as do multiple reception events

corresponding to the same sending events (i.e., retransmis-

sion). A reception event informs the controller of the state of

the process, whereas the corresponding timeout event forces

the controller to estimate the missing state before computation.

Recall from Section III that, when a controller of a CPS

computes using timeout events, it accounts for the missing

information, in order to ensure correctness. Thus, reception

events and corresponding timeout events are equivalent.

From Definition 2, there exists a single output event re-

sulting from a computation relation for each PA. Rule (4)

states that if an event causes, after computation, two events

for the same PA, then the resulting events are equivalent.

In fact, the resulting events are the same event, and are

therefore equivalent by the reflexive property of the intentional

equivalence relation (Theorem IV.1). Finally, rules (3) and (5)

mean that equivalent events, when subject to the same relation,

result in equivalent events.

To better understand the intuition behind equivalent events

resulting in similar changes to the state of a CPS, consider

a controller that receives partial information from its PAs.

A well-designed controller would compute only if it can

reconstruct the missing information from the partially received

information, thus resulting in safe setpoints. For example, a

controller with two PAs, one with a 1 Hz update rate and

another with a 10 Hz update rate, would require a measurement

from the latter every 100 ms, whereas from the former only

once every 1 s as it knows that the state of the slow PA has

not changed during that second. Thus, a timeout event on the

measurement from that PA is equivalent to a reception event.

Events that result from retransmissions encapsulate the same

message verbatim, and are thus deemed equivalent. In the

presence of replication, however, different replicas might send

different sets of setpoints in a given “control round”. This

might be due to different sets of measurements received, a

different internal state, or a non-deterministic computation.

In other words, CPS equivalent events can be different and

can lead to different outcomes. Therefore, in practice, CPSs

must be able to live with this. This can be done, for instance,

with an agreement on input as shown in our companion work,

Quarts [2]. Alternatively, this is achieved if the setpoints are

idempotent and the CPS logic permits such deviations [12].

The following theorem states that the intentional equiva-

lence is, indeed, an equivalence relation.
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Fig. 3. Difference between temporal order and intentionality due to replication
of the controller

Theorem IV.1. “Intentional equivalence” is reflexive, sym-

metric and transitive.

D. Intentionality Relation

We define the intentionality relation (→), where a → b
is read as “a intends b”, by using the relations defined in

the previous sections. It is the smallest relation satisfying the

following properties:

1) If a
n
−→ b, then a → b

2) If a
n
−→ b and ã ≡ a, then ã → b

3) If a
c
−→ b, then a → b

4) If a
c
−→ b and ã ≡ a, then ã → b

5) If a → b and b → c, then a → c

Based on these properties, the following theorems hold.

Theorem IV.2. For any two events a, b: a → b =⇒ b 6→ a.

Theorem IV.3. For any two events a, b, such that a.pa = b.pa:

(a 6→ b ∧ b 6→ a) ⇐⇒ a ≡ b.

The proofs of Theorems IV.1, IV.2, and IV.3 are not central

to the discussion, and are thus not included for spatial consid-

eration. We discuss them further in the technical report [13].

Let Ep = {e ∈ E|e.pa = p}. Recall that Ep/≡ represents

the factorization of the set Ep by the relation ≡. Then, as

a consequence of Theorem IV.3, the intentionality relation

induces a total order on Ep/≡, for any p ∈ P . In other words,

the intentionality relation induces a total order on any set of

events concerning the same PA and belonging to different

equivalence classes.

In Section V, we use the definition of intentionality to

formally specify the desirable correctness properties of a CPS.

We also present a CPS design and prove that it guarantees the

said properties.

E. Intentionality and Physical Time

In this section, we answer the question “Is physical time

sufficient to guarantee the strong clock-consistency condition

under the intentionality relation?”

As CPSs are real-time systems, they generally keep track

of physical time. To maintain synchronized global time on

all software agents, their physical clocks are synchronized ei-

ther using GPS-based clock-synchronization or network-based
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Fig. 4. Difference between temporal order and intentionality due to delays

clock-synchronization (e.g., PTP [14], NTP [15]). These time-

synchronization solutions provide a synchronization accuracy

δ that ranges from sub-microsecond to one millisecond.

CPSs often leverage the availability of synchronized phys-

ical clocks to reason about the temporal ordering of events.

However, as we will see in the following examples, the tem-

poral ordering of events does not coincide with intentionality.

Consider a CPS with two controller replicas and a single

PA, as shown in Fig. 3. We will consider a perfect time-

synchronization (δ = 0). Here, a → b, a ≡ ã =⇒ ã → b.
However, the time of occurrence of the effect b, is less than

that of the “cause” ã.

Another example emphasizing the difference between tem-

poral order and intentionality, shown in Fig. 4, concerns a

CPS with one non-replicated controller and two non-replicated

PAs. Due to network delay, the reception event b2 occurs

on PA2 much later than the reception event b1 at PA1. As

a result, the reception event d1 from PA1 occurs much earlier

than the corresponding reception event d̃2 from PA2. Instead,

the controller moves on with a timeout event d2 for PA2.

Consequently, the events e1, f1, g1 and h1 take place. Then,

we have a2 → d2 → e1 → h1. But, d2 ≡ d̃2 =⇒ d̃2 → h1.

However, on the controller, the time of occurrence of h1

occurred is less than that of d̃2. Therefore, as the correct

temporal order is h1 before d̃2, it does not coincide with

intentionality.

Hence, we conclude that on their own, physical clocks are

not sufficient to reason about intentionality and require an

additional mechanism to do so. In Section V-A, we present a

mechanism that describes the intentionality relation by using

logical clocks instead of physical clocks. Note that, such a

mechanism does not require synchronized physical time.

V. CPS DESIGN

As discussed in Section I, the controller and PAs must

ensure that the events used in their computation reflect the

most recent state of the process. The state of the process

changes with each setpoint implementation, i.e., a computa-

tion event by a PA. Thus, when a controller uses an input

event e : (sa1, pa1,m1, l1) and there exists another event

e′ : (sa1, pa1,m2, l2) such that e → e′, then the message m2

reflects a more recent state of the sub-process controlled by

PA1 than the message m1. If the controller uses the “old”

event e in the computation of setpoints, then the resulting



setpoints might not be compatible with the most-recent state

of the process, thereby causing incorrect control of the CPS.

Definition 3 formally specifies the safety property that the

software agents in a CPS must satisfy in order to guarantee

correct control.

Definition 3 (Safety). If a software agent uses an event a for

computation, then the last sending event b that occurred on

this software agent, where b.pa = a.pa, is such that b → a.

The safety property requires that (1) a PA must use only

those events in computation that have accounted for its most

recent state, captured by its last measurement sending event,

and (2) a controller must use only those events in computation

that reflect the state change caused by its last setpoint sending

events.

Notice that discarding all messages can trivially satisfy the

safety property. However, this will render the physical process

uncontrolled by a complete loss of availability of the control.

Therefore, the selection of events must be optimal, i.e., only

those events that violate the safety property must be discarded.

This property is formally defined as follows.

Definition 4 (Optimal Selection). An event a must only be

discarded if there exists another event b, such that b 6→ a
that: (1) occurred on this software agent, or (2) this software

agent was informed that b occurred on its replica.

The first part of the optimal selection property, on its own,

states that an event a must be accepted by a software agent

if the last sending event b on this software agent intended to

cause a. Recall that if b → a, then all events that occurred on

this software agent before b also intend to cause a. Thus, a
presents new information, i.e., information about the state of

the process after the implementation of the last-sent setpoint.

In the presence of replication, however, an event that was

intended by the last sending event, does not necessarily present

new information, as seen in the following example.

A controller replica that last computed in round l might

receive two measurements from the same PA: one from round

l+1 and another from round l+2, before it is ready to compute.

This can occur due to another controller replica driving the

CPS into round l+2. In this scenario, the first controller might

ignore the message from round l+1 as the message from round

l + 2 supersedes it. The controller will, therefore, compute

using reception events from round l + 2, and declare timeout

events for PAs from which it has not received measurements

from that round. This condition is captured by the second part

of the optimal selection property.

Next, we describe the design of a CPS in which the software

agents satisfy the safety and optimal selection properties.

Our design uses a label scheme, intentionality clocks, that

is adapted from Lamport clocks to guarantee strong clock-

consistency under the intentionality relation. We describe the

design of intentionality clocks in Section V-A; and the design

of controllers and PAs that use the intentionality clocks in

Sections V-B and V-C, respectively. We present the formal

guarantees in Section V-D.

A. Intentionality clocks

Intentionality clocks is a mechanism to maintain, update

and synchronize logical clocks across all software agents in a

CPS. It is adapted from the Lamport clocks abstraction that

was designed for general distributed systems, to accommodate

the specificities of events in CPSs.

Each agent maintains and updates a local logical clock

that is used to set the event label of sending events on that

agent. These labels are communicated along with the message

encapsulated in the event and are used to obtain the event

labels of the corresponding reception and timeout events.

The labels are assigned such that they guarantee the strong

clock-consistency condition [8]. In other words, for two

events a and b, we say that a clock mechanism describes

the intentionality relation if the event labels are such that

a.l < b.l =⇒ a → b and a.l = b.l =⇒ a ≡ b. We

say that the clock mechanism infers the intentionality relation

if a → b =⇒ a.l < b.l and a ≡ b =⇒ a.l = b.l. The strong

clock-consistency condition is satisfied if a clock mechanism

both describes and infers the intentionality relation.

The design of intentionality clocks is given by the following

rules (for details, see Sections V-B and V-C):

1) The event label of a sending event at an agent is the value

of its logical clock, right before the sending event.

2) If a is a sending event and b is its corresponding

reception or timeout event, then b.l = a.l + 1.

3) The logical clock of an agent is only incremented before

a computation. It is never decremented.

4) The logical clock of delayed software agents is resyn-

chronized using the labels of the received events.

There are two main distinctions in the design of inten-

tionality clocks when compared to Lamport clocks [8]. First,

in our solution, the logical clock at an agent is incremented

only when the agent performs a computation. This enables the

controller to infer the intentionality relation by using its local

logical clock, and to have a notion of the “control round”. In

contrast, the Lamport clock at an agent is updated after every

event that occurs at that software agent Thus, the agents lose

the information required to infer the intentionality relation and

to have a notion of the “control round”.

Second, in intentionality clocks, the label of a reception

event is one more than the label of the corresponding sending

event. In contrast, in Lamport clocks, for a reception event b
that occurs when the value of the logical clock of the agent is

C is b.l = max(a.l, C) + 1, where a is the corresponding

sending event. Due to the presence of delayed controller

replicas or message retransmissions by the network, reception

events from previous “control rounds” might have a higher

label than reception events from current “control round”.

Consequently, it cannot describe or infer the intentionality

relation, i.e., cannot guarantee the strong clock-consistency

condition.

The formal guarantees of intentionality clocks are presented

in Section V-D and proven in the Appendix.



B. Controller Design

Algorithms 1 and 2 describe the design of a controller

with intentionality clocks; this design satisfies the safety and

optimal selection properties. The model of the controller is

the same as that used in our previous work [1], [2]. The parts

in red are our modifications for satisfying the aforementioned

properties (together with the implementation of Algorithm 3).

Each controller maintains a logical clock C, a list of input

events (i.e., reception and timeout events) Z, and a list of their

corresponding event labels L.

Upon receiving a measurement from a PA, the controller

declares a reception event with a label one more than the label

of the received message (Algorithm 1, line 9). The controller

adds the measurement to Z, and adds the label of the reception

event to L.

The controller also occasionally checks if it has accumulated

enough information about the state of the physical process,

through the measurements, required to compute setpoints. To

this end, it uses the ready_to_compute() function. We

make no assumptions on this function or the frequency with

which the controller invokes it. The controller can choose to

start a computation of setpoints by considering any form of

information provided by measurements from Z. Moreover, the

labels in L provided by intentionality clocks expose additional

information to the ready_to_compute() function, by giv-

ing insight into the intentionality relation between the events.

Then, the controller computes setpoints by calling the

compute() function that uses Z, L and C as shown in

Algorithm 2. In this function, we specify how the controller

must use the logical clock and the labels in order to satisfy

the safety and optimal selection properties. First, the controller

computes the highest label of the events it has seen: C ′.

This represents the most recent events the controller has

encountered. Then, for all PAs from which the highest label

of received events is less than C ′, the controller declares a

timeout event (line 4), thereby explicitly acknowledging that it

lacks the most recent information from this PA. The controller

can then account for this missing information in the subsequent

computations. The logical clock C is set as C ′+1 to mark the

computation operation and the resulting setpoints are issued by

way of sending events with the label being the current logical

clock.

Note that, in Algorithm 2, the computation of setpoints takes

as input a set of input events comprising exactly one reception

or timeout event from each PA. This is in accordance with the

computation relation (
c
−→) described in Section IV-B.

The controller is designed to be soft state [16]. When a

controller boots or reboots after a crash, its logical clock is

set to zero, and the lists Z and L are reinitialized. Thus,

it would use all subsequent reception or timeout events for

computation, because their labels would be ≥ 0. This behavior

is in accordance with the safety property, as a freshly rebooted

controller de-facto has no last setpoint sending event. However,

as described in Section V-C, these sending events would be

disregarded by the PAs as they do not reflect their most recent

state. Note that, upon booting or rebooting, the controller sends

setpoints corresponding to the initial sending events, indicated

by S0, with the label 0.

Algorithm 1: Abstract model of a controller

1 on boot or reboot
2 C ← 0; // CPS clock on this controller
3 Z← {}; // List of input events
4 S← S0; // List of setpoints to be sent
5 L← {}; // List of labels of input events
6 Issue S with label C
7 end;
8 on reception of a message m with label l from a PA i

9 Declare reception event a : (sa, i,m, l + 1);
10 Add m to Z;
11 Add a.l to L;
12 end;
13 repeat

14 decision ← ready to compute(C,Z, L);
15 if decision then
16 S, C,Z,L ← compute(C,Z,L);
17 Issue S with label C; // Sending events
18 end

19 forever;

Algorithm 2: Function: compute(C,Z,L)

1 C′ ← max(C + 3,max(L));
2 for each PA i do

3 if the maximum label in L from PA i is not equal to C′ then

4 Declare timeout event a : (sa, i,⊥, C′);
5 Add ⊥ to Z;
6 Add a.l to L;
7 end

8 end

9 C ← C′ + 1;
10 S← setpoints computed using measurements with label C′;
11 Return S, C,Z,L;

From lines 1 and 9 in Algorithm 2, we see that the logical

clock of a newly booted controller is re-synchronized with that

of the other software agents before computation, by taking the

maximum of the labels of the received measurements. This is

discussed further, in Section V-C.

C. PA Design

Algorithm 3 describes the design of a PA with intention-

ality clocks; the design complements Algorithms 1 and 2 in

satisfying the safety and optimal selection properties. Each PA

maintains a clock C that is initialized with 0 upon booting.

Upon reception of a setpoint from a controller, the PA

declares a reception event with a label one more than that

received in the message. Then, the PA compares the label of

the event with its local logical clock. If the reception event

has a higher label, then the PA implements the setpoint, else

it is discarded because it violates the safety property. In other

words, a reception event with a label less than the logical

clock of the PA means that the corresponding sending event

was not computed with the most recent state of this PA. In this

way, setpoints from delay-faulty controllers or freshly booted

controllers are not implemented, thereby upholding the safety

property.

After implementing the setpoint through an actuator, the PA

increments its logical clock to mark the computation of a new

measurement. The PA computes a new measurement through

a sensor and sends the measurement to the controller by a

sending event labeled with the current logical clock.

Each PA stores its logical clock before computing mea-

surements. When a PA recovers after a crash, it initializes



Algorithm 3: Model of PA with causal clocks.

1 on boot
2 C ← 0;
3 end;
4 on reboot
5 C ←stored C;
6 end;
7 on reception of a message m with a label l from a controller
8 Declare reception event a : (pa, pa,m, l + 1);
9 if C < a.l then

10 C ← a.l;
11 Implement setpoint;
12 C ← C + 1;
13 Store C;
14 Compute measurement;
15 end

16 Send measurement to the controller with label C;
17 end;

its logical clock to the last stored value2. In this way, the PA

keeps track of the last state it advertised to the controller.

Controllers and PAs update their local logical clocks to

reflect the labels they observe (Algorithm 2 line 1, Algorithm

3 line 10). Notice that, upon receiving a setpoint with a label

lower than its logical clock, a PA also sends both the latest

computed measurement and the current value of the local

clock. This serves to re-synchronize the software agents that

miss some control rounds due to messages losses, crashes and

recoveries, or delays.

D. Formal Guarantees

We formally prove that our mechanism of intentionality

clocks and Algorithms 1, 2, and 3 guarantees safety and

optimal selection. The first step lies in proving that inten-

tionality clocks under our mechanism infer and describe the

intentionality relation.

Theorem V.1 (Strong Clock-Consistency). In a CPS that

implements Algorithms 1, 2, 3: for any two events a and b,

C (a) < C (b) ⇐⇒ a → b

C (a) = C (b) and a.pa = b.pa ⇐⇒ a ≡ b

Proof. The proof can be found in Appendix A.

Theorem V.2 (Safety & Optimal Selection). A CPS that

implements Algorithms 1, 2 and 3 guarantees safety and

optimal selection.

Proof. The proof can be found in Appendix B.

VI. CASE STUDY: CPS FOR SCHEDULING ELECTRIC

VEHICLE CHARGING

We present, via a case study, a practical application of the

intentionality relation and the intentionality clocks mechanism.

We take the example of a CPS for scheduling the charging of a

fleet of electric vehicles (EVs), which provides a schedule that

accounts for both the vehicles’ demand and the vehicle-to-grid

regulation services [4].

2Constantly increasing counters might cause a counter overflow. However,
a 64-bit counter incremented once every millisecond takes much longer than
the lifetime of any CPS to wrap-around.
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Fig. 5. Architecture and information flow of a CPS for EV charging [4]

One of the goals of the CPS is to charge each vehicle based

on the vehicle’s demand, and the other goal is to provide fre-

quency support for the grid. Modulating the charging schedule

of the EVs, by charging at a higher or lower rate, or even

discharging into the grid for some time in cases of downward

excursion of frequency, can provide frequency support. In

practice, the EVs must respond to regulation requests every

two to four seconds [17].

The paper [4] presents a solution to the problem assuming

an ideal communication, and without considering the failure of

the software agents. However, such a mission-critical control

requires high levels of reliability in a real deployment. It is,

therefore, desirable to replicate the controller.

In Section VI-B, we use the intentionality relation to analyze

their CPS design for possible issues that could arise when the

controller is replicated. We find that a naive extension to their

design violates the optimal selection property. Consequently,

due to software and network faults, the CPS can encounter

a deadlock situation, whereby frequency support will no

longer be achieved. This might result in the instability of the

underlying electrical grid.

A. CPS Model

In this section, we analyze the system model of [4] and

show how our system model, presented in Section III, applies.

Figure 5 presents an architectural view of the system

consisting of EVs and the aggregator, as shown in [4]. It

comprises EVs that represent the controlled sub-process from

our model, the EV agents labeled 1 through n that correspond

to the PAs from our model and the central aggregator that is the

controller of the CPS. The controller receives a charging/dis-

charging (henceforth referred to as charging) schedule from

each PA, which represents the measurements in our model.

The controller computes control signals (setpoints) for each

of the EVs, using the received charging schedules.

The algorithms of the controller and PA used for achieving

the desired vehicle-to-grid regulatory service are described

in [4] in Algorithms 2A and 2B. We abstract this process

and summarize it, as shown in Algorithm 4. The controller

periodically starts an iterative process that consists of several

control rounds, subject to convergence of the algorithm. Each

iterative process is independent from the previous one, as



if the controller had a fresh start. The triggering of a new

iterative process (line 2) is a timeout event in our model, which

further causes n sending events, one for each PA (line 4).

These represent the initial sending events as they are computed

without using measurements.

From Algorithm 4, we see that the CPS in [4] uses a

labeling scheme with label m. In Section VI-B, we show that

this labeling scheme violates optimal selection (Definition 4),

consequently the system can enter a deadlock situation. In

line 6, we see that the controller waits for schedules from

each PA before beginning computation in line 7. Thus, the

ready_to_compute() function of this CPS is the presence

of one reception event from each PA, corresponding to the

current round with label m. Timeout events do not occur

within an iteration.

In lines 7-13, we see the computation relation takes as input

one schedule from each PA and produces one control signal

for each PA. In other words, the computation relation takes

as input one reception event from each PA and outputs one

sending event for each PA. This is same as our computation

relation (Definition 2).

The iterative process (lines 5-13) continues until the control

has converged. It terminates with the sending of control and

stop signals in the setpoints of the last computation.

Each EV agent (PA) also keeps track of the on-going control

round by using the indicator m. It only accepts charging

schedules (setpoints) that belong to the current round (line

20). Upon receiving a setpoint from the current round, the PA

checks if it is accompanied with a stop signal (line 22). The

presence of a stop signal is an indication of the termination

of the iterative process and results in implementation of the

setpoint. Alternatively, when the stop signal is absent, the

PA sends its new charging schedule as a measurement to the

controller and increments m by one.

B. Deadlock due to Violation of Optimal Selection

Here, we describe a scenario in which the CPS in [4] can

enter a deadlock situation when the controller is replicated, due

to the controller replicas having different round indicators.

Consider a scenario with two replicas of the controller C1

and C2, with indicator m1 and m2, respectively. Consider a

PA, PA0 with indicator m0. Consider a situation when both

controllers sent out setpoints to PA0 with label 5. Then, m1 =
m2 = 5. PA0 receives this setpoint, implements it, sends a

measurement with label m0 = 5 and increments its indicator

to 6. Thus, after this round, we have m1 = m2 = 5 and m0 =
6. Now, if C2 does not receive the measurement from PA0

and C1 received measurements from all PAs, C1 will begin

computation and C2 will be stalled. After this computation,

we have m1 = 6 and m2 = 5. Moreover, PA0 implements the

setpoint and increments its indicator m0 to 7.

Next, let C1 crash due to a software failure and reboot.

Then, it requests for schedules with m1 = 0. However, as PA0

is expecting messages from round 7, it ignores these requests.

PA0 also discards any messages from C2, as they will have

a label 5. Moreover, C2 discards the received measurements

with label 6 because its label is m2 = 5. This is a violation of

Algorithm 4: Abstraction of the iterative process of

scheduling EV charging [4]

1 At the Aggregator (Controller)

2 repeat periodically
3 m← 0;
4 Send a request for schedules with label m to each PA;
5 repeat
6 if schedules labeled m from each PA are received then

7 Perform computation of control signals;
8 m← m+ 1;
9 if control has not converged then

10 Send new control signals with label m to each PA;
11 end

12 end

13 until control has converged;
14 Send control signals and stop signals with label m to each PA;
15 forever;
16

17 At the EV Agent (PA)

18 m← 0;
19 on reception of a control signal with label k from aggregator
20 if k == m then

21 Compute new charging schedule;
22 if stop signal received then

23 m← 0;
24 Implement charging schedule until next control signal;
25 else

26 Send schedule to aggregator with label m;
27 m← m+ 1;
28 end

29 end

30 end;

the optimal selection property by C2. Hence, the CPS enters a

deadlock state because there is no mechanism to resynchronize

the counters.

Our design (Section V) satisfies the optimal selection prop-

erty even in the presence of controller replication, and software

and network faults (as shown in Theorem V.2). Therefore, the

problem encountered by the design in [4] can be avoided by

applying intentionality clocks and tuning the design of the

software agents according to Algorithms 1, 2, and 3.

VII. CONCLUSION AND FUTURE WORK

We address the problem of enabling software agents in a

CPS, namely controller and PAs, to provide a notion of rounds

of computation in presence of network losses or delays, or

replication of the controller. We show, that in such settings,

the causal (or happened-before) relation, traditionally used in

distributed systems literature, does not enable capturing the

control rounds. Instead, we introduce a new relation that we

call “intentionality relation”. We formally define this relation

for CPSs with one, possibly replicated, central controller

and one or more PAs. A possible avenue for future work

is to extend the intentionality relation to a wider range of

CPS, specifically, comprising a hierarchy of controllers, or

spontaneous sensors that send out-of-band measurements to

the controllers.

We present a clock mechanism, intentionality clocks, that

can be used to both describe and infer the intentionality

relation. We also formalize the correctness properties, namely

safety and optimal selection, that describe how the agents must

treat events in order to respect intentionality. We present the

design of a controller and a PA that guarantees the correctness



properties. Lastly, through a case study of a real-world CPS

for charging EVs, we demonstrate the practical relevance of

the introduced concepts.

In future work, we intend to extend our design to more

generic CPSs as mentioned above. Moreover, we are currently

in the process of implementing our controller and PA design

in a CPS for real-time control of electric grids [6]. We will

study the impact of violations of the correctness properties

(safety and optimal selection) on the physical process, through

experiments in a virtual commissioning environment [18]. This

enterprise is a preparation for the deployment of the said CPS

for real-time control of a medium-voltage grid.
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APPENDIX A

PROOF OF THEOREM V.1

In a CPS that implements Algorithms 1, 2, 3: for any two

events a and b,

C (a) < C (b) ⇐⇒ a → b

C (a) = C (b) and a.pa = b.pa ⇐⇒ a ≡ b

Proof. The proof follows from Lemmas A.1, A.2, A.3, A.4.

Lemma A.1. a ≡ b =⇒ C (a) = C (b) and a.pa = b.pa.

Proof. If a ≡ b, then from the properties of the intentional

equivalence relation, a.pa = b.pa, and one of the following

five cases must hold:

1) a and b are initial sending events.

2) ∃ c: c
n
−→ a and c

n
−→ b

3) ∃ c, c̃: c ≡ c̃, c
n
−→ a, c̃

n
−→ b

4) ∃ c: c
c
−→ a and c

c
−→ b

5) ∃ c, c̃: c ≡ c̃, c
c
−→ a, c̃

c
−→ b

We prove the statement of the lemma by induction.

Base case: c, c̃ are initial sending events.

From item 1: c ≡ c̃.
From Algorithm 1, line 2: C (c) = C (c̃) = 0.

Then, c ≡ c̃ =⇒ C (c) = C (c̃).

Inductive hypothesis: C (c) = C (c̃). (For cases 2 and 4,

c = c̃ and this hypothesis holds trivially).

Inductive step: We show that the statement of the lemma also

holds for a and b.
In cases 2 and 3, by Lemma A.6:

C (a) = C (c) + 1 = C (c̃) + 1 = C (b).
In cases 4 and 5, by Lemma A.5:

C (a) = C (c) + 1 = C (c̃) + 1 = C (b).

Lemma A.2. C (a) = C (b) and a.pa = b.pa =⇒ a ≡ b.

Proof. We prove this by induction on l = C (a) = C (b).

Base case: For l = 0, a and b are initial sending events.

By rule 1 of intentionality: a.pa = b.pa =⇒ a ≡ b.

Inductive hypothesis: ∀ e, f : C (e) = C (f) = k − 1 and

e.pa = f.pa =⇒ e ≡ f .

Inductive step: We show that, ∀ a, b : C (a) = C (b) = k
and a.pa = b.pa =⇒ a ≡ b.

Case 1: a and b are input events.

By Definition 1: ∃ e, f : e
n
−→ a and f

n
−→ b.

Then, from Definition 1: e.pa = a.pa and f.pa = b.pa



Thus, e.pa = f.pa.

By Lemma A.6: C (e) = C (a)− 1 = k − 1.

By Lemma A.6: C (f) = C (b)− 1 = k − 1.

Thus, by the inductive hypothesis: e ≡ f .

Thus, by rule 3 of intentional equivalence: a ≡ b.

Case 2: a and b are output events.

By Definition 2: ∃ g, h: g
c
−→ a, h

c
−→ b, and g.pa = h.pa.

Then, from Lemma A.5: C (g) = C (a)− 1 = k − 1.

Also, from Lemma A.5: C (h) = C (b)− 1 = k − 1.

Thus, by inductive hypothesis: g ≡ h.

Thus, by rule 5 of intentional equivalence: a ≡ b.

Case 3: a is an input event and b is an output event.

We prove that this is an impossible case.

By Definition 1: there exists an input event e, such that

e.pa = a.pa and e
n
−→ a.

By Definition 2: there exists an output event f , such that

f.pa = b.pa and f
c
−→ b.

Then, by Lemma A.6: C (e) = C (a)− 1 = k − 1.

Also, from Lemma A.5: C (f) = C (b)− 1 = k − 1.

Then, C (e) = C (f) and e.pa = f.pa.

From the induction hypothesis: e ≡ f .

By the properties of the intentional equivalence relation, e and

f are either both input events or both output events.

Contradiction.

Lemma A.3. a → b =⇒ C (a) < C (b).

Proof. By the definition of the intentionality relation (Sec-

tion IV-D), a → b has 5 possible cases.

Case 1: a
n
−→ b.

Then, by Lemma A.6: C (b) = C (a) + 1.

Thus, C (a) < C (b).

Case 2: a ≡ ã and ã
n
−→ b.

From Lemma A.1: a ≡ ã =⇒ C (a) = C (ã).
By Lemma A.6: C (b) = C (ã) + 1.

Thus, C (a) < C (b).

Case 3: a
c
−→ b

From Lemma A.5: C (b) = C (a) + 1.

Thus, C (a) < C (b).

Case 4: a ≡ ã and ã
c
−→ b.

From Lemma A.1, C (a) = C (ã).
From Lemma A.5: C (b) = C (ã) + 1.

Thus, C (a) < C (b).
Case 5: a → c and c → b.
From cases 1-4: C (a) < C (c) and C (c) < C (b).
Therefore, C (a) < C (b).

Lemma A.4. C (a) < C (b) =⇒ a → b.

Proof. C (a) < C (b) =⇒ C (b) = C (a) + k, k > 0.

We prove the lemma by induction on k.

Base case: For k = 1, C (b) = C (a) + 1

Case 1: b is an input event.

By Definition 1: ∃ c : c
n
−→ b.

By Lemma A.6: C (b) = C (c) + 1.

Thus, C (c) = C (a).

From Lemma A.2: c ≡ a.

Hence, from rule 2 of intentionality: a → b.

Case 2: b is an output event.

By Definition 2: ∃ c : c
c
−→ b.

From Lemma A.5: C (b) = C (c) + 1.

Thus, C (c) = C (a).
From Lemma A.2: c ≡ a.

Hence, from rule 4 of intentionality: a → b.

Inductive hypothesis: Let, for some k > 1
∀ e, f : C (f) = C (e) + k =⇒ e → f .

Inductive step: We show that

∀ a, b : C (b) = C (a) + k + 1, a → b.
∃ c : C (b) = C (c) + 1, C (c) = C (a) + k.

From the inductive hypothesis: a → c.
Also, from the base case: c → b.
Therefore, from rule 5 of intentionality: a → b.

Lemma A.5. a
c
−→ b =⇒ C (b) = C (a) + 1

Proof. In Algorithm 2, a is either from a reception event from

a PA with label C ′ or a timeout event with a label C ′ (line 6).

In line 8, we have C = C ′ + 1 and the sending event b has a

label C. Thus, C (b) = C (a) + 1.

In Algorithm 3, the sending event b has a label C that is

updated in lines 10 and 12. In line 10, we have C = C (a) and

in line 12, we have C = C +1. Thus, C (b) = C (a)+ 1.

Lemma A.6. a
n
−→ b =⇒ C (b) = C (a) + 1

Proof. At the PA

A sending event a at a controller replica occurs in line 17 of

Algorithm 1.

The corresponding reception event b at a PA occurs at line 8

of Algorithm 3.

From Algorithm 3, line 8: C (b) = C (a) + 1.

At the Controller

Algorithm 1 line 9: a reception event b has a label b.l = l+1,

where l is the label of the corresponding sending event a at a

PA (Algorithm 3, line 16).

Thus, C (b) = C (a) + 1.

Algorithm 2 line 4: we declare timeout events with label C ′,

for each PA i, such that the maximum label in L of the events

corresponding to i is different from C ′.

We trace the events that caused one such timeout event b.
Since a

n
−→ b, it follows that a is the sending event at a PA,

such that a.pa = b.pa, which was lost or delayed thus causing

the timeout event b.
Let g be the last sending event at a controller, such that there

exists a chain of events g
n
−→ f

c
−→ d

n
−→ c, where c is a

reception event at the controller on which b occurred, and

c.l = C ′. (Definitions 1 and 2).

Thus, from result of this lemma at the PA: d.l = C ′ − 1.

From Lemma A.5: f.l = C ′ − 2.

From the earlier statement at the controller: g.l = C ′ − 3.

The controller declares timeout events to acknowledge that

it lacks information from some PAs, that it has from others.

This information is the state of the sub-processes after the



implementation of the setpoints encapsulated in the last send-

ing events that resulted from the same computation relation at

some controller replica.

Thus, from Definitions 1 and 2: there exists another chain of

events, g
n
−→ h

c
−→ a, such that h.pa = a.pa.

From result of this lemma at the PA: h.l = C ′ − 2.

From Lemma A.5: a.l = C ′ − 1.

APPENDIX B

PROOF OF THEOREM V.2

A CPS that implements Algorithms 1, 2, 3 guarantees safety

and optimal selection.

Proof. The proof has two parts: safety and optimal selection.

Safety

At the controller: Algorithm 2 line 10, the controller computes

setpoints using measurements with label C ′.

C ′ is greater than the label of the last setpoint issued at line

17 in Algorithm 1 with label C, as C ′ = max(C+3,max(L))
(Algorithm 2, line 1).

From Theorem V.1: C (b) < C (a) =⇒ b → a.

Thus, when an event a with label C ′ is used by the controller

for computation, and another event b was the last event issued

by the controller with label C, then C ′ > C =⇒ b → a.

At the PA: The computation at PA, i.e., implementation of a

setpoint followed by subsequent computation of a measure-

ment, is triggered only if Algorithm 3 line 9 is true.

Therefore, if an event a with label a.l is used in a computation

by a PA when its CPS causal clock is C, then C < a.l.
However, C is the label of the sending event b, corresponding

to the last measurement issued.

Therefore, by Theorem V.1: C (b) < C (a) =⇒ b → a.

Optimal Selection

At the controller: Consider a reception event a with label a.l
at a controller, when its clock is C.

Case 1: a.l ≤ C.

Let b is a sending event corresponding to the last setpoint sent

to the same PA.

From Theorem V.1: C (a) ≤ C =⇒ b 6→ a.

From Algorithm 2 line 1, we have a.l < C + 3 < C ′.

In line 10, the controller computes with events of label C ′.

Thus, the event a is not used in computation, i.e., discarded.

Case 2: a.l > C and a.l 6= max(L).
Consider an event e such that C (e) = max(L).
From Theorem V.1: C (a) < C (e) =⇒ a → e.

From Lemma B.1: C (a) < C (e) =⇒ C (e) > C (a) + 4.

Let d be the sending event on a PA, such that d
n
−→ e.

Then, C (d) = C (e)− 1.

Let c be the reception event on the PA, such that c
c
−→ d.

Then C (c) = C (e)− 2.

Let b be the sending event on a controller, such that b
n
−→ c.

Then C (b) = C (e)− 3.

Thus, C (b) > C (a).
FBy Theorem V.1: C (b) > C (a) =⇒ b 6→ a.

Hence, a must be discarded.

From Algorithm 2 line 1, we have a.l < max(L) < C ′.

In line 10, the controller computes with events of label C ′.

Thus, the event a is not used in computation, i.e., discarded.

Case 3: a.l > C and a.l = max(L)
From Lemma B.1: a.l > C + 3.

From Algorithm 2 line 1: a.l = C ′.

In line 10, the controller computes with events of label C ′.

Thus, the event a is used in computation, i.e., not discarded.

At the PA: An event a is discarded by the PA only if a.l ≤ C
(Algorithm 3, line 9), where C is the label of the event b
corresponding to the last measurement sent.

Thus, from Theorem V.1, if a is discarded, b 6→ a.

Lemma B.1. For any two events a and b occurring at the

same software agent, if a and b are both input events or both

output events, then [C (b)− C (a)] % 4 = 0.

Proof. We start by proving the statement for output events at

the controller, by using induction.

Base case: Let a be an initial sending event. Then, C (a) = 0.

Let b be an event occurring on a PA, such that a
n
−→ b.

Let c be a sending event on the same PA, such that b
c
−→ c.

Let d be an event on the controller, such that c
n
−→ d.

Let e be the sending event on the controller, such that d
c
−→ e.

Then, C (e) = 4 and [C (e)−C (a)] % 4 = 0, where e and a
are both output events. Thus, the statement is true for the first

two sending events on all controllers.

Inductive hypothesis: Consider an instance of the execution

trace at time t0 at which there is no event in the CPS b,
such that C (b) ≥ l. At this instant, let A be the set of all

sending events on all controller. Clearly, ∀a ∈ A, C (a) < l.
We assume the hypothesis be true for all a ∈ A.

Inductive step:

Consider a0 ∈ A, be such that ∀ a ∈ A, C (a0) ≥ C (a).
By the induction hypothesis: C (a0) = 4k, where k ∈ N.

We show that the hypothesis is also true for the first sending

event b that occurs at a controller after t0 such that a0 → b.

∀ c, (c.sa = PA1 ∧ a0
n
−→ c) =⇒ C (c) = 4k + 1.

∀ d, (d.sa = PA1 ∧ c
c
−→ d) =⇒ C (d) = 4k + 2.

∀ e, (e.sa ∈ C ∧ e.pa = PA1 ∧ d
n
−→ e) =⇒ C (e) = 4k+3.

∀ f , (f.sa = e.sa ∧ e
c
−→ f) =⇒ C (f) = 4k + 4.

Thus, [C (f)− C (a0)] % 4 = 0.

f is a sending event on a controller and C (f) > C (a0).
Thus, f /∈ A.

Also, f is the first sending event that occurred after t0.

Thus, the hypothesis holds for all sending events at controllers.

Sending events at controllers have label of the form 4k.

By Lemma A.6: input events at PAs have label of the form

4k + 1.

From Algorithm 3: output events at the PAs have label of the

form 4k + 2.

By Lemma A.6: input events at the controller have label of

the form 4k + 3.


