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Abstract

Learned image features can provide great accuracy in many Computer Vision

tasks. However, when the convolution filters used to learn image features are

numerous and not separable, feature extraction becomes computationally de-

manding and impractical to use in real-world situations. In this thesis work,

a method for learning a small number of separable filters to approximate an

arbitrary non-separable filter bank is developed. In this approach, separable

filters are learned by grouping the arbitrary filters into a tensor and opti-

mizing a tensor decomposition problem. The separable filter learning with

tensor decomposition is general and can be applied to generic filter banks to

reduce the computational burden of convolutions without a loss in perfor-

mance. Moreover, the proposed approach is orders of magnitude faster than

the approach of a very recent paper based on `1-norm minimization [34].
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Chapter 1

Introduction

Over the past few years, representing images as sparse linear combinations of

learned filters has been proved to be very e↵ective in numerous image process-

ing tasks, such as feature extraction, object recognition and image denoising.

Using learned filters is particularly useful where our lack of intuition makes

it di�cult to engineer good hand-crafted feature extractors.

Most common methods for object recognition utilize hand-designed fea-

tures, such as SIFT [24] and SURF [3]. A more general and flexible strategy

in order to find a concise and meaningful representation would be to use an

unsupervised learning method that automatically incorporates all available

information of the input data.

In order to learn filters to extract good visual features in an unsupervised

manner, there has been an increasing amount of research in sparse coding.

The learning algorithms that use sparse coding are commonly trained at

the patch level. Patch-based training mostly produces oriented edge detec-

tors, whereas convolutional training produces highly diverse filters such as

center-surround filters, corner detectors, cross detectors, and oriented grating

detectors [17]. This is important in the sense that the visual world can be

represented at many levels such as pixel intensities, edges, shapes or objects,

and these convolutional filters are able to represent these diverse modalities

in the image. With the convolutional formulation, some of the filters could
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detect objects by finding low-level features indicative of object parts, whereas

more complex information in the image could be resolved by some other so-

phisticated filters. Moreover, the adoption of convolutional approaches could

prove useful in terms of e�ciency as using small patches on large images is

slow and di�cult.

A major drawback of many feature learning systems is their complexity

and expense as the filters are numerous and non-separable. In the case of 3D

image stacks that are used for biomedical purposes, the computational cost

is even more pronounced. The computational complexity associated with

convolving non-separable filter sets with 2D images and 3D volumes can be

greatly reduced by using separable filters. Separable filters are favored in

the sense that a substantial amount of speed-up with no loss of accuracy is

obtained when convolving the filters with images.

Separable filters can be used to decompose convolution operations into

separate one-dimensional convolutions. Because of its computational e�-

ciency, hand-designed filter banks are often made separable. However, the

problem of learning generic separable filters has not been addressed until

recently in computer vision literature.

A recent study [34] has investigated two separate schemes to learn sep-

arable filters. The first one involves directly learning a separable filter bank

by enforcing the separability constraint to the convolutional filter learning

framework. The second method starts directly from a non-separable filter

bank and approximates them by linear combinations of a small set of separa-

ble filters. The optimization problem used to learn separable filters for both

schemes relies on the minimization of the nuclear norm of the filters (a con-

vex relaxation of the rank). If the rank of the filters could be made equal to

one, then these filters could be represented as separable filters. In these ap-

proaches, approximation of a set of separable filters is carried out by forcing

each filter to be low-rank independently. A di↵erent approach for learning

separable filters could be constraining all these learned non-separable filters

globally to be the linear combination of a small set of separable filters, where
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Figure 1.1: Tensor decomposition of a 3-way tensor into a sum of R rank-one

tensors. The n-th filter (n-th slice of the tensor) can be expressed as the linear

combination of the outer products of vectors a
i

and b
i

, where weighting coe�cients

are cni .

separable filters are written explicitly as the products of one-dimensional

filters. This is the problem addressed in this thesis work where a generic

framework for learning a separable filter basis is implemented.

It has been shown that the accuracy of the image processing tasks car-

ried out using non-separable filters can be matched using separable filters at

a much smaller computational cost [34]. A global optimization approach to

learn separable filters would prove useful in terms of computational complex-

ity. The key idea is to group all non-separable filters of the filter bank into a

multidimensional array, which is also called a tensor and enforce this tensor

to be the linear combination of one-rank tensors. An important novelty of

the approach is that the optimization problem of learning separable filters is

carried out globally for the all filters, at once, instead of doing so for each

filter separately. Tensor decomposition is the tool that is useful for our aim.

An N -dimensional tensor can be factorized into a sum of rank-one tensors,

i.e. a tensor that can be represented as the outer product of N vectors. With

this kind of decomposition, a tensor can be seen as the weighted sum of sep-

arable components. If we stack a 2D non-separable filter bank into a 3-way

tensor as illustrated in Fig. 1.1 and decompose it as the sum of rank-one

tensors, the n-th slice of the tensor corresponding to the n-th filter can be

represented by the outer products of vectors ai and bi, which is a separable

matrix, weighted by the n-th elements of vectors ci, cni .
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1.1 Thesis Outline

• Chapter 2 gives a background on topics considered in this work, in-

cluding feature extraction and separable filter learning.

• The theoretical framework of the main concepts of separable filter learn-

ing and tensor decomposition is given in Chapter 3 and Chapter 4.

• A new method to learn separable filters using tensor decomposition is

presented in Chapter 5.

• The performance comparisons of di↵erent separable filter learning al-

gorithms on di↵erent computer vision tasks are provided in Chapter

6.

• Finally, conclusions of the thesis work is presented in Chapter 7.
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Chapter 2

Related Work

Over a long period of time, a growing amount of research on visual recog-

nition has focused on automatic feature learning. Several techniques, such

as Neural Networks [22], Linear Discriminant Analysis [5], Restricted Boltz-

man Machines [15], Autoencoders [4] have been utilized to learn features in

supervised or unsupervised ways.

In recent years, creating overcomplete dictionary of features and coding

this dictionary with a sparse set of coe�cients has emerged as a useful tool in

object recognition [34], image denoising [37] and beyond. Enforcing sparsity

constraints has been a popular approach in many image processing and com-

puter vision tasks. This is due to the fact that receptive fields observed in

V1, the first layer of the visual cortex in the mammal brain, produces sparse

distribution of output activity in the brain in response to natural images,

and algorithms based on sparsity constraints on the output activity can pro-

duce linear filters similar to these receptive fields [28], [32]. Consequently,

it has been assumed that sparse coding algorithms could extract relevant

features for image classification [31], [16], [41]. Input data distribution can

be expressed with sparse coding assuming a sparse output prior. Deep Belief

Networks (DBNs) are one such example in which sparsity constraint on the

coe�cients yielded convergence on natural images via filters that are similar

to the receptive fields in V1. In another study [33], sparsity is shown to

11



be important when learning the image filters that are used in convolutional

sparse coding, however it is not necessarily required for classification.

For feature extraction tasks, runtime can be very long as it involves con-

volving the image with many non-separable filters. Separable filters would

speed up the process of extracting features. Using separable filters, convolu-

tion can be split into more than one stages of one-dimensional convolutions

which is advantageous in terms of runtime e�ciency. It was first proposed

in [38] that the convolution operations can be split into convergent sums of

matrix valued stages. The method proposed in this study is used in [29] to

avoid coarse discretizations of the scale and orientation spaces, which, in the

end, gives steerable separable 2D edge-detection kernels. These separability

approaches are limited in the sense that they are decomposable only in the

suggested manner and they do not yield filters that can be found in a learned

dictionary or handcrafted to suit particular needs. Separability property has

long been neglected until recently [25], [30]. Again, the scope of the filters

obtained with these approaches is restricted to particular frameworks, while

a learning approach is a more generic and flexible approach.

Runtime e�ciency issue of feature extraction is also addressed in frame-

works that use parallel capabilities of modern hardware [10], [27]. One way

to use parallel processing is FPGA, but programming in FPGA is cumber-

some [10]. On the other hand, exploiting Graphics Processing Unit can be

another attractive option [27], however, in this case, the time required for

memory transfers between CPU and GPU is too long to be used e↵ectively

in practical applications.

In order to reduce computational complexity of feature extraction, one

recent attempt is to learn a filter bank by composing a few atoms from a

handcrafted separable dictionary [35]. A better way to learn the filter bank

would be to learn also these atoms which is the problem addressed in [34].

This yields a smaller number of separable filters appropriate for the feature

extraction task.
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Chapter 3

Learning Separable Filters

In this chapter, a mathematical background for learning non-separable and

separable filters is going to be provided. Besides, patch-based and convolu-

tional sparse coding methods will be reviewed.

3.1 Learning Arbitrary Filters

In order to extract features out of an image, filters which are either learned

or handcrafted can be used. These features are either obtained from a con-

volution between the image and the filters, or from a sparse optimization

procedure. Olshausen and Field’s algorithm (OLS) which is known to con-

verge well on natural image patches can be used to learn filters.

Olshausen and Field proposed in their study [28], that the first layer of

the visual cortex V1 produces a sparse representation of the images. With

this premise, they formulated the reconstruction of the images from features

as follows

min
M,{ti}

X

i

||t
i

||0 s.t.

X

i

||x
i

�Mti||22 = 0 (3.1)

where x
i

are training images, t
i

are the corresponding feature vectors. M is

a matrix whose columns form the dictionary, and the `0-norm, the number

of non-zero elements, is the best sparsity measure available. `0-norm yields
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a non-convex optimization problem. In order to have a convex optimization

problem which produces sparsity, `1-norm can be used. Then, the dictionary

of filters can be learned by minimizing the following objective function:

min
M,{ti}

X

i

||x
i

�Mti||22 + �learn ||ti||1 (3.2)

where `1-norm enforces sparsity on the feature vectors.

In Eq. (3.2), the images x
i

are reconstructed from a few columns of

M since a sparsity constraint on t
i

is enforced by the last term. �learn is

a regularization parameter that determines the relative importance of the

reconstruction error, ||x
i

� Mti||22 with respect to the regularization term

||t
i

||1. M has more columns than rows, thus it is overcomplete and it gives

us the freedom to choose among all possible representations, a sparse one.

Using Eq. (3.2) for large images is slow and di�cult; it is appropriate

only for small image patches as many coe�cients in M should have to be

optimized simultaneously. A convolutional approach used in [42] and [23]

where the matrix vector product is replaced by convolution would prove

more useful for large images. The optimization problem in Eq. (3.2) then

takes the form:

min
M,{ti}

X

i

0

@
�����

�����xi

�
NX

j=1

f j ⇤ tj
i

�����

�����

2

2

+ �learn ||ti||1

1

A (3.3)

where f j’s are linear filters and ⇤ denotes the convolution operator. The tj
i

’s

can now be seen as a set of images whose sizes are equal to that of x
i

images.

Similar intermediate representations have been used in Convolutional Neural

Networks literature and have been called feature maps. The optimization

problem posed in Eq. (3.3) can now be solved via alternatively optimizing

f j and tj
i

. The optimization for coe�cients tj
i

is carried out by stochastic

gradient descent with clipping. For f j, also stochastic gradient descent opti-

mization is applied.
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3.2 Learning Separable Filters

In [33], it has been shown that the features computed with direct convolu-

tion of images with the learned filters yields competitive recognition rates

while reducing complexity compared to the case where a sparse optimization

procedure is applied to extract features. The computational complexity is

high when dealing with large amount of data since the resulting convolution

filters obtained with Eq. (3.3) are not separable. If we assume x
i

2 Rpxq

and f j
i

2 Rsxt, in order to extract the features, the non-separable convolu-

tion requires O(p.q.s.t) operations, whereas a separable convolution requires

O(p.q.(s+ t)) operations.

If we could learn separable filters in tasks that use convolutions with fil-

ter banks, the computational complexity would be much less. To handle

this problem, following two approaches have been used in [34]. The first

one directly forces the filters to be low-rank by adding one more constraint

(minimization of the nuclear norm) to the optimization problem given in

Eq. (3.3). This approach has been found to degrade the classification per-

formance because of the additional constraints applied on the filters. The

second approach yields a faster and better solution to separable filter learning

problem. The arbitrary non-separable filters are replaced with linear com-

binations of filters that are forced to be separable by lowering their rank.

This approach is also justified by [29] which suggests that arbitrary filters of

rank R can be expressed as linear combinations of R separable filters. This

solution preserves the discriminative power of the non-separable filter bank

while providing a more generic framework for learning separable filters.

3.2.1 Forcing the Learned Filters to Be Low-Rank

In order to learn separable filters, one straight approach would be to add one

more constraint to the optimization problem posed in Eq. (3.3) that enforces

the filters to be separable by minimizing their nuclear norm:

15



argmin
{sj},{tji}

X

i

0

@
�����

�����xi

�
NX

j=1

sj ⇤ tj
i

�����

�����

2

2

+ �i

m,s

1

A
, (3.4)

with �i

t,s = �1

NX

j=1

���
���tj

i

���
���
1
+ �⇤

NX

j=1

����sj
����

⇤ (3.5)

In this formulation, sj’s are learned linear filters, ||.||⇤ is the nuclear norm,

and �⇤ is an additional regularization parameter. Nuclear norm of the matrix

is defined as the sum of the matrix singular values obtained from singular

value decomposition. It is a convex relaxation of the rank [11]. Thus, mini-

mizing the nuclear norm is equivalent to lowering the rank of the matrix. It

has been suggested in [34] that for high values of �⇤, the sj filters become ef-

fectively rank-one, therefore it can be written as products of one-dimensional

filters, i.e. they become separable filters.

The solution to the optimization problem posed above does not di↵er

substantially from the solution of the optimization problem of Eq. (3.3).

The only extra e↵ort is applying a soft-thresholding operation to the singular

values of the filter matrices (proximal operator of the nuclear norm) after

stochastic gradient descent procedure on the filters, sj. To make sure that

separable filters are obtained, all singular values are set to 0 except the

largest one, at convergence. In practice, the second largest singular value is

already very close to 0. One drawback of this optimization procedure is that

choosing suitable parameters for �1 and �⇤ is di�cult. Actually, because of

these additional constraints the performance of the optimization is shown to

be degraded in [34].

3.2.2 Approximating a Non-separable Filter Bank as

Linear Combinations of Separable Filters

In this method, the learned arbitrary non-separable filters from Eq. (3.3)

are written as linear combinations of M separable filters {sk}1kM , i.e. a

set of weights wj
k are found such that each arbitrary non-separable filter f j is
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equal to
PM

k=1 w
j
ksk. Consequently, convolving the image with f j’s amounts to

convolving the image with separable filters s
k

’s and combining these convolu-

tion results with the obtained set of weights, wj
k. Thus, learning of arbitrary

non-separable filters is decoupled from learning of separable filters in this

approach. The approximation of non-separable filters with linear combina-

tions of separable filters is carried out by optimizing the following objective

function:

argmin
{sk},{wj

k}

X

i

�����

�����xi

�
MX

k=1

w

j
ksk

�����

�����

2

2

+ �⇤

MX

k=1

||s
k

||⇤ (3.6)

This may seem suboptimal as the learning procedure is decoupled into

two steps, however, in practice, it gives superior results as the optimization

procedure is split into two simpler tasks that are easier to schedule.

3.2.3 Approximating a 3D Non-separable Filter Bank

as Linear Combinations of Separable Filters

The computational complexity of feature extraction becomes more pronounced

when it is carried out on three-dimensional image stacks. The formalism

to extract features for two-dimensional images can be adapted to three-

dimensional volumes. In the previous case, minimizing the nuclear norm

was handled by soft-thresholding the singular values obtained from singu-

lar value decomposition (SVD). In order to decompose a three-dimensional

array, there exist decomposition methods [19] such as Canonical Polyadic De-

composition (CPD). In this method, an N -dimensional, R-rank tensor can be

factorized into a sum of R rank-one tensors (a tensor that can be represented

as the outer product of N vectors).

X ⇡
RX

r=1

�r ar � br � cr (3.7)

It is not possible to infer R from the the tensor, therefore a suitable R

is given as a parameter to the decomposition scheme. The framework for

17



the optimization scheme applied to learn two-dimensional filters remains the

same in this case, the only di↵erence is that soft-thresholding is applied on

the decomposition coe�cients, �r, not the singular value coe�cients.
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Chapter 4

Tensor Decomposition

The tensor decomposition [7], [14] is a higher-order generalization of the

matrix singular value decomposition (SVD). It has been proven to be useful

in many applications such as signal processing, neuroscience and web analysis

[2], [19].

In this chapter, firstly, a review of the concept of tensor will be presented.

Afterwards, the mathematical background of the tensor decomposition will

be provided.

4.1 Overview of Tensors

Tensor is defined as a multidimensional array. The order of the tensor is

the number of dimensions, also known as ways or modes. For instance,

vectors are order-one tensors and matrices are order-two tensors. Tensors

are mathematical tools to manipulate multidimensional arrays.

The notational convention of [19] is used throughout the thesis. Vectors

are denoted by boldface lowercase letters, e.g a. Matrices are denoted by

boldface capital letters, e.g. A. Higher-order tensors are denoted by Euler

script letters, e.g., X. Scalars are denoted by lowercase letters, e.g., a. The

ith entry of a vector a is denoted by ai, element (i, j) of a matrixA is denoted

by aij, and element (i, j, k) of a third-order tensor X is denoted by xijk. The
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Figure 4.1: A third order tensor.

jth column of a matrix A is denoted by aj.

An overview of the mathematical background that is going to be used for

tensor decomposition operations is presented in the following. The reader

familiar with tensor manipulations could skip to the next section.

The inner product of two same-sized tensors X,Y 2 R is the sum of the

products of their corresponding entries and it is given mathematically as

follows:

hX,Yi =
I1X

i1=1

I2X

i2=2

. . .

INX

iN=1

xi1i2...iNyi1i2...iN (4.1)

The norm of the tensor is defined as

||X||=
p

hX,Xi (4.2)

An N -way tensor X 2 RI1⇥I2⇥...⇥IN is a rank-one tensor if it can be

written as the outer product of N vectors as in the following:

X = a(1) � a(2) � . . . � a(N) (4.3)

where ‘�’ represents the vector outer product. This operation means that

each element of the tensor is the multiplication of corresponding vector ele-

ments.
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xi1i2...iN = a

(1)
i1 a

(2)
i2 . . . a

(N)
iN

for all 1  in  In (4.4)

The Khatri-Rao product is defined as the ‘matching columnwise’ Kro-

necker product, where Kronecker product of two vectors a 2 RI and b 2 RJ

is defined as follows:

a⌦ b =

2

666664

a1b

a2b
...

aIb

3

777775
(4.5)

The Khatri-Rao product of two matrices A 2 RI⇥K and B 2 RJ⇥K is

denoted by A � B. It results in a (IJ) ⇥ K matrix and is computed as in

the following:

A�B = [a1 ⌦ b1 a2 ⌦ b2 . . . aN ⌦ bN ] (4.6)

The Khatri-Rao product has the following property [6]:

(A�B)T (A�B) = ATA ⇤BTB (4.7)

in which, ⇤ is used to represent the element-wise product. Moreover, the

pseudo-inverse of the Khatri-Rao product can be written as [6]:

(A�B)† = ((ATA ⇤BTB))†(A�B)T (4.8)

whereA† is used to represent Moore-Penrose pseudo-inverse ofA [12]. Know-

ing that pseudo-inverse of the transpose is the transpose of the pseudo-

inverse,

((A�B)T )† = (A�B)((ATA ⇤BTB))† (4.9)

The process of reordering the elements of an N -way tensor into a matrix

is called matricization, or unfolding. The mode-n matricization of the tensor
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Figure 4.2: Mode-n fibers of a tensor. (a) Mode-1 (column) fibers, (b) Mode-2

(row) fibers, (c) Mode-3 (tube) fibers

X 2 RI1⇥I2⇥...⇥IN is represented with X(n) and arranges the mode-n one-

dimensional fibers to be the columns of the resulting matrix. Mode-n fibers

of a three-dimensional tensor are illustrated in Fig. 4.2.

The n-mode (vector) product of a tensor, X 2 RI1⇥I2⇥...⇥IN with a vector

v(n) 2 RIn is represented with X ⇥n v. The result is of order N � 1 and

the size is I1 ⇥ . . . ⇥ In�1 ⇥ In+1 ⇥ . . . ⇥ IN . The n-mode product can be

represented element-wise as in the following:

(X⇥n v)i1...in�1in+1...iN =
InX

in=1

xi1i2...iNvin (4.10)

Tensors can also be multiplied by multiple vectors all at once. For in-

stance, for v(n) 2 RIn
, n = 1, . . . , N , a new notation to represent multipli-

cation in multiple modes is introduced in Eq. (4.11). Multiplication in all

modes results in a scalar.

X
N⇥

n=1

v(n) =X⇥1 v
(1) ⇥2 v

(2)
. . .⇥N v(N) (4.11)

=
I1X

i1=1

I2X

i2=1

. . .

INX

iN=1

xi1i2...iNv
(1)
i1 v

(2)
i2 . . . v

(N)
iN

(4.12)
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And lastly, multiplication in every mode except mode n results in a vector

of length In,

X
N⇥

m=1,m 6=n

v(m) = X(n)v
(�n) (4.13)

where

v(�n) = v(N) ⌦ . . .⌦ v(n+1) ⌦ v(n�1) ⌦ . . .⌦ v(1) (4.14)

4.2 Tensor Decomposition

Canonical tensor decomposition decomposes a tensor into sum of rank-one

tensors, hence it is analogous to matrix singular value decomposition. As-

suming that Z is a real-valued three-way tensor of size I ⇥ J ⇥K and rank

R, its CP decomposition is given as

Z =
RX

r=1

�r ar � br � cr (4.15)

This tensor decomposition is defined for three-way tensors. In order to

generalize to higher dimensions, where Z is a real-valued N-way tensor of size

I1 ⇥ I2 ⇥ . . .⇥ IN and rank R, tensor decomposition can be written as

Z =
RX

r=1

�r a
(1)
r � . . . � a(N)

r . (4.16)

where a(N)
r 2 RIn for n = 1, . . . , N and r = 1, . . . , R. ‘Kruskal operator’

defined as below can also be used to represent tensors:

[[A(1)
. . .A(N)]] =

RX

r=1

�r a
(1)
r � . . . � a(N)

r . (4.17)

where factor matrices are defined as

A(n) = [a(n)
1 . . . a(n)

R ] (4.18)
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Factor matricesA(n), have a size of In⇥R, for n = 1, . . . , N . The columns

of A(n) are the factors of mode n. [[A(1)
, . . . ,A(N)]] can be expressed in

matricized form [18]:

([[A(1)
, . . . ,A(N)]])(n) = A(n)(A(�n))T (4.19)

where

A(�n) = A(N) � . . .�A(n+1) �A(n�1) � . . .�A(1) (4.20)

Given a tensor Z and a suitable rank R, computing CP amounts to find-

ing the factor matrices A(n). The corresponding columns of each A(n), i.e.

a(1)
i , a(2)

i , . . . , a(N)
i , form a rank-one matrix. Combining all these rank-one ten-

sors for i = 1, . . . , R, the tensor is approximated by the linear combination of

rank-one tensors. Hence, the problem of approximating CP decomposition

can be posed as a least-squares optimization problem:

min f(A(1)
, . . . ,A(N)) =

1

2

����Z� [[A(1)
, . . . ,A(N)]]

����2 (4.21)

Alternating Least Squares (ALS) method proposed in [7] and [14] is a

preferred way to decompose a tensor into its rank-one components. It is based

on the idea of optimizing one factor matrix at a time instead of solving for all

factor matrices simultaneously. Thus, at each inner iteration, the following

objective function is optimized:

min
A

(n)
f(A(1)

, . . . ,A(N)) (4.22)

for a fixed n, while all the other factor matrices are constant. Using matrix

notation, the objective function can be expressed as,

min
A

(n)

1

2

����Z(n) �A(n)(A(�n))T
���� (4.23)

With all the factor matrices fixed except one, this optimization problem

is a least-squares problem and the solution is given by
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A(n) = Z(n)

�
(A(�n))T

�†
(4.24)

In order to find the solution, the pseudo-inverse of a matrix of size
QN

m=1,m 6=n Im ⇥ R should be evaluated. Using Eq. (4.9), this computation

can be simplified by defining a ⌥(n) as in the following:

⌥(n) = A(n)TA(n) for n = 1, . . . , N (4.25)

Then, A(n) can be written as,

A(n) = Z(n)A
(�n)(�(n))† (4.26)

where

�(n) = ⌥(1) ⇤ . . . ⇤⌥(n�1) ⇤⌥(n+1) ⇤ . . . ⇤⌥(N) (4.27)

In this case, it is only needed to compute the pseudo-inverse of the matrix

of size R⇥R.

4.3 Optimization Scheme for Tensor Decom-

position

As an alternative to the alternating least squares solution, a gradient-based

optimization approach is proposed in [1]. f in Eq. (4.21) is stated as a

function of matrices. It can also be devised as a scalar valued function where

all the matrices are vectorized and stacked into a vector x.
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x =

2

66666666666664

a(1)
1
...

a(1)
R
...

a(N)
1
...

a(N)
R

3

77777777777775

(4.28)

With this kind of formulation, it is straightforward to compute the gradi-

ent. Once the derivatives are known, a first-order optimization method can

be applied. In the proposed scheme, a generic nonlinear conjugate gradient

method is applied.

The gradient can be assembled by calculating the partial derivatives with

respect to each a(n)
r , i.e. by computing @f

@a
(n)
r

for r = 1, . . . , R and n =

1, . . . , N . The partial derivative is a vector of length In.

Theorem 4.1. The partial derivatives of the objective function f can be

found via

@f

@a(n)
r

= �
 
Z

N⇥
m=1,m 6=n

a(m)
r

!
+

RX

`=1

�

(n)
r` a(n)

` (4.29)

where r = 1, . . . , R and n = 1, . . . , N with �

(n)
r` defined as

�

(n)
r` =

NY

m=1,m 6=n

a(m)T
r a(m)

` (4.30)

The proof of this theorem is provided in Appendix A of the thesis.

Corollary 4.2 The partial derivatives of the objective function f in Eq.

(4.21) are given by

@f

@A(n)
= �Z(n)A

(�n) +A(n)�(n) (4.31)

for n = 1, . . . , N and �(n) is defined in Eq. (4.27).

Proof. Eq. (4.29) in Theorem 4.1 can be written as in the following:
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@f

@a(n)
r

= �Z(n)a
(�n) +A(n)

�

(n)
r , (4.32)

for r = 1, . . . , R. This expression is obtained by exploiting the fact that �(n)

is symmetric. Associating each r = 1, . . . , R with the column of a matrix

yields Eq. (4.31). ⇤
Knowing the objective function given in Eq. (4.21) and the gradient

given in Eq. (4.31), a gradient based optimization can be performed in order

to find the factor matrices, [[A(1)
, . . . ,A(N)]] . Then, using Eq. (4.18), all

vectors constituting rank-one matrices can be found and hence, the tensor

can be written as a linear combination of these rank-one matrices (separable

matrices) according to Eq. (4.17).

Compared to Alternating Least Squares(ALS) approach, this tensor de-

composition approach [1] solves for all factor matrices simultaneously. In this

particular implementation, a nonlinear conjugate gradient (NCG) method

with Polak-Ribiere (PR) updates is used.

4.3.1 Regularization of the optimization formulation

of tensor decomposition

Canonical Tensor Decomposition is unique up to permutation and scaling

when it satisfies Kruskal conditions [20]. Therefore, tensor decomposition is

the same when it is permuted, i.e.,

[[A(1)
,A(2)

, . . . ,A(N)]] = [[A(1)⇧,A(2)⇧, . . . ,A(N)⇧]] (4.33)

where ⇧ is an R⇥R permutation matrix. Besides, the tensor decomposition

is the same when it is scaled, i.e.,

[[A(1)
,A(2)

, . . . ,A(N)]] = [[2A(1)
,

1

2
A(2)

, . . . ,A(N)]] (4.34)

Uniqueness up to scaling and permutation means that there are more than

one solution for di↵erent scaling constants and permutation matrices, this
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situation makes it di�cult for the optimization scheme to find the solution.

In order to have a unique solution that the optimization scheme can converge,

a regularization term can be included in the objective function [1].

f̂(A(1)
, . . . ,A(N)) =

1

2

����Z� [[A(1)
, . . . ,A(N)]]

����2 + �

2

NX

n=1

����A(n)
����2

2
(4.35)

Tikhonov regularization applied in Eq. (4.35), promotes the norm equiv-

alency [1]:

����A(1)
���� =

����A(2)
���� = · · · = ����A(N)

���� (4.36)
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Chapter 5

Learning Separable Filters with

Tensor Decomposition

So far, two generic approaches to learn separable filters have been presented

in Section 3.2.1 and 3.2.2. In these methods, dictionary learning with sparse

coding has been used to force each filter to be low-rank independently. The

dictionary learning approach employed in these methods is easy and e↵ec-

tive, however there is the drawback of converging slowly. Rather than han-

dling each filter independently, another viewpoint for learning separable fil-

ters would be grouping all the filters of an arbitrary filter bank into a tensor

which has one more dimension than the dimension of the filters and con-

straining this tensor to be the linear combination of separable tensors. One

way to achieve this would be to explicitly write the linearly combined tensors

as products of one-dimensional filters and minimize the distance with respect

to the original tensor. This global optimization problem can be carried out

using tensor decomposition techniques as will be explained in this chapter.

Moreover, the tensor decomposition problem could be regularized to include

sparsity constraint on the coe�cients of the tensor, this extension is also

explained in the remainder of the chapter.

29



Figure 5.1: Tensor decomposition of a 3-way tensor into a sum of R rank-one

tensors. Rank-one tensors can be writen as the outer product of vectors, hence

they are separable. The n-th filter, i.e. the n-th slice of the tensor, can be expressed

as the linear combination of the outer products of vectors a
i

and b
i

, which is a

two-dimensional separable filter. The weighting coe�cients are �icni .

5.1 Approximating Arbitrary Filter Sets with

Separable Filters

We have seen that the accuracy of the image processing tasks carried out

using non-separable filters can be matched using separable filters at a much

smaller computational cost using learning based approaches. Optimizing all

the filters in a filter bank globally to learn separable filters would also prove

useful in terms of computational e�ciency. The idea is that the filters can be

stacked together to form a tensor and this tensor can be factorized into sum of

rank-one matrices as depicted in Fig. 5.1. Assuming that, the non-separable

filters in the filter bank share some parts, these shared parts can also be

expressed using a smaller set of separable basis filters, i.e., the space spanned

by the non-separable filters could also be spanned by a smaller set of separable

filters. In this case, the advantages are two-fold. On one hand, a smaller set

of filters are used; and on the other hand, filters are separable. These two

properties would increase substantially the computational e�ciency of the

convolutional operations.

The mathematical background for tensor decomposition is given for N-

way tensors in Chapter 4. When the 2D filters are stacked into a 3D tensor,

the optimization problem for the tensor decomposition can be set as
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min f(A,B,C) =
1

2

�����

�����Z�
RX

r=1

�r ar � br � cr
�����

�����

2

(5.1)

A,B and C are factor matrices and can be written in Kruskal form to

represent the 3-way tensor.

[[A,B,C]] =
RX

r=1

�r ar � br � cr. (5.2)

where factor matrices are defined as,

A = [a1 . . . aR] (5.3)

B = [b1 . . .bR] (5.4)

C = [c1 . . . cR] (5.5)

[a1 . . . aR], [b1 . . .bR] and [c1 . . . cR] are illustrated in Fig. 5.1 and Fig. 5.2.

Using the optimization scheme explained in Section 4.3, an N-dimensional

tensor can be factorized into a sum of rank-one tensors, i.e. a tensor that can

be represented as the outer product of N vectors and thus, any arbitrary filter

in a filter bank can be approximated by a linear combination of separable

filters as illustrated in Fig. 5.2. The n-th filter in the filter bank can be

expressed mathematically as follows:

fn = �1 c
n
1 a1

� b
1

+ �2 c
n
2 a2

� b
2

+ · · ·+ �R c

n
R a

R

� b
R

(5.6)

With this kind of formulation, convolving the image with f j’s amounts

to convolving the image with separable filters (a
i

� b
i

’s for i = 1, . . . , R) and

linearly combining the resulting convolution images with the obtained set of

weights (�i c
j
i ’s for i = 1, . . . , R and j = 1, . . . , In where In is the size of the

vector ci). The generic tensor decomposition method is also applicable for

three or more-dimensional tensors.

31



Figure 5.2: Illustration of the tensor decomposition for learning separable filters

for two-dimensional biomedical DRIVE dataset. The learned 2D arbitrary non-

separable filters are grouped into a 3-way tensor and the tensor is decomposed into

a sum of R rank-one tensors. The outer product of the corresponding columns of

first two factor matrices, A and B form the separable basis and spans the space

of the non-separable filters. Hence, a ‘shared basis’ of separability is learned.

5.2 Sparse Regularization of the Tensor De-

composition Problem

The formulation of the tensor decomposition can also be regularized to in-

clude sparsity constraints. In this case, `1-norm which enforces sparsity on

the factor matrices could be used.

f̂(A(1)
, . . . ,A(N)) =

1

2

����Z� [[A(1)
, . . . ,A(N)]]

����2 + �

2

NX

n=1

����A(n)
����

1
(5.7)

The minimization of this objective function can be obtained via a first-

order optimization method with thresholding as suggested in [8]. This de-

composition yields sparse rank-one tensors which could speed-up the process

of arithmetic operations carried out on tensors as there are many zero coe�-

cients in the tensor. Regularization parameters can be optimized for di↵erent

factor matrices, separately.
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Chapter 6

Results and Discussion

Algorithmic descriptions of the separable filter learning problem using dictio-

nary learning and tensor decomposition approaches were provided in addition

to their mathematical derivations in Chapter 3 and 5. In this chapter, visual

and numerical results of the computer vision tasks using non-separable and

separable filters learned with di↵erent approaches are going to be provided.

We will demonstrate that a set of learned separable filters can deliver a

significant amount of speed-up in tasks that require convolution at no loss

in performance as compared to a set of arbitrary non-separable filters. We,

then, illustrate that a set of separable filters can e↵ectively approximate an

arbitrary non-separable filter bank. We will provide comparisons for the

performances of di↵erent separable filter learning schemes with tensor de-

composition and dictionary learning in di↵erent computer vision tasks.

Firstly, we compare the performance of the separable filters against that

of non-separable filters for classifying pixels and voxels in order to understand

whether they belong to linear structures or not. Thus, the performance of

the separable filters is demonstrated on both two-dimensional and three-

dimensional data. The notation followed in order to depict di↵erent kinds of

filter banks is as follows: NON-SEP is used to denote the learned arbitrary

non-separable filters obtained by minimizing the objective function given in

Eq. (3.3). SEP-DIRECT is used to denote the learned separable filters ob-
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tained by minimizing the objective function given in Eq. (3.4). SEP-COMB

is used to denote the learned separable filters obtained by minimizing the

objective function given in Eq. (3.6). We call our approach to learn separa-

ble filters with tensor decomposition SEP-TD. In another approach to learn

separable filters, a sparse regularization is applied on the tensor decompo-

sition optimization problem as explained in Section 5.2, i.e., the separable

filters are obtained by minimizing the objective function given in Eq. (5.7).

The classification is, then, carried out using the feature maps obtained by

the filters of this formulation. Enforcing this constraint on the optimization

problem results in sparse tensors. The sparse representation could be of use

in increasing the computational e�ciency by not considering zero-coe�cients

in the convolution operations. This procedure to learn separable filters is de-

noted as SEP-TD-SP. Regularization parameters can be chosen separately

for di↵erent factor matrices.

When we feed the learned filters’ output into a linear classifier, it is not

necessary to explicitly compute the linear combination of the separable filters

to approximate the non-separable filter bank as the classifier can be directly

trained on separable filters’ output. Hence, the linear combinations can be

implicitly learned by the classifier at training time. This approach has been

referred to as SEP-COMB* and SEP-TD* in the remainder of the thesis and

it provides a substantial amount of increase in the computational e�ciency.

In addition to the classification experiments, the accuracy of approximat-

ing a non-separable filter bank with a set of separable filters is evaluated for

image denoising tasks. We compare the denoising performance of approxi-

mated non-separable filters obtained with di↵erent separable filter learning

approaches to that of the original filter bank obtained with K-SVD training.

The performance of the learned separable filters is also evaluated on

a handwritten digit recognition task using convolutional neural networks

(CNNs). We demonstrate that we can increase considerably the compu-

tational e�ciency of the object recognition task at no loss in performance

using separable filters.
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6.1 Pixel Classification to Detect Linear Struc-

tures

In this section, the e�ciency of the developed separable filter learning ap-

proach is going to be demonstrated for linear structure detection application.

This problem has been researched over a long time and still, there exist some

challenges when the image data is noisy. Over the course of the research, Ma-

chine Learning techniques have been popular in the past few years. In [36]

and [13], Support Vector Machine classifier is applied to the responses of ad

hoc filters. The recent study of [33], demonstrates that the performance of

these methods can be exceeded by convolving the images with non-separable

filter banks learned by solving the problem of Eq. (3.3) and training an

SVM on the output of those filters. For large images and volumes, the large

number of non-separable filters makes convolution a demanding task. We

demonstrate that our approach to learn separable filters provides a solution

for this di�culty.

For pixel classification, the performance of the separable filter learning

with tensor decomposition is evaluated on two di↵erent data sets of Fig. 6.1.

• DRIVE Dataset. It is a dataset of 40 retinal scans captured in order

to diagnose various diseases. There are 20 training images and 20 test

images, with two di↵erent ground truth sets traced by two di↵erent

human experts.

• BF2D Dataset. It is a dataset composed of minimum intensity projec-

tions of bright-field micrographs of neurons. Although images are of

high resolution, they have a low signal-to-noise ratio due to irregulari-

ties in the staining process. Some parts of the dendrites often seem as

point-like structures which can lead to misclassification of linear struc-

tures in the presence of noise.
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Figure 6.1: Example images from two biomedical datasets along with their clas-

sification results obtained with the SEP-TD method. The numerical results yield

similar classification results with [34] while the learning procedure is simplified.

The run-time speed of learning is orders of magnitude faster than SEP-COMB

approach of [34].

All the methods described in Chapter 3 and Chapter 5 have been tested

on these datasets for pixel classification along with Optimally Oriented Flux

approach [21], which is known to be one of the best techniques to detect

linear structures. The feature maps are computed by convolving the images

with the learned filter banks and these feature maps are fed to Random

Forest classifier. Since this classifier relies on linear projections, computing

the linear combination of the separable filters’ outputs to approximate the

non-separable filter bank is not necessary. The classifier trains the data on
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Figure 6.2: Convolution time for FFTW method, non-separable and separable

filters [34]. Using a smaller set of separable filters, the extraction of the image

features is considerably faster than convolutions with non-separable filters and

Fast Fourier Transform.

the feature maps obtained with separable filters and thus, implicitly learns

the linear combinations of these separable filters. Therefore, in this case, we

opt for SEP-COMB* and SEP-TD* approaches.

NON-SEP method outperforms the methods that rely on Machine Learn-

ing [33]. However, it has the drawback of being slow. The motive to use

separable filters is to obtain the same level of performance in a much faster

way.

The advantage of using separable filters can be clearly seen in Fig. 6.2

based on the previous separable filter learning study [34]. The time needed to

convolve a 512⇥512 image with a set of 121 filters in order to extract feature

maps is depicted in the graph for two-dimensional case as a function of filter

size by using MATLAB’s conv2 function, the FFTW library and separable

filter learning approach. The required time for convolving increases sharply

for conv2 function whereas there is only a small increase in the convolution

time when separable filters are used. Convolution time does not increase with

varying filter size in FFTW approach, however it still requires much more

time than both approaches. The advantage of using separability is even more

pronounced for the three-dimensional data of 128⇥ 128⇥ 64 size.
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Figure 6.3: Convolutional filter banks for classification in 2D. (a) Learned non-

separable filter bank from DRIVE dataset, (b) reconstructed filter bank , (c) sep-

arable filter bank learned with the SEP-TD approach. The non-separable filters

can be approximated very accurately using a smaller set of separable filters.

Throughout the experimentation, first, the methods proposed in Chapter

3 are used to obtain feature maps for classification. Then, using the tensor

decomposition techniques described in Chapter 4 and Chapter 5, separable

filters are learned (See Fig. 6.3.(c)), and the feature maps are computed

using these separable filter banks. The classification with these di↵erent

filter learning strategies are compared.

The detailed and comparative pixel classification results are reported in

Table 6.1. There have been several methods proposed to measure the classi-

fication performance. Among these, the results are tabulated in terms of

• F-measure [40];

• Area Under the Curve (AUC), which represents the area under the

ROC curve. It takes values in the range [0, 1], the higher it is the, the

better the classification is;

• Variation of Information (VI) [26], which takes values in the range

[0,1), the lower it is, the better the classification is;

• Rand Index (RI) [39], which takes values in the range [0, 1], the higher

it is, the better the classification is;
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Table 6.1: Analytic measure of the performance of the pixel classification task

over di↵erent datasets. The VI and RI values are compared on the classification

thresholded at the value found using the F-measure. The values are averaged

over 5 random trials and over the whole dataset images. For the learning-based

approaches, a training set of 50000 positive and 50000 negative samples and a

Random Forests classifier have been used. Approaches that use a separable filter

basis have been found to reduce the computational costs by a factor of 10 in

classifications tasks.

Method AUC F-measure VI RI Time[s]

DRIVE

Ground truth � 0.788 0.380 0.930 �
OOF 0.933 0.695 0.569 0.770 5.70

NON-SEP(121) 0.959 0.782 0.554 0.890 2.22

SEP-DIRECT(25) 0.948 0.756 0.602 0.879 0.23

SEP-COMB*(25) 0.959 0.785 0.541 0.894 0.23

SEP-TD*(25) 0.960 0.780 0.583 0.885 0.23

SEP-TD-SP(25) 0.959 0.777 0.586 0.884 0.23

BF2D

OOF 0.958 0.677 0.325 0.891 15.88

NON-SEP(121) 0.983 0.754 0.300 0.945 11.42

SEP-DIRECT(25) 0.980 0.750 0.306 0.944 1.44

SEP-COMB*(25) 0.981 0.752 0.301 0.944 1.44

SEP-TD*(25) 0.980 0.736 0.340 0.936 1.44

SEP-TD-SP(25) 0.979 0.732 0.344 0.933 1.44

39



0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
x 10

−3 Average reconstruction error after tensor decomposition

Rank

R
e

co
n

st
ru

ct
io

n
 e

rr
o

r

Figure 6.4: Average reconstruction error with respect to the specified rank value

for tensor decomposition. As the rank increases the non-separable filter bank

can be better approximated. Increasing the rank is equivalent to increasing the

number of separable filters, hence there is the trade-o↵ between the accuracy and

the speed.

As can be interpreted from Table 6.1, the classification performance of

SEP-TD*, SEP-COMB* and NON-SEP approaches are very similar. The

performance of SEP-TD-SP also closely matches to the classification perfor-

mance of SEP-TD*. As the regularization parameter, 0.001 is used for A

and B and 0.0005 is used for C factor matrices for DRIVE dataset. SEP-

DIRECT is as fast as the SEP-COMB* and SEP-TD* approaches, however

it entails a loss of accuracy. All the filter-based methods are more accurate

than OOF.

The number of separable filters used in SEP-TD approach is determined

by the rank specified for the tensor decomposition problem. As it is not

possible to know R a priori, this becomes a parameter of the decomposition.

As the rank increases, the non-separable filter bank is better approximated.

The reconstruction error of the non-separable filter bank, therefore, decreases

with increasing rank as depicted in Fig. 6.4.
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Figure 6.5: Convolutional filter banks for di↵erent ranks specified for tensor de-

composition. (a) Original non-separable filter bank; (b), (c), (d) learned separable

filter banks with SEP-TD approach and their approximations of the original filter

bank, R = 25, R = 16, R = 9. As the rank increases, approximation quality also

increases.

Several separable filter banks and their approximations of the non-separable

filter bank is depicted in Fig. 6.5 along with the original filter bank. Fig. 6.6

and 6.7 , demonstrate the pixel classification results obtained for some images

from the considered 2D datasets. The results of our method is not distin-

guishable from the classifications obtained by the non-separable approach.

As can be seen from the detailed analysis presented in Table 6.1, SEP-TD*

approach closely matches the performance of SEP-COMB* approach. The

Table 6.2: Time required to learn a separable filter basis from a non-separable

filter bank. Filter banks consist of 25 separable filters. The learning is carried out

on DRIVE dataset. Approximation error is given in terms of the mean-squared

errors.

Method Learning Time[sec] Reconstruction Error(MSE) ||`||0
SEP-TD 18.47 2.67⇥ 10�4 36875

SEP-TD-SP 35.89 5.3⇥ 10�4 53361
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Figure 6.6: Classification examples from DRIVE dataset for di↵erent filter learning

approaches. Numerically and visually, similar classification results are obtained for

SEP-TD*, SEP-COMB* and NON-SEP methods. The feature extraction proce-

dure is fast for SEP-TD* and SEP-COMB* approaches due to the separability of

the convolutional filters. The advantage of using SEP-TD* over SEP-COMB* is

that the learning speed of the filters with the SEP-TD* is much faster than that

of SEP-COMB*.

advantage of using SEP-TD* over SEP-COMB* approach is in its substantial

speed-up in the filter learning process. Furthermore, SEP-TD* approach

provides a better approximation of the arbitrary non-separable filter bank,

i.e. the non-separable filter bank is reconstructed with a smaller error. Table

6.2 presents the results of the reconstruction errors of the non-separable filter

banks and the computation time required to learn separable filters. In this

experiment, first 121 arbitrary filters are learned from DRIVE dataset, and

these filters are approximated by a separable basis using SEP-COMB and

SEP-TD approaches.

Commenting on the results tabulated in Table 6.2, SEP-TD approach

obtains the separable filter bank 100 times faster than SEP-COMB approach
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Figure 6.7: Classification examples from BF2D dataset for di↵erent filter learning

approaches

with twice the accuracy. E�cient tensor formulation of the first derivative

of Eq. (4.31) leads to the good performance of the tensor decomposition

algorithm.

6.2 Voxel Classification to Detect Linear Struc-

tures

Separable filter learning with tensor decomposition has also been evaluated

on voxel classification task in order to understand whether the voxels belong

to linear structures or not. 3D volumes of Olfactory Projection Fibers (OPF)

from DIADEM challenge, which were captured by a confocal microscope,

have been used as the experiment dataset. First, a filter bank of 49 13⇥13⇥13

pixels have been learned by optimizing the objective function given in Eq.
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(3.3). Then, a separable basis consisting of 16 filters has been learned using

SEP-COMB and SEP-TD approaches. Learned arbitrary non-separable filter

bank consisting of 49 filters, the separable filter bank learned with SEP-TD

approach and the reconstructed non-separable filter bank is shown in Fig.

6.8. As in the case for two-dimensional data, the classifiers have been trained

on the separable filters’ output, therefore we opt for SEP-COMB* and SEP-

TD* approaches. For 3D data, `1-regularized logistic regressors instead of

Random Forests have been used since they have been found to be faster with

no loss in performance.

Figure 6.8: Example 3D Non-separable and separable filter banks for voxel clas-

sification. (a) Learned Non-separable Filter Bank from OPF dataset, (b) Re-

constructed Filter Bank , (c) Separable Filter Bank learned with the SEP-TD ap-

proach. SEP-TD approach is accurate in approximating the original non-separable

filter bank.

As in the 2D case, OOF has been used as the baseline. NON-SEP, SEP-

COMB* and SEP-TD* approaches have been compared against it. The

detailed and comparative pixel classification results are reported in Table

6.3. A representative classified image of the OPF dataset along with the

original image is shown in Fig. 6.9. While all the approaches result in

similar F-measure values, SEP-COMB* and SEP-TD* approaches are con-

siderably faster in the classification task. The advantage of using SEP-TD

over SEP-COMB is that the filter learning process is much faster than that of

SEP-COMB. Moreover, SEP-TD approach provides a better approximation
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Figure 6.9: Example classification result obtained on OPF dataset. The image 4

of the dataset is used for testing. The `1 regularized logistic regression classifier is

trained on the separable filters’ output.

Table 6.3: Analytic measure of the performance of the voxel classification task over

di↵erent datasets. The VI and RI values are compared on the classification thresh-

olded at the value found using the F-measure. For the learning-based approaches,

a training set of 200000 randomly selected

Method AUC F-measure VI RI Time[s]

OPF:Image 1

OOF 0.997 0.531 0.012 0.998 193.05

NON-SEP(121) 0.997 0.571 0.013 0.998 339.01

SEP-COMB*(25) 0.997 0.570 0.013 0.998 11.08

SEP-TD*(25) 0.997 0.564 0.013 0.998 11.08

of the arbitrary non-separable filter bank, i.e. the non-separable filter bank

is reconstructed with a smaller error. Table 6.4 presents the results of the

reconstruction errors of the non-separable filter banks and the computation

time required to learn separable filters for SEP-COMB and SEP-TD ap-

proaches. Commenting on the results of Table 6.4, SEP-TD learns separable

filters 600 times faster than SEP-COMB with twice the accuracy.
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Table 6.4: Time required to learn a separable filter basis from a 3D non-separable

filter bank. Filter banks consist of 16 separable filters. The learning is carried

out on OPF dataset. Approximation error is given in terms of the mean-squared

errors.

Method Learning Time[sec] Reconstruction Error(MSE)

SEP-COMB 8370 1.8⇥ 10�5

SEP-TD 13.58 0.9⇥ 10�5

6.3 Image Denoising

In order to assess how well the separable basis learned by the SEP-TD ap-

proach is at representing an arbitrary filter bank, we also carried out exper-

iments in a di↵erent task, e.g. image denoising. SEP-TD approach is used

to learn the separable basis of 256 denoising filters obtained by K-SVD al-

gorithm [9]. The denoising results obtained by using di↵erent sizes for the

separable basis is tabulated in Table 6.5 in terms of Peak-Signal-to-Noise-

Ratio (PSNR). The original filter bank, the reconstructed filter bank and

the separable filter bank consisting of 36 filters are depicted in Fig. 6.10.

It is clear that, the reconstructed and the original filter bank are nearly in-

distinguishable, thus even 36 filters are su�cient to grasp the essence of the

information carried by 256 filters. Fig. 6.11 shows an example denoising

experiment carried out using our tensor decomposition algorithm.

One more observation is that the separable filters learned with the SEP-

TD approach are quite general in the sense that the separable filters learned

for one specific image can also be used for another image and still yield

satisfactory denoising results which closely matches to the denoising results

of K-SVD approach.
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Table 6.5: Results for the image denoising task. The denoising results are given

in terms of Peak Signal-to-Noise ratio (PSNR) and measured in decibels. The

images are corrupted by additive white gaussian noise with a standard deviation

of 20. The filters learned by K-SVD algorithm are approximated using di↵erent

separable filter learning approaches. In the last part of the experiment, the filters

learned from the Barbara image is used to denoise other images in order to assess

how generic the denoising filters are.

Barbara Boat House Lena Peppers

Noisy image 22.12 22.09 22.06 22.09 22.13

K-SVD 30.94 30.36 33.34 32.42 32.25

SEP-COMB*(25) 30.21 30.26 33.13 32.40 31.99

SEP-TD*(25) 30.27 30.28 33.17 32.42 32.03

SEP-COMB*(36) 30.77 30.36 33.24 32.42 32.08

SEP-TD*(36) 30.79 30.36 33.26 32.42 32.10

SEP-COMB*(49) 30.90 30.36 33.32 32.42 32.17

SEP-TD*(49) 30.91 30.36 33.33 32.42 32.19

SEP-COMB*(64) 30.94 30.36 33.34 32.42 32.25

SEP-TD*(64) 30.94 30.36 33.34 32.42 32.25

SEP-COMB*(36)-Barbara � 30.28 32.41 32.43 31.97

SEP-TD*(36)-Barbara � 30.29 32.43 32.43 32.01

SEP-COMB*(64)-Barbara � 30.36 33.28 32.43 32.23

SEP-TD*(64)-Barbara � 30.36 32.29 32.43 32.24
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Figure 6.10: An example denoising experiment using the reconstructed filter bank

of the SEP-TD approach. (a) Barbara image corrupted with additive white Gaus-

sian noise of standard deviation 20, (b) Denoised image using the the approximated

filter bank reconstructed with our SEP-TD approach.

Figure 6.11: Approximation of an existing filter bank. (a) Filter bank learned

by the K-SVD algorithm on the Barbara image (b) Filter bank approximated by

the SEP-TD approach (c) Separable filter bank consisting of 36 filters learned

via SEP-TD. The original and approximated filter banks yield similar denoising

results.
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6.4 Convolutional Neural Networks

Separable filter learning is important for the tasks that use intense convo-

lutional computations. Convolutional Neural Network is one such example

that is used to recognize visual patterns from pixel images. They are able

to recognize patterns with too much variability while being robust to distor-

tions and simple geometric transformations. Their training is carried out by

back-propagation algorithm as almost all other neural networks. The di↵er-

ence comes from their special architecture. CNN’s have alternating layers

of convolution layers and sub-sampling/pooling layers in their architecture.

The convolution layers constructs feature maps by convolving trained kernels

over feature maps in layers below them. The subsampling layers downsample

the feature maps in one previous layer by a constant factor. In order to dis-

criminate between C classes, an output layer consisting of connections to C

neurons are used. The output layer takes as input the concatenated feature

maps of the layer below it (feature vectors) and decides which output class

is going to be assigned to the pixel image.

In the experiment, an architecture consisting of 2 convolution and 2 sub-

sampling layers is assumed. The first layer consists of 6 feature maps con-

nected to the single output layer via 6 5 ⇥ 5 kernels. The second layer is a

2 ⇥ 2 mean subsampling layer. The third layer consists of 12 feature maps

connected to the 6 mean-pooling layers via 72 5⇥5 kernels. The fourth layer

is a 2 ⇥ 2 subsampling layer. The feature maps obtained at the last convo-

lution layer is concatenated into feature vectors and fed into the last layer

which have 10 output neurons in order to discriminate between 10 handwrit-

ten digit characters.

Separable filter learning is carried out at each convolution layer. In the

first convolution layer, there exist 6 learned arbitrary non-separable kernels.

These kernels are stacked together and a tensor is formed. Then by applying

tensor decomposition, a separable basis consisting of 3 separable filters is

learned for these 6 non-separable filters in the first convolution layer. In

the second convolution layer, a tensor is formed for each outgoing node,
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thus 6 tensors each consisting of 12 filters are obtained. A decomposition

is applied on all these tensors. A separable basis consisting of 4 separable

filters is learned for each tensor. Also, the coe�cients to reconstruct the

non-separable filter banks in the two convolution layers are learned during

tensor decomposition. The convolutions are carried out with separable filters,

then by combining the separable convolution results with the obtained set

of weights, an approximation of the non-separable convolution is obtained

for each 72 kernel in the second layer. This way the computation time is

reduced. Using separable filters the classification can be carried out in less

time without losing accuracy. For a kernel size of 5 the computation time

for non-separable filters is 5.7 seconds, whereas for separable filters, it is 4.1

seconds with a similar number of misclassifications.

The CNN is trained using stochastic gradient descent on the full MNIST

dataset. The MNIST dataset [22] consists of 70000 training images of hand-

written digits. The images are grayscale and 28 by 28 pixels. The training

dataset has 60000 images and the test dataset has 10000 images. A batch

size of 50 is used for 100 epochs and a test score of 1.15% or 115 misclassifi-

cations is obtained. The training takes a long time for 100 epochs to be used

in practical applications. Fig. 6.12 shows a set of misclassified letters in the

object recognition task carried out with CNN. Fig. 6.13 shows the 12 filters

from an outgoing node of the second convolutional layer, and 4 separable

basis filters learned from them.

Figure 6.12: A set of misclassified images using SEP-TD approach in Convolutional

Neural Networks.
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Figure 6.13: A set of learned separable filters for convolutional neural networks.

(a)12 kernels outgoing from the first input map of the second convolutional layer,

(b)4 separable kernels learned by tensor decomposition
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Chapter 7

Conclusions

Convolutional operations are fundamental to many image processing tasks,

such as feature extraction. When the convolutional filters are numerous and

not separable, the completion of the task becomes computationally demand-

ing, which hinders these applications to be used e↵ectively in practical situa-

tions. In this thesis work, a new algorithm for learning separable basis filters

from an arbitrary filter bank is developed and implemented. Specifically, the

non-separable filters are constrained globally, by grouping them together into

a tensor and solving a tensor decomposition optimization problem. By this

procedure, the individual filters in the tensor can be expressed as the linear

combination of separable filters.

It has been seen by comparative studies that the tensor decomposition

approach learns a basis of separable filters that closely approximates an ex-

isting filter bank. Separable filters learned by our approach obtains the same

performance of the original filter bank in several computer vision tasks while

increasing the computational e�ciency. The increase in e�ciency is achieved

through reducing the number of required filters and employing separability.

The approach is applicable to any arbitrary filter bank used in computer

vision tasks. One application of this approach would be in designing hand-

crafted filters. The designers do not need to confine themselves for designing

separable filters in the first place. They can select arbitrary filters suitable
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to the specific application and approximate them with a small number of

separable filters.

The approach we have designed to learn separable filters with tensor

decomposition is orders of magnitude faster than the previous separable filter

learning algorithm using dictionary learning methods. Hence, any generic

arbitrary filter bank can be represented with a separable filter basis e↵ectively

with our approach.
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Appendix A

Partial Derivatives of the

Tensor Decomposition

Objective Function

In Section 4.3, the partial derivatives of the tensor decomposition of the

objective function is computed as in the following theorem [1].

Theorem 4.1. The partial derivatives of the objective function f can be

found via
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Proof. Rewriting the objective function given in Eq. (4.21) as three sum-

mands, the following is obtained:

f(x) =
1

2
||Z||2�hZ, [[A(1)
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where the first summand is f1(x), the second summand is f2(x) and the third

summand is f3(x).

The first summand does not involve any variables, therefore @f1

@a
(n)
r

= 0.

where 0 is a zero vector of length In. The second summand can be written

as

f2(x) =hZ, [[A(1)
, . . . ,A(N)]]i (A.4)
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Writing f2 in this form, it is clear to conclude that

@f2

@a(n)
r

=

 
Z ⇥

m=1,m 6=n

a(m
r

!
(A.9)

The third summand is
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Thus,
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Combining (A.9) and (A.15), the desired result is obtained. ⇤
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