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Abstract

This paper proposes a micromechanical framework for identifying the macroscopic behavior of

multi-coated long fiber composites, as well as the average electromechanical microscopic fields

of all phases (matrix, fibers, coating layers), generated upon known macroscopic conditions. The

work aims at developing a unified micromechanical approach that provides an analytical solution

standing for non-coated and multi-coated long fiber composites with transversely isotropic piezo-

electric behavior. The proposed method solves specific boundary value problems and utilizes the

Mori-Tanaka homogenization scheme, in which the dilute strain and electric field concentration

tensors are obtained analytically with the help of an extended composite cylinders method that

accounts for coupled electromechanical fields. The capabilities of this homogenization strategy

are illustrated with the help of numerical examples, and comparisons with known solutions from

the literature for non-coated and coated fiber piezoelectric composites are provided.

Keywords: piezoelectricity; fiber composites; multi-coated fibers; composite cylinders method.

1. Introduction

Piezoelectric materials are very attractive in applications involving the design of sensors, actu-

ators, transducers, etc. due to their unique capability to convert electrical into mechanical energy.

Using piezoelectric ceramics, like PZT, in bulk form is not always convenient, mainly due to
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their increased weight. To avoid such issues, an efficient solution is to combine these materials

with non-piezoelectric polymers in the form of composites. These advanced composite materi-

als opened new horizons in the development of new transducers and sensors with high strength,

low thermal expansion coefficients, increased thermal conductivities and decreased dielectric con-

stants.

During the last 30 years several models have been proposed in the literature to study the piezo-

electric and the combined thermo-magneto-electro-elastic response of composites. Dunn and Taya

(1993) have introduced an Eshelby-type approach by identifying appropriate Eshelby and concen-

tration tensors for the combined electromechanical response. This technique later was extended

to account for other phenomena, linear (Li and Dunn, 1998) and nonlinear (Hossain et al., 2015),

while Zou et al. (2011) identified Eshelby tensors for arbitrary shaped piezoelectric inclusions.

Benveniste (1994), based on the initial framework of Benveniste and Dvorak (1992), studied the

macroscopic response of piezoelectric composites using partially the composite cylinders method.

Aboudi (2001) developed a computational method for coupled electro-magneto-thermo-elastic

composites and Lee et al. (2005) have proposed numerical and Eshelby-based analytical strate-

gies for three phase electro-magneto-elastic composites. Piezoelectric composites (Berger et al.,

2005, 2006; Maruccio et al., 2015), electro-magneto-thermo-elastic composites (Bravo-Castillero

et al., 2009) and piezoelastic plates (Kalamkarov and Kolpakov, 2001) have been studied by us-

ing the periodic homogenization theory. A homogenization approach for studying piezoelectric

composites with periodic and random microstructure was proposed by Spinelli and Lopez-Pamies

(2014). Sharma et al. (2007) identified a theoretical framework that describes the conditions under

which non-piezoelectric materials can be used for the design of piezoelectric nanocomposites. Ray

and Batra (2009) developed a micromechanical scheme for studying piezoelectric composites with

square cross section fibers, and similar technique was developed later for magneto-electro-elastic

with square cross section fibers (Pakam and Arockiarajan, 2014). Koutsawa et al. (2010), using

Hill’s interfacial operators, proposed a self consistent scheme for studying thermo-electro-elastic

properties of composites with multi-coated ellipsoidal particles. Wang et al. (2014) developed a

micromechanical method for piezoelectric composites with imperfect interfaces between the el-

lipsoidal particles and the matrix phase, using the concept of equivalent particle. Piezoelectric
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composites with imperfect interfaces have been also studied by Gu et al. (2014, 2015).

The goal of this work is to develop a unified micromechanical approach aimed at providing an

analytical solution that stands for non-coated and multi-coated long fiber composites with trans-

versely isotropic piezoelectric behavior. Studying the coating between a fiber and a matrix in

composites is of vital importance. A lot of nonlinear deformation mechanisms, like plasticity

and/or martensite transformation, occur frequently at a small region close to the fibers and lead to

an interaction with the local damage of the fiber/matrix interface (Payandeh et al., 2010, 2012).

Developing appropriate computational tools that identify the mechanical and electric fields at the

proximity of the fibers can assist in the design of more accurate damage and failure criteria for

piezoelectric composites.

The developed approach is based on solving specific boundary value problems, extending the

composite cylinders model of Hashin and Rosen (1964). This effort can be considered as a general-

ization of the Dvorak and Benveniste (1992); Benveniste (1994) methodology, providing analytical

expressions of the dilute strain-electric field coupled concentration tensors, which can be utilized

in classical micromechanical techniques, like Mori-Tanaka or self consistent. The advantage of

such information is that it permits to identify not only the overall response of the composite, but

also the various average electromechanical fields generated at the matrix, the fiber and the coating

layers for known macroscopic electromechanical conditions. For non-coated fibers the obtained

dilute tensors are equivalent with those of Dunn and Taya (1993). To the best of the authors

knowledge, the only available framework in the literature that computes concentration tensors for

piezoelectric composites with coated fibers is the one of Koutsawa et al. (2010), but it is based

on certain approximations. The approach discussed herein does not require such approximations,

since the solution proposed in this work for the Eshelby’s inhomogeneity problem is exact.

The organization of the manuscript is as follows: After the introduction, section 2 starts with a

small recall on the piezoelectricity concepts, and then it describes the Mori-Tanaka type microme-

chanical framework and the general procedure for obtaining the dilute concentration tensors for

composites with transversely isotropic piezoelectric material constituents (matrix, fiber, coating

layers). Section 3 presents the case of non-coated fiber composites and discusses the consistency

of the approach with published results from the open literature. Section 4 discusses the case of
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coated fibers with one coating layer. Numerical examples and comparisons with existing finite

element calculations and other micromechanical approaches are demonstrated in section 5. The

section also includes a study in which, for given macroscopic strain and electric field and known

volume fractions of the phases, all the electromechanical fields at every phase and at the over-

all composite are computed (Table 2). The paper finishes with a section giving some concluding

remarks and future developments. For the purpose of the paper’s completeness, two appendices

at the end of the article provide the piezoelectric Eshelby tensor of Dunn and Taya (1993) and

explain briefly the framework of Koutsawa et al. (2010).

2. Micromechanical approach for a coated fiber/matrix piezoelectric composite

2.1. General concepts from piezoelectricity and notations

In a linear piezoelectric material, the constitutive law that describes the relation between the

stress tensor σ, the electric displacement vector D, the strain tensor ε and the electric field vector

E is written in the following indicial form (double indices denote summation):

σi j = Ci jklεkl − ei jmEm, Di = eimnεmn + κi jE j.

In tensorial notation, the above relations are expressed as

σ = C:ε − e · E, D = eT :ε + κ · E. (1)

In the above relations C is the fourth order elasticity tensor, κ is the second order permittivity

moduli tensor and e is the third order piezoelectric moduli tensor. The strain tensor ε and electric

field vector E are related with the displacement vector u and the electric potential φ respectively

through the relations

ε =
1
2

[
gradu + [gradu]T

]
, E = −gradφ. (2)

Moreover, the equilibrium and electrostatic equations read

divσ = 0, divD = 0. (3)
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Unless stated otherwise, the Voigt notation will be adopted in the sequel to represent second, third

and fourth order tensors. The convention used in strains and stresses to replace the indices i j to a

single index k is the following:

i j = 11 → k = 1, i j = 22 → k = 2, i j = 33 → k = 3,

i j = 12 → k = 4, i j = 13 → k = 5, i j = 23 → k = 6.

2.2. Application of the Mori-Tanaka method

0

1

2

N

Figure 1: Unidirectional multi-coated fiber composite. The coating has N − 1 distinct layers.

Let’s consider a N + 1-phase composite, consisting of a matrix, denoted as 0, and infinitely

long, multi-coated, cylindrical fibers. The fibers are denoted with the index 1, while the N − 1

coating layers are denoted with the indices 2,3,...,N (Figure 1). All phases are assumed to be made

by linear piezoelectric materials. The phases are characterized by their piezoelectric moduli Cq,

eq and κq, q = 0, 1, 2, 3, ...,N.

According to the usual micromechanics arguments, a Representative Volume Element (RVE)

with total volume V is sufficient to describe the overall response of the composite. Each phase

5
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Ω0

Ω1

r1

Ω2

ΩN

r2

rN

Figure 2: Typical RVE of a unidirectional multi-coated fiber composite.

in the RVE occupies the space Ωq (Figure 2), has its own volume Vq and volume fraction cq for

q = 0, 1, 2, 3, ...,N. The classical volume summation rule states that

N∑

q=0

Vq = V,
N∑

q=0

cq =

N∑

q=0

Vq

V
= 1.

The macroscopic strain ε, stress σ, electric field E and electric displacement D corresponding to

the RVE are computed from the volume averages of their microscopic counterparts at all phases,

i.e.

ε =

N∑

q=0

cqεq, σ =

N∑

q=0

cqσq, E =

N∑

q=0

cqEq, D =

N∑

q=0

cq Dq. (4)

In these expressions εq, σq, Eq and Dq denote the average strain, stress, electric field and electric

displacement in the qth phase respectively:

εq =
1
Vq

∫

Ωq

ε(x) dV, σq =
1
Vq

∫

Ωq

σ(x) dV, Eq =
1
Vq

∫

Ωq

E(x) dV, Dq =
1
Vq

∫

Ωq

D(x) dV. (5)

The constitutive law of each phase states that

σq = Cq:εq − eq · Eq, Dq = eT
q :εq + κq · Eq, q = 0, 1, 2, 3, ...,N. (6)

6
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The goal of homogenization is to identify a similar type of constitutive law for the macroscopic

quantities, i.e.

σ = C:ε − e · E, D = eT :ε + κ · E, (7)

where C, κ and e are the macroscopic elasticity, permittivity and piezoelectric tensors respectively.1

The law (7) represents the overall behavior of the composite. According to the Mori-Tanaka

approach, the average fields in the fiber or the coatings and the matrix phase (q = 0) are connected

to each other through the dilute concentration tensors:

εq = Tmm
q :ε0 + Tme

q · E0, Eq = Tem
q :ε0 + Tee

q · E0, q = 1, 2, 3, ...,N. (8)

Tmm
q are fourth order tensors, written as 6× 6 matrices, Tme

q are third order tensors, written as 6× 3

matrices, Tem
q are third order tensors, written as 3 × 6 matrices and Tee

q are second order tensors,

written as 3×3 matrices. Combining (8) with (4)1,3 and after some algebra, the following relations

are obtained:

εq = Amm
q :ε + Ame

q · E, Eq = Aem
q :ε + Aee

q · E, q = 0, 1, 2, 3, ...,N, (9)

where

Amm
0 =

[
Πmm −Πme · [Πee]−1 ·Πem

]−1
, Ame

0 = −Amm
0 :Πme · [Πee]−1 ,

Aem
0 = − [Πee]−1 ·Πem: Amm

0 , Aee
0 = [Πee]−1 − [Πee]−1 :Πem: Ame

0 , (10)

and

Amm
q = Tmm

q : Amm
0 + Tme

q · Aem
0 , Ame

q = Tmm
q : Ame

0 + Tme
q · Aee

0 ,

Aem
q = Tem

q : Amm
0 + Tee

q · Aem
0 , Aee

q = Tem
q : Ame

0 + Tee
q · Aee

0 , (11)

for q = 1, 2, 3, ...,N. In the above relations,

Πmm = c0I +

N∑

q=1

cqTmm
q , Πme =

N∑

q=1

cqTme
q , Πem =

N∑

q=1

cqTem
q , Πee = c0I +

N∑

q=1

cqTee
q , (12)

1Contrarily to the electromechanical fields, the macroscopic moduli are generally not equal to the volume averages

of their microscopic counterparts. The Voigt bound, which considers such relation, often provides a poor estimate of

the real response.
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while I and I, with

[I ]i jkl =
1
2

[δikδ jl + δilδ jk], [I]i j = δi j, δi j: Kronecker delta,

denote the symmetric fourth order and second order identity tensors respectively. Substituting (9)

in (6) gives

σq =
[
Cq: Amm

q − εq · Aem
q

]
ε −

[
eq · Aee

q − Cq: Ame
q

]
E,

Dq =
[
eT

q : Amm
q + κq · Aem

q

]
ε +

[
eT

q : Ame
q + κq · Aee

q

]
E, (13)

for q = 0, 1, 2, 3, ...,N. Implementing these results in (4)2,4 and comparing with (7) eventually

yields

C =

N∑

q=0

cq

[
Cq: Amm

q − εq · Aem
q

]
, e =

N∑

q=0

cq

[
eq · Aee

q − Cq: Ame
q

]
,

eT =

N∑

q=0

cq

[
eT

q : Amm
q + κq · Aem

q

]
, κ =

N∑

q=0

cq

[
eT

q : Ame
q + κq · Aee

q

]
. (14)

Of course, the forms of the dilute concentration tensors Tmm
q , Tme

q , Tem
q and Tee

q should respect the

compatibility between the equations (14)2 and (14)3.

It is worth mentioning that it is possible to construct one single dilute concentration tensor

that combines the four tensors of the expressions (8) (see for instance Dunn and Taya, 1993).

The advantage of using separate dilute tensors for each field (mechanical and electrical) and the

couplings arising from them is that the scheme can be extended more naturally to account for

additional mechanisms. Indeed, one can obtain dilute concentration tensors for thermomechanical

response (Benveniste et al., 1991; Chatzigeorgiou et al., 2018), or for inelastic response, like in

the case of the Transformation Field Analysis approach (Dvorak and Benveniste, 1992; Dvorak,

1992).

2.3. Dilute piezoelectric concentration tensors

For the identification of the dilute concentration tensors, a single linear piezoelectric coated

fiber is assumed to be embedded inside the linear piezoelectric matrix, as shown in Figure 3.
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u0 = ε0 · x, φ0 = −E0 · x

Ω0

Ω1

∂ΩN

r1

Ω2

ΩN

r2

rN

∂Ω1

∂Ω2

∂ΩN−1

Figure 3: Coated fiber inside a matrix, subjected to linear displacement and electric potential at far distance. All

phases are piezoelectric materials.

The fiber occupies the space Ω1 with volume V1, its coatings the spaces Ωq with volumes Vq,

q = 2, 3, ...,N and the matrix occupies the space Ω0, which is extended to far distance from

the fiber. The matrix is subjected to linear displacement u0 = ε0 · x and linear electric potential

φ0 = −E0 ·x at far distance from the fiber (r → ∞). The interface between each phase is considered

perfect. The interface between the phase q and the phase q + 1 for q = 1, ...,N − 1 is denoted as

∂Ωq, while the interface between the last coating layer and the matrix is denotes as ∂ΩN .

The various electromechanical fields generated at every phase q depend on the spatial position,

i.e.

u(q)(x), ε(q)(x), σ(q)(x), φ(q)(x), E(q)(x), D(q)(x), ∀x ∈ Ωq. (15)

In infinitely long fiber composites, it is more convenient to describe all the necessary equations

in cylindrical coordinates, by describing the position vector in terms of the radius r, the angle θ

and the longitudinal position z (Figure 4). For transversely isotropic piezoelectric matrix, fiber and

9
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y

x

z

r
θ

Figure 4: Cylindrical coordinate system.

coatings, the constitutive law (6) for each phase is written in Voigt notation as



σ
(q)
rr

σ
(q)
θθ

σ
(q)
zz

σ
(q)
rθ

σ
(q)
rz

σ
(q)
θz



=



Ktr
q + µtr

q Ktr
q − µtr

q lq 0 0 0

Ktr
q − µtr

q Ktr
q + µtr

q lq 0 0 0

lq lq nq 0 0 0

0 0 0 µtr
q 0 0

0 0 0 0 µax
q 0

0 0 0 0 0 µax
q



·



ε
(q)
rr

ε
(q)
θθ

ε
(q)
zz

2ε(q)
rθ

2ε(q)
rz

2ε(q)
θz



−



0 0 eq31

0 0 eq31

0 0 eq33

0 0 0

eq15 0 0

0 eq15 0



·



E(q)
r

E(q)
θ

E(q)
z



, (16)
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

D(q)
r

D(q)
θ

D(q)
z



=



0 0 0 0 eq15 0

0 0 0 0 0 eq15

eq31 eq31 eq33 0 0 0



·



ε
(q)
rr

ε
(q)
θθ

ε
(q)
zz

2ε(q)
rθ

2ε(q)
rz

2ε(q)
θz



+



κq11 0 0

0 κq11 0

0 0 κq33



·



E(q)
r

E(q)
θ

E(q)
z



. (17)

The strain tensor and the electric field vector at each phase are given by the expressions

ε(q)
rr =

∂u(q)
r

∂r
, ε

(q)
θθ =

1
r

∂u(q)
θ

∂θ
+

u(q)
r

r
, ε(q)

zz =
∂u(q)

z

∂z
,

2ε(q)
rz =

∂u(q)
z

∂r
+
∂u(q)

r

∂z
, 2ε(q)

θz =
1
r
∂u(q)

z

∂θ
+
∂u(q)

θ

∂z
, 2ε(q)

rθ =
∂u(q)

θ

∂r
+

1
r
∂u(q)

r

∂θ
− u(q)

θ

r
,

E(q)
r = −∂φ

(q)

∂r
, E(q)

θ = −1
r
∂φ(q)

∂θ
, E(q)

z = −∂φ
(q)

∂z
, (18)

while the equilibrium and electrostatic equations are written as

∂σ
(q)
rr

∂r
+

1
r

∂σ
(q)
rθ

∂θ
+
σ

(q)
rr − σ(q)

θθ

r
+
∂σ

(q)
rz

∂z
= 0,

∂σ
(q)
rθ

∂r
+

1
r

∂σ
(q)
θθ

∂θ
+

2σ(q)
rθ

r
+
∂σ

(q)
θz

∂z
= 0,

∂σ
(q)
rz

∂r
+

1
r

∂σ
(q)
θz

∂θ
+
σ

(q)
rz

r
+
∂σ

(q)
zz

∂z
= 0,

∂D(q)
r

∂r
+

1
r

∂D(q)
θ

∂θ
+

D(q)
r

r
+
∂D(q)

z

∂z
= 0. (19)

The fiber is considered to have radius r = r1 and every coating q has external radius rq (Figure

3). The interface conditions between the phase q and the phase q + 1 for q = 1, 2, 3, ...,N − 1 are

11
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expressed as

u(q)
r (rq, θ, z) = u(q+1)

r (rq, θ, z), u(q)
θ (rq, θ, z) = u(q+1)

θ (rq, θ, z), u(q)
z (rq, θ, z) = u(q+1)

z (rq, θ, z),

σ(q)
rr (rq, θ, z) = σ(q+1)

rr (rq, θ, z), σ
(q)
rθ (rq, θ, z) = σ

(q+1)
rθ (rq, θ, z), σ(q)

rz (rq, θ, z) = σ(q+1)
rz (rq, θ, z),

φ(q)(rq, θ, z) = φ(q+1)(rq, θ, z), D(q)
r (rq, θ, z) = D(q+1)

r (rq, θ, z). (20)

Additionally, the interface conditions between the Nth coating and the matrix are written as

u(N)
r (rN , θ, z) = u(0)

r (rN , θ, z), u(N)
θ (rN , θ, z) = u(0)

θ (rN , θ, z), u(N)
z (rN , θ, z) = u(0)

z (rN , θ, z),

σ(N)
rr (rN , θ, z) = σ(0)

rr (rN , θ, z), σ(N)
rθ (rN , θ, z) = σ(0)

rθ (rN , θ, z), σ(N)
rz (rN , θ, z) = σ(0)

rz (rN , θ, z),

φ(N)(rN , θ, z) = φ(0)(rN , θ, z), D(N)
r (rN , θ, z) = D(0)

r (rN , θ, z). (21)

Following the Eshelby’s methodology, the dilute concentration tensors provide the relationship

between the average strain εq and electric field Eq inside the phase q (q = 1, 2, 3, ...,N), and the

strain ε0 and electric field E0 at the far field:

εq = Tmm
q :ε0 + Tme

q · E0, Eq = Tem
q :ε0 + Tee

q · E0. (22)

The Mori-Tanaka approach assumes that the strain ε0 and the electric field E0 applied in the far

field of this Eshelby-type problem correspond to the average strain ε0 and the average electric field

E0 of the matrix in the RVE of Figure 2, which are used in equations (8). Using the divergence

theorem, one obtains for the fiber the average fields

ε1 =
1
V1

∫

Ω1

ε(1) dV =
1
V1

∫

∂Ω1

1
2

[u(1) ⊗ n + n⊗ u(1)] dS ,

E1 =
1
V1

∫

Ω1

E(1) dV =
1
V1

∫

∂Ω1

[−φ(1)]ndS , (23)

where n is the unit vector of the interface ∂Ω1. Due to the homothetic topology of the coated fiber,

the unit vector is the same at all interfaces. For all the coating layers, the average strain and electric

field are defined as

εq =
1
Vq

∫

Ωq

ε(q) dV =
1
Vq

∫

∂Ωq

1
2

[u(q) ⊗ n + n⊗ u(q)] dS

− 1
Vq

∫

∂Ωq−1

1
2

[u(q−1) ⊗ n + n⊗ u(q−1)] dS ,

Eq =
1
Vq

∫

Ωq

E(q) dV =
1
Vq

[∫

∂Ωq

[−φ(q)]ndS −
∫

∂Ωq−1

[−φ(q−1)]ndS

]
. (24)
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Obtaining the dilute piezoelectric tensors is not an easy task. For certain, ellipsoidal-type, forms

of inclusions without coating, Dunn and Taya (1993) have computed the Eshelby tensors for the

combined strain/electric field system (see Appendix A for infinitely long fibers). In the present

work, the dilute concentration tensors are computed directly for long coated fiber piezoelectric

composites with transversely isotropic behavior at every phase. To achieve such goal, analytical

solutions are utilized of similar boundary value problems with those of the composite cylinders

method proposed by Hashin (1990), taking into account the effects caused by the combined pres-

ence of mechanical and electric fields. In the pure mechanical problem, similar techniques have

been utilized in the literature to obtain dilute (Benveniste et al., 1989) and semi-dilute (Chatzigeor-

giou et al., 2012) stress concentration tensors, as well as dilute strain concentration tensors (Wang

et al., 2016) for coated fiber composites.

In cylindrical coordinates, the surface element in a surface of constant radius r (a vertical

cylinder) is dsr = rdθdz and the surface element in a surface of constant z is dsz = rdrdθ. For

an arbitrary tensor Q(r, θ, z) and a cylinder of radius rq and length 2L, the sum of surface integrals

with the general form

F =
1

2Lπrq

∫ L

−L

∫ 2π

0
Q(rq, θ, z)dθdz +

1
2Lπr2

q

∫ 2π

0

∫ rq

0
[Q(r, θ, L) − Q(r, θ,−L)] rdrdθ , (25)

is required for the computations of the average quantities (23) and (24)2. The three normal vectors

in cylindrical coordinates are expressed as

n1 =



cos θ

sin θ

0


, n2 =



− sin θ

cos θ

0


, n3 =



0

0

1


. (26)

The displacements of the phases are represented in matrix form as

u(q) = u(q)
r n1 + u(q)

θ n2 + u(q)
z n3. (27)

Another important point to be mentioned is that in long fiber composites with, at most, transversely

isotropic phases (axis of symmetry: the direction of fibers), the dilute strain concentration tensors

2For infinitely long cylinder, L→ ∞. To avoid infinite values, the division by volume takes care of L.
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present transverse isotropy. In Voigt notation, they take the form

Tmm
q =



T mm
q11

T mm
q11
− T mm

q44
T mm

q13
0 0 0

T mm
q11
− T mm

q44
T mm

q11
T mm

q13
0 0 0

0 0 1 0 0 0

0 0 0 T mm
q44

0 0

0 0 0 0 T mm
q55

0

0 0 0 0 0 T mm
q55



, Tme
q =



0 0 T me
q31

0 0 T me
q31

0 0 0

0 0 0

T me
q15

0 0

0 T me
q15

0



,

Tem
q =



0 0 0 0 T em
q15

0

0 0 0 0 0 T em
q15

0 0 0 0 0 0



, Tee
q =



T ee
q11

0 0

0 T ee
q11

0

0 0 1



.

(28)

To obtain the unknown terms of these tensors, four types of boundary value problems should

be examined. In the sequel two cases are studied: a fiber/matrix composite without coating and a

fiber/matrix composite with only one coating layer.

3. First case: non-coated fibers

The first studied case considers non-coated piezoelectric fibers embedded in a piezoelectric

matrix. This is a well examined problem in the literature and the scope of this section is to illustrate

that the proposed methodology produces reliable results.

3.1. Axial shear strain and in-plane electric field conditions

For this case the following displacement vector and electric potential are applied:

u(x,y,z)
0 =



0

0

βx


, φ

(x,y,z)
0 = −γx. (29)
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These correspond to the following strain tensor (in classical tensorial form) and electric field vector

ε0 =



0 0 β/2

0 0 0

β/2 0 0


, E0 =



γ

0

0


.

In cylindrical coordinates, the displacement and electric potential are transformed to

u(r,θ,z)
0 =



0

0

βr cos θ


, φ(r,θ,z)

0 = −γr cos θ.

For these boundary conditions, the displacement vector and electric potential at the matrix (q = 0)

and the fiber (q = 1) are given by the general expressions

u(q)
z (r, θ) = βrU (q)

z (r) cos θ, u(q)
r = u(q)

θ = 0, U (q)
z (r) = Ξ

(q)
1 + Ξ

(q)
2

1
[r/r1]2

,

φ(q)(r, θ) = −γrΦ(q)(r) cos θ, Φ(q)(r) = Ξ
(q)
3 + Ξ

(q)
4

1
[r/r1]2

. (30)

where Ξ
(q)
i , i = 1, 2, 3, 4, are unknown constants. These general expressions lead to stresses and

electric displacements that satisfy the equilibrium and electrostatic equations (19). The important

stresses and electric displacements for identifying the unknown constants are

σ(q)
rz (r, θ) =

[
β Σm(q)

rz (r) + γ Σe(q)
rz (r)

]
cos θ, D(q)

r (r, θ) =
[
β Dm(q)

r (r) + γ De(q)
r (r)

]
cos θ,

Σm(q)
rz (r) = µax

q

[
Ξ

(q)
1 − Ξ

(q)
2

1
[r/r1]2

]
, Σe(q)

rz (r) = −eq15

[
Ξ

(q)
3 − Ξ

(q)
4

1
[r/r1]2

]
,

Dm(q)
r (r) = eq15

[
Ξ

(q)
1 − Ξ

(q)
2

1
[r/r1]2

]
, De(q)

r (r) = κq11

[
Ξ

(q)
3 − Ξ

(q)
4

1
[r/r1]2

]
.

The boundary conditions that should be satisfied in this boundary value problem are

u(1)
z and φ(1) finite at r = 0 → Ξ

(1)
2 = Ξ

(1)
4 = 0,

u(0)
z (r → ∞, θ) = βr cos θ and φ(0)(r → ∞, θ) = −γr cos θ → Ξ

(0)
1 = Ξ

(0)
3 = 1 . (31)

Considering these results, the interface conditions

u(1)
z (r1, θ) = u(0)

z (r1, θ), σ(1)
rz (r1, θ) = σ(0)

rz (r1, θ), φ(1)(r1, θ) = φ(0)(r1, θ), D(1)
r (r1, θ) = D(0)

r (r1, θ),
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construct the linear system

K ·
[
β Im + γ Ie] · [Ξm + Ξe] = β Fβ + γ Fγ,

with

K =



1 −1 0 0

µax
1 µax

0 −e115 −e015

0 0 1 −1

e115 e015 κ111 κ011



, Im =



1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0



, Ie =



0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 1



,

Ξm =

[
Ξ

(1)
1 Ξ

(0)
2 0 0

]T

, Ξe =

[
0 0 Ξ

(1)
3 Ξ

(0)
4

]T

,

Fβ =

[
1 µax

0 0 e015

]T

, Fγ =

[
0 −e015 1 κ011

]T

.

The solution of this linear system is written in the form

Ξm = Im ·

[
K−1 · Fβ +

γ

β
K−1 · Fγ

]
, Ξe = Ie ·

[
β

γ
K−1 · Fβ + K−1 · Fγ

]
.

After some algebra, the following results are obtained:

Ξ
(1)
1 = B1 +

γ

β
B2, Ξ

(1)
3 =

β

γ
B3 + B4,

B1 = 2
e015

[
e115 + e015

]
+ µax

0

[
κ111 + κ011

]
[
e115 + e015

]2
+

[
κ111 + κ011

] [
µax

1 + µax
0

] , B2 = 2
e115κ011 − e015κ111[

e115 + e015

]2
+

[
κ111 + κ011

] [
µax

1 + µax
0

] ,

B3 = 2
e015µ

ax
1 − e115µ

ax
0[

e115 + e015

]2
+

[
κ111 + κ011

] [
µax

1 + µax
0

] , B4 = 2
e015

[
e115 + e015

]
+ κ011

[
µax

1 + µax
0

]

[
e115 + e015

]2
+

[
κ111 + κ011

] [
µax

1 + µax
0

] .
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Implementing the transformations (25), (26) and (27) in (23) yields the average strain and electric

field inside the fiber,

ε1 = U (1)
z (r1) ε0 → ε1 = B1



0 0 β/2

0 0 0

β/2 0 0


+ B2



0 0 γ/2

0 0 0

γ/2 0 0


,

E1 = Φ(1)(r1) E0 → E1 = B3



β

0

0


+ B4



γ

0

0


.

Comparing these results with the expressions (22) and (28) it becomes clear that

T mm
155

=
ε1xz

β/2

∣∣∣∣∣∣
γ=0

= B1 = 2
e015

[
e115 + e015

]
+ µax

0

[
κ111 + κ011

]
[
e115 + e015

]2
+

[
κ111 + κ011

] [
µax

1 + µax
0

] ,

T me
115

=
ε1xz

γ/2

∣∣∣∣∣∣
β=0

= B2 = 2
e115κ011 − e015κ111[

e115 + e015

]2
+

[
κ111 + κ011

] [
µax

1 + µax
0

] ,

T em
115

=
E1x

β

∣∣∣∣∣∣
γ=0

= B3 = 2
e015µ

ax
1 − e115µ

ax
0[

e115 + e015

]2
+

[
κ111 + κ011

] [
µax

1 + µax
0

] ,

T ee
111

=
E1x

γ

∣∣∣∣∣∣
β=0

= B4 = 2
e015

[
e115 + e015

]
+ κ011

[
µax

1 + µax
0

]

[
e115 + e015

]2
+

[
κ111 + κ011

] [
µax

1 + µax
0

] . (32)

3.2. Transverse shear strain conditions

For this case the following displacement vector is applied:

u(x,y,z)
0 =



βy

βx

0


, (33)

which corresponds to the strain tensor (in classical tensorial form)

ε0 =



0 β 0

β 0 0

0 0 0


.
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In cylindrical coordinates, the displacement is transformed to the vector

u(r,θ,z)
0 =



βr sin 2θ

βr cos 2θ

0


.

For these boundary conditions, the displacements at each phase are given by the general expres-

sions

u(q)
r (r, θ) = β r U (q)

r (r) sin 2θ ,

u(q)
θ (r, θ) = β r U (q)

θ (r) cos 2θ ,

U (q)
r (r) =

Ktr
q − µtr

q

2Ktr
q + µtr

q

[r/r1]2Ξ
(q)
1 + Ξ

(q)
2 −

1
[r/r1]4

Ξ
(q)
3 +

Ktr
q + µtr

q

µtr
q

1
[r/r1]2

Ξ
(q)
4 ,

U (q)
θ (r) = [r/r1]2Ξ

(q)
1 + Ξ

(q)
2 +

1
[r/r1]4

Ξ
(q)
3 +

1
[r/r1]2

Ξ
(q)
4 , (34)

where the unknowns that need to be defined are the Ξ
(q)
i , i = 1, 2, 3, 4. These expressions lead

to stresses and electric displacements that satisfy the equilibrium and electrostatic equations (19).

The important stresses for the calculations are given by

σ(q)
rr (r, θ) = β Σ(q)

rr (r) sin 2θ ,

σ
(q)
rθ (r, θ) = β Σ

(q)
rθ (r) cos 2θ ,

Σ(q)
rr (r) = 2µtr

q Ξ
(q)
2 + 6µtr

q

1
[r/r1]4

Ξ
(q)
3 − 4Ktr

q

1
[r/r1]2

Ξ
(q)
4 ,

Σ
(q)
rθ (r) =

6Ktr
q µ

tr
q

2Ktr
q + µtr

q

[r/r1]2Ξ
(q)
1 + 2µtr

q Ξ
(q)
2 − 6µtr

q

1
[r/r1]4

Ξ
(q)
3 + 2Ktr

q

1
[r/r1]2

Ξ
(q)
4 .

The boundary conditions that should be satisfied in this boundary value problem are

u(1)
r , u(1)

θ finite at r = 0 → Ξ
(1)
3 = Ξ

(1)
4 = 0 ,

u(0)
r (r → ∞, θ) = βr sin 2θ and u(0)

θ (r → ∞, θ) = βr cos 2θ → Ξ
(0)
1 = 0, Ξ

(0)
2 = 1 . (35)

Considering these results, the interface conditions

u(1)
r (r1, θ) = u(0)

r (r1, θ), u(1)
θ (r1, θ) = u(0)

θ (r1, θ), σ(1)
rr (r1, θ) = σ(0)

rr (r1, θ), σ(1)
rθ (r1, θ) = σ(0)

rθ (r1, θ),
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construct the linear system

K ·Ξ = F,

with

K =



Ktr
1 − µtr

1

2Ktr
1 + µtr

1

1 1 −Ktr
0 + µtr

0

µtr
0

1 1 −1 −1

0 2µtr
1 −6µtr

0 4Ktr
0

6Ktr
1 µ

tr
1

2Ktr
1 + µtr

1

2µtr
1 6µtr

0 −2Ktr
0



, Ξ =



Ξ
(1)
1

Ξ
(1)
2

Ξ
(0)
3

Ξ
(0)
4



, F =



1

1

2µtr
0

2µtr
0



.

The solution of this linear system gives

Ξ
(1)
1 = 0, Ξ

(1)
2 =

2µtr
0

[
Ktr

0 + µtr
0

]

2µtr
0µ

tr
1 + Ktr

0

[
µtr

1 + µtr
0

] .

Implementing the transformations (25), (26) and (27) in (23) yields the average strain inside the

fiber,

ε1 =
1
2

[
U (1)

r (r1) + U (1)
θ (r1)

]
ε0 → ε1 = Ξ

(1)
2 ε0 .

Comparing these results with the expressions (22) and (28) it becomes clear that

T mm
144

=
ε1xy

β
= Ξ

(1)
2 =

2µtr
0

[
Ktr

0 + µtr
0

]

2µtr
0µ

tr
1 + Ktr

0

[
µtr

1 + µtr
0

] . (36)

3.3. Plane strain and axial electric field conditions

For this case the following displacement vector and electric potential are applied:

u(x,y,z)
0 =



βx

βy

0


, φ

(x,y,z)
0 = −γz. (37)
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These correspond to the following strain tensor (in classical tensorial form) and electric field vector

ε0 =



β 0 0

0 β 0

0 0 0


, E0 =



0

0

γ


.

In cylindrical coordinates, the displacement and electric potential are transformed to

u(r,θ,z)
0 =



βr

0

0


, φ(r,θ,z)

0 = −γz.

For these boundary conditions, the displacement vector and electric potential at the matrix (q = 0)

and the fiber (q = 1) are given by the general expressions

u(q)
r (r) = βrU (q)

r (r), u(q)
θ = u(q)

z = 0, U (q)
r (r) = Ξ

(q)
1 + Ξ

(q)
2

1
[r/r1]2

,

φ(q)(z) = −γz, (38)

where Ξ
(q)
i , i = 1, 2, are unknown constants. These general expressions lead to stresses and electric

displacements that satisfy the equilibrium and electrostatic equations (19). The important stresses

for identifying the unknown constants are

σ(q)
rr (r) = β Σm(q)

rr (r) + γ Σe(q)
rr , Σm(q)

rr (r) = 2

[
Ktr

q Ξ
(q)
1 − µtr

q Ξ
(q)
2

1
[r/r1]2

]
, Σe(q)

rr = −e(q)
31 .

The boundary conditions that should be satisfied in this boundary value problem are

u(1)
r finite at r = 0 → D(1)

2 = 0 ,

u(0)
r (r → ∞) = βr → D(0)

1 = 1 . (39)

Considering these results, the interface conditions

u(1)
r (r1) = u(0)

r (r1), σ(1)
rr (r1) = σ(0)

rr (r1),

construct the linear system

K ·Ξ = Fβ +
γ

β
Fγ,
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with

K =



1 −1

2Ktr
1 2µtr

0


, Ξ =



Ξ
(1)
1

Ξ
(0)
2


, Fβ =



1

2Ktr
0


, Fγ =



0

e131 − e031


.

The solution of this linear system gives

Ξ
(1)
1 = B1 +

γ

β
B2, B1 =

Ktr
0 + µtr

0

Ktr
1 + µtr

0

, B2 =
e131 − e031

2Ktr
1 + 2µtr

0

. (40)

Implementing the transformations (25), (26) and (27) in (23) yields the average strain inside the

fiber,

ε1 = U (1)
r (r1) ε0 → ε1 = B1



β 0 0

0 β 0

0 0 0


+ B2



γ 0 0

0 γ 0

0 0 0


. (41)

The general form of the dilute concentration tensors (22) and (28) permits to write

ε1xx = [2T mm
111
− T mm

144
] β + T me

131
γ.

From (40) and (41), it becomes clear that

T mm
111

=
1
2

[
Ktr

0 + µtr
0

Ktr
1 + µtr

0

+ T mm
144

]
, T me

131
=

e131 − e031

2Ktr
1 + 2µtr

0

. (42)

3.4. Hydrostatic strain conditions

For this case the following displacement vector is applied:

u(x,y,z)
0 =



βx

βy

βz


, (43)

which corresponds to the strain tensor (in classical tensorial form)

ε0 =



β 0 0

0 β 0

0 0 β


.
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In cylindrical coordinates, the displacement is transformed to the vector

u(r,θ,z)
0 =



βr

0

βz


.

For these boundary conditions, the displacement vector and electric potential at the matrix (q = 0)

and the fiber (q = 1) are given by the general expressions

u(q)
r (r) = βrU (q)

r (r), u(q)
θ = 0, u(q)

z (z) = βz, U (q)
r (r) = Ξ

(q)
1 + Ξ

(q)
2

1
[r/r1]2

, (44)

where Ξ
(q)
i , i = 1, 2, are unknown constants. These general expressions lead to stresses and electric

displacements that satisfy the equilibrium and electrostatic equations (19). The important stresses

for identifying the unknown constants are

σ(q)
rr (r) = β Σ(q)

rr (r), Σ(q)
rr (r) = 2

[
Ktr

q Ξ
(q)
1 − µtr

q Ξ
(q)
2

1
[r/r1]2

]
+ lq .

The boundary conditions that should be satisfied in this boundary value problem are

u(1)
r finite at r = 0 → D(1)

2 = 0 ,

u(0)
r (r → ∞) = βr → D(0)

1 = 1 . (45)

Considering these results, the interface conditions

u(1)
r (r1) = u(0)

r (r1), σ(1)
rr (r1) = σ(0)

rr (r1),

construct the linear system

K ·Ξ = F,

with

K =



1 −1

2Ktr
1 2µtr

0


, Ξ =



Ξ
(1)
1

Ξ
(0)
2


, F =



1

2Ktr
0 + l0 − l1


.
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The solution of this linear system gives

Ξ
(1)
1 =

Ktr
0 + µtr

0

Ktr
1 + µtr

0

+
l0 − l1

2Ktr
1 + 2µtr

0

. (46)

Implementing the transformations (25), (26) and (27) in (23) yields the average strain inside the

fiber,

ε1 = U (1)
r (r1) ε0 → ε1 = Ξ

(1)
1 ε0. (47)

The general form of the dilute concentration tensors (22) and (28) permits to write

ε1xx = [2T mm
111
− T mm

144
+ T mm

113
] β.

From (46), (47) and (42), it becomes clear that

T mm
113

=
l0 − l1

2Ktr
1 + 2µtr

0

. (48)

3.5. Macroscopic properties

The dilute concentration tensors (28), whose terms are given by (32), (36), (42) and (48), are

equivalent to the global piezoelectric concentration tensor provided by Dunn and Taya (1993) (see

Appendix A). Assuming that the volume fraction of fibers in the composite is c and applying

the Mori-Tanaka scheme, as described in subsection 2.2, the following macroscopic properties are

obtained:

Ktr =
cKtr

1 µ
tr
0 + Ktr

0

[
Ktr

1 + µtr
0 − cµtr

0

]

cKtr
0 − cKtr

1 + Ktr
1 + µtr

0

, µtr =
µtr

0

[
2µtr

0µ
tr
1 + Ktr

0

[
µtr

0 − cµtr
0 + µtr

1 + cµtr
1

]]

2µtr
0

[
cµtr

0 − cµtr
1 + µtr

1

]
+ Ktr

0

[
µtr

0 + cµtr
0 + µtr

1 − cµtr
1

] ,

l =
[1 − c]

[
Ktr

1 + µtr
0

]
l0 + c

[
Ktr

0 + µtr
0

]
l1

cKtr
0 − cKtr

1 + Ktr
1 + µtr

0

, n =
Z1

cKtr
0 − cKtr

1 + Ktr
1 + µtr

0

, µax =
W2

W1
,

e31 =
ce131

[
Ktr

0 + µtr
0

]
+ [1 − c]e031

[
Ktr

1 + µtr
0

]

cKtr
0 − cKtr

1 + Ktr
1 + µtr

0

, e33 =
Z2

cKtr
0 − cKtr

1 + Ktr
1 + µtr

0

, e15 =
W3

W1
,

κ11 =
W4

W1
, κ33 =

Z3

cKtr
0 − cKtr

1 + Ktr
1 + µtr

0

,
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where

Z1 = c2
[
[l0 − l1]2 −

[
Ktr

0 − Ktr
1

]
[n0 − n1]

]
+ [n0 − cn0 + cn1]

[
Ktr

1 + µtr
0

]

−c
[
[l0 − l1]2 + n0

[
Ktr

1 − Ktr
0

]]
,

Z2 = c2
[[

Ktr
0 − Ktr

1

] [
e133 − e033

]
+ [l0 − l1]

[
e031 − e131

]]
+

[
e033 − ce033 + ce133

] [
Ktr

1 + µtr
0

]

+c
[
[l0 − l1]

[
e131 − e031

]
+ e033

[
Ktr

0 − µtr
0

]]
,

Z3 = −c2
[[

e031 − e131

]2
+

[
Ktr

0 − Ktr
1

] [
κ033 − κ133

]]
+

[
κ033 − cκ033 + cκ133

] [
Ktr

1 + µtr
0

]

+c
[[

e031 − e131

]2
+ κ033

[
Ktr

0 − Ktr
1

]]
,

W1 = [1 + c]2[e015]
2 + 2[1 − c2]e015e115 + [1 − c]2[e115]

2

+
[
κ011 + cκ011 + κ111 − cκ111

] [
µax

0 + cµax
0 + µax

1 − cµax
1

]
,

W2 = 2[1 − c]2e015e115µ
ax
0 + [1 − c2]

[
[e115]

2 + [e015]
2
]
µax

0 + 4c[e015]
2µax

1

+
[
κ011 + cκ011 + κ111 − cκ111

] [
µax

0 − cµax
0 + µax

1 + cµax
1

]
µax

0 ,

W3 = [1 − c2]
[
[e015]

3 + [e115]
2e015

]
+

[
2[1 + c]2[e015]

2 + 4cκ011µ
ax
0

]
e115

+[1 − c]
[
κ011

[
µax

0 + cµax
0 + µax

1 − cµax
1

]
+ κ111

[
µax

0 − cµax
0 + µax

1 + cµax
1

]]
e015 ,

W4 = 2[1 − c]2e015e115κ011 + [1 − c2]
[
[e115]

2 + [e015]
2
]
κ011 + 4c[e015]

2κ111

+
[
κ011 − cκ011 + κ111 + cκ111

] [
µax

0 + cµax
0 + µax

1 − cµax
1

]
κ011 .

The obtained solution respects the compatibility condition between equations (14)2 and (14)3.

The above properties agree with the findings of Benveniste (1994). The transverse bulk modulus

Ktr is given by the same expression, while for the transverse shear modulus µtr, Benveniste also

concluded that it depends exclusively on the mechanical properties. For calculating µtr he proposed

the use of the Christensen and Lo (1979) approach, which is a generalized self consistent method

and provides quite similar results with Mori-Tanaka. The rest of the properties satisfy the universal

relations (Benveniste and Dvorak, 1992)

Ktr
0 − Ktr

l0 − l
=

Ktr
1 − Ktr

l1 − l
=

cl1 + [1 − c]l0 − l
cn(1) + [1 − c]n(0) − n

=
ce131 + [1 − c]e031 − e31

ce(1)
33 + [1 − c]e(0)

33 − e33

,

Ktr
0 − Ktr

e031 − e31
=

Ktr
1 − Ktr

e131 − e31
=

cl1 + [1 − c]l0 − l

ce(1)
33 + [1 − c]e(0)

33 − e33

=
e31 − ce131 − [1 − c]e031

cκ133 + [1 − c]κ033 − κ33
,

24



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

and

Det



µax e15 −κ11

µax
1 e115 −κ111

µax
0 e015 −κ011



= 0.

There are two main advantages of the proposed methodology compared to that of Benveniste

(1994): a) The computation of the strain and electric field concentration tensors allow the iden-

tification of the microscopic electromechanical fields for known macroscopic fields. Such infor-

mation can be very valuable for detecting possible inelastic mechanisms due to high stresses in

the matrix or the fiber. b) The dilute concentration tensors can be used into the Mori-Tanaka

scheme for obtaining the macroscopic response of composites with more complex microstruc-

ture, for instance with two different types of fibers, or the same fibers with random orientation

(Chatzigeorgiou et al., 2012; Seidel et al., 2014).

4. Second case: fibers with one coating layer

In this second studied case, the composite consists of coated fibers and matrix. Each fiber has

radius r = r1 and is coated with a layer that has external radius r = r2. In the sequel, the ratio

ρ = r1/r2 will be utilized. Considering as c the volume fraction of the fibers, the coating layers

and the matrix volume fraction can be computed through the ratio ρ. Indeed, the volume fractions

of all the phases (fiber, coating, matrix) are

c1 = c, c2 =
c
ρ2
− c, c0 = 1 − c1 − c2 = 1 − c

ρ2
. (49)

The dilute concentration tensors are computed with similar boundary value problems as those dis-

cussed in the previous section. Here, only the essential different points are going to be presented.

For the sake of the procedure’s simplicity, only one coating layer is considered for this section.

Nevertheless, the approach is general and the addition of more coating layers is straightforward.
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4.1. Axial shear strain and in-plane electric field conditions

Similarly to the non-coated fibers, the infinite matrix is subjected to the far field displacement

vector and electric potential of (29). For all phases (matrix, fiber, coating) the general expressions

(30) for these fields introduce 12 unknowns (4 constants per phase). After eliminating four from

the boundary conditions (31), the rest of the unknowns are identified from the interface conditions

that hold between the fiber and the coating and between the coating and the matrix. The produced

system of linear equations take the form

K ·
[
β Im + γ Ie] · [Ξm + Ξe] = β Fβ + γ Fγ,

with

K =



1 −1 −1 0 0 0 0 0

0 1 ρ2 −ρ2 0 0 0 0

µax
1 −µax

2 µax
2 0 −e115 e215 −e215 0

0 µax
2 −ρ2µax

2 ρ2µax
0 0 −e215 ρ2e215 −ρ2e015

0 0 0 0 1 −1 −1 0

0 0 0 0 0 1 ρ2 −ρ2

e115 −e215 e215 0 κ111 −κ211 κ211 0

0 e215 −ρ2e215 ρ2e015 0 κ211 −ρ2κ211 ρ2κ011



,

26



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Im =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0



, Ie =



0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1



,

Ξm =

[
Ξ

(1)
1 Ξ

(2)
1 Ξ

(2)
2 Ξ

(0)
2 0 0 0 0

]T

, Ξe =

[
0 0 0 0 Ξ

(1)
3 Ξ

(2)
3 Ξ

(2)
4 Ξ

(0)
4

]T

,

Fβ =

[
0 1 0 µax

0 0 0 0 e015

]T

, Fγ =

[
0 0 0 −e015 0 1 0 κ011

]T

.

The solution of this linear system is expressed as

Ξm = Im ·

[
K−1 · Fβ +

γ

β
K−1 · Fγ

]
, Ξe = Ie ·

[
β

γ
K−1 · Fβ + K−1 · Fγ

]
.

Considering the dilute tensors, the important terms Ξ
(1)
1 , Ξ

(1)
3 , Ξ

(0)
2 and Ξ

(0)
4 can be written in the

general form

Ξ
(1)
1 = B1 +

γ

β
B2, Ξ

(1)
3 =

β

γ
B3 + B4, Ξ

(0)
2 = B5 +

γ

β
B6, Ξ

(0)
4 =

β

γ
B7 + B8.

Implementing the transformations (25), (26) and (27) in (23) yields the average strain and electric

field inside the fiber,

ε1 = U (1)
z (r1) ε0 → ε1 = B1



0 0 β/2

0 0 0

β/2 0 0


+ B2



0 0 γ/2

0 0 0

γ/2 0 0


,

E1 = Φ(1)(r1) E0 → E1 = B3



β

0

0


+ B4



γ

0

0


.

On the other hand, implementing the transformations (25), (26) and (27) in (24) and taking into

account the displacement and electric potential continuity conditions yields the average strain and
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electric field inside the coating,

ε2 =

[
1

1 − ρ2
U (0)

z (r2) − ρ2

1 − ρ2
U (1)

z (r1)

]
ε0 →

ε2 =
1 + ρ2B5 − ρ2B1

1 − ρ2



0 0 β/2

0 0 0

β/2 0 0


+
ρ2B6 − ρ2B2

1 − ρ2



0 0 γ/2

0 0 0

γ/2 0 0


,

E2 =

[
1

1 − ρ2
Φ(0)(r2) − ρ2

1 − ρ2
Φ(1)(r1)

]
E0 →

E2 =
ρ2B7 − ρ2B3

1 − ρ2



β

0

0


+

1 + ρ2B8 − ρ2B4

1 − ρ2



γ

0

0


.

Comparing these results with the expressions (22) and (28) it becomes clear that

T mm
155

= B1, T me
115

= B2,

T em
115

= B3, T ee
111

= B4,

T mm
255

=
1 + ρ2B5 − ρ2B1

1 − ρ2
, T me

215
=
ρ2B6 − ρ2B2

1 − ρ2
,

T em
215

=
ρ2B7 − ρ2B3

1 − ρ2
, T ee

211
=

1 + ρ2B8 − ρ2B4

1 − ρ2
. (50)

4.2. Transverse shear strain conditions

For the transverse shear term of the dilute concentration tensor, the infinite matrix is subjected

to the far field displacement vector of (33). For all phases (matrix, fiber, coating) the general

expressions (34) introduce 12 unknowns (4 constants per phase). After eliminating four from the

boundary conditions (35), the rest of the unknowns are identified from the interface conditions

that hold between the fiber and the coating and between the coating and the matrix. The produced

system of linear equations take the form

K ·Ξ = F,
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with

K =



Ktr
1 − µtr

1

2Ktr
1 + µtr

1

1 − Ktr
2 − µtr

2

2Ktr
2 + µtr

2

−1 1 −Ktr
2 + µtr

2

µtr
2

0 0

1 1 −1 −1 −1 −1 0 0

0 0
1
ρ2

Ktr
2 − µtr

2

2Ktr
2 + µtr

2

1 −ρ4 ρ2
Ktr

2 + µtr
2

µtr
2

ρ4 −ρ2
Ktr

0 + µtr
0

µtr
0

0 0 1/ρ2 1 ρ4 ρ2 −ρ4 −ρ2

0 2µtr
1 0 −2µtr

2 −6µtr
2 4Ktr

2 0 0

6Ktr
1 µ

tr
1

2Ktr
1 + µtr

1

2µtr
1 − 6Ktr

2 µ
tr
2

2Ktr
2 + µtr

2

−2µtr
2 6µtr

2 −2Ktr
2 0 0

0 0 0 2µtr
2 6ρ4µtr

2 −4ρ2Ktr
2 −6ρ4µtr

0 4ρ2Ktr
0

0 0
1
ρ2

6Ktr
2 µ

tr
2

2Ktr
2 + µtr

2

2µtr
2 −6ρ4µtr

2 2ρ2Ktr
2 6ρ4µtr

0 −2ρ2Ktr
0



,

Ξ =

[
Ξ

(1)
1 Ξ

(1)
2 Ξ

(2)
1 Ξ

(2)
2 Ξ

(2)
3 Ξ

(2)
4 Ξ

(0)
3 Ξ

(0)
4

]T
, F =

[
0 0 1 1 0 0 2µtr

0 2µtr
0

]T
.

The solution of this linear system is expressed as

Ξ = K−1 · F.

Implementing the transformations (25), (26) and (27) in (23) and (24) and taking into account the

displacement continuity conditions yields the average strain inside the fiber and the coating,

ε1 =
1
2

[
U (1)

r (r1) + U (1)
θ (r1)

]
ε0 → ε1 =

[
3Ktr

1

4Ktr
1 + 2µtr

1

Ξ
(1)
1 + Ξ

(1)
2

]
ε0 ,

ε2 =

[
1

2[1 − ρ2]

[
U (0)

r (r2) + U (0)
θ (r2)

]
− ρ2

2[1 − ρ2]

[
U (1)

r (r1) + U (1)
θ (r1)

]]
ε0 →

ε2 =
1

1 − ρ2

[
1 + ρ2 Ktr

0 + 2µtr
0

2µtr
0

Ξ
(0)
4 − ρ2 3Ktr

1

4Ktr
1 + 2µtr

1

Ξ
(1)
1 − ρ2Ξ

(1)
2

]
ε0.

Comparing these results with the expressions (22) and (28) it becomes clear that

T mm
144

=
3Ktr

1

4Ktr
1 + 2µtr

1

Ξ
(1)
1 + Ξ

(1)
2 ,

T mm
244

=
1

1 − ρ2

[
1 + ρ2 Ktr

0 + 2µtr
0

2µtr
0

Ξ
(0)
4 − ρ2 3Ktr

1

4Ktr
1 + 2µtr

1

Ξ
(1)
1 − ρ2Ξ

(1)
2

]
. (51)
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4.3. Plane strain and axial electric field conditions

Similarly to the corresponding boundary value problem of the previous section, the infinite

matrix is subjected to the far field displacement vector and electric potential of (37). For all

phases (matrix, fiber, coating) the general expressions (38) introduce 6 unknowns (2 constants per

phase). After eliminating two from the boundary conditions (39), the rest of the unknowns are

identified from the interface conditions that hold between the fiber and the coating and between

the coating and the matrix. The produced system of linear equations take the form

K ·Ξ = Fβ +
γ

β
Fγ,

with

K =



1 −1 −1 0

0 1 ρ2 −ρ2

2Ktr
1 −2Ktr

2 2µtr
2 0

0 2Ktr
2 −2ρ2µtr

2 2ρ2µtr
0



,

Ξ =

[
Ξ

(1)
1 Ξ

(2)
1 Ξ

(2)
2 Ξ

(0)
2

]T

, Fβ =

[
0 1 0 2Ktr

0

]T

,

Fγ =

[
0 0 e131 − e231 e231 − e031

]T

.

The solution of this linear system is expressed as

Ξ = K−1 · Fβ +
γ

β
K−1 · Fγ.

Considering the dilute tensors, the important terms Ξ
(1)
1 and Ξ

(0)
2 can be written in the general form

Ξ
(1)
1 = B1 +

γ

β
B2, Ξ

(0)
2 = B3 +

γ

β
B4.
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Implementing the transformations (25), (26) and (27) in (23) and (24) and taking into account the

displacement continuity conditions yields the average strain inside the fiber and the coating,

ε1 = U (1)
r (r1) ε0 = B1



β 0 0

0 β 0

0 0 0


+ B2



γ 0 0

0 γ 0

0 0 0


,

ε2 =

[
1

1 − ρ2
U (0)

r (r2) − ρ2

1 − ρ2
U (1)

r (r1)

]
ε0

=
1 + ρ2B3 − ρ2B1

1 − ρ2



β 0 0

0 β 0

0 0 0


+
ρ2B4 − ρ2B2

1 − ρ2



γ 0 0

0 γ 0

0 0 0


.

The expressions of the dilute concentration tensors (22) and (28) permit to write

ε1xx = [2T mm
111
− T mm

144
] β + T me

131
γ, ε2xx = [2T mm

211
− T mm

244
] β + T me

231
γ.

From these results it becomes clear that

T mm
111

=
1
2

B1 +
1
2

T mm
144
, T me

131
= B2, T mm

211
=

1 + ρ2B3 − ρ2B1

2[1 − ρ2]
+

1
2

T mm
244
, T me

231
=
ρ2B4 − ρ2B2

1 − ρ2
. (52)

4.4. Hydrostatic strain conditions

For the remaining terms of the dilute mechanical concentration tensors, the infinite matrix

is subjected to the far field displacement vector (43). For all phases (matrix, fiber, coating) the

general expressions (44) introduce 6 unknowns (2 constants per phase). After eliminating two

from the boundary conditions (45), the rest of the unknowns are identified from the interface

conditions that hold between the fiber and the coating and between the coating and the matrix.

The produced system of linear equations take the form

K ·Ξ = F,
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with

K =



1 −1 −1 0

0 1 ρ2 −ρ2

2Ktr
1 −2Ktr

2 2µtr
2 0

0 2Ktr
2 −2ρ2µtr

2 2ρ2µtr
0



,

Ξ =

[
Ξ

(1)
1 Ξ

(2)
1 Ξ

(2)
2 Ξ

(0)
2

]T

, F =

[
0 1 l2 − l1 2Ktr

0 + l0 − l2

]T

.

The solution of this linear system is expressed as

Ξ = K−1 · F.

Implementing the transformations (25), (26) and (27) in (23) and (24) and taking into account the

displacement continuity conditions yields the average strain inside the fiber and the coating,

ε1 = U (1)
r (r1) ε0 = Ξ

(1)
1 ε0,

ε2 =

[
1

1 − ρ2
U (0)

r (r2) − ρ2

1 − ρ2
U (1)

r (r1)

]
ε0 =

1 + ρ2Ξ
(0)
2 − ρ2Ξ

(1)
1

1 − ρ2
ε0.

The general form of the dilute concentration tensors (22) and (28) permits to write

ε1xx = [2T mm
111
− T mm

144
+ T mm

113
] β, ε2xx = [2T mm

211
− T mm

244
+ T mm

213
] β.

From these results it becomes clear that

T mm
113

= Ξ
(1)
1 − 2T mm

111
+ T mm

144
, T mm

213
=

1 + ρ2Ξ
(0)
2 − ρ2Ξ

(1)
1

1 − ρ2
− 2T mm

211
+ T mm

244
. (53)

The dilute concentration tensors (28), whose terms are given by (50), (51), (52) and (53), can

be directly utilized in the Mori-Tanaka scheme, described in subsection 2.2.

5. Numerical examples

To illustrate the capabilities of the proposed methodology, several numerical studies are per-

formed. In the following examples the matrix phase is considered a non-piezoelectric epoxy, the
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fibers are PZT-7A and the coating layers (if they exist) are made of PZT-5. The piezoelectric

properties for these materials are taken from Berger et al. (2005, 2006) and they are summarized

in Table 1.

In the first example, no coating phase is considered. Several macroscopic piezoelectric prop-

erties of the fiber composite as a function of the fibers volume fraction are illustrated in Figure 5.

In the same plots the numerical results of Berger et al. (2006), which solve periodic unit cell prob-

lems with hexagonal arrangement of the fibers through finite element calculations, are utilized as

reference values. As shown in the Figure, except from a slight under-prediction in the transverse

shear modulus at high fiber content (above 50% volume fraction), the analytical method provides

excellent accuracy in identifying the macroscopic response of the composite. As expected, the

absolute values of the electromechanical properties show significant increase, almost exponential,

at above 50% fiber volume fraction.

material parameters

material n l Ktr µtr µax e31 e33 e15 κ11 κ33

epoxy 8 4.4 6.2 1.8 1.8 0 0 0 0.0372 0.0372

PZT-7A 131.39 82.712 119.037 35.8 25.696 -2.12058 9.52183 9.34959 4.065 2.079

PZT-5 111 75.2 98.2 22.8 21.1 -5.4 15.8 12.3 8.11 7.35

units GPa GPa GPa GPa GPa Cm−2 Cm−2 Cm−2 nCV−1m−1 nCV−1m−1

Table 1: Material parameters for the matrix (epoxy), the fiber (PZT-7A) and the coating layer (PZT-5). The values

for the first two materials are taken from Berger et al. (2006), while for the third material are taken from Berger et al.

(2005).

In the second parametric study, the same macroscopic properties are compared with those

provided by coated fiber composites. The comparisons consider the same fiber content c, while

the coating and the matrix have volume fractions that depend on the radii ratio ρ = r1/r2 between

the fiber and the coating/matrix interface, as given by the expressions (49). Since the coating is

stronger than the matrix phase, increase in the absolute values of the electromechanical properties

is expected for the coated fiber composite. In Figure 6 two coating thicknesses are considered,

one with ρ = 0.95 and the second with ρ = 0.90. In the same Figure, the predictions of the
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Figure 5: Macroscopic piezoelectric properties of fiber composites without coating: (a) Ktr, (b) µtr, (c) µax, (d) e31,

(e) e15 and (f) κ11. Comparison between the proposed method and the numerical results of Berger et al. (2006) using

finite element computations in periodic hexagonal unit cells.
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proposed method are compared with those obtained by the Mori-Tanaka scheme, when the dilute

concentration tensors are obtained through the Koutsawa et al. (2010) framework. Details about

this approach are given in Appendix B.

The obtained results show that the coupled piezoelectric parameters are the properties with the

highest increase. At 60% fibers volume fraction and ρ = 0.90, both e31 and e15 become more than

140% higher (in absolute value) compared to the corresponding parameters of the non-coated fiber

composite. For the same ρ and fibers volume fraction, the gain in mechanical properties does not

exceed 55% and in electrical permittivity does not exceed 66%.

The proposed methodology and the one based on the Mori-Tanaka with the dilute concentra-

tion tensors of the Koutsawa et al. (2010) theory (denoted as KBBNC in Figure 6) render exactly

the same predictions for all the macroscopic properties, with the exception of the transverse shear

modulus. For the µtr there is an insignificant difference (less than 0.1%), which is due to the as-

sumption made by Koutsawa et al. (2010) in the usage of the iterfacial operators (see equation

(B.7) and the discussion in Appendix B). It is worth mentioning that, in the case of multiple coat-

ings, such assumption affects all the macroscopic properties and it can cumulate a non-negligible

error in the macroscopic response. On the other hand, the methodology proposed in this work does

not suffer from this issue, since the Eshelby’s inhomogeneity problem is solved analytically and

the dilute concentration tensors are computed through exact averaging.

As already mentioned in the previous sections, the main advantage of identifying dilute con-

centration tensors is that they provide information about the average microscopic fields of the

various phases, when the macroscopic strain and electric field are known. To demonstrate this

capability, it is considered that at a coated fiber composite with fibers volume fraction 45% and
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Figure 6: Macroscopic piezoelectric properties of fiber composites: (a) Ktr, (b) µtr, (c) µax, (d) e31, (e) e15 and (f) κ11.

Comparison between non-coated fibers and coated fibers with ρ = 0.95 and ρ = 0.90. The dashed lines correspond to

the prediction of the current methodology and the points to the predictions of the Mori-Tanaka scheme with the dilute

concentration tensors according to the Koutsawa et al. (2010) theory.
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ρ = 0.9, the following uniform macroscopic strain tensor and electric field vector are applied:

ε =



εxx

εyy

εzz

2εxy

2εxz

2εyz



=



7

6

8

2

4

6



·10−4, E =



Ex

Ey

Ez


=



1

2

1


·10−4 GV

m
.

For these macroscopic conditions, the average microscopic fields at all phases (matrix, fiber, coat-

ing), as well as the macroscopic stresses and electric displacements are summarized in Table 2.

6. Conclusions

The article presented a micromechanical approach for identifying dilute concentration tensors

for piezoelectric multi-coated, long fiber composites, which can be utilized in classical homoge-

nization schemes, such as Mori-Tanaka and self consistent. The procedure shown here for non-

coated and coated fibers with one layer is applicable to fibers with multiple coating layers, by

using the boundary value problems and the analytical formalism described in sections 3 and 4.

The extensive comparisons with known analytical and computational results from the literature

illustrated the method’s reliability and capabilities.

The main advantage of the proposed methodology is that it solves analytically the Eshelby’s

inhomogeneity problem, which in turn permits the exact computation of the dilute concentration

piezoelectric tensors. The described procedure is also easily extendable to account for other types

of mechanisms, like thermomechanical behavior or inelastic response through a transformation

field analysis type approach. In addition, the proposed approach provides new capabilities in

studying piezoelectric composite materials and permits, with proper modifications, to account for

imperfect mechanical (Chatzigeorgiou et al., 2017) and/or dielectric (Chatzigeorgiou et al., 2015)

interfaces between the material constituents.
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component macroscopic matrix fiber coating units

εxx 7·10−4 1.7531·10−3 −1.4265·10−4 −1.4171·10−4 -

εyy 6·10−4 1.5502·10−3 −1.5904·10−4 −1.6497·10−4 -

εzz 8·10−4 8·10−4 8·10−4 8·10−4 -

2εxy 2·10−4 4.0576·10−4 3.2781·10−5 4.6524·10−5 -

2εxz 4·10−4 8.1990·10−4 6.3082·10−5 6.8347·10−5 -

2εyz 6·10−4 1.2294·10−3 9.4964·10−5 1.0282·10−4 -

σxx 28.0887 24.3656 31.0563 31.1138 MPa

σyy 27.1241 23.6353 29.8827 30.0531 MPa

σzz 51.7193 20.9345 79.2065 64.1572 MPa

σxy 0.9647 0.7304 1.1736 1.0608 MPa

σxz 2.2316 1.4758 2.8276 2.8731 MPa

σyz 3.3459 2.2130 4.2398 4.3056 MPa

Ex 1·10−4 3.8331·10−4 −1.2906·10−4 −1.1634·10−4 GV/m

Ey 2·10−4 6.8614·10−4 −1.9248·10−4 −1.7367·10−4 GV/m

Ez 1·10−4 1·10−4 1·10−4 1·10−4 GV/m

Dx 2.4798·10−5 1.4259·10−5 6.5144·10−5 −1.0283·10−4 C/m2

Dy 4.3609·10−5 2.5524·10−5 1.0543·10−4 −1.4378·10−4 C/m2

Dz 5.3976·10−3 3.7200·10−6 8.4651·10−3 1.5031·10−2 C/m2

Table 2: Macroscopic and average microscopic fields in a coated fiber composite with fibers volume fraction 45% and

ρ = 0.9.
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Appendix A. Eshelby tensor for infinitely long cylinder in piezoelectric material

In a piezoelectric material, the constitutive law equations (1) can be expressed in the global

matrix form

Σ = L · Z, (A.1)

where Σ and Z are the stress/electric displacement and strain/electric field tensors respectively,

written as 9×1 vectors

Σ =


σ

D

 =

[
σxx σyy σzz 2σxy 2σxz 2σyz Dx Dy Dz

]T

,

Z =


ε

−E

 =

[
εxx εyy εzz 2εxy 2εxz 2εyz −Ex −Ey −Ez

]T

, (A.2)

and L is the symmetric global piezoelectric tensor, written as 9×9 matrix

L =


C e

eT −κ

 . (A.3)

Dunn and Taya (1993) have obtained analytical expressions for the Eshelby tensor, S, consid-

ering a transversely isotropic piezoelectric material, written in the grobal form (A.1), and infinitely
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long cylindrical fiber. In Voigt notation, S is expressed as

S =


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. (A.4)

Considering a fiber with piezoelectric properties L1, the dilute concentration tensor of the com-

bined electromechanical problem is connected with the above Eshelby tensor through the classical

relation

T =
[
I + S: L−1: [L1 − L]

]−1
, (A.5)

where I is the extended identity tensor, which in Voigt notation is written as the 9×9 identity

matrix. Substituting L with L0 and accounting for the negative sign of the electric field, renders a

T that is equivalent to the system of the four dilute concentration tensors obtained in section 3.
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Appendix B. Dilute concentration tensors based on the Koutsawa et al. (2010) theory

For a composite with multi-coated ellipsodal shape particles, Koutsawa et al. (2010) have

identified global thermo-electro-elastic concentration tensors of all phases for the self consistent

method and have obtained the macroscopic thermo-electro-elastic properties. When considering

the Mori-Tanaka method, these global concentration tensors can be translated to dilute concentra-

tion tensors, if one substitutes the effective medium with the matrix (Chatzigeorgiou et al., 2018).

This Appendix presents the essential points of the Koutsawa et al. (2010) approach for obtaining

dilute piezoelectric concentration tensors for a coated, infinitely long fiber with a single coating

layer.

Z0

Ω0

Ω1

r1
Ω2

r2

Figure B.1: Coated fiber with a single coating layer inside a matrix, subjected to uniform strain and electric field at

far distance. All phases are piezoelectric materials.

The Eshelby inhomogeneity problem considers a piezoelectric coated fiber embedded inside

the linear piezoelectric matrix, (Figure B.1). The fiber occupies the space Ω1 with volume V1, its

coating the space Ω2 with volume V2, and the matrix occupies the space Ω0, which is extended to

far distance from the fiber. Adopting the notation of Appendix A for the combined electromechan-
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ical constitutive response, the matrix is subjected to uniform strain/electric field extended vector

Z0 at the far field. The interface between each phase is considered perfect. The ratio between the

fiber radius r1 and the external radius of the interface r2 is denoted as ρ = r1/r2. The matrix is

characterized by the piezoelectic tensor L0, the fiber by the tensor L1 and the coating by the tensor

L2.

The piezoelectric properties in this Eshelby problem vary spatially and can be expressed in the

differential form

L(x) = L0 + δL(x), x ∈ Ω, (B.1)

where Ω denotes the total space Ω = Ω0 ∪ Ω1 ∪ Ω2 and δL(x) denotes spatial alteration of the

matrix properties at the region of the coating and of the fiber:

δL(x) = [L1 − L0] θ1(x) + [L2 − L0] θ2(x),

θ1(x) =


1 ∀x ∈ Ω1

0 ∀x < Ω1

, θ2(x) =


1 ∀x ∈ Ω2

0 ∀x < Ω2

. (B.2)

Employing Green’s formalism, the simplified equation for the Z vector at any point is written

(Korringa, 1973; Zeller and Dederichs, 1973)

Z(x) = Z0 −
∫

Ω

Γ0(x − x′):δL(x′): Z(x′)dx′, (B.3)

where Γ0(x − x′) is the piezoelectric modified Green’s tensor. Averaging over the space Ω1 ∪ Ω2

of the fiber/coating system yields (Koutsawa et al., 2010)

Zc = Z0 − ρ2 S(L0): L−1
0 : [L1 − L0] : Z1 − [1 − ρ2] S(L0): L−1

0 : [L2 − L0] : Z2. (B.4)

In the above expression, Z1, Z2 and Zc are the average Z tensors in the fiber, the coating and the

fiber/coating combined system respectively, connected with the relation

Zc = ρ2 Z1 + [1 − ρ2] Z2, (B.5)

while S(L0) denotes the extended Eshelby tensor that depends on the matrix properties and the

shape of the coated fiber system, which is infinitely long cylinder. Appendix A gives the analyt-

ical form of this tensor for transversely isotropic material response. The connection between the
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average Z tensors in the fiber and the coating is given with the help of Hill’s interfacial operators.

The jump of Z across an interface between two materials is given by

Z+(x) = [I + P(L2): [L1 − L2]] : Z−, (B.6)

where I is the extended identity tensor and P(L2) is the interfacial operator, which depends on

the coating properties. At this point, the main approximation is that the Z− is substituted with the

average value Z1 in the fiber. With this assumption, accounting for the homothetic topology of the

fiber and the coating and averaging (B.6) over the space Ω2 yields

Z2 =
[
I + S(L2): L−1

2 : [L1 − L2]
]

: Z1. (B.7)

S(L2) denotes the extended Eshelby tensor, which is a function of the coating piezoelectric tensor

and the shape of the fiber. For multiple coating layers, equations similar to the last one connect

the strain/electric field combined vectors between two consequent layers.

Expression (B.7) is exact only when the strain and the electric field inside the fiber is uniform.

For single layer coated fibers, the four boundary value problems of section 4 show that only the

case of transverse shear renders non-uniform strain inside the fiber: the term Ξ
(1)
1 of equation (51)

is generally non-zero, and thus the shear strain inside the fiber depends quadratically on the radial

distance. As demonstrated in section 5, this non-uniformity has a practically insignificant effect in

the macroscopic transverse shear modulus.

Combining (B.4), (B.5) and (B.7) and after some algebra, one obtains

Z1 = T1: Z0, Z2 = T2: Z0,

T1 =
[
ρ2 N10 + [1 − ρ2] N20: N12

]−1
, T2 = N12:T1, (B.8)

with

N10 = I + S(L0): L−1
0 : [L1 − L0] ,

N20 = I + S(L0): L−1
0 : [L2 − L0] ,

N12 = I + S(L2): L−1
2 : [L1 − L2] . (B.9)

The tensors T1 and T2 are the required dilute concentration tensors that can be integrated into the

Mori-Tanaka micromechanical scheme.
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The Mori-Tanaka in this formalism follows the usual procedure for three phase composite:

considering a coated fiber composite with c0, c1 and c2 the volume fractions of the matrix, the

fiber and the coating respectively (see equations (49)), the global concentration tensors for all

phases are written as

A0 = [c0I + c1T1 + c2T2]−1 , A1 = T1: A0, A2 = T2: A0. (B.10)

The macroscopic combined piezoelectric tensor L of the coated fiber composite is then given by

the expression

L = c0L0: A0 + c1L1: A1 + c2L2: A2. (B.11)
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