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Abstract

This paper proposes a micromechanical framework for identifying the macroscopic behavior of
multi-coated long fiber composites, as well as the average electromechanical microscopic fields
of all phases (matrix, fibers, coating layers), generated upon knewn.macroscopic conditions. The
work aims at developing a unified micromechanical appreachithat provides an analytical solution
standing for non-coated and multi-coated long fiber composites with transversely isotropic piezo-
electric behavior. The proposed method solves specifietboundary value problems and utilizes the
Mori-Tanaka homogenization scheme, in which the dilute strain and electric field concentration
tensors are obtained analytically with the help of an extended composite cylinders method that
accounts for coupled electromechanical fields. The capabilities of this homogenization strategy
are illustrated with the help of@wumerical examples, and comparisons with known solutions from
the literature for non-coated and coated fiber piezoelectric composites are provided.

Keywords: piezoelectricity; fiber composites; multi-coated fibers; composite cylinders method.

1. Introduction

Piezoelectric materials are very attractive in applications involving the design of sensors, actu-
ators, transducers, etc. due to their unique capability to convert electrical into mechanical energy.

Using piezoelectric ceramics, like PZT, in bulk form is not always convenient, mainly due to
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their increased weight. To avoid such issues, an efficient solution is to combine these materials
with non-piezoelectric polymers in the form of composites. These advanced composite materi-
als opened new horizons in the development of new transducers and sensors with high strength,
low thermal expansion coefficients, increased thermal conductivities and decreased dielectric con-
stants.

During the last 30 years several models have been proposed in the literature to.study the piezo-
electric and the combined thermo-magneto-electro-elastic response of composites. Dunn and Taya
(1993) have introduced an Eshelby-type approach by identifying appropriate Eshelby and concen-
tration tensors for the combined electromechanical response. This téchnique-later was extended
to account for other phenomena, linear (Li and Dunn, 1998) and'honlinear (Hossain et al., 2015),
while Zou et al. (2011) identified Eshelby tensors for arbitrary shaped piezoelectric inclusions.
Benveniste (1994), based on the initial framework of Benveniste’and Dvorak (1992), studied the
macroscopic response of piezoelectric composites using partially the composite cylinders method.
Aboudi (2001) developed a computational method fop-coupled electro-magneto-thermo-elastic
composites and Lee et al. (2005) have proposedinumerical and Eshelby-based analytical strate-
gies for three phase electro-magneto-elastic ‘composites. Piezoelectric composites (Berger et al.,
2005, 2006; Maruccio et al., 2015)4electro-magneto-thermo-elastic composites (Bravo-Castillero
et al., 2009) and piezoelastic plates-(Kalamkarov and Kolpakov, 2001) have been studied by us-
ing the periodic homogenization theory. A homogenization approach for studying piezoelectric
composites with periodic and random microstructure was proposed by Spinelli and Lopez-Pamies
(2014). Sharma etal. (2007) identified a theoretical framework that describes the conditions under
which non-piezoelectric materials can be used for the design of piezoelectric nanocomposites. Ray
and Batra(2009)developed a micromechanical scheme for studying piezoelectric composites with
square crossssection fibers, and similar technique was developed later for magneto-electro-elastic
with square cross section fibers (Pakam and Arockiarajan, 2014). Koutsawa et al. (2010), using
Hill’s interfacial operators, proposed a self consistent scheme for studying thermo-electro-elastic
properties of composites with multi-coated ellipsoidal particles. Wang et al. (2014) developed a
micromechanical method for piezoelectric composites with imperfect interfaces between the el-

lipsoidal particles and the matrix phase, using the concept of equivalent particle. Piezoelectric
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composites with imperfect interfaces have been also studied by Gu et al. (2014, 2015).

The goal of this work is to develop a unified micromechanical approach aimed at providing an
analytical solution that stands for non-coated and multi-coated long fiber composites with trans-
versely isotropic piezoelectric behavior. Studying the coating between a fiber and a matrix in
composites is of vital importance. A lot of nonlinear deformation mechanisms, like" plasticity
and/or martensite transformation, occur frequently at a small region close to the fibers and lead to
an interaction with the local damage of the fiber/matrix interface (Payandehdet ali, 2010, 2012).
Developing appropriate computational tools that identify the mechanicaland electric fields at the
proximity of the fibers can assist in the design of more accurate damage and failure criteria for
piezoelectric composites.

The developed approach is based on solving specific boundary-yalue problems, extending the
composite cylinders model of Hashin and Rosen (1964). This effort can be considered as a general-
ization of the Dvorak and Benveniste (1992); Benveniste (1994) methodology, providing analytical
expressions of the dilute strain-electric field coupled concentration tensors, which can be utilized
in classical micromechanical techniques, like Mori-Tanaka or self consistent. The advantage of
such information is that it permits to identify.not only the overall response of the composite, but
also the various average electromechanical fields generated at the matrix, the fiber and the coating
layers for known macroscopiceelectromechanical conditions. For non-coated fibers the obtained
dilute tensors are equivalent,with those of Dunn and Taya (1993). To the best of the authors
knowledge, the only available framework in the literature that computes concentration tensors for
piezoelectric composites, with coated fibers is the one of Koutsawa et al. (2010), but it is based
on certain approximations. The approach discussed herein does not require such approximations,
since the golution*proposed in this work for the Eshelby’s inhomogeneity problem is exact.

The organization of the manuscript is as follows: After the introduction, section 2 starts with a
small reécall on the piezoelectricity concepts, and then it describes the Mori-Tanaka type microme-
chanical framework and the general procedure for obtaining the dilute concentration tensors for
composites with transversely isotropic piezoelectric material constituents (matrix, fiber, coating
layers). Section 3 presents the case of non-coated fiber composites and discusses the consistency

of the approach with published results from the open literature. Section 4 discusses the case of
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coated fibers with one coating layer. Numerical examples and comparisons with existing finite
element calculations and other micromechanical approaches are demonstrated in section 5. The
section also includes a study in which, for given macroscopic strain and electric field and known
volume fractions of the phases, all the electromechanical fields at every phase and at the over-
all composite are computed (Table 2). The paper finishes with a section giving some/Concluding
remarks and future developments. For the purpose of the paper’s completeness,.two appendices
at the end of the article provide the piezoelectric Eshelby tensor of Dunn and Taya (1993) and

explain briefly the framework of Koutsawa et al. (2010).

2. Micromechanical approach for a coated fiber/matrix piezoelectric composite

2.1. General concepts from piezoelectricity and notations

In a linear piezoelectric material, the constitutive law that describes the relation between the
stress tensor o, the electric displacement vector D, the strain tensor € and the electric field vector

E is written in the following indicial form (double indices denote summation):
0ij = Cijuen — €ijmEn, D; = eipn&mn + KiE;.
In tensorial notation, the above relations are expressed as
o=C:g-e-E, D=e":e+«-E. (1)

In the above relatiofnis C'is the fourth order elasticity tensor, k is the second order permittivity
moduli tensor and e is the third order piezoelectric moduli tensor. The strain tensor & and electric
field vector+E ‘are related with the displacement vector u and the electric potential ¢ respectively

through the relations
1 T
€= 3 [gradu + [gradu] ] E = —grad¢. (2)
Moreover, the equilibrium and electrostatic equations read

divo = 0, divD = 0. 3)



Unless stated otherwise, the Voigt notation will be adopted in the sequel to represent second, third
and fourth order tensors. The convention used in strains and stresses to replace the indices ij to a

single index k is the following:

ij=11 - k=1, ij=22 — k=2, ij=33 — k=3

ij=12 — k=4, ij=13 — k=5, ij=23 —_."k=6.

2.2. Application of the Mori-Tanaka method
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Figure 1: Unidirectional multi-coated fiber composite. The coating has N — 1 distinct layers.

Let’s consider'a N + 1-phase composite, consisting of a matrix, denoted as 0, and infinitely
long, multi=eoated, cylindrical fibers. The fibers are denoted with the index 1, while the N — 1
coatinglayers are denoted with the indices 2,3,...,N (Figure 1). All phases are assumed to be made
by linear piezoelectric materials. The phases are characterized by their piezoelectric moduli Cy,
e;andk,, q=0,1,2,3,...,N

According to the usual micromechanics arguments, a Representative Volume Element (RVE)

with total volume V is sufficient to describe the overall response of the composite. Each phase
5
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Figure 2: Typical RVE of a unidirectional multi-coated fiber composite.

in the RVE occupies the space Q, (Figure 2)has itS own volume V, and volume fraction ¢, for
q=0,1,2,3,...,N. The classical volume summation rule states that
N N N v,
Svad ) Se=den
q=0 q=0 q=0
The macroscopic strain &, stfess o electric field E and electric displacement D corresponding to
the RVE are computed ffom the-volume averages of their microscopic counterparts at all phases,

i.e.

N N _ N _ N
E= e, T=y co, E=)cE, D= cD, (4)

In these expressions g,, o, E, and D, denote the average strain, stress, electric field and electric
displacement in the gy, phase respectively:

1 1 1 1
sq:Vqus(x)dM a'qzvquqa'(x)dv, ququqE(x)dV, quvqu D(x)dV. (5)

q

The constitutive law of each phase states that

o,=Cye,—-€,E;, D,=el:6,+x,E;, ¢=0,1,23,.,N. (6)
6



The goal of homogenization is to identify a similar type of constitutive law for the macroscopic

quantities, i.e.
c=Ce-¢E, D=¢:5+kE, (7)

where C, k and € are the macroscopic elasticity, permittivity and piezoelectric tensors regpectively.!
The law (7) represents the overall behavior of the composite. According to the Mori-Tanaka
approach, the average fields in the fiber or the coatings and the matrix phase (g =0)/are connected

to each other through the dilute concentration tensors:
g, = T;"’":so + T;”e-Eo, E, = Tfj'”:so + Tze-Eo, q=1,2,3,...,;N. (8)

T;"m are fourth order tensors, written as 6 X 6 matrices, T Zw are third"order tensors, written as 6 X 3
matrices, T f]m are third order tensors, written as 3 X 6 matrices and T;e are second order tensors,
written as 3 X 3 matrices. Combining (8) with (4), 3 and after. some algebra, the following relations

are obtained:

g,=Al"E+A)E, E,=AY&¥ALE, ¢=0,1,2,3,. N, 9)
where
A = [Hmm — e ]! ‘Hem]_l, Ale = AT e
A" = - 7! A, A = (e — eyt mem: me, (10)
and

mm B mm ., mm me em me __ mm ., me me ee
A 2T AR L TIAG, AT = T AR+ T A

em
Aq

ent , mm ee en ee __ ent , me ee ee

for g = 1,233,4.., N. In the above relations,

N N N N
W= ol + ) ¢, 3", ™ = 3" e, W= 3" ¢, 5", M =col + e, T,  (12)
g=1 g=1 g=1 g=1

IContrarily to the electromechanical fields, the macroscopic moduli are generally not equal to the volume averages
of their microscopic counterparts. The Voigt bound, which considers such relation, often provides a poor estimate of

the real response.



while 7 and I, with
1
(L ik = E[éikéﬂ +0u0i], [Ilij = 0;j, 0;;: Kronecker delta,

denote the symmetric fourth order and second order identity tensors respectively. Substituting (9)

in (6) gives

oy = [CpAY" -5, AT |8~ e, AL - C:A)|E,

D, [eng;”’” + Kq-AZ’"] e+ [eg:AZ” + Kq-AZe] E, (13)

forg = 0,1,2,3,..., N. Implementing these results in (4),4 and"eomparing with (7) eventually

yields

a
I

M= 1=

M2

“ [Cq:A:’nm B Sq'AZm] , e Cq [eq-AZe - Cq:AZle] ,

Cq [engZ”" + K, -Af]”’] s K ¢y [engZ“ + Kq-AZe] . (14)

*
Il

1l
(=)
1l
(=)

q q
Of course, the forms of the dilute concentration tensors T;”m, T Zw, T f,”’ and T 2"’ should respect the
compatibility between the equationsi(14), and (14);.

It is worth mentioning that'it4is possible to construct one single dilute concentration tensor
that combines the four tensors of ‘the expressions (8) (see for instance Dunn and Taya, 1993).
The advantage of usingiseparate dilute tensors for each field (mechanical and electrical) and the
couplings arising“from them is that the scheme can be extended more naturally to account for
additional mechanisms. Indeed, one can obtain dilute concentration tensors for thermomechanical
response (Benveniste et al., 1991; Chatzigeorgiou et al., 2018), or for inelastic response, like in

the case of the Transformation Field Analysis approach (Dvorak and Benveniste, 1992; Dvorak,

1992).

2.3. Dilute piezoelectric concentration tensors

For the identification of the dilute concentration tensors, a single linear piezoelectric coated

fiber is assumed to be embedded inside the linear piezoelectric matrix, as shown in Figure 3.
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Figure 3: Coated fiber inside a matrix, subjected to linear displacement and electric potential at far distance. All

phases are piezoelectric materials.

The fiber occupies the space Q; with volume ™V, its coatings the spaces Q, with volumes V,,
qg = 2,3,...,N and the matrix occupies the space €y, which is extended to far distance from
the fiber. The matrix is subjectéd to linear displacement uy, = & -x and linear electric potential
¢o = —E(-x at far distance from thefiber (r — o). The interface between each phase is considered
perfect. The interface between the phase ¢ and the phase g + 1 for ¢ = 1,..., N — 1 is denoted as
0Q,, while the interface between the last coating layer and the matrix is denotes as 0Qy.

The various electromechanical fields generated at every phase g depend on the spatial position,

i.e.
u(‘])(x), s(q)(x), a-(g)(x)’ ¢(4)(x), E(Q)(x), D(Q)(x)’ Yy € Qq- (15)

In infinitely long fiber composites, it is more convenient to describe all the necessary equations
in cylindrical coordinates, by describing the position vector in terms of the radius r, the angle 6

and the longitudinal position z (Figure 4). For transversely isotropic piezoelectric matrix, fiber and
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Figure 4: Cylindrical coordinate system.

coatings, the constitutive law (6) for each phase is written in Voigtnotation as

O-I’V

()]
O gg

(9)
O—ZZ

@ |

[ Krep K -t 0l 0 0 0 || &2 ] fo 0 e |
KS—p' KS+ps I, 0 0 0 il 0 0 e
I b, n, 0 0 (0 &9 0 0 e
_ 0 0 0 u' 00 26\ _ 0 0 0
0 0 0, 0,/u¥ 0 269 eqs 00
0 0% 0 0 0 | 2] | 0 e O

10

>

(16)



The strain tensor and the electric field vector at each phase‘are given by the expressions

(@ (@) (q) @)
@ _ o' @ _ 10uy  wt @ _ ou
gD = g = _ U L TNyl -
" or’ % r 06 FooE 0z’
(@ (@ () (@) (@ @) (@
2@ — ou! N ou,! L0 _ Lau"\ “ou, L0 _ du, . 10w uy
” or oz "% r 08 oz or r 00 r’

E@:_@ﬁi sz_l@@. @ _ 087
’ or’ 4 r 06’ : 0z’
while the equilibrium and eléctrostatic equations are written as
oo 1008 AP -0l ar
or r 00 r 0z ’
00y Aony 20y ool
or r 09 r 0z ’
oo 100y o 9o
ar r 00 r oz 0
oD 10Dy DY 4D® 0

8r+r(99+r+02

e
()]
r - — - 809 — - — -
D\ 0 0 0 0 e, O PO EY
(@
SZZ
@ | = . : (9)
D |=] 0 0 0 0 0 ey +1 0 «x,, O E,
28%)
(@) (q)
»Dz ] | €as1 € Can 0 0 0 ] | 0 0 Kass | ,Ez :
26,9
28(9‘?

(17)

(18)

(19)

The fiber is considered to have radius r = r; and every coating g has external radius r, (Figure

3). The interface conditions between the phase ¢ and the phase g + 1 forg = 1,2,3,..., N — 1 are

11



expressed as

1

U (r,,0,2) = uV(r,, 0,2), P (r,,0,2) = ulV(r,,0,2), u(r,,0,2) = u"(r,,6,2),
1

o P(r,,60,2) = 0TV, 0,2), 7 V(ry,0,2) = 79, 6,2), 7V(r,,0,2) = 79V(r,,6,2),

9014, 0,2) = ¢ V(g 0.2), D1y, 0,2) = D" V(ry, 0.2). (20)
Additionally, the interface conditions between the Ny, coating and the matrix are written,as

uM(ry,0,2) = uO(ry, 0,2), u)(ry,60,2) = ul (ry,0,2), uM(ry,6,7) 2wy, 6,2),
N 0
oM(ry,0,2) = o1y, 0,2), o (ry,60,2) = 71y, 0,2), N (ry, 05%) = O(ry, 6, 2),

¢ (rn,0,2) = ¢V(rn,0,2), D™M(ky,60,2)= DO (ry,60,2). (21)

Following the Eshelby’s methodology, the dilute concentration tensors provide the relationship
between the average strain g, and electric field E, inside’the phase g (¢ = 1,2, 3, ..., N), and the

strain &y and electric field E, at the far field:
Eq = TZ“”IS()-FTZW'E(), Eq = Tgmls()-f-TZe'Eo. (22)

The Mori-Tanaka approach assumes that the strain g, and the electric field E, applied in the far
field of this Eshelby-type problem correspond te the average strain gy and the average electric field
E, of the matrix in the RVE of Figure 2, which are used in equations (8). Using the divergence

theorem, one obtains for the fiber the average fields

: f v : f S 1
g = — eVdv=— —[uVon+neu]ds,
1 Vi Ja, Vi Joa, 2

1 1
E)>="— | EVdv=— f [ ndS, (23)
Q o

1

where n is the unit vector of the interface dQ2;. Due to the homothetic topology of the coated fiber,
the unit vector 1s the same at all interfaces. For all the coating layers, the average strain and electric

field ‘are.defined as

1 f ( 1 1
g,=— | €24V = — | Z[w9®n+neu?]dS
TV Ja, Vy Joa, 2
1 1
- ~[u“V@n+neu"]ds,
Vy Jao,, 2
1 1
E,=— f E?dv = —[ [—¢“1ndS - f [-¢“ Vln dS]. (24)
Vq Q, Vq 0Q, 0Qy-1

12



Obtaining the dilute piezoelectric tensors is not an easy task. For certain, ellipsoidal-type, forms
of inclusions without coating, Dunn and Taya (1993) have computed the Eshelby tensors for the
combined strain/electric field system (see Appendix A for infinitely long fibers). In the present
work, the dilute concentration tensors are computed directly for long coated fiber piezoelectric
composites with transversely isotropic behavior at every phase. To achieve such goal; analytical
solutions are utilized of similar boundary value problems with those of the compesite eylinders
method proposed by Hashin (1990), taking into account the effects caused by/the ¢ombined pres-
ence of mechanical and electric fields. In the pure mechanical problem,similar techniques have
been utilized in the literature to obtain dilute (Benveniste et al., 1989)and semi<dilute (Chatzigeor-
giou et al., 2012) stress concentration tensors, as well as dilute strain cone€ntration tensors (Wang
et al., 2016) for coated fiber composites.

In cylindrical coordinates, the surface element in a“surface/of constant radius r (a vertical
cylinder) is ds, = rdfdz and the surface element in a‘surface of constant z is ds, = rdrd6. For
an arbitrary tensor Q(r, 6, z) and a cylinder of radius 7;,"and length 2L, the sum of surface integrals

with the general form

L 27 27 Ty
F = ! f 0O(ry, 0, 2)d6dz + ! f f [Q(r,6,L) — Q(r,0,—L)] rdrdd, (25)
0o Jo

2Lnr, J_1 Jo 2Lnr;

is required for the computation§,of'the average quantities (23) and (24)%. The three normal vectors

in cylindrical coordinates are'expressed as

cos 6 —sinf 0
n =| sinf |, my=| cosf |, n3=]0 |. (26)
0 0 1

The displacements of the phases are represented in matrix form as

u? = u? ny +ul? my+ u? ny. (27)

Another important point to be mentioned is that in long fiber composites with, at most, transversely
isotropic phases (axis of symmetry: the direction of fibers), the dilute strain concentration tensors

2For infinitely long cylinder, L — oo. To avoid infinite values, the division by volume takes care of L.

13



present transverse isotropy. In Voigt notation, they take the form

T T =Ty 0 0 0 T
ey -Tol  Tay 0 0 0 g
0 0 0 0 0
" , T
0 0 o ™ 0 0 0 4. )0
0 0 o o T™ 0 7 0% 0 (28)
0 0 o 0o o 1™ RS
(o000 T 0] T 0 0]
" = 0000 0 T o= | 0 T¢ 0
(0000 0O 0 0 0 1

To obtain the unknown terms of theseensors, four types of boundary value problems should
be examined. In the sequel two cases.are studied: a fiber/matrix composite without coating and a

fiber/matrix composite with only,oneicoating layer.

3. First case: non-coated fibers

The first studied case\considers non-coated piezoelectric fibers embedded in a piezoelectric
matrix. This is a'well.examined problem in the literature and the scope of this section is to illustrate

that the proposed methodology produces reliable results.

3.1. Axial shear strain and in-plane electric field conditions

For\this case the following displacement vector and electric potential are applied:

, 00D = —yx, (29)

14



These correspond to the following strain tensor (in classical tensorial form) and electric field vector

0 0 B2 y
&= 0 0 0 |. Ey=|0
B/2 0 0 0

In cylindrical coordinates, the displacement and electric potential are transformed to

0

w09 = 0 (0.2 _

0 , o —yrcos 6.

Brcos 6

For these boundary conditions, the displacement vector and electric potential at the matrix (g = 0)

and the fiber (¢ = 1) are given by the general expressions

1
u(r,0) = Pru@(rcosd, u? =u =0, \UDr) =8P +EY——,
[r/r]
_ _ 1
P, 0) = —yr®P(r)cos, QD)= 5(3”) + :ff’)—z. (30)
[r/r1]
where Ef"), i = 1,2,3,4, are unknown constants. These general expressions lead to stresses and

electric displacements that satisfy the equilibrium and electrostatic equations (19). The important

stresses and electric displacementsfor identifying the unknown constants are

F0(r.0) = [B IOy B | cosh,  DO(r,0) = |B DI(r) +y DEV(r) | cos 6,

1

T /)2

1
e(q) _ =@ _ =@
’ Zrz (r) - 66115 |:“‘3 =4 [r/r1]2:| s

[ 1] 1
Dm(q) r) =e E(‘I) _ E(Q)— , De(q) r) =k E(Q) _ E(CI)— .
A" T > [r/n)?] P )= K | Y r/nP?

The boundary conditions that should be satisfied in this boundary value problem are

(1) (1) : _ =) _ =) _
u;’ and ¢’ finiteatr =0 — E7=5,"=0,

uP(r — 00,0) = Brecos6 and ¢V(r - c0,0) = —yrcosf — E(IO) = 5(30) =1. (31)
Considering these results, the interface conditions

u(r,0) = u®(r1,0), P(r1,0) = 0r1,0), ¢V0,0)=¢O0,60), DV(ri,0) = DO(r,0),
15



construct the linear system

K- BI"+yI’l- [E"+E]=B8Fz+yF,,

with
| | 0 0 1 0 00 0 0 050
MY MG —ens  —eogs 0100 0,00 0
K = , Im: , Ie: ,
0 0 1 -1 0 00O 0010
| €15 €05 Kiy Koy | »0 00 0_ »O 00 1_
[ ) = ! w %o )
= :_51 g, OO], ==[OOE3 34],
- T .
F,B = 1 ,USX 0 6015] ’ FV:[O €05 1 KOII] :

The solution of this linear system is written in the form

=" = 1" |KFy+ LKAF, | B = 1 EK_l'Fﬂ‘i‘K_l'Fy .
B Y

After some algebra, the following results are obtained:

B = Bi+ ? B, Y = £ B3 + By,
B Y
€05 [6115 + 6015] +#?)X [Kln + K011] €1,5K0,, — €0i5K1,

By =2 2 o oy 272 2 x o x|
[ells + 6015] + [Kln + K011] [/11 +:u0 ] [6115 + 6015] + [Klu + KOn] [ﬂ] +/lo ]

ax ax

€ ,u“" — e ,ua" €0;5 [6115 + 6015] + Koy, [lul T Hy ]

B3 =N 151 15170 B4 -2

[6115 + 6015]2 + [Klll + K011] [ﬂ?x +'u3x] [6115 + 6015]2 + [Klll + Koll] [:uzllx +/l3x]

16



Implementing the transformations (25), (26) and (27) in (23) yields the average strain and electric

field inside the fiber,
0 0 8/2]
e =U e — &=B| 0 0 0 |[+B
B/2 0 0 |
B Y
E =dV(r)E, — E =B;|0|+B:]0
0 0

0 0 vy/2
o 0 o0 |,
v/2 0 0

Comparing these results with the expressions (22) and (28) it becomes,clear that

€05 [ells + 6015] + IJSX [K111 + K011]

€1,
T = —=| =B = )
55 2
B/ y=0 [6115 + 6015] + [K111 + KOH] [luz;x +IU?)X]
Tﬁi _ 813 —B,=2 e2115K011 = €0,5K1, ' —,
7/ IBZO [6115 + 8015] + [Klll + KOI]] I:ucllx +l18x:|
em E;, _ _ 6015/421“ - ellsﬂgx
T115 - 7 _B3_2 2 ax ax ]’
v=0 [6115 + 6015] + [K1|1 + KO]I] [lul +/’l0 ]
E €o,s [er,s + eos] + Koy, [uf* +
T = —| =By=20— | ] : (32)
Y lmo [e1,, + o, + [k, + Ko, ][ + 1]
3.2. Transverse shear strain_ conditions
For this case the folowing displacement vector is applied:
By
(x,y,2)
uOXyZ = ﬂx s (33)
0

which, corresponds to the strain tensor (in classical tensorial form)

080
B 0 0
00 0

&) =
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In cylindrical coordinates, the displacement is transformed to the vector

Brsin 26
llgm Brcos 26
0

For these boundary conditions, the displacements at each phase are given by the géeneral expres-

sions

u9(r,0) = BrU?(r) sin20,

w(r,0) = BrUY(r) cos2d,

- g ! Kiwd 1

U9Dr) = 4 rrPE@ L 5@ _ =@ =@ i
T e R T T A T PP o
@ 2m@) | =(@) |- |-

Ul = [r/nPE” +E + = = (34)

[/ 2 e 12
where the unknowns that need to be defined are ‘the ”(q), i = 1,2,3,4. These expressions lead

to stresses and electric displacements that satisfy. the,equilibrium and electrostatic equations (19).

The important stresses for the calculations are'given by

c9(r,0) = BI(r)sin26,
o ?(r,0) = BTY () cos26)

1 1
3@ = =Dy 6 ~(q) — 4K E(q),
) = i

1 1
2= (q) r=(q) =(@) tr =(9)
[r/r I°E) + 2u,E; 6,uq[ " ]4_3 +2Kq—[r/r1]zu4 .

tr, tr

6Kqﬂq

Z(Q)
(r) 2K 1

The boundary conditions that should be satisfied in this boundary value problem are

u, u? finiteat r =0 — =V =2"=0,

WO (r — 00,0) = Brsin20 and u(r — 0,6) = frcos20 — E(IO) =0, 2V =1. (35

b ‘—‘2
Considering these results, the interface conditions
1 0 1 0
u(r1,0) = uw¥(r1, ),y (11, 0) = ug (11, 0), 0,)(r1,0) = T(11,60), 0,11, 0) = 0771, 6),
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construct the linear system

K-ZE=F,
with
Ky -y | Keeu
2K + ] i =0 |
1 1 -1 -1
=(1)
B, |
K = , &= =
0 2/1{1‘ _6/1{1' 4Ktr 0 .
1 0 0 :‘(3) 2/"})
6Ktrﬂtr
1H
I S 2 tr 6 tr _2Kt1‘ —(0
2Ky +uy 0 | =] | 245 |
The solution of this linear system gives
tr T tr
= _ o =) _ 214 [Ké +“0]
I—dl - b) o =

Dpye + K |+
Implementing the transformations (25), (26) and (27) in (23) yields the average strain inside the
fiber,

1 1 —~(1
(WD) + U] e0 — & =2 &.

| =

EL=

Comparing these results with the expressions (22) and (28) it becomes clear that

mm Ly —~(1) 2#3 [I<(t)r + ,ug]
T144 - :8 == T tr, tr tr |, tr ]’ (36)
2ppy + Ky [:“1 +:“o]
3.3. Plane strain and axial electric field conditions
For this case the following displacement vector and electric potential are applied:

Bx
ul™ =1 gy |, oD = —yz, (37)

0
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These correspond to the following strain tensor (in classical tensorial form) and electric field vector

B 0 0 0
&=(0 8 0|, Ey=|0
000 y

In cylindrical coordinates, the displacement and electric potential are transformed to

Br

(r0.z) _ (r8,2) _

uor ) 0 , Or ) _ —vz.
0

For these boundary conditions, the displacement vector and electric potential at the matrix (g = 0)

and the fiber (¢ = 1) are given by the general expressions

1
(@ @ _ (@ — @ — =@ | =@
pru, (), uy =u =0, U(r) = 2" + 5, [r/r]?

—yZ, (38)

1 (r)

¢(q) ()

where EE"), i = 1,2, are unknown constantss, These general expressions lead to stresses and electric
displacements that satisfy the equilibrium andielectrostatic equations (19). The important stresses

for identifying the unknown constants are

Ze(q) — (@)
rr

_ — 1
T (r) = BELO(r) £y ZiM 2 O0) = 2| KGEY - pgES? €51 -

The boundary conditions that should be satisfied in this boundary value problem are

uﬁl) finiteatr =0 — D(Zl) =0,

uO(r » 0y =pr — DY =1. (39)
Considering these results, the interface conditions
u(ry) = u(ry), o) () = o)),
construct the linear system

KE=F;+1F,
ﬁ Y
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with

1 -1 = 1 0

>
Il
[l
Il
=
|
31
Il

t t —(0)
2K1r 2/,(5 =5 ZKg €13, — €05

The solution of this linear system gives

Ktr+ tr e —e
=) =B, +1B, B=-L_t0 p= "% (40)
B K + 2K+ 2,

Implementing the transformations (25), (26) and (27) in (23) yields the‘average strain inside the
fiber,

B0 0 7% 0
e =UVr)e — & =B0 B 01%B[)0 v 0 |. (41)
0 00 0 0O

The general form of the dilute concentration tensors (22) and (28) permits to write

e, = RTESSTUYB+ T y

144 131

From (40) and (41), it becomes clear that

g
3.4. Hydrostatic strain_conditions
For this case the following displacement vector is applied:
Bx
ug?? =\ gy | (43)
Bz

which corresponds to the strain tensor (in classical tensorial form)

8 0 0
&=|0p80

00p
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In cylindrical coordinates, the displacement is transformed to the vector

Bz

For these boundary conditions, the displacement vector and electric potential at the natrix (g = 0)

and the fiber (¢ = 1) are given by the general expressions

1
W (r) = BrU?(n), u =0, W@ =pz,  UL(r)=EDG 2P e @d)
1

(9)

where £, i = 1,2, are unknown constants. These general expressions,lead to stresses and electric

displacements that satisfy the equilibrium and electrostatic equations (19). The important stresses

for identifying the unknown constants are

1
o) =), () =2|KrEW - pyrEY —— |+

T2 2

The boundary conditions that should be satisfiedin this boundary value problem are

uﬁl) finteatr =0 — D;l) =0,

WO(ro e0)=pr - DV =1. (45)
Considering these results,theiinterface conditions
1 0 1 0
u(r)) = uP(ry), o) = o),

construct the linear system

K-E=F,
with
—~(1)
1 -1 £ 1
K= , E= , F=
2K 2ul 2y 2K + 1y~ 1



The solution of this linear system gives

t t

—o _ Ko+ N lo -1

=1 T pt tr tr tr*
K" +puy 2K+ 2u

(46)

Implementing the transformations (25), (26) and (27) in (23) yields the average strain inside the
fiber,

e =UNr) e — &=2"s. (47)
The general form of the dilute concentration tensors (22) and (28) permits to write

81 — [2TII:};"[ _ Tmm + Tﬂlﬂl] ﬁ-

xx 14 113

From (46), (47) and (42), it becomes clear that

ly—1
o — 00

. Rk S 4
L3 2K;r+2lug ( 8)

3.5. Macroscopic properties

The dilute concentration tensors (28), whose terms are given by (32), (36), (42) and (48), are
equivalent to the global piezoelectric concentration tensor provided by Dunn and Taya (1993) (see
Appendix A). Assuming that thevelume fraction of fibers in the composite is ¢ and applying
the Mori-Tanaka scheme, as deseribed in subsection 2.2, the following macroscopic properties are

obtained:

o eKiug + Ky | K — euf i |2y + K [ — enty + iy + ]|

Ktr — —tr —
tr tr tr tr ’
cKy — Ky A Ky + 1y 2ug [c,ug —cuf + ,u‘lr] + Ky [,ug +cpy + Y - cyt]r]
_ [1—c][K§r+ug]lo+c[Kg+/,tg]ll - Z W
cK{ — cK\' + K + pfy ’ cKy — cKV' + K" + 1y H w,’
ce; [K‘r + ,u“] +[1 = cley [K“ + y“] 7 1%
Gul = 31 0 0 31 1 0 Gar = ) - W3
! cKY — cK" + KV + uf LR T Ky KV KT s TR T Wy

W, _
K11 = 7 K33 =
Wl’

Z3
cKy — cK'" + K + p1f)”
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where

Z, =

Wi

W3

c? [[lo -1 - [Kg - K{r] [no — n]]] + [ng — cng + cny ] [K;r + ,ug]

—c|llo = hT* +no |[KT - K|

C2 [[I<(t)r - Kir] [6133 - 6033] + [lo - 4] [6031 - 6131]] + [6033 —Cepy; t 66133] [K;r + :ug]

+C [[lo - ll] [8131 - e031] + €033 [K(t)r _Mg]] ’

_Cz [[6031 - 6131]2 + [K(t)r - K;r] [K033 - K133]] + [K033 — CKoy; + CK133] [K;r + ,Ltg]

+c [[8031 - 613|]2 + Koss [K(t)r B Kir” ’

[1+ cPleo,s ] +2[1 = Plegser,s + [1 = cllen,, ]2

+ [ko,, + ckoy, + K1y, — ckyy | UGS + el + pi — e

21 - cPegger, il + [1 = 1 |[er, 1 + legn ) | + dcleo, i

+ [ko,, + ckoy, + K1,y — ckiy | G —ocpdt Pl + el ug,

[1 = 1 [leo,, ]’ + ler,Peo,, | #]201 % cPleo, I + dexo, 5" 1,

H = el Koy, (1" + cpg” +p =] + &1y, 16" = cpg” + pi™ + ] ey
21 - cPeo,ser,sk0,F [1% 1 [[er,, ] + [eo, 1P| ko, + 4cleo,, P,

ax ax ax ax
+ [KOII — CKo,, & Kt CKlll] [/JO +cuy + U — oy ]KO]I'

The obtained solution reSpects. the compatibility condition between equations (14), and (14);.

The above properties.agree with the findings of Benveniste (1994). The transverse bulk modulus

K" is given by the same ‘expression, while for the transverse shear modulus 1", Benveniste also

concluded thatit depends exclusively on the mechanical properties. For calculating g™ he proposed

the use of the Christensen and Lo (1979) approach, which is a generalized self consistent method

and provides quite similar results with Mori-Tanaka. The rest of the properties satisfy the universal

relations (Benveniste and Dvorak, 1992)

Ky —K" Kf—K"  ch+[l-cllp—1 _ cey, +[1=cleg, — &

l() — Z ll —Z cnD + [1- C]n(o) -n ceg? +[1- c]e(o) €33 ’

33

Ky K" Kf—K"  chi+[l-clly—1 _ & —ce, —[1-cle,

0)

— — _— 1 _ - — Py
eo, —€31 e —e3 el +[1 - cles; —eyy  CKiy + [1 = clkoy; — K33

33
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and

74X

M €15 —Kn

Det /ji‘x el —Ki, =0.

ax
| Hy €05 —Koy, |

There are two main advantages of the proposed methodology compared to,that.of Benveniste
(1994): a) The computation of the strain and electric field concentration tensors allow the iden-
tification of the microscopic electromechanical fields for known macroscopi¢ fields. Such infor-
mation can be very valuable for detecting possible inelastic mechanisms due to high stresses in
the matrix or the fiber. b) The dilute concentration tensors can be’used into the Mori-Tanaka
scheme for obtaining the macroscopic response of composites~with more complex microstruc-
ture, for instance with two different types of fibers, or.the same fibers with random orientation

(Chatzigeorgiou et al., 2012; Seidel et al., 2014).

4. Second case: fibers with one coating layer

In this second studied case, the composite consists of coated fibers and matrix. Each fiber has
radius » = r; and is coated withia layer that has external radius r = r,. In the sequel, the ratio
p = r1/r, will be utilized.. Considering as ¢ the volume fraction of the fibers, the coating layers
and the matrix volume fraction can be computed through the ratio p. Indeed, the volume fractions

of all the phases,(fibet, coating, matrix) are

cl=c, m=—s-c cq=l-c-c=1-=. (49)
P P

The dilute.concentration tensors are computed with similar boundary value problems as those dis-
cussed in the previous section. Here, only the essential different points are going to be presented.
For the sake of the procedure’s simplicity, only one coating layer is considered for this section.

Nevertheless, the approach is general and the addition of more coating layers is straightforward.
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4.1. Axial shear strain and in-plane electric field conditions

Similarly to the non-coated fibers, the infinite matrix is subjected to the far field displacement
vector and electric potential of (29). For all phases (matrix, fiber, coating) the general expressions
(30) for these fields introduce 12 unknowns (4 constants per phase). After eliminating four from
the boundary conditions (31), the rest of the unknowns are identified from the interface conditions
that hold between the fiber and the coating and between the coating and the matrix:“The produced

system of linear equations take the form

K-[BI"+yI| - [E"+E]1=BFs+vF,,

with

1 -1 -1 0 0 0 0 0
0 1 p? —p? 0 0 0 0

llellx _/13X lu;x 0 —€lis €25 —€5 0
0 ’ugx _pzﬂ;x pZIugx 0 —es,. 102@215 _p26015

K = ’

0 0 0 0 1 -1 -1 0
0.%0 0 o 0 1 P —p

€ljs" —€;s €25 0 K1y —K2y, K2y 0
0 ey —pey ple; 0 Ky —pky,  PKoy,
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The solution of this linear system is expressed as

g =1 K_I‘F,8+ZK_1'F , =Rl ’§K‘1-F/3+K‘1-Fy :
B y

=) =) =0 =(0)
4

Considering the dilute tensors, the important terms =, Z;°, Z,” and E,” can be written in the

general form
E(ll) = Bl + — Bz, = = = Bg + B4, =0 = B5 + — B6, =0 = — B7 + Bg.

Implementing the transformations (25), (26) and (27) in (23) yields the average strain and electric

field inside the fiber,

0 0 B2 | 0 0 y/2
8,=UNr)ey — &=B| 0 0 0 |[+B| 0 0 0 |,
B2 0 0 | /2 0 0
B y |
E; = d"(r) E, - E,=B3| 0 [+Bs] 0
0 0 |

On the other hand, implementing the transformations (25), (26) and (27) in (24) and taking into

account the displacement and electric potential continuity conditions yields the average strain and
27



electric field inside the coating,

o = | — U - L 0p]e
1_p2 z 1_p2 z
X X 0 0 B2 | X 0 0 y/2
1+ p*Bs — p*B Bs - p*B
6 = — PP g o o |+E222E2 0 0 0
1-p 1-p
B/2 0 0 y/2 0 0
©) [t
E, = [1—p2® (rz)—l_pzq) (Fl)]Eo -
. p*B7 — p*B; 1+ p°Bs — p°B,
2 = 1 =2 + 1 =2
P P

0

0

Comparing these results with the expressions (22) and (28) itbecomes clear that

T?" = By,
T}" = Bs,

mm __ 1 +szS _p231
255 T 1 _p2 >
on _ P2B1—p’Bs
215 1 _p2 ’

4.2. Transverse shear straimconditions

2n =

Liys =)P2;
Tlefl = B4’
me _ P°Bs—p°B;
215 T 1_—p2’
ee _ 1+p238 —P2B4

1 -p?

o

(50)

For the transverse shear term of the dilute concentration tensor, the infinite matrix is subjected

to the far field displacement vector of (33). For all phases (matrix, fiber, coating) the general

expressions (34) introduce 12 unknowns (4 constants per phase). After eliminating four from the

boundary/conditions (35), the rest of the unknowns are identified from the interface conditions

that hold between the fiber and the coating and between the coating and the matrix. The produced

system/of linear equations take the form

=
4]
Il
e
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with

Ky -y Ky — 1y : . K+w 0
2KV 4 2KV ut oM
1 1 -1 -1 -1 -1 0 0
0 0 iKg_ﬂg 1 4 2Kg+/“lt2r 4 _ zK(t)r""uBr
2 2K 4 p P tr p P tr
pmeBy * 4 H Ko
0 0 1/p? 1 ot P —p* -
K= s
0 2,ut1r 0 —Zulzr —6,ut2r 4[(;r 0 0
6K§1'u[11' 6Ktr/ltr
tr 22 tr tr tr
_— -— =2 6 -2K 0 0
zK:r_i_/Jtlr 'ul 2K§r+'ut2r #2 'u2 2
0 0 0 2 tr 6 4 tr 4 2Ktr -6 4 tr 4 2Ktr
Hy 0 My P18, L My P~
1 6KYuY
0 0 s 2K++,Z‘r 2uy =60y 20°KY 6p*ul -20°KY
2 2

T T
2| =) =01 =2 =2 =2 =2 =0 =0 = i t
2=z 2V 22 =0 20 gz =0 ] F [0 01 1 0 0 245 2ut

The solution of this linear system is expressed as

Implementing the transformations(25), (26) and (27) in (23) and (24) and taking into account the
displacement continuity conditions yields the average strain inside the fiber and the coating,

tr
3I<1 —(1) —(1)
tr tr'z‘l +':‘2 €0,
4K + 2u]

1
&= E [Uﬁl)(}’l) + Uél)(}"l)] & — & = [

P

2[1-p?]

Ko+ 2ug 20 _ 2 3KY =) _ng(l)] &
uy Y 4KV + 2p ! 2

UO(r2) + U (r2)] -

T [zu—-pz][ U0 + Ué”“’l)]]b‘o -

1
=T

& 1+p

Comparing these results with the expressions (22) and (28) it becomes clear that

tr
mm 3K1 =), =0
Ll4a 4K + 2 L
1T A
T 1 4 Ky + 2#35(0) _ o 3KY =0 _ 20 51)
244 l_pz zﬂg 4 4Kir+2/ltlr 1 2 |
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4.3. Plane strain and axial electric field conditions

Similarly to the corresponding boundary value problem of the previous section, the infinite
matrix is subjected to the far field displacement vector and electric potential of (37). For all
phases (matrix, fiber, coating) the general expressions (38) introduce 6 unknowns (2 constants per
phase). After eliminating two from the boundary conditions (39), the rest of the unknowns are
identified from the interface conditions that hold between the fiber and the coating and between

the coating and the matrix. The produced system of linear equations take theform

- Y
K-= = Fﬁ + B Fy,
with
1 -1 -1 0
0o 1 PP
K = ’
2KY 2K 2p5\ N0
0 2Ky w2075 2p%f |
_ T T
= = E(ll) E(lz) 5(22) E(zo) ] s Fﬂ = [ 010 ZK(t)r s
_ T
Fy = 0 0 €15 — €23, €25 — €y ] .

The solution of thi§ linear system is expressed as

(1]

=K' Fy+ %K‘l .F,.

Considering-the dilute tensors, the important terms E(ll) and 5(20) can be written in the general form
2V =B +2B, ="=8y+2B8,
B B
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Implementing the transformations (25), (26) and (27) in (23) and (24) and taking into account the

displacement continuity conditions yields the average strain inside the fiber and the coating,

B0 0 vy 0 0
g = UP(r)eo=Bi|0 B 0|+B|0 y 0],
0 0O 0 00
©0) P
& = l—pZUr (Fz)—l_—szr (r1)| &o
2 2 B 00 P 2 TRE
_ 1+p°Bs—p°B, p By —p"By
= o 0 8 0|+ [0 %
000 0~0 O

The expressions of the dilute concentration tensors (22) and. (28) permit to write

e, = RTI = T B+ Ty, &, = RTom =T B+ Th y.

44

From these results it becomes clear that

p°Bs—p°B,

mi 1 1 " 1 +p2B3 _p231 1
T = —B, +=T", T =B, Ti= + T TR =
11 11 2[1 _pz] I 31 1 —P2

2 2 lag ° 13;

. (52)

4.4. Hydrostatic strain conditions

For the remaining terms of the.dilute mechanical concentration tensors, the infinite matrix
is subjected to the far field displacement vector (43). For all phases (matrix, fiber, coating) the
general expressions (44) introduce 6 unknowns (2 constants per phase). After eliminating two
from the boundary conditions (45), the rest of the unknowns are identified from the interface
conditions-that hold between the fiber and the coating and between the coating and the matrix.

The produeed system of linear equations take the form

K-

1

- F,
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with

1 -1 -1 0
0 1 p2 _p2
K = ,
2K 2KY 245 0
0 2Ky 207Uy 2p°uf
= 2 2 o | !
= =g g &g Eg>], F:[o 1 bL-1 2KY+lp—1

The solution of this linear system is expressed as

K ' F.

[l
Il

Implementing the transformations (25), (26) and (27) in.(23) and (24) and taking into account the

displacement continuity conditions yields the average strain inside the fiber and the coating,

g = UL g = 5(11) &0,
| Y 1+ 220 _ 250
& = U () = %= U"(r) | &0 = &.
1-p2 1= p? 1 -p?

The general form of the dilute‘cencentration tensors (22) and (28) permits to write

e, = 21 =T, + T{'1B, &, = 12157 =Ty, + 151 B.

T Tug 113 244

From these results(it becomes clear that

2=(0) 2=(1)
1 +p°E)" —pE|

1-p?

(1
T = g0 —omm g im =
13 1 11 44 13

— 2T 4 Ty (53)

244 *

The dilute.concentration tensors (28), whose terms are given by (50), (51), (52) and (53), can

be direetly utilized in the Mori-Tanaka scheme, described in subsection 2.2.

5. Numerical examples

To illustrate the capabilities of the proposed methodology, several numerical studies are per-

formed. In the following examples the matrix phase is considered a non-piezoelectric epoxy, the
32



fibers are PZT-7A and the coating layers (if they exist) are made of PZT-5. The piezoelectric
properties for these materials are taken from Berger et al. (2005, 2006) and they are summarized
in Table 1.

In the first example, no coating phase is considered. Several macroscopic piezoelectric prop-
erties of the fiber composite as a function of the fibers volume fraction are illustrated in Figure 5.
In the same plots the numerical results of Berger et al. (2006), which solve pefiodicunit cell prob-
lems with hexagonal arrangement of the fibers through finite element calculations, are utilized as
reference values. As shown in the Figure, except from a slight under-prediction in the transverse
shear modulus at high fiber content (above 50% volume fraction), the analytical method provides
excellent accuracy in identifying the macroscopic response of‘the-eomposite. As expected, the
absolute values of the electromechanical properties show significant increase, almost exponential,

at above 50% fiber volume fraction.

material\parameters

material n ) K" u- u e31 e33 els K11 K33
epoxy 8 4.4 6.2 1.8 1.8 0 0 0 0.0372 0.0372

PZT-7A 13139 82712 119.037 35.8  25.696,~ -2.12058 9.52183  9.34959 4.065 2.079
PZT-5 111 75.2 98.2 22.8 21.1 5.4 15.8 12.3 8.11 7.35
units GPa GPa GPa GPa GPa Cm™2 Cm™2 Cm™2 nCV-'m! nCV-Im!

Table 1: Material parameters for the matrix (epoxy), the fiber (PZT-7A) and the coating layer (PZT-5). The values
for the first two materials afe taken from Berger et al. (2006), while for the third material are taken from Berger et al.

(2005).

In the second parametric study, the same macroscopic properties are compared with those
provided by coated fiber composites. The comparisons consider the same fiber content ¢, while
the coating,and the matrix have volume fractions that depend on the radii ratio p = r;/r, between
the fiber and the coating/matrix interface, as given by the expressions (49). Since the coating is
stronger than the matrix phase, increase in the absolute values of the electromechanical properties
is expected for the coated fiber composite. In Figure 6 two coating thicknesses are considered,

one with p = 0.95 and the second with p = 0.90. In the same Figure, the predictions of the
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Figure 5: Macroscopic piezoelectric properties of fiber composites without coating: (a) K™, (b) i1, (c) @*, (d) &3y,

(e) e1s and (f) k;;. Comparison between the proposed method and the numerical results of Berger et al. (2006) using
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proposed method are compared with those obtained by the Mori-Tanaka scheme, when the dilute
concentration tensors are obtained through the Koutsawa et al. (2010) framework. Details about
this approach are given in Appendix B.

The obtained results show that the coupled piezoelectric parameters are the properties with the
highest increase. At 60% fibers volume fraction and p = 0.90, both e53; and ;5 become,more than
140% higher (in absolute value) compared to the corresponding parameters of theé.non-coated fiber
composite. For the same p and fibers volume fraction, the gain in mechanical preperties does not
exceed 55% and in electrical permittivity does not exceed 66%.

The proposed methodology and the one based on the Mori-Tanaka with the dilute concentra-
tion tensors of the Koutsawa et al. (2010) theory (denoted as KBBNC in Figure 6) render exactly
the same predictions for all the macroscopic properties, with, the exception of the transverse shear
modulus. For the u" there is an insignificant difference.(less than 0.1%), which is due to the as-
sumption made by Koutsawa et al. (2010) in thewusage of the iterfacial operators (see equation
(B.7) and the discussion in Appendix B). It is‘worth\mentioning that, in the case of multiple coat-
ings, such assumption affects all the macroseepic properties and it can cumulate a non-negligible
error in the macroscopic response. On‘the other hand, the methodology proposed in this work does
not suffer from this issue, since the Eshelby’s inhomogeneity problem is solved analytically and
the dilute concentration tensors are computed through exact averaging.

As already mentioned:in the previous sections, the main advantage of identifying dilute con-
centration tensors is“that they provide information about the average microscopic fields of the
various phases,-when the macroscopic strain and electric field are known. To demonstrate this

capability, it.is\considered that at a coated fiber composite with fibers volume fraction 45% and
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Figure 6: Macroscopic piezoelectric properties of fiber composites: (a) K", (b) 1", (¢) u**, (d) es1, (e) e15 and (f) k1.
Comparison between non-coated fibers and coated fibers with p = 0.95 and p = 0.90. The dashed lines correspond to
the prediction of the current methodology and the points to the predictions of the Mori-Tanaka scheme with the dilute

concentration tensors according to the Koutsawa et al. (2010) theory.
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p = 0.9, the following uniform macroscopic strain tensor and electric field vector are applied:

g‘xx | V 7 |
o ° E, 1
&, 8 - |
g=| = |= 10, E=|E, |=|2 1042
28, 2 _ m
E, 1
28, 4
L 2‘§YZ ] L 6 J

For these macroscopic conditions, the average microscopic fields at all phases (matrix, fiber, coat-

ing), as well as the macroscopic stresses and electric displacements.are summarized in Table 2.

6. Conclusions

The article presented a micromechanical appreach forjidentifying dilute concentration tensors
for piezoelectric multi-coated, long fiber composites, which can be utilized in classical homoge-
nization schemes, such as Mori-Tanaka anhdsself consistent. The procedure shown here for non-
coated and coated fibers with one layer.is applicable to fibers with multiple coating layers, by
using the boundary value problems and the analytical formalism described in sections 3 and 4.
The extensive comparisons with'known analytical and computational results from the literature
illustrated the method’s reliability and capabilities.

The main advantage of the proposed methodology is that it solves analytically the Eshelby’s
inhomogeneity problem, which in turn permits the exact computation of the dilute concentration
piezoelectric tensors. The described procedure is also easily extendable to account for other types
of mechanisms, like thermomechanical behavior or inelastic response through a transformation
field analysis type approach. In addition, the proposed approach provides new capabilities in
studying piezoelectric composite materials and permits, with proper modifications, to account for
imperfect mechanical (Chatzigeorgiou et al., 2017) and/or dielectric (Chatzigeorgiou et al., 2015)

interfaces between the material constituents.
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Table 2: Macroscopic and average microscopic fields in a coated fiber composite with fibers volume fraction 45% and

p=0.9.

component macroscopic matrix fiber coating units
Exx 7-1074 1.7531-1073  -1.4265-10* —1.4171-107* -
Eyy 6-107 1.5502-107  -1.5904-10* -1.6497-107% -
£ 8-107* 8-107* 8-107* 8-107* 2
2€5y 2-107 4.0576-107*  3.2781-10°  4.6524-1072 -
28y, 4.1074 8.1990-10™*  6.3082-107  6.8347-107 -
2ey, 6-1074 1.2294-1073  9.4964-107° _»1.0282-10~4 -
T x 28.0887 24.3656 31.0563 31.1138 MPa
Tyy 27.1241 23.6353 29.8827 30.0531 MPa
o 51.7193 20.9345 792065 64.1572 MPa
Ty 0.9647 0.7304 1.1736 1.0608 MPa
o 2.2316 1.4758 2.8276 2.8731 MPa
Ty 3.3459 22130 4.2398 4.3056 MPa
E, 1.107* 3.8331-10% —1.2906-107* -1.1634-107* GV/m
E, 21074 6.8614-10* -1.9248-107* -1.7367-10™* GV/m
E. 1-1074 1-1074 1-1074 1-1074 GV/m
D 2.4798-107° 1.4259-10°  6.5144-10> —-1.0283-10™* C/m?
D, 4.3609-1075  2.5524-107  1.0543-10* -1.4378-10™* C/m?
D, 5.3976-1073 3.7200-107®  8.4651-10  1.5031-1072 C/m?
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Appendix A. Eshelby tensor for infinitely long cylinder in piezoelectric material

In a piezoelectric material, the constitutive law equations (1) can be expressed in the global

matrix form

I (A.1)

where X and Z are the stress/electric displacement and strain/electric field tensors respectively,

written as 9x1 vectors

o T
X = = [ Oy Oy 0z 20y 20y 20, Dy D, D, ] ,
D )
€ T
Z = = [ Exx &y Ex 28y 28y 2e, “E. -E, —E, ] , (A.2)
_E ;

and L is the symmetric global piezoelectric tensor, written as 9x9 matrix

L= : (A.3)

Dunn and Taya (1993) have obtained analytical expressions for the Eshelby tensor, S, consid-

ering a transversely isotropic pi€zoelectric material, written in the grobal form (A.1), and infinitely
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long cylindrical fiber. In Voigt notation, S is expressed as

r tr tr tr tr
3K" + 2/,( K 2,[1 [ 0 00 0 0 €3]
AK + 4" AKY + 4t 2KV + 20 2K + 24"
tr tr tr tr
K 2/,( 3K" + 2/,( [ 0 00 0 0 €31
AK + 4" AKY + 4t 2K" + 2 2K + 2
0 0 0 0 0 0 0 O 0
tr tr
0 0 o KA 44 A e
2K + 24"
0 0 0 0 ! Q=0 O 0
S = g . (A4)
1
0 0 0 0 0 3 0 0 0
1
0 0 0 0 0 0 3 0 0
1
0 0 0 0 0 0 O 3 0
0 0 0 0 0 0 0 O 0

Considering a fiber with piezoelectric properties L, the dilute concentration tensor of the com-
bined electromechanical problem is connected with the above Eshelby tensor through the classical

relation
_1 _1
T:ﬁ+sm ﬂh—Lﬂ, (A.5)

where [ is  the extended identity tensor, which in Voigt notation is written as the 9x9 identity
matrix. Substituting L with L, and accounting for the negative sign of the electric field, renders a

T that is equivalent to the system of the four dilute concentration tensors obtained in section 3.
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Appendix B. Dilute concentration tensors based on the Koutsawa et al. (2010) theory

For a composite with multi-coated ellipsodal shape particles, Koutsawa et al. (2010) have
identified global thermo-electro-elastic concentration tensors of all phases for the self consistent
method and have obtained the macroscopic thermo-electro-elastic properties. When €onsidering
the Mori-Tanaka method, these global concentration tensors can be translated to dilute concentra-
tion tensors, if one substitutes the effective medium with the matrix (Chatzigeorgiou et al., 2018).
This Appendix presents the essential points of the Koutsawa et al. (2010) approach for obtaining
dilute piezoelectric concentration tensors for a coated, infinitely long fiber with a single coating

layer.

Zy

Q

Figure B.1; Coated fiber with a single coating layer inside a matrix, subjected to uniform strain and electric field at

far distance. All.phases are piezoelectric materials.

The Eshelby inhomogeneity problem considers a piezoelectric coated fiber embedded inside
the linear piezoelectric matrix, (Figure B.1). The fiber occupies the space Q; with volume V7, its
coating the space €2, with volume V,, and the matrix occupies the space €, which is extended to

far distance from the fiber. Adopting the notation of Appendix A for the combined electromechan-

41



ical constitutive response, the matrix is subjected to uniform strain/electric field extended vector
Z at the far field. The interface between each phase is considered perfect. The ratio between the
fiber radius r; and the external radius of the interface r, is denoted as p = r;/r,. The matrix is
characterized by the piezoelectic tensor Ly, the fiber by the tensor L, and the coating by the tensor
L,.

The piezoelectric properties in this Eshelby problem vary spatially and can be.expressed in the

differential form
L(x) = Ly + 6L(x), x eQ, (B.1)

where Q denotes the total space Q = Qy U Q; U €, and 6L(x)-denotes. spatial alteration of the

matrix properties at the region of the coating and of the fiber:

0L(x) = [L1 — L] 6,(x) + [ — L] 6:(x),

1 Vxe Ql 1 Vxe QQ
01(x) = , (0= : (B.2)
0 Vx¢gQ 0 Vx¢

Employing Green’s formalism, the simplified equation for the Z vector at any point is written

(Korringa, 1973; Zeller and Dederichsy1973)
Z(x) =Zy— fI‘O(x - x"):0L(x"): Z(x")dx’, (B.3)
Q

where I'(x — x’) is the pi€zoelectric modified Green’s tensor. Averaging over the space Q; U Q,

of the fiber/coating system yields (Koutsawa et al., 2010)
Z.=Zo=paSWLo):Ly': [Ly - Lol:Z, — [1 — p*1 S(Lo):Ly": [Ly — Lo] : Z5. (B.4)

In the above expression, Z,, Z, and Z, are the average Z tensors in the fiber, the coating and the

fiber/eoating'combined system respectively, connected with the relation
Zo=p" 2 +11-p"1 2, (B.5)

while S(Ly) denotes the extended Eshelby tensor that depends on the matrix properties and the
shape of the coated fiber system, which is infinitely long cylinder. Appendix A gives the analyt-

ical form of this tensor for transversely isotropic material response. The connection between the
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average Z tensors in the fiber and the coating is given with the help of Hill’s interfacial operators.

The jump of Z across an interface between two materials is given by
Z7(x)=[1+ P(Ly): [L, - L,]1:Z", (B.6)

where I is the extended identity tensor and P(L,) is the interfacial operator, which depends on
the coating properties. At this point, the main approximation is that the Z~ is substituted with the
average value Z, in the fiber. With this assumption, accounting for the homothetie topology of the

fiber and the coating and averaging (B.6) over the space €, yields
Zy = 1+S8(Ly):Ly": [Ly - Lol|: Zy. (B.7)

S(L,) denotes the extended Eshelby tensor, which is a function of the,coating piezoelectric tensor
and the shape of the fiber. For multiple coating layers, equations similar to the last one connect
the strain/electric field combined vectors between two consequent layers.

Expression (B.7) is exact only when the strain and the electric field inside the fiber is uniform.
For single layer coated fibers, the four boundary value problems of section 4 show that only the
case of transverse shear renders non-uniform strain-inside the fiber: the term E(ll) of equation (51)
is generally non-zero, and thus the shear strainvinside the fiber depends quadratically on the radial
distance. As demonstrated in section'd, this non-uniformity has a practically insignificant effect in

the macroscopic transverse shear.modulus.

Combining (B.4), (B.5) and (B:7) and after some algebra, one obtains

Zy =\T:Z,, Z,=T,:Z,
Ty~ [Pz Ny +[1 —Pz] N201N12]_] ) T,=NpT, (B.3)
with
Nio = T+S(Lo):Ly": [L, - L],
Ny = T+S(Lo):Ly":[Ly— L],
Ny, = T+S(Ly):L": [L, - L]. (B.9)

The tensors T'; and T, are the required dilute concentration tensors that can be integrated into the

Mori-Tanaka micromechanical scheme.
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The Mori-Tanaka in this formalism follows the usual procedure for three phase composite:
considering a coated fiber composite with ¢y, ¢; and ¢, the volume fractions of the matrix, the
fiber and the coating respectively (see equations (49)), the global concentration tensors for all

phases are written as
A() = [C()]I +cT) + Csz]_l , A =T, IA(), Ay = TZ:A(). (BIO)

The macroscopic combined piezoelectric tensor L of the coated fiber composite isithen given by

the expression

L=cyLo:Ag+ciLi:A; + Ly As. (B.11)
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