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A graph-based approach for the structural analysis of road and building
layouts
Mathieu Domingo a, Rémy Thibaud b and Christophe Claramunt b

aDepartment of Computer Science, University of Pau and Pays de l’Adour, Pau, France; bNaval Academy Research Institute, Brest Cedex,
France

ABSTRACT
A better understanding of the relationship between the structure and functions of urban and
suburban spaces is one of the avenues of research still open for geographical information
science. The research presented in this paper develops several graph-based metrics whose
objective is to characterize some local and global structural properties that reflect the way the
overall building layout can be cross-related to the one of the road layout. Such structural
properties are modeled as an aggregation of parcels, buildings, and road networks. We
introduce several computational measures (Ratio Minimum Distance, Minimum Ratio
Minimum Distance, and Metric Compactness) that respectively evaluate the capability for
a given road to be connected with the whole road network. These measures reveal emerging
sub-network structures and point out differences between less-connective and more-
connective parts of the network. Based on these local and global properties derived from the
topological and graph-based representation, and on building density metrics, this paper
proposes an analysis of road and building layouts at different levels of granularity. The metrics
developed are applied to a case study in which the derived properties reveal coherent as well as
incoherent neighborhoods that illustrate the potential of the approach and the way buildings
and roads can be relatively connected in a given urban environment. Overall, and by integrat-
ing the parcels and buildings layouts, this approach complements other previous and related
works that mainly retain the configurational structure of the urban network as well as mor-
phological studies whose focus is generally limited to the analysis of the building layout.
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1. Introduction

The representation and analysis of the spatial struc-
ture of geographic spaces are relatively old but still
open research issues for many environmental and
urban sciences. Among many subjects to explore,
a better comprehension of the relationship between
the structure and function of urban and suburban
spaces is one of the directions that offer many
research challenges for geographical information
science on the one hand, and novel methodological
opportunities for environmental and geographical
sciences on the other hand.

The spatial distribution of land ownership, build-
ings and roads is a key factor in the emergence of
patterns in space and time (Hawbaker et al. 2005;
Oliveira 2016). The way that a given urban space
might be either planned or self-organized is closely
related to the underlying properties of the geographi-
cal space, but overall the forms that appear are also
the result of many cultural and social interactions. In
particular, a close analysis of the coherence between
street accessibility and building density is particularly
relevant when evaluating the appropriateness of
a given urban layout when considered from urban
design and planning perspectives. This is a crucial

issue to understand the interactions between urban
and suburban spaces and human development, the
spatial arrangements and morphology that emerge,
and the role and organization of the road network
that constitutes the backbone of the whole urban
system. Indeed, urban spaces have been long shaped
by human beings, by developing activities, building,
routes, and so forth thus generating forms, spatial
arrangements, and clusters. Cities have been long
analyzed from a structural point of view. For
instance, Borrego et al. (2006) categorized three
types of city structures (i.e. compact, disperse, corri-
dor) to study the impact of land use patterns on
urban air quality, and vice versa. A similar approach
has been developed by Steiniger et al. (2008), but the
focus was mainly oriented to the analysis of the built
environment and emerging forms. Despite their
interest, none of these approaches take into account
the specific role and properties of the underlying road
network in the building layout.

However, when considering the spatial and struc-
tural patterns that emerge from a given urban space,
the distribution of the built environment and its
relationships (i.e. accessibility) with the underlying
street network are key factors to take into account.
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This is a key component when the objective is to
provide a better understanding of the overall urban
layout, and this has been hardly considered, to the
best of our knowledge, in previous urban research
and studies (Ewing, Pendall, and Chen 2003; Wells
and Yang 2008) Building layouts can be characterized
by a measure of compactness that combines popula-
tion and building characteristics (i.e. size, density,
distribution, clustering) (Tsai 2005; Berghauser-Pont
and Haupt 2007; Ye and Van Nes 2014; Raimbault
2018). Roads subdivide space and the built environ-
ment, while creating displacement opportunities, and
generate different forms such as regular or irregular
subdivisions, thus reflecting different social, cultural,
and economic patterns (Marshall 2004). For instance,
Hawbaker et al. (2005) highlight the relationship
between road density (i.e. km/km2) and housing den-
sity (i.e. units/km2). Similarly, the space matrix
method quantifies building types at the urban block
level as defined by the underlying road network
(Berghauser-Pont and Haupt 2010). However,
although most of these works propose some valuable
classifications of some urban structural properties
and forms, the intimate relationships between the
structural properties of the road network and the
buildings and parcels distribution are still not taken
into account.

The development of structural and computational
approaches for the representation of urban spaces has
been largely favored by the emergence of graph-based
networks analysis and space syntax since the early
eighties (Hillier and Hanson 1984; Batty and Howes
2001; Herold, Couclelis, and Clarke 2005; Gastner
and Newman 2006; Batty 2013; Barabási 2016).
A given urban environment is modeled as a graph
from a primal approach where edges represent
streets, and nodes represent street intersections, or
as a dual graph where edges represent connection
between street intersections and streets are repre-
sented as nodes (Porta, Crucitti, and Latora 2006a,
2006b; Marshall 2016). The main interest of the pri-
mal approach relies in its intuitive component and
the fact that it can be easily matched with geographi-
cal data models. However, this intersection-centered
approach generates many road segments, thereby
leading to a loss of continuity when representing
the underlying urban network. Conversely, the axial
line approach keeps the notion of road continuity
although road intersections are not directly materia-
lized. Moreover, as noted by Porta, Crucitti, and
Latora (2006b), longer roads are likely to appear
relatively central, being not always the case because
the notion of distance is not directly taken into
account. Overall, these space syntax approaches sup-
port derivation of many graph-based metrics, either
local or global, that favor the analysis of centrality,
cluster, and many indices that can be related to

several urban properties and functional characteris-
tics (Penn 2003; Batty and Rana 2004; Jiang and
Claramunt 2004; Crucitti, Latora, and Porta 2006;
Turner 2007; Ye, Li., and Liu 2018). Despite the
wide success and rapid development of space syntax,
especially when correlating functional properties with
the underlying space structure, the network-based
view of an urban environment can be considered as
an over simplification of the city (Ratti 2004).

When considering urban and suburban contexts, the
structural spatial properties cannot be limited to some
basic network properties, and additional metrics should
be considered when modeling the network configura-
tion, as well as additional structural elements such as
parcels and buildings that cannot be separated (Buhl
et al. 2006). In particular, the influence of the spatial
configuration of parcels and buildings are notably
important in less dense environments such as suburban
areas where the underlying road network is less impor-
tant than in urban areas. In such environments, hamlets
and villages often appear as the conjunction of some
long-term and self-organized process in which build-
ings, parcels, and the road network constitute the basic
abstraction primitives to consider. Overall, built envir-
onments encompass complex spatial organizations that
should be studied according to the structural properties
that emerge from these basic primitives, at different
levels of scale (Chowell et al. 2003; Latora and
Marchiori 2003).

The objective of the research presented in this paper
is to characterize some local and global properties that
reflect the way the overall building layout can be cross-
related to the one of the road layout. This paper sig-
nificantly extends a preliminary graph-based model
introduced in a previous work (Domingo, Thibaud,
and Claramunt 2013) by the introduction of several
graph-based metrics whose objectives are to evaluate
the compactness of the road network and built envir-
onment, as well as their interconnection. The model-
ing approach is applied at different levels of granularity
to potentially identify several local and global cluster-
ing properties. With the application of these metrics,
a distinction is made between homogeneous and het-
erogeneous connected networks, that is, parts of the
network in which roads are relatively well connected,
and the ones with sub-parts of the network that are
loosely connected. A preliminary application of these
metrics to an illustrative case study shows a series of
correlations between the buildings density and the
compactness of the road network, and also identifies
a series of road segment outliers with respect to their
relation with the building layout.

The remainder of the paper is organized as fol-
lows. The next section presents the main principles of
our modeling approach and introduces a series of
graph-based metrics that evaluate the local and global
properties of the underlying road and building
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networks. These metrics make a difference between
compact and non-compact neighborhoods as well as
between different degrees of road and building con-
nections and densities in the urban network. Section
3 introduces a classification that characterizes differ-
ent road and building layouts. Section 4 develops an
application of these metrics to an experimental case
study, while finally Section 5 summarizes the contri-
bution and outlines further works.

2. Graph-based approach

2.1. A graph model

Let us introduce the main principles and properties of
the graph-based modeling approach introduced in
a previous work (Domingo, Thibaud, and Claramunt
2013). An urban and suburban space is formally mod-
eled as a space S defined inℝ2, and is composed by three
categories of regions, namely buildings, parcels, and
roads. Let us denote B the set of buildings, P the set of
parcels, and R the set of roads. A road is here defined as
a route segment (including turns) limited by junctions.
A series of assumptions and constraints are modeled
between these regions, they are as follows:

● Each building b of B is included in a parcel p of
P or in the union of several parcels p1, p2, . . . pn
of P.

● The sets P and R form a partition of S (P ∩ R =∅
and P ∪ R = S).

● The union of all roads of R forms a connected
region.

● Two given buildings, respectively two parcels,
respectively two roads, or respectively one parcel
and one road are either disconnected or exter-
nally connected as defined by the RCC8 algebra
(Cohn et al. 1997).

The relations and constraints above provide the foun-
dations of the graph-based modeling approach (as
shown in Figure 1). First, all regions, parcels, and
roads constitute the elementary nodes of the
graph. Second, edges between these nodes are derived
from the application of the relations identified above.
Two buildings (respectively two parcels, respectively
two roads) in the graph are connected by an edge
when they are externally connected. Similarly,
a parcel is connected by an edge to a road when
they are externally connected. A building is con-
nected by an edge to a parcel when they intersect,
and a building is connected to a road through
a parcel when that building intersects that parcel
externally connected to that road. More formally, let
EB denote the set of edges that connect buildings, EP
the set of edges that connect parcels, ER the set of
edges that connect route segments, EBP the set of
edges that connect buildings to parcels, EPR the set
of edges that connect parcels to roads, and EBR the set
of edges that connect buildings to roads. A peculiarity
of this modeling approach is that it allows to derive
different graphs and overall a complete graph that
combines roads, parcels, and buildings with all
edges derived from all relations mentioned above,
such graph denoted GBPR = (VBPR, EBPR) is given as
VBPR = B ∪ P ∪ R and EBPR = EB ∪ EP ∪ ER ∪ EBP ∪
EPR ∪ EBR.

2.2. Metric compactness operator

2.2.1. Definitions
Many metrics introduced so far by graph-based
approaches allow to evaluate some centrality, cluster-
ing, and other structural properties of a network
(Sabidussi 1966; Hillier and Hanson 1984; Jiang and
Claramunt 2004; Watts and Strogatz 1998; Porta,
Crucitti, and Latora 2006a, 2006b). For instance, the

Figure 1. Graph-based modeling approach. (a) Schematic land configuration example (a) with B= {b1, b2, . . .b6} P= {p1, p2, . . .p13}
and R= {r1, r2, . . .r13}; (b) Graph representation example (adapted from Domingo, Thibaud, and Claramunt 2013).

GEO-SPATIAL INFORMATION SCIENCE 61



average path length of a given node of the network is
given by the average of the shortest distance between
this node and all other nodes of the network, while
the betweeness centrality of a node is defined as the
number of the shortest paths that go through that
node. These two metrics evaluate how distant is the
rest of the network from a given node, and how often
a given node lies in shortest paths, respectively.

Under similar principles, we would like to evaluate
how a given road is connected to all other roads of
a given urban layout. Another objective is to evaluate
the connectivity of each road at different levels of
abstraction by considering the whole to sub-parts of
the road network. The main idea behind this
approach is to evaluate how clustered is the network
at different levels of granularity. While centrality
metrics evaluate the role of the different roads with
respect to the whole network, our objective is to
evaluate how clustered are the roads in the network,
at different levels of granularity. This will allow us to
make a difference between locally-to-globally well
connected roads and loosely connected roads in the
network (note that parcels are not considered at this
preliminary stage). The connectivity of a given road is
here quantitatively based on an evaluation of the
distance between this road and part of the urban
road network. To take into account different levels
of abstraction and then to evaluate some local to
global measures of connectivity of a given road,
these metrics are evaluated on some given parts of
the whole urban road network. Let us successively
introduce these measures as well as their respective
semantics:

(1) How distant is a given road to a given part of
an urban network?

A first metric derives theminimumdistance DX
min rið Þ that

allows a given road ri ∈ R with 1 ≤ i ≤ n, to reach X
percent of the roads of the road network R with Rj j ¼ n.
It is given as follows:

DX
min rið Þ ¼ Min dj

rjjd � drirj
n o���

���
Rj j � X

100

0
@

1
A

8<
:

9=
;

where d is a distance, Min{} is a function that returns
the minimum value of a set, and drirj denotes the
distance (center to center) between the roads ri and
rj. The peculiarity of this metrics is that it is relatively
flexible as the choice of the number of roads to reach
is given by a parameter X: for instance and for
X = 50, and for a given road ri, DX

min rið Þ given by
the minimal distance that allows to reach 50% of the
roads from the road ri. The interest of that parameter
X is that it gives the opportunity to analyze the
structural role played by the given road in the

network at different levels of granularity, that is,
locally for low X value and globally for high X value.

(2) What is the minimum distance that allows all
roads to reach a given part of a road network?

To follow-up, the previous metric is generalized to
derive its minimum value when applied to all roads
of a given network. The Minimum Ratio Minimum
Distance (DX

min) of a road network R is defined as the
smallest value of DX

min rið Þ with 1 ≤i ≤n with Rj j ¼ n.
It is given as follows:

DX
min ¼ Minð DX

min rið Þ� �Þ

The semantics of the Minimum Ratio Minimum
Distance is that it gives the minimum distance that
allows any road to reach X part of the roads of the
whole network. For a given road network, the shorter
the distance, the more compact the road network will
be. Another evaluation of the road network compact-
ness is also derived by a quantitative value as follows.

(3) How many roads a given road reaches for
a Minimum Ratio Minimum Distance DX

min?

For a given road ri, the Metric Compactness MC(ri)
denotes the number of roads reached at a Minimum
RatioMinimumDistance DX

minof ri. It is given as follows:

MC rið Þ ¼ rjjdrirj � DX
min

n o���
���

where drirj denotes the distance between the roads ri
and rj with ri,, rj ∈R. Overall, this parameter evaluates
the degree of connectivity of a given road, but with
respect to only a X part of the roads of the whole road
network.

2.2.2. Structural analysis
One peculiarity of the measure of Metric Compactness
is its flexibility given by the value X defined by the
user, and then its capability for taking into account
different levels of granularity. The smaller X should
emerge local patterns, whereas the higher X values
should highlight global patterns. Figure 2 illustrates
an application of the Minimum Ratio Minimum
Distance DX

min to differentiate “more-connective”
and “less-connective” structures as defined by
Marshall (2004), with “less-connective” structures
corresponding to sub-networks loosely connected
with the rest of the network. Given the threshold
value X, the distribution of DX

min along the whole
road network can highlight connected versus discon-
nected parts of the network, and the overall homo-
geneity of this road network. When a given network

is relatively homogeneous, ΔDX
min

ΔX tends to be
a constant value, while this is not the case for hetero-
geneous networks. The example exhibited by Figure 2
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reveals two changes of slope denoted as DX
D and DX

C ,
which are defined as follows:

● DX
C denotes the distance that characterizes the

size of a local cluster, that is, the maximum
distance from the center to the boundary of
a given cluster. Values lower than DX

C denote
short connections within a given local cluster,
whereas values higher than DX

C denote distances
that materialize a connection toward the exterior
of the cluster.

● DX
D denotes the distance that connects a given

cluster to another cluster (i.e. respectively to the
center of one cluster to the center of another
cluster).

Overall, when considering two given clusters, the
value ðDX

D � DX
CÞ gives the distance between them.

The Global Minimum Distance D100
min (i.e. for

X = 100) denotes the minimum distance that allows
each road to reach all other roads. As illustrated in
Figure 2 where distances and number of roads are
similar, the Global Minimum Distance is independent
of the road network structure.

The Minimum Ratio Minimum Distance evaluates
the overall structure of a road network given a part
X of connected roads that reflects the extent of the
neighborhood considered. As illustrated in Figure 3,
for the same spatial extension the difference of road
density does not appear on the relationship between
DX

min and X. Conversely, when considering the num-
ber of roads K (i.e. for a specific DX

min), the number of
roads reached is lower for a lower density structure.
In other words, the relation between X and the mea-
sure of Minimum Ratio Minimum Distance can exhi-
bit a clustering road-network structure but not some
density variations of the road network. In fact, the
notion of clustering is a parameter commonly applied
by graph theory and that evaluates the degree to
which nodes in a graph tend to cluster together
(Watts and Strogatz 1998; Jiang and Claramunt

2004; Radicchi et al. 2004). However, current
approaches as often generally applied in the scope
of space syntax theories are generally limited to topo-
logical relationships without taking additional
metrics. In a related work, Porta, Crucitti, and
Latora (2006b) combined a measure of closeness cen-
trality as applied to road intersections and as intro-
duced by Wasserman and Faust (1994) with some
distance metrics to extract local clusters. Our
approach is different from this work in several
respects as we first consider road segments as nodes,
and as the connectivity of each road is evaluated at
different levels of granularity, by considering different
parts of the urban road network. This gives a much
more qualitative approach rather than the ones rely-
ing on purely distance metrics.

2.3. Building road density

The spatial distribution of a building’s layout can be
characterized by a density metric, typically a number

Figure 2. Influence of the road network structure on the Minimum Ratio Minimum Distance for a well-connected structure (Na)
and less-connected structure (Nb). Step distances and number of roads are equivalents for both structures.

Figure 3. Influence of roads density on the Minimum Ratio
Minimum Distance. Na: low density road network, Nb: high
density road network. Distances are equivalents for both
structures.
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of buildings per km2 (Hawbaker et al. 2005;
Gonzalez-Abraham et al. 2007). While valuable
when considered as overall density values, such
metrics are not directly interrelated to the underlying
network structure. To combine the respective roles
played by the road network, parcels, and buildings, let
us introduce a measure of Building_Road Density
where the buildings density is evaluated on top of
the road network, and based on the number of build-
ings connected to each road. The Building_Road
Density is derived from the graph-based spatial mod-
eling approach previously introduced in Section 2.1,
where buildings and roads are connected in the graph
through their respective connections with parcels.
The graph model, where parcels are key elements,
gives the connections (EBR) from the buildings to
the roads through the parcels as follows:

EBR ¼ f bi; rj
� � 2 B� Rj9pk 2 P;AssoBP bi; pkð Þ

¼ true ^ AssoPR pk; rj
� � ¼ trueg

with AssoBP bi; pkð Þ the association where a building bi
is associated to a parcel pk if and only if the building bi
intersects the parcel pk, and AssoPR pk; rj

� �
the associa-

tion where parcel pk is associated to a road rj if and only
if the parcel pk is externally connected to the road rj.

Each building is affected by a weight W bið Þ with
W bið Þ ¼ 1 for a building connected with only one
road. For building connected with several roads (i.e.
associated to a parcel externally connected with sev-
eral roads) the weight W bið Þ is partly and equally
distributed to each connected roads:

W bið Þ ¼ 1
jfrk 2 Rj bi; rkð Þ 2 EBRgj

As such Building_Road Density is given as follows:

BRD rj
� � ¼

P
bi 2B j bi;rjð Þ2EBR W bið Þ

Length rj
� �

where Length(rj) denotes the length of the road rj.
A combination of Metric Compactness and

Building Road Density should support the analysis
of spatial road network structures, at two levels of
granularity as follows:

● at a global scale, the capability to evaluate the
homogeneity versus heterogeneity of a given
network and,

● at a local scale, the level of the compactness of
the road versus building layout associated to this
road.

3. Buildings to road layout classification

One peculiarity of the measures of Metric
Compactness and Building Road Density is that they
clearly take into account the underlying role of the
urban network. To illustrate further the concept, we

introduce a classification based on three different
levels for Building Road Densities and two different
levels for Metric Compactness. The thresholds defined
to generate these categories were applied using
a k-means approach following (MacQueen 1967)
low to high scores of Metric Compactness and
Building Road Density. Building Road Density is clas-
sified as follows:

● The set B0 corresponds to roads without con-
nected buildings (i.e. no building):

B0 ¼ ri 2 Rj90bj 2 B; bj; ri
� � 2 EBR

� �

● The set B1 corresponds to roads connected with
one to several buildings:

B1 ¼ ri 2 Rj9bj 2 B; bj; ri
� � 2 EBR

� �

We use the k-means method on Building Road
Density to define two subsets B� and B+, where
B1 ¼ B�;Bþf g. These two subsets are defined as
follows:

B� ¼ fri 2 R;BRD rið Þ<Min Bþð Þg

Bþ ¼ fri 2 R;BRD rið Þ>Max B�ð Þg
From the Metric Compactness, we define two config-
uration types based on a k-means method. These
configurations are defined as follows:

● The set MC- denotes roads with lower Metric
Compactness values:

MC� ¼ fri 2 R;MC rið Þ<Min MCþð Þg
● The set MC+ denotes roads with higher Metric
Compactness values:

MCþ ¼ fri 2 R;MC rið Þ>Max MC�ð Þg
From these configuration types, let us propose
a classification of roads and buildings layout with
six distinct classes illustrated in Figure 4. Four of
these classes correspond to spatial patterns where
one can observe coherence between the road network
and buildings respective densities:

● The two classes B+MC+ and B–MC+ denote
relatively dense spaces with high compact road
network and buildings.

● The two classes B0MC – and B–MC – denote
relatively open spaces with low compact road
network associated with few buildings or not.

Conversely, two of the classes correspond to peculiar
spatial configuration where the road network struc-
ture and the building layout are inconsistent:
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● The class B0MC+ denote high compact roads
network but with a few buildings.

● The class B+MC – denote large number of
buildings but with a non-compact road network.

4. Experimental

To evaluate our approach, we selected a region
that includes relatively dense and relatively open
areas. The geographical database used as an
experimental setup is derived from the city of
Guisseny, a village in North West France (Figure
5). Bounded to the North by the English Channel,
the Guisseny background map includes 1026
buildings (houses or others), 2598 cadastral par-
cels, and 244 road segments connected to 213 road
junctions. Dominated by rural and agricultural
activity, this region has undergone urbanization
over the last 30 years related to the attractiveness
of the coast. Thus, while the center of the village
and the furthest parts of the coast retained their
appearance, the area changed with more or less
coherence with the construction of a large number
of buildings (main or secondary dwellings occu-
pied by a population attracted by the place) and
the modification of the road network.

4.1. Metric compactness

4.1.1. Local and global influences
As introduced in a previous section, the Metric
Compactness (MC(ri)) evaluates the connectivity of
a road ri when compared to the rest of the road
network, the connectivity of a road been evaluated
for X percent of the network. Therefore, for all roads,
the Metric Compactness is computed for 1 ≤X ≤100
to evaluate local compactness (i.e. low X values) to
global compactness (i.e. high X values). The examples
exhibited by the maps presented in Figure 6 illustrate
different Metric Compactness for different and repre-
sentative X values. Different levels of granularity are
illustrated by X = 10, X = 25, X = 45 and X = 100 to
potentially reflect different patterns. In this figure, for
each difference in X, variation in Metric Compactness
is illustrated by change in color for four classes
(<25%, <50%, <75%, <100%) related to comparison
between Metric Compactness and the number of
roads to be reached. For example, for X = 10 the
number of roads that can be reached is 24, and the
red color materializes roads with MC(ri) ≥ 18 (i.e.
75% from 24).

By applying this analysis at different levels of gran-
ularity, and from local to global levels, the Metric

Figure 4. Spatial structures based on buildings vs. roads densities.
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Compactness underlines the historical village as the
most connected place and materializes its progressive
extension or at least interactions toward different
directions. At the local level (i.e. X = 10 and 25),
the number of most connected roads (in red and
yellow) is respectively 26 and 52, while at a more
global level (i.e. X = 45) the number is 94.

This analysis also reveals an overall homogeneity
of this network without any emergence of additional
clusters apart from the historical center. This trend is
confirmed by the relative linearity of the Minimum
Ratio Minimum Distance DX

min curve exhibited in
Figure 7. In fact, as no significant change of slope
can be observed, there is not any emergence of addi-
tional clusters apart from the historical center (a
break of slope for X ¼ 95 is considered as a side-
effect). Nevertheless, the outcome is different if one
takes into account the roads that can reach at least
25% (i.e. green roads) of the numbers of roads still
for X = 10. One can observe the emergence of a few
areas scattered along the costal domain, this being
confirmed for X = 25 as emerges a better connectivity
of the coastal domain compared to the rest of the
area. Overall, one can observe that the Metric
Compactness reveals different magnitudes of roads
connectivity when even observed at the local level as
well as a sort of diffusion of connectivity values along
the network. Overall, it also appears that most of the

roads are relatively well connected to the rest of the
network.

This case study example also shows that the
threshold X has a direct impact on the number of
connected areas that appears. While the Metric
Compactness makes a difference between compact
and non-compact roads, different threshold X values
highlight different connectivity patterns and cluster-
ing effects. The main idea behind this approach is to
reflect significant as well as valuable trends in the
roads layout at either local (i.e. X = 10, 25) or global
levels (i.e. X = 45).

4.1.2. Road network structure influence
Overall, the Metric Compactness and Minimum Ratio
Minimum Distance favor the identification of differ-
ences in connectivity in the road network. The figures
that emerge reflect that the village of Guisseny is
spatially distributed around its historical center. To
evaluate the effect of the underlying spatial structure
on the measure of Metric Compactness, we modify the
road network by deleting three roads in the central
part of the studied area (Figure 8). This should mod-
ify the connectivity of the graph between the South-
Western and Center East-parts of the road network.
Figure 9 shows the differences of DX

min and X values
for original and altered datasets. The results that

Figure 5. Guisseny North map with buildings, parcels, and road network.
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emerge shows consistent DX
minvalues for X <50, but

divergent DX
min values for X >50 with a change of

slope for the altered dataset for DX
min = 950 m.

According to the definition of the Minimum Ratio
Minimum Distance, one can observe that for lower
values of X (i.e. X <50) the parts of the road network
explored for a given road are the ones at a distance
less than 950 m from this road. Indeed, and as illu-
strated by Figure 8 for X =45, we observed similar
Metric Compactness values for both the original and
altered datasets. It can be concluded that the modifi-
cation of the road network does not influence the

level of connectivity of the roads at the local scale
for a threshold distance of less than 950 m. On the
other hand, it appears that this threshold close to
1 km exhibits a sort of boundary limit of the urban
structures that give form to different parts of the
village of Guisseny.

For higher values of the threshold (i.e. X >50),
the relationship between DX

min and X diverges
(Figure 9). Regarding the altered dataset, the
local cluster that appears with that threshold of
950 m is now loosely connected with the rest of
the network. At the global level, there is

Figure 6. Metric compactness with X = 10, 25, 45, 100. For each road, color corresponds in four classes (<25%, <50%, <75%,
<100%) related to comparison between the value in Metric Compactness and the number of roads to be reach.

Figure 7. Variation of DX
min in function of X.
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a significant change in the overall road network
connectivity as illustrated in Figure 10 with
a threshold value of X =85: the altered road net-
work exhibits a much lower connectivity when
compared to the initial urban network. In parti-
cular, we observe that the removal of three roads
decreases the connectivity of the South-Western
parts of the road network thus creating a less-
connective part in the network, but while this

increases the connectivity of the North-Western
parts of the same road network. For the altered
dataset, this highlights the importance of the
Northern unique pathway between the East and
West sides of the road network. Conversely, and
when considering the original dataset, the connec-
tivity at the global level is favored by the related
grid structure of the urban network as illustrated
by Figure 10 left.

Figure 8. Metric compactness on original and altered datasets with X =45. The three roads removed are denoted by a black
cross.

Figure 9. Variation of DX
min in function of X on the original and altered road networks.

Figure 10. Metric Compactness on original datasets (left) and altered datasets (right) with X =85.
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4.2. Classification of the roads and buildings
layouts

The next step of our modeling approach relies in the
cross-analysis of the urban network structure and its
relationship with the underlying built environment den-
sity. For that purpose, we applied the classification intro-
duced in Section 3 and derived from the local metrics of
Building Road Density and Metric Compactness applied
with a threshold value of X =10. Figure 11 shows the
result of the analysis with the 6 classes previously identi-
fied. Several trends can be identified. First, for the main
central roads, the results confirm that the coherence one
might expect between the respective connectivity of the
road networks and the buildings density:

● High Metric Compactness values (MC+) are
mainly coherent with the ones of the Building
Road Density (B+). The combination of these
two parameters clearly identifies an area with
high concentration in buildings and connected
roads that appear to be the village center.

● Low Metric Compactness values (MC–) are
mainly related with low Building Road Density
(B-) or no-building roads (B0). These values
reveal a relative open area corresponding to
suburban and rural areas in our application, in
particular in the more recent buildings area
along the coastal domain.

Nevertheless, the classification reveals also some rela-
tive inconsistencies corresponding in one part to roads
highly connected (MC+) but associated with a low num-
ber of buildings (B–) (in yellow) and in other part to
roads lowly connected (MC–) but associated with a high
number of buildings (B+) (in orange). For the former,
roads are located around the village center, and one can
expect this situation to evolve with new houses around
the village. However, for the latter, roads are located
relatively far away from the village and relatedwith recent
suburban arrangements. In other words, in these places,
the roads connectivity does not appear sufficient enough
to secure appropriate accessibility to the buildings. This
can be then considered as an urban planning drawback.

Overall, these preliminary results show the potential-
ity of the combination of Building Road Density and
Metric Compactness to extract regularities and anomalies
in the spatial structure of a built environment. While the
method depends on the choice of threshold values (i.e.X)
to distinguish local to global structures, the experiment
shows that a few iterations are sufficient to identify
a relevant threshold that outlines structural patterns in
the road and building layouts.

5. Conclusions

The representation and analysis of the spatial structure of
a geographic space are still open research issues for many

Figure 11. Roads classification.
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environmental and urban sciences. Such developments
might be extremely valuable for scientific studies
oriented to the exploration of the relationship between
the overall structure and function of urban and suburban
spaces. A valuable distribution of the buildings and roads
layout should reflect the best compromise between envir-
onmental constraints and human activities. This is one of
the main reasons that motivate the search for the devel-
opment of a structural and computational approach that
takes into account not only the properties of the road
networks, but also the ones of the distribution of the
parcels and buildings in an urban environment.

The research presented in this paper is based on the
modeling of different levels of topological relationships
applied on different elementary entities (i.e. buildings,
parcels, roads) that together form the core of a given
urban space. The objective of this approach is to favor
a structural and spatial analysis that will reveal several
global and local patterns that emerge from the spatial
layout of a given urban system, and this at different levels
of scale. First, to take into account the overall road net-
work structure, we introduced several metrics (Ratio
Minimum Distance, Minimum Ratio Minimum
Distance, andMetric Compactness) that evaluate the cap-
ability for a given road to be connected with the whole
road and different sub-parts of the network. In particular,
the Metric Compactness reveals the emerging sub-
network structure. Furthermore, the Metric
Compactness allows to make a difference between homo-
geneous and heterogeneous connected networks. Related
to the concept of less-connective and more-connective
spatial structure introduced by Marshall (2004), homo-
geneous networks denote the ones in which connectivity
values are relatively equivalent in the whole network,
while heterogeneous networks are likely to reveal some
sub-parts of the network loosely connected while others
more connected. Second, we introduced a computational
and structural evaluation of the building layout that takes
into account the relationship with the underlying roads
network. We introduce a measure of Building Road
Density that is evaluated on top of the road network,
thanks to an integration of the respective graph-based
connection with parcels and buildings. Combined with
theMetric compactness, this metric characterizes the cor-
relation between the building density and the compact-
ness of the road network. Such classification makes also
the difference between consistent and inconsistent con-
figurations of the urban layout. The former denotes either
road segments whose high compactness matches high
buildings density or road segments whose low compact-
ness matches low buildings density of buildings. The
latter denotes either road segments whose high compact-
ness is not reflected by the buildings density or road
segments whose low compactness is also not reflected
by the buildings density.

Overall, such classification favors the detection of
regularities and inconsistences in a given urban layout,
this being of potential interest for urban planning and
studies. While applied so far to a representative small
demonstrative case study, the approach shows promis-
ing potential to reveal different patterns in an urban
layout, especially when combining the respective cross-
configurations of the building, parcel, and road network
layouts. The whole might provide a direction that com-
plements current space syntax approaches that mainly
retain the configurational structure of the urban net-
work as well as morphological studies whose focus is
generally limited to the analysis of the building layout.
Indeed, and to favor and develop a better understanding
of the relationship between the underlying urban struc-
ture of a given urban network and emerging human
activities, additional socio-economical values should
be integrated as additional variables to take into account
by our modeling approach. This is left to further work
and experimental studies still to perform. Our on-going
work is currently applied to the cross-comparison of the
evolution of different urban layouts as well as the
exploration of additional metrics.
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