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Abstract The force applied to the Earth by the calving of two icebergs at Jakobshavn Isbrae, Greenland,
has been quantified. The source force history was recovered by inversion of regional broadband
seismograms without any a priori constraint on the source time function, in contrast with previous studies.
For periods 10-100 s, the three-component force can be obtained from distant stations alone and is
proportional to the closest station seismograms. This inversion makes it possible to quantify changes

of the source force direction and amplitude as a function of time and frequency. A detailed comparison
with a video of the event was used to identify four forces associated with collision, then bottom-out and
top-out rotation of the first and second icebergs, and ice mélange motion. Only the two iceberg rotations
were identified in previous studies. All four processes are found here to contribute to the force amplitude
and variability. Such a complete time-frequency force history provides unique dynamical constraints for
mechanical calving models.

1. Introduction

Accelerated thinning and retreat of marine-terminating glaciers are examples of rapid changes affecting the
Greenland ice sheet [e.g., Thomas et al., 2000; Howat et al., 2005; Joughin et al., 2004]. They are accompanied
by increasing rates of iceberg calving [Joughin et al., 2004; Howat et al., 2007]. Knowledge on calving pro-
cesses and rates is particularly important to assess theirimpact on ice mass loss, tidewater-terminating glacier
dynamics, and more generally on the contribution of iceberg calving to global sea level rise. However, the
physical mechanisms controlling iceberg calving are not fully understood, and in situ observations are difficult
to obtain.

Iceberg calving generates glacial earthquakes [e.g., Joughin et al., 2008; Nettles et al., 2008; Amundson et al.,
2008; Nettles and Ekstrém, 2010; Veitch and Nettles, 2012] which can be recorded from local to teleseismic dis-
tances [e.g.,, Amundson et al., 2008; Veitch and Nettles, 2012]. Therefore, seismic data provide useful information
for understanding and quantifying iceberg calving dynamics and the physical processes at work as well as
for monitoring calving events at global distances. In addition, the availability of continuous seismic records
should make it possible to track back past events and assess mass loss fluctuations over long time scales.

Glacial earthquakes are a class of calving-generated seismic events of magnitude ~5 [e.g., Nettles and Ekstrém,
2010]. They are located primarily in Greenland, in the margins of large marine-terminating glaciers with
near-grounded termini. They occur during the calving of cubic-kilometer scale unstable icebergs of the
full-glacier thickness [e.g., Murray et al., 2015]. Those calving events are driven by the buoyancy forces that
capsize the resulting iceberg against the calving front and along the bottom of the fjord. These phenomena
produce long-lasting seismic sources that can be recorded in the long-period band 10-150 s. Despite signif-
icant recent advances in their understanding, the precise source mechanisms and their relative contribution
are still subject to debate. The earthquake is assumed to be generated by the iceberg scrapping the fjord
bottom [Amundson et al., 2008] or colliding the terminus. Seismic waves may be generated by the eventual
rebound of the iceberg on the calving front once it has capsized [Walter et al., 2012] or by the contact force
applied on the terminus during the ~5 min long iceberg overturning process [Amundson et al., 2008; Tsai et al.,
2008; Walter et al., 2012]. As the iceberg capsizes, it pushes and compresses the glacier front elastically and
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causes reversal of the glacier’s horizontal flow [Murray et al., 2015]. The glacier then rebounds toward the fjord
as its contact with the overturning iceberg is relaxed. Additionally, the water pressure drop behind the capsiz-
ing iceberg may cause a downward motion of the glacier terminus resulting in an upward force on the solid
Earth [Murray et al., 2015].

Despite the complexity of the source mechanisms, previous studies modeled these icequakes as a single pro-
cess using simple predefined forces [Ekstrém et al., 2003]. In particular, Tsai and Ekstrém [2007] successfully
modeled teleseismic waveforms in the 40-150 s period band using a centroid single force model (double
boxcar or CSF model). The CSF model essentially imposes a constant force axis, found to be nearly horizontal,
as well as equal positive (i.e,, in the upglacier direction) and negative (downglacier direction) boxcar dura-
tions and amplitudes. The best fitted model gives a total source duration of about 50 s corresponding to the
dominant period of the seismic signal.

Walter et al. [2012] analyzed the glacial earthquake generated at Jakobshavn Isbrae in Greenland on 21 August
2009. By comparing time-lapse images of the calving episode with seismograms recorded nearby, they iden-
tified the signal generated by the rotation of two nearby icebergs. They also modeled regional seismograms
considering a CSF source model and other single force models such as simple boxcar and delta functions. In
the 10-20 s narrow period band inverted in Walter et al. [2012], seismic waveforms are equivalently well fitted
by either source model. However the magnitude of the event is highly variable depending on the choice of
the source time function. As a result, their source amplitude cannot be used to quantify dynamical processes
or estimate the iceberg volume.

CSF source models have also been used to model seismic signals generated by landslides [Kawakatsu, 1989;
Zhao et al., 2014]. However, in landslide seismology, the source force is commonly obtained by seismogram
inversion without any a priori constraint on the force history [e.g., Brodsky et al., 2003; Moretti et al., 2012, 2015;
Yamada et al., 2013]. These studies have shown that the force applied by the landslide to the ground is more
complex than its description in the CSF model. In particular, the force history reflects the interaction of the
flow with topography fluctuations and the resulting centrifugal accelerations [Moretti et al., 2012, 2015; Levy
etal., 2015]. The inverted force provides a unique tool to discriminate between different dynamical landslide
models and quantify the physical and mechanical processes at work along with the associated rheological
parameters [e.g., Yamada et al., 2014; Levy et al., 2015]. Similarly, in the complex environment of tidewater
glacier termini, glacial earthquakes are expected to result from the combination of several processes which
may interact and generate a complex force history, richer than that contained in the CSF model.

In this paper, we invert seismograms generated by the well-documented glacial earthquake of 21 August
2009 [Amundson et al., 2010; Walter et al., 2012]. In contrast with previous studies, we make no assumptions
on the source model, other than that it is a single 3-D force, and we invert signals in the 10— 100 s wide period
band. By choosing alternatively nearby (57 km from the source) and distant stations (>250 km), we show that
the inverted force history is very stable and can be obtained from distant stations alone. We observe that the
three components of the inverted force are, respectively, proportional to the three components of the seis-
mograms recorded close to the glacial earthquake. This inversion makes it possible to quantify the variability
of the force direction and amplitude in time and frequency, which appears to be much more complex than its
representation in the CSF model. By comparing the force time-frequency history with time-lapse images of
the calving episode, we identify four forces that occur simultaneously and are thus possibly associated with
the (1) collision and (2) bottom-out rotation of the first iceberg, (3) top-out rotation of the second iceberg,
and (4) ice mélange motion. Although only the two iceberg rotations have been identified in previous stud-
ies, we show that all four processes are necessary to quantitatively explain the variability of the force direction
and amplitude.

2. Description of the Calving Event and Seismic Data

We focus on the large-scale multiple-iceberg calving episode that occurred at the terminus of the Jakobshavn
Isbrae on 21 August 2009. It was recorded by broadband seismic stations located in Greenland. We use seismic
records from four permanent stations of the GLISN network [Clinton et al., 2014], ILULI, SFJD, SUMG, and KULLO,
located, respectively, 57, 247, 556, and 661 km from the calving zone (Figure 1a). We also use data from a
broadband station (WIND) which was temporally installed on the bedrock 4 km from the source area. Seismic
records are down sampled to 1 Hz. The mean and trend are removed from the time series prior to correction
of the instrumental response, then the records are integrated to obtain ground displacement.
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Figure 1. (a) Seismic station locations (red triangles) on Google Earth images of the west coast of Greenland and the
Jakobshavn Isbrae, its terminus, and its proglacial fjord. The green star indicates the calving event location. (b) Vertical
ground displacement at ILULI and associated spectrogram. Original seismogram, spectrogram, and band-pass-filtered
records, 1-3 Hz (0.33-1 s), 0.02-0.1 Hz (10-50 s), and 0.01-0.02 Hz (50-100 s), from the top. Time-lapse images have
been used to link the generation of seismic bursts to the calving event sequence: (A) the ice avalanche along the flank
of the first iceberg to be calved; (B-C) the capsizing of the first iceberg from the vertical position in contact with the
terminus to the horizontal position detached from the terminus; (D-E) same as B-C but for the second iceberg.

Figure 1b shows the vertical displacement and associated spectrogram at ILULI, located at the mouth of the
Jakobshavn fjord. In order to interpret the seismic signal, we compare it with synchronized 10 s images of the
event, recorded by a camera colocated at WIND station. Such a comparison was made by Walter et al. [2012]
in the two narrow frequency bands of 1-3 Hz and 0.05-0.1 Hz. Here we analyze the complete seismic signal
between 0.001 Hz and 3 Hz, making it possible to better identify the broad frequency range associated with
each source mechanism (i.e., each subevent). Data are shifted backward by subtracting the travel time for
Rayleigh waves to propagate from the source to the receiver, assuming a velocity of 4.36 km/s [Walter et al.,
2012]. Movie S1 in the supporting information shows the calving episode viewed from WIND station and the
synchronized seismograms.

The calving event initiated at 06:56:31 UTC with a slump of a large ice slab which slips down from the ice front
of the terminus into the fjord (time A in Figure 1b). It occurs at the same time as the generation of an impulsive
high-frequency seismic signal peak (1-3 Hz) and a lower frequency emergent 100 s long signal (0.02-0.1 Hz).



The ice slump was directly followed by small amplitude motion of the ice mélange in the source area and
emission of seismic energy at high (1-3 Hz) and low (0.01-0.02 Hz) frequencies. The calving and bottom-out
rotation (i.e., the top of the iceberg moves toward the glacier) of the full-glacier-thickness iceberg with a
volume of about 0.45 km3 occurred during the time period indicated by B-C in Figure 1b. It was directly
followed by the calving and the top-out rotation (i.e, the top of the iceberg moves away from the local front)
of a second smaller (by approximately a factor 3) iceberg (time period D—E). These two phenomena produced
seismic energy in a wide frequency range down to 0.01 Hz and distinct bursts of seismic signal only at
frequencies >0.02 Hz.

We observe bursts and peaks with high-frequency energy (1-3 Hz) throughout the entire event duration
(after time A in Figure 1b). They occur while the ice mélange moves in the proglacial fiord and accelerates
away from the terminus as the rotation of the icebergs displaces massive amount of water. Amundson
et al. [2010] analyzed continuous seismic signals in the Jakobshavn fjord and associated the numerous
high-frequency bursts with ice mélange fracturing. Fracturing of the ice mélange is probably also the source
of the high-frequency signals observed in Figure 1b.

Finally, the raw seismogram shows a very low frequency (<0.01 Hz) seismic signal ~10 min after the onset
of the calving. This signal lasts for 30 min and represents ground tilt induced by ocean waves which travelled
along the 50 km long fjord from the calved area to the ocean at the fjord resonance frequencies (seiche).
It was observed only at the nearby coastal station ILULI. Similar long-period seismic signal related to seiche
and recorded at close and coastal stations has been observed for many calving events at various glaciers by
Amundson et al. [2012a] and Walter et al. [2013].

Comparison between a video and the broadband seismic signal recorded near the event enabled us to identify
several phases in the seismic signal with different frequency content, possibly related to the complicated
calving history. The spectrogram generated by this complex source can most likely not be explained by a
single process with an acceleration and deceleration phase along a constant direction as assumed in a CSF
source model. In the next sections we invert seismograms without any a priori constraint on the source model
and we then interpret the complex inverted force.

3. Source Inversion

3.1. Method and Green’s Function Calculation

As for landslides, we assume that the seismic source of glacial earthquakes can be modeled as one or several
forces rather than a moment tensor like for tectonic earthquakes. As in Moretti et al. [2012, 2015] and Yamada
et al. [2013], we perform a waveform inversion in the frequency domain to obtain the force-time function
of the event. Prior to the inversion, data are filtered using a zero-phase fourth-order Butterworth filter (0.01
and 0.1 Hz). These corner frequencies are determined on the seismic signal frequency band. The upper fre-
quency limit comes from the difficulty to compute accurate Green'’s functions for periods lower than 10 s
which are much more sensitive to 3-D structural heterogeneities. Because we are interested in the calving pro-
cess rather than the seiche episode, we select the lower frequency of 0.01 Hz. Each data component is then
down weighted based on its signal-to-noise ratio. We finally invert nine seismograms excluding the horizon-
tal components of WIND, SUMG, and KULLO because of their strong long-period background noise. The ith
component of the displacement u;(x, t) recorded at a distance x from the source can be written

u(x,t) = g;(x, t) * 0, 1), (1)

where tis the time, f;(0, t) is the force at location 0 along the direction j (j = E, N, Z), and g;(x, t) is the Green'’s
function for the seismogram component i and force component j. The symbol « denotes the convolution
product. Equation (1) can be rewritten, in matrix form in the frequency domain

U(w) = G(w)F(w), )
where U, G, and F are the Fourier transforms of u, g, and f, respectively. The solution in the least squares sense

for the force-time function is given by
F=(G6)7GU, (3)

where’ is the conjugate transpose. We then perform an inverse Fourier transform on the solution to obtain
the three-component force time history.
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Figure 2. (a) 0.01-0.1 Hz band-passed force-time function from inversion of seismic data from all stations (black line)
and using only four components from distant stations SFJD, SUMG, and KULLO (green line), along with the 95%
confidence interval of the solution estimated using the jackknife method (pink area). (b) The 0.01-0.1 Hz band-passed
data (gray line) and synthetic seismograms (green line) at station ILULI. (c) Force fit with the 0.01-0.1 Hz filtered CSF
model inverted by Veitch and Nettles [2012]. The east components of the force and the CSF function are in black and red,
respectively. (d) Ground displacement waveform fits for the 0.05-0.1 Hz seismic signals recorded on the east
component of ILULI. Data are in gray. The synthetic seismogram based on the CSF model is in red. Marks A to E are the
same as in Figure 1.

Green'’s functions are calculated using the discrete wave number method [Bouchon, 1981] used in Favreau et al.
[2010]. The forces are assumed to occur at the Earth surface so are modeled the Green’s functions. The 1-D
velocity model is given by Walter et al. [2012]. This model is based on crust2.0 for the crustal layers [Bassin et al.,
2000]. We combine it with the preliminary reference Earth model for layers deeper than 37 km [Dziewonski
etal., 1981]. The source location is fixed and was derived from Landsat imagery by Walter et al. [2012] with a
1 km uncertainty. The two icebergs did not calve from the exact same position (less than 1 km of horizontal
uncertainty). However, given the considered frequency range (0.01-0.1 s), the source location difference has
a negligible influence on the inverted force.

Time uncertainties are partly due to the use of a 1-D Earth model for modeling the seismic wave propagation.
Thus, the synthetic waveforms cannot be expected to perfectly align with the observed seismograms for each
component. This primarily results from errors in lateral seismic velocity variations, changes in the ice layer
thickness especially at SUMG, and possibly seismic anisotropy in the ice [Wittlinger and Farra, 2014]. The time
lag (= lag) between data and the synthetic waveforms is computed by cross correlating the recorded and
modeled waveforms at each station individually. The initial Green’s functions are shifted by the corresponding
7 value which varies from a few to ~20 s depending on the source station path. Finally, the inversion scheme
is repeated a second time. With respect to the initial inversion, the source origin time is shifted by 2 s but the
general shape of the source is the same at both iterations, indicating a certain robustness of the method.

3.2. Stability of the Inverted Force and Uncertainty

The resultant source time functions for the three force components are shown in Figure 2a. Since the observed
waveforms were filtered between 0.01 and 0.1 Hz, the inverted source (black line) is band-passed in the same
frequency range. To test the stability of the inversion, we use the jackknife technique [Quenouille, 1956; Tukey,
1958] which consists in constructing a robust confidence interval estimation of the model by using subsets
of available data in the inversion. We construct a 95% confidence interval of the solution (pink area) using
2 standard deviations of the 50 inverted forces. The uncertainty lies mainly in the absolute amplitudes, while
the overall shape of the force is stable. At each time interval, the relative amplitude uncertainty is similar on
each force component so that we can reliably use this inverted source to study the force direction variation.



To assess the influence of the nearby stations on the final force result, we also invert the force using only
stations at distances greater than 250 km from the source. The forces inverted with all stations (black line)
and with the most distant stations only (green line) show little difference, proving the robustness of the
inversion result.

Figure 2b shows the good fit between observed (gray line) and synthetic seismograms (green line) at the
nearby three-component station ILULI (57 km). The synthetic seismograms are calculated by the convolu-
tion of the Green’s functions with the source inverted with distant station records only, i.e., without ILULI
(green line, Figure 2a). We also observe that if normalized, the inverted force and the ground displacement
waveforms at ILULI are very similar. This implies that at this distance and in this frequency range, propaga-
tion effects can be considered constant and the normalized seismic waveforms at the nearby station directly
describe the normalized force history. This implies that in radial-transverse-vertical (RTZ) components, force
amplitude should linearly scale the displacement amplitude at nearby stations, as long as the force has a con-
stant direction, i.e., radial axis. Waveform inversion is nevertheless necessary to obtain the force direction and
amplitude in newtons.

Finally, we note that the synthetic seismograms do not fitamplitude data well after 07:11 UTC especially on the
north component, as the long-period (>50 s) seismic signal at ILULI also contains seiche-induced ground tilt
(Figure 1b). This is only recorded at this coastal station and has maximum amplitude on the north component.
In the next section we interpret the inverted force.

4. Inverted Force Analysis

The single force displays a high variability in time and frequency. Figure 3 shows (a) the spectrograms of
the E-W, N-S and vertical forces and (b) the force time functions filtered in two frequency bands 0.02-0.1 Hz
(10-50 s) and 0.01-0.02 Hz (50-100 s). Movie S2 shows the force history synchronized with the time-lapse
photography of the event and the displacement computed every 10 s in unit of pixel of the camera detec-
tor. We identify four phases in the force history, which have different magnitudes, durations, and energy
distribution over frequency which are described hereafter.

4.1. Forces Related to Iceberg Capsizing

Forces (1) to (3) are similar in terms of duration (~2 min long), order of magnitude (x10'°N), frequencies of
maximum energy (0.02-0.1 Hz), and polarity. They are coincident with overturning of icebergs in the source
area. Their characteristics and origins are discussed below.

4.1.1. Force (1) Related to the Initiation of One Iceberg Capsize

Force (1) is 100 s long and has maximum energy between 0.025 and 0.1 Hz (10-40 s) over the investigated
frequency band (0.01-0.1 Hz) (Figure 3). This force was not investigated in the study of Walter et al. [2012]
which involved higher frequencies. The maximum force amplitude is 0.5 x 10' N. It is near horizontal with a
horizontal/vertical (H/V) ratio equal to 6.7. Its particle motion in the horizontal plane (Figure 3c) shows that the
force is linearly polarized for the first 50 s and has a stable azimuth. The force direction (arrow (1) in Figure 3d)
is normal to the precalving front (black line) with an azimuth of 127° and a dip of 2°.

This force coincides in time with the ice slumping along the front of the first iceberg to capsize. The force dip
does not coincide with what would be expected for the sliding of ice debris down along the near-vertical calv-
ing front. Indeed, as for landslides, the acceleration and deceleration of a rigid mass that slides down a slope
creates a force parallel to the sliding surface in the flow direction and lasting the whole slip duration. While
the force azimuth of 127° is perpendicular to the calving front and therefore in the avalanche flow horizontal
direction, the dip of 2° is much too small and would have been expected to be around 90°. The slab is actually
slipping down the ice front of the first large iceberg which may be already detached from the glacier and is
about to capsize. Indeed, Amundson et al. [2010] suggest that small rotation at the terminus (below 1°) may be
sufficiently large to cause near-terminus icebergs that subtly shift their positions and then trigger avalanching
or collapses of large mass of ice into the surrounding water. Besides, by investigating high-frequency signals
(>1 Hz) generated in several glaciers in Greenland and Alaska, Amundson et al. [2010] and Walter et al. [2010]
interpreted the bursts before calving episodes as the result of rift propagation or widespread fracturing of
the ice block about to be calved from the terminus. While these processes may be the source of the large
high-frequency signal observed at time A in Figure 1, we do not consider it to be possible that they could gen-
erate this lower frequency force (1). Indeed, only high-frequency seismic signals (>1 Hz) have been associated
with those phenomena [O'Neel etal., 2007; Rial et al., 2009; Walter et al., 2009, 2010; Heeszel et al., 2014].
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Figure 3. (a) Spectrograms of the force-time function. (b) Force-time function band-pass-filtered between (top) 0.02
and 0.1 Hz and (bottom) 0.01 and 0.02 Hz. (c) Filtered force motion in the horizontal plane for the four time windows
indicated in Figure 3b. The points are colored with respect to the relative time of each event. (d) Landsat image of the
Jakobshavn Isbrae terminus before (14 August 2009) the calving episode (21 August 2009). The black curves (thick and
dashed) indicate the precalving front position. The red curve indicates the terminus position after the calving event,
derived from Landsat imagery (23 August 2009). The calved area is shown in yellow. The colored arrows and arcs
indicate the force directions and their variation over time, estimated for (1) the ice avalanche along the first iceberg to
be calved, (2) the first and (3) the second iceberg calvings, and (4) the motion in the proglacial fiord. The arrow length is
proportional to the associated force amplitude. Note that the force direction can have a 180° ambiguity which cannot
be resolved by our polarization analysis.



Moreover, such fracturing processes have been shown to produce signals with lower amplitudes than those
observed here [Bartholomaus et al., 2012]. We therefore associate force (1) with processes related to the initi-
ation of the iceberg overturning. The ice slab slumping is driven by the motion of the first large iceberg as it
begins to rotate against the terminus (Movies S1 and S2). The force resulting from ice slipping would then be
transmitted to the solid Earth through the contact between the rotating iceberg and the terminus, leading to
an almost horizontal force (see section 4.1.2).

Another possible explanation is that the force is associated with a collision or a modification in the contact
between the iceberg and the terminus. Due to the ice slump at the front, the large detached iceberg has
lost mass, and therefore, its buoyancy state may have been changed. This should result in a balancing of the
rotating mass position and would possibly lead to a change in the rotation dynamics and the contact with
the calving face. During this balancing process, the ice block could impact the terminus with a small tilt angle
producing a force normal to the terminus at the contact location [Murray et al., 2015; Sergeant et al., 2015]. The
more the iceberg is tilted, the higher the iceberg kinetic energy and the higher the resultant external force
applied on the terminus [Amundson et al., 2012b; Sergeant et al., 2015].

4.1.2. Forces (2) and (3) Related to Capsizing-lceberg-to-Terminus Contact

Forces (2) and (3) have high energy over the entire frequency band 0.01-0.1 Hz (Figure 3). The two pulses
are particularly distinguishable for frequencies higher than 0.02 Hz and have similar durations of about 150 s
and magnitudes around 1 x 10'°N in the 0.02-0.1 Hz range. Both forces are linearly polarized for the first half
of their duration (Figure 3c). Force (2) has an H/V ratio of 3.5. Its azimuth varies from 110° to 140° and the
averaged azimuth is 122°. Force (2) dip also varies from 3° to 13°. Force (3) has an azimuth of about 135°, and
its H/V ratio is 6.7 which corresponds to a small dip which varies from 3° to —1°.

Forces (2) and (3) are associated with the capsizing of the first and second icebergs, respectively. The two
forces are perpendicular to the postcalving front (red line, Figure 3d) at the approximate iceberg location.
These two forces are consistent with those obtained by Walter et al. [2012] in the narrower 0.05-0.1 Hz fre-
quency band (Figure S1) and by Veitch and Nettles [2012] who modeled the seismic signals at lower frequencies
(0.006-0.03 Hz) as a single iceberg capsizing event (see section 5). Forces (2) and (3) result from the con-
tact between the terminus and the icebergs as they capsize. On the contrary to force (1), these forces occur
near the release of the contact (Movie S2), simultaneously or right after the transition in the terminus motion
direction from upglacier to downglacier [Murray et al., 2015; Sergeant et al., 2015].

Despite the large difference in size of the two icebergs, the associated 0.02-0.1 Hz forces have similar ampli-
tudes, durations, and energy. The first iceberg calved bottom-out forcing the ice mélange to accelerate away
from the terminus (Movie S2), reducing the resistive force that the ice debris cover can apply on the calving
front. This allows other smaller icebergs to calve subsequently top out from the terminus [Amundson et al.,
2010], as observed here. From laboratory experiments, Amundson et al. [2012b] showed that top-out cap-
sizing icebergs release more kinetic energy than bottom-out capsizing icebergs of the same size possibly
because hydrodynamic forces have a greater effect on top-out than on bottom-out iceberg capsizing. They
also showed that the water pressure gradients greatly increase the magnitude of the iceberg-terminus con-
tact force. Therefore, icebergs that capsize top out may exert larger forces on the terminus than icebergs that
capsize bottom out. This may explain why we have obtained similar force amplitude and frequency content
for the large iceberg that capsized bottom out and the smaller iceberg that capsized top out.

4.2. Force Related to the Ice Mélange Motion

The last force, force (4), is initiated right after the ice avalanche and lasts throughout the event duration, i.e.,
about 20 min. This is the first time that such a long-duration force associated with a calving event has been
quantified. It has energy between 0.01 and 0.02 Hz. Movie S2 shows the synchronized three-component force
time series, the time-lapse imagery, and the pixel horizontal and vertical displacements of the mélange dur-
ing the event. This was done by cross correlating each pixel from right to left or bottom to top directions
between each original frame (Computation done by J. Amundson, private communication, 2015). The maxi-
mum amplitudes on horizontal components of the 0.01-0.02 Hz filtered force coincide with the capsizing of
the two icebergs (2.1 x 10'°N and 1.8 x 10N, respectively), and a part of the signal may be associated with
rotation of the calved blocks (section 4.1.2). The force magnitude drops after 07:16 UTC, when the mélange
amplitude motion starts to decrease in the margins of the calving area and stops after 07:26 UTC (Movie S2).



interaction of several single forces which cannot be resolved individually or be related to a more complex
physical process which cannot be described by single forces. The force H/V ratio is 7.7 and the dip is less
than 2°. The force azimuth varies over time from 120° to 50°. Figure 3d shows the corner azimuths of the force
with directions varying from normal to parallel to the calving front in the source area (Figure 3d).

The full-event duration (~20 min) suggests that at least part of force (4) results from the ice mélange motion
in the vicinity of the calved area. Visual observations of the Jakobshavn proglacial ice mélange suggest that
the mélange forms a semirigid, viscoelastic cap extending over ~20 km from the terminus along the fjord.
This implies that its motion can be accommodated by deformation and/or slip in narrow shear bands within
and along the margins of the mélange [Amundson et al., 2010]. Furthermore, Peters et al. [2015] measured a
jamming front velocity of about 20 m/s. It reaches the other side of the fjord within a minute which is a negli-
gible time delay compared to our force duration. As the front then propagates along the fjord, it applies shear
forces along the fjord walls. This is in good agreement with the multiple directions of the seismic source. The
role of the ice mélange in calving events has also been investigated by Tsai et al. [2008]. In order to reproduce
analytically the amplitude of the force generated by a calving event, they had to include the resistive forces
generated by the ice mélange which can be transmitted from block to block across kilometers in the proglacial
fiord with little time delay [Truffer et al., 2006]. Based on these previous studies and the characteristics of the
0.01-0.02 Hz inverted force (4), we interpret this as a succession of near-horizontal colliding or shear forces
which act (1) along the margins of the terminus and/or (2) within the mélange.

5. Comparison With the CSF

Let us compare the force discussed in the previous section (hereafter called TF for total force) with the CSF.
The CSF corresponds to the force associated with one acceleration and one deceleration of the iceberg, that
is, two forces of opposite directions, equal in duration but shifted in time. The CSF is computed for the source
parameters inverted by Veitch and Nettles [2012] (i.e., centroid time t, = 07:02:19 UTC, total duration T =50's,
constant azimuth a = 119° with respect to the north and dip 6§ =11° with respect to the horizontal). The CSF is
then filtered in the frequency band of interest, i.e., 0.01-0.1 Hz. Figure 2c shows both the TF and CSF. Note that
the maximum force amplitude is similar for both forces. The CSF source duration is shorter and reproduces
only part of the TF. Figure 2d shows the East component of the observed and modeled seismic waveform
recorded at station ILULI. The CSF seismogram do not reproduce the waveform, whereas Figure 2c shows a
good fit between data and the TF synthetic seismogram.

Walter et al. [2012] successfully modeled the 0.05-0.1 Hz (10-20 s period) seismic waveforms with delta and
CSF functions. In this narrow frequency band, the successive capsizing of the two icebergs generates two dis-
tinct seismic bursts (Figure 1b). Each of them can be modeled by a single source force that describes either
iceberg-to-terminus collision or the glacier elastic rebound induced by the rotating iceberg-to-terminus con-
tact force [Murray et al., 2015]. When filtered in the 0.05-0.1 Hz frequency band, there is a good agreement
between the TF and that obtained by Walter et al. [2012] (Figure S1a); however, the seismogram waveform
and amplitude are better fitted with the TF force (Figure S2).

The inverted force displays strong oscillations which result from data filtering effects. Figure S1a show the
normalized best fit models of CSF (blue) and those models filtered in the period band of interest (red). The
filtered CSF displays the same oscillations as the ones we inverted and also the same main axis of motion
(red line in Figure S1b). The changes of direction within few degrees we measure from the inverted force are
then not artifacts from filtering. Murray et al. [2015] and Mac Cathles et al. [2015] measured laboratory-scale
contact forces produced by the buoyancy-driven capsize of plastic blocks against a wall. Varying the capsizing
block aspect ratio changes the slopes of the force during the contact, especially when it decreases, that corre-
sponds to the generation of glacial earthquake seismic signals (forces 2 and 3). Those changes will affect the
force history and cannot be modeled by symmetric CSF. Even though oscillations of the force are nonphysical,
their relative amplitudes provide important constraints on the event dynamic.

6. Discussion and Conclusion

We have inverted the source force responsible for the generation of low-frequency (0.01-0.1 Hz) seismic
signals associated with a well-documented two-iceberg calving event. The three components of the force
inverted from either distant or nearby stations are proportional to seismic waveforms recorded at the closest
station (~50 km). As a result, at this station, the normalized force history can be directly seen on the seismic



Acknowledgments

We thank the operators of the
Greenland Ice Sheet Monitoring
Network (GLISN) and IRIS/IDA

for collecting and providing the
broadband seismic data used in

this study (www.iris.edu). We thank

V. Yastrebov for fruitful discus-

sions about mecanical processes.

We acknowledge J. Amundson,

M. Fahnestock, and M. Truffer from the
University of Alaska Fairbanks for pro-
viding the time-lapse sequence of the
mélange pixel displacement. To access
the original frames of the time-lapse
sequence, please contact J. Amundson
(jason.amundson@uas.alaska.edu).

We thank Martin Vallée for the fruitful
discussions on inversion methods

and A. Mordret for the constructive
comments on an earlier version

of the manuscript. We also thank

T. Bartholomaus for the reviews
which greatly helped to improve

this manuscript. This work has been
partially funded by the ANR contract
ANR-11-BS01-0016LANDQUAKES,
CNCS-UEFISCDI project PN-II-ID-
PCE-2011-3-0045, and the ERC contract
ERC-CG-2013-PE10-617472 SLIDE-
QUAKES. The research was supported
by a DGA-MRIS scholarship. This is
IPGP contribution 3706.

signal itself, making it possible to track the different processes at work, without perturbations due to prop-
agation effects. In this frequency range, force and displacement amplitudes at nearby stations should then
scale with each other in the RTZ directions of the force and this across all calving events.

Thanks to the inversion, we quantify for the first time the change in time of the amplitude and direction of
the force. We identify and characterize new source processes with distinct frequency contents, durations, and
amplitudes. They are related to different mechanisms which can occur successively or simultaneously. They all
play a significant role in the generated seismic signal. This demonstrates that a calving-generated seismic sig-
nal cannot be modeled with a single source process, and this inversion procedure enables to retrieve rapidly
and accurately the force characteristics for every signal frequency.

Veitch and Nettles [2012] analyzed the size distributions of 121 glacial earthquakes at various outlet glaciers
in Greenland and suggested that each glacier is characterized by a size frequency distribution with a char-
acteristic shape and peak dependent on its size and geometry. Under the assumption that each glacier may
produce a wide range of iceberg size, this implies that the distribution of glacial earthquakes magnitudes
should be as much affected by one glacier characteristics rather than the calved iceberg size distribution. Our
results show that regarding the interpretation of glacial earthquakes as being generated by one single force
resulting from iceberg capsizing, the seismic magnitude is not related to the iceberg volume in a simple man-
ner. In particular, we show that at frequencies lower than 0.02 Hz, the absolute amplitude of the force results
from the interaction of two distinct source processes: (1) the contact force induced by the rotation or colli-
sion of the capsizing iceberg and (2) shear forces along the fjord wall induced by the ice mélange motion.
The coda of this low-frequency force represents the ice mélange motion only. Its amplitude therefore sets a
lower bound on the amount of the 0.01-0.02 Hz force magnitude resulting from motion of the mélange only.
In addition, glacial earthquake magnitude depends on the grounded state of the terminus [e.g., Tsai et al.,
2008] as well as the glacier and fjord size and geometry [Veitch and Nettles, 2012], the calving style, the pres-
ence of nonlinear hydrodynamic drag forces which affect the iceberg rotation dynamic [Burton et al., 2012;
Amundson et al., 2012b], and the ice mélange stiffness which strongly influences iceberg calving style and
iceberg-terminus contact forces [Tsai et al., 2008; Amundson et al., 2010]. All these factors may strongly affect
the force history, amplitude, and energy distribution. Estimating iceberg size from the absolute amplitude of
the force is therefore not straightforward because of the complex environment and the contribution of multi-
ple source processes. Our study has made it possible to quantify the respective roles of the different physical
processes at the origin of the glacial earthquake at Jakobshavn Isbrae (21 August 2009).

The inverted force history represents a unique dynamical constraint to discriminate between different
mechanical models of calving events and to quantify the associated rheological parameters. This force can be
obtained from distant stations that have recorded these events over several tens of years so that our method
could help to track back the changes of the different processes involved in iceberg calving dynamics over this
whole period.
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