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The anisotropic elastic response of supported thin films with a {111} fiber texture

has been studied using an in-situ micro-tensile tester and X-ray diffractometry. It

is shown which specific X-ray diffraction measurement geometries can be used

to analyze the elastic strains in thin films without requiring any assumptions

regarding elastic interactions between grains. It is evidenced (theoretically and

experimentally) that the combination of two specific geometries leads to a

simple linear relationship between the measured strains and the geometrical

variable sin2 , avoiding the transition scale models. The linear fit of the

experimental data allows a direct determination of the relationship between the

three single-crystal elastic compliances or a direct determination of the S44

single-crystal elastic compliance and the combination of S11 + 2S12 if the

macroscopic stress is known. This methodology has been applied to a model

system, i.e. gold film for which no size effect is expected, deposited on polyimide

substrate, and it was found that S44 = 23.2 TPa�1 and S11 + 2S12 = 1.9 TPa�1, in

good accordance with values for large crystals of gold.

1. Introduction

For a few years, there has been an increasing interest in the

elastic properties of thin films. Literature data show that the

elastic behavior of metallic thin films differs significantly from

that of their bulk counterparts because of their specific

microstructure (texture, columnar grains, defects), their

thickness and the grain-size (often nanometric) effect. More-

over, metallic thin films fabricated by physical vapor deposi-

tion usually exhibit strong crystallographic textures which

induce macroscopic elastic anisotropy. Particularly, {111} fiber

texture is often encountered in the case of face-centered cubic

(f.c.c.) materials such as gold. For elastically anisotropic solids,

texture induces macroscopic elastic anisotropy whose ampli-

tude depends both on the degree of texture and on the elastic

anisotropy of the crystallites (local anisotropy) that compose

the polycrystalline thin films (Matthies et al., 2001; Faurie et al.,

2010). In many cases, the macroscopic elastic anisotropy is

very high and cannot be neglected.

Several techniques are used to study elastic properties of

polycrystalline thin films or multilayers, but most of these

allow the determination of effective (macroscopic) elastic

constants, such as, for example, acoustic spectroscopy (Naka-

mura et al., 2007; Tanei et al., 2008) and Brillouin light scat-

tering (Martin et al., 2005) (few ~CCij), tensile testing (Huang &

Spaepen, 2000; Wu et al., 2005) (Young’s modulus E and

Poisson’s ratio �) or nanoindentation (Cheng et al., 2006)

(indentation modulus). However, determining single-crystal

elastic constants Sij or Cij (local scale) from the thin-film

effective elastic constants ~SSij or ~CCij (macroscopic scale) is

cumbersome when local anisotropy is present. This requires at

least a good knowledge of the microstructure and of the elastic

coupling between crystallites in polycrystalline thin films.

Actually, in our experience, the specific microstructure of thin

films (small size and columnar grain structure) makes unsui-

table the classical transition scale models such as those of

Reuss (same stress in the grains) or Voigt (same strain in the

grains) or the more sophisticated self-consistent model

(Faurie, Castelnau et al., 2006; Faurie et al., 2009). On the other

hand, the Vook–Witt model, which was expected to describe

the true elastic behavior of thin films (Van Leeuwen et al.,

1999), seems to be adapted only for ultra-thin films (a few tens

of nanometres; Welzel et al., 2009). Although several grain

interaction models have been proposed (Welzel et al., 2003;

Baczmański et al., 2006, 2008; Liu et al., 2010), the actual

geometrical arrangement of grains is still quite difficult to take

into account.

In this paper, we show that X-ray strain analysis of {111}

fiber-textured films can be achieved without any assumptions

regarding elastic grain interaction. This method can be used to

obtain directly a combination of the three local elastic

compliances or even to determine single-crystal elastic

compliances (S44 and a combination of S11 and S12). It is based

on tensile testing of thin films combined with X-ray diffraction

(XRD) in specific geometries. Intragranular applied strains

are determined from XRD peak shifts, while the overall



stresses applied to the film–substrate composite are deter-

mined from a load cell incorporated into a micro-tensile tester.

This is a general feature that is independent of the actual

strain distribution within the diffracting volume, i.e. also valid

for nanomaterials with a high volume fraction of grain

boundaries exhibiting significant lattice disorder. We have

applied this method to gold films on a polyimide substrate, a

system extensively studied in previous work (Faurie et al.,

2009, 2010).

2. X-ray strain modeling

2.1. Theoretical background

There are two contributions to the local elastic strain in the

material. The first is due to the localization of the applied

macroscopic stress in the different grains, associated with the

purely elastic response of the specimen, which is the quantity

of interest here. The second contribution is associated with the

residual stress generated during the elaboration process. The

advantage of performing in-situ experimental tests is that,

once this second contribution has been characterized in the

unloaded state, the purely elastic response of the specimen can

be investigated, regardless of the residual stress level and

distribution. In practice, this is achieved by measuring the shift

of each Bragg peak with respect to its position in the unloaded

configuration, which is a valid procedure as far as elasticity is

concerned. The position of Bragg peaks (given by their center

of gravity) provides a direct measurement of the average axial

elastic strain (so-called ‘lattice strain’) in the diffracting

volume and in a direction parallel to the scattering vector q,

given by the diffraction angles ’ and  (see Fig. 1). The

applied strain of an hkl reflection is calculated using the

unloaded state as a reference state:

f"ghkl’ ¼ ln sin �T0
’ =sin �T1

’ 

� �
; ð1Þ

where �T0
’ is the angular position of the considered diffraction

peak for the macroscopically unloaded state T0 and �T1
’ the

corresponding angles for the loaded state T1. When applying a

uniaxial test to a film–substrate composite, a biaxial stress

state is applied in the metallic film. To interpret experimental

data properly, it is necessary to estimate the overall stresses

�11 and �22 to which the Au films are submitted. Recall that

the specimens are made of a thick and compliant Kapton

substrate, on top of which a thin and stiff Au layer has been

deposited. The macroscopic stresses applied on the whole

specimen by the tensile module localize differently in the two

components, with a higher stress level in the Au layer.

Following Castelnau et al. (2007), this effect can be calculated

by replacing the polycrystalline Au layer with a uniform layer

of equivalent stiffness ~CC. This seems a reasonable assumption

since the lateral dimension of the specimen (in-plane size) is

much larger than the grain size. The transverse stress is

induced by the mismatch of Poisson ratios between thin film

and substrate. Obviously, the knowledge of �11 and �22

requires the estimation of macroscopic elastic constants, as

extensively done in previous work (Faurie et al., 2009, 2010).

For example, this problem could be simplified by studying self-

supported thin films for which the applied stress is known in a

direct way.

In the case of a strongly textured thin film, the X-ray strain

measurements can be performed for several {hkl} plane

families in the respective pole directions. The analytical

solutions of X-ray strain for the Reuss and Voigt models for an

ideal {111} fiber texture have been derived for any ’ and  
values (Tanaka et al., 1999; Faurie, Renault et al., 2006;

Yokoyama & Harada, 2009). The analytical solution for the

Reuss model is also known as the crystallite-group method

(Welzel et al., 2005; Yokoyama et al., 2009). For a general non-

equibiaxial stress state (�11 6¼ �22), the Reuss model leads to

the following equation:

f"ghkl’ ¼ ð�11 � �22Þ
�
S11 � S12 þ S44

6
cosð2’Þ sin2

þ �S11 þ S12 þ
S44

2

� �
sinð3�þ ’Þ sinð2 Þ

3ð2Þ1=2

�

þ ð�11 þ �22Þ
�

2S11 þ 4S12 � S44

6
þ S44

4
sin2

�
: ð2Þ

The evolution of strain as a function of sin2  is not linear

because of the term dependent on sin 2 . This nonlinearity

increases with the local elastic anisotropy. However, it should

be noted here that the nonlinearity is overestimated by the

Reuss model (Faurie et al., 2009). Conversely, for a locally

isotropic material (Zener elastic anisotropy factor A ¼ 1),

�S11 þ S12 þ S44=2 ¼ 0 and the term dependent on sin 2 
reduces to zero. The angle � defines a rotation around the

specimen surface normal direction. While the stress is applied

at some fixed angle relative to the specimen axes, for each

crystal and for particular diffraction geometries � can take

multiple values, corresponding to the crystallographic

equivalent reflections. This orientation angle � can be deter-

mined for each diffraction condition on the basis of a

Figure 1
Geometry of the diffraction setup used for the in-situ loaded dogbone
specimen. The uniaxial tensile stress applied to the film–substrate
structure is along e1. The direction of the scattering vector q is defined by
the in-plane azimuthal angle ’ from e1 and the polar angle  from the
sample normal direction e3. � is the wavelength of the X-rays.



stereographic projection of poles for a cubic crystal with the

{111} pole at the center (for more details, see Yokoyama &

Harada, 2009). Moreover, the angle � for ’ = 0� has to be

replaced by � � 90� for ’ = 90�.

The Voigt model leads to the following equation (Tanaka et

al., 1999; Faurie, Renault et al., 2006):

f"ghkl’ ¼ ð�11 � �22Þ
�

3ðS11 � S12ÞS44

2ð4S11 � 4S12 þ S44Þ
cosð2’Þ sin2

�

þ ð�11 þ �22Þ
�

2S11 þ 4S12 � S44

6
þ S44

4
sin2

�
: ð3Þ

For the Voigt model the diffraction strain varies linearly with

sin2  , regardless of the local anisotropy of the material. This

behavior directly results from the assumptions made in this

model, i.e. equal strain for all the crystallites that compose the

polycrystal. It should be noted here that the X-ray strain is ’
dependent for the two extreme models, resulting from the

non-equibiaxial stress state (�11 6¼ �22).

2.2. Proposed approach

A notable way to analyze X-ray strains in the case of {111}

fiber texture is to calculate the average between strains

measured in the longitudinal (’ = 0�) and transverse (’ = 90�)

directions, i.e.

f"gaverage ¼ f"ghkl0�; þ f"ghkl90�;

2
ð4Þ

This average leads to a single linear strain–sin2  relationship,

which is the same for the Reuss and Voigt models:

f"gaverage ¼ ð�11 þ �22Þ
2S11 þ 4S12 � S44

6
þ S44

4
sin2

!
: ð5Þ

The expression of f"gaverage can also be derived in terms of

effective stiffnesses ~CCij:

f"gaverage ¼
�
�11 þ �22

M ~CC33

�
�2 ~CC13 þ ð2 ~CC13 þ ~CC33Þ sin2
� 	

; ð6Þ

where M ¼ ~CC11 þ ~CC12 � 2 ~CC2
13= ~CC33 is the so-called biaxial

modulus that is independent of the adopted micromechanical

model (Huang & Weaver, 2005) for a {111} fiber texture. This

is the case also for ~CC13 and ~CC33 (Kröner & Wawra, 1978).

Obviously, any bounds that are better than those of Voigt and

Reuss must also coincide if the Reuss and Voigt models

coincide (Kröner & Wawra, 1978). These effective elastic

constants can be written as a function of single-crystal elastic

compliances as follows:

~CC13 ¼
�2S11 � 4S12 þ S44

3ðS11 þ 2S12ÞS44

; ð7Þ

~CC33 ¼
4S11 þ 8S12 þ S44

3ðS11 þ 2S12ÞS44

; ð8Þ

M ¼ 6

4S11 þ 8S12 þ S44

: ð9Þ

Hence, the proposed method allows a linear fit of equation (5)

to the experimental f"gaverage, regardless of the grain-interac-

tion model and of the local elastic anisotropy level. Obviously,

this method is only valid for sharp {111} fiber textures, with a

texture dispersion not higher than 10� at half maximum

(Faurie et al., 2010), as studied here.

3. Thin-film fabrication and experimental setup

We performed a tensile test of a locally elastically anisotropic

gold film, deposited on a 127.5 mm-thick polyimide (Kapton)

substrate, with in-situ X-ray strain analysis. A 700 nm-thick

gold film was deposited by physical vapor deposition (cathodic

sputtering) and showed a strong {111} fiber texture commonly

encountered for f.c.c. materials (see pole figures in Fig. 2).

X-ray pole figure experiments were performed using a four-

circle diffractometer in Bragg–Brentano geometry, and X-rays

(cobalt line focus source at � ¼ 0:179 nm) were emitted by a

Bruker rotating anode.

The average columnar grain diameter was estimated by

transmission electronic microscopy (not shown here) to be

�100 nm, i.e. large enough for size effects on the single-crystal

Figure 2
X-ray pole figures for the {222}, {311}, {400} and {420} plane families. A
measured {331} pole figure is not shown here. The central peak of the
{222} pole figure and the measured rings are typical of a {111} fiber
texture. The FWHM of the central peak is about 8�. The red square and
blue triangle symbols represent the pole directions at ’ = 0� and ’ = 90�,
respectively.



elastic constants to be neglected at room temperature (Schiotz

et al., 1999). The single-crystal elastic constants of gold, known

for large crystals, are S11 = 23.3 TPa�1, S12 = �10.7 TPa�1 and

S44 = 23.8 TPa�1 (Smithells, 1976). The corresponding Zener

elastic anisotropy factor A ¼ 2ðS11 � S12Þ=S44 is relatively high

(A ’ 2.8), indicating a quite large elastic anisotropy at the

grain scale.

The in-situ X-ray diffraction experiments were performed at

the LURE synchrotron radiation facility on beamline DW22

(CNRS, Orsay, France). The wavelength of the beam (� =

0.161 nm with a spectral resolution of �q=q ¼ 5:10�4) was

selected by a double-bounce Si(111) monochromator. The

beam size was set to 100 � 500 mm, that is, much larger than

the average in-plane grain size of the gold films, and the

vertical beam divergence can be evaluated to be less than

0.006�. The tensile module was at the center of a four-circle

diffractometer (with an angular resolution of 0.001� for the

four angles) so that X-ray diffraction could be carried out on

loaded specimens. The external load was applied to the

composite (film and substrate) dogbone-shaped specimens by

means of a 200 N Deben tensile module equipped with a 20 N

load cell enabling force measurement with a precision better

than 0.1 N. With our experimental conditions, the uniaxial

load T1 (F = 6.5 N) applied to the film/substrate structure

induces longitudinal and transverse macroscopic stresses in

the films, determined to be �11 = 170 MPa and �22 = 36 MPa,

respectively. In the present experiment, we applied the load

increment and then waited for about 600 s before starting the

X-ray measurements. In this case, the relaxation of the poly-

imide can be neglected: it only contributes about 3% of the

applied load increment.

Because of the pronounced crystallographic texture,

measurements were performed only for specific orientations

of q, those for which the intensity is high enough (pole

directions). The corresponding  values for each {hkl} plane

family are given by Faurie et al. (2009). As proposed in x2.2,

the measurements were performed for two ’ values (0 and

90�).

4. Experimental results and discussion

In Fig. 3, we show the experimental and theoretical results for

the two studied geometries [longitudinal (’ = 0�) and trans-

verse (’ = 90�)], using the single-crystal compliances known

for large crystals, since size effects can be neglected here.

Experimental lattice strains are plotted against sin2  , and

complex variations are obtained for both ’ values (0 and 90�).

The strongly nonlinear character of the plot already indicates

that single-crystal elastic anisotropy plays an important role.

Moreover, this experimental behavior is not captured by the

two extreme models: the Voigt bound predicts a linear beha-

vior, while the nonlinearity is overestimated by the Reuss

bound. In contrast, the experimental arithmetic average

follows a linear behavior and is very well captured by the

theoretical arithmetic average f"gaverage, which is independent

of the grain-interaction models. From equation (5), it is clearly

seen that a relationship among elastic compliances can be

directly extracted, i.e. 2ð2S11 þ 4S12 � S44Þ=ð�3S44Þ. Indeed,

this ratio is simply deduced from the slope and the origin

ordinate of the experimental linear fit. In this study, we find

0.563, which is close to the value obtained for large crystals of

gold (0.560). It should be noted that this value can be deter-

mined graphically, since it corresponds to the sin2  value for

f"gaverage ¼ 0. Thus some changes in local elastic constants of

thin films could be directly captured without any assumptions

regarding the grain-interaction model. Such experiments may

be useful in the case of nanocrystalline materials (grain size

smaller than 5–10 nm), for which drastic changes are expected

relative to their coarse-grain counterparts (Latapie & Farkas,

2003; Zhao et al., 2006). Moreover, assuming that the stresses

applied to the film–substrate composite are known, a reci-

procal approach variation can be used, namely adjusting

f"gaverage linearly to extract local elastic compliances (S44 and

the combination S11 þ 2S12). Here the best adjustment leads to

S44 = 23.2 TPa�1 and S11 þ 2S12 = 1.8 TPa�1, which are close to

the values for large crystals (S44 = 23.8 TPa�1 and

S11 þ 2S12 ¼ 1:9 TPa�1).

It should be noted here that this method could be applied to

‘as-deposited’ {111} fiber-textured thin films if the residual

stress is known, for example, by a sample curvature

measurement method, as already developed by Kamminga

(1999) and Martinschitz et al. (2009) for extracting, respec-

tively, Young’s moduli and hkl-dependent Young’s moduli of

thin films on rigid substrates. The residual stress state is

generally equibiaxial (�11 ¼ �22), leading to the same

’-independent simple expression of the X-ray strain in

equations (2) and (3).

5. Conclusion

In summary, the proposed approach combining two experi-

mental configurations [measurements performed for two ’

Figure 3
X-ray strains " as a function of sin2  for the Reuss and Voigt models
(lines), and experimental results (red square symbols for ’ = 0� and blue
triangle symbols for ’ = 90�). The theoretical and experimental averages
are represented by a continuous black line and black circles, respectively.
Here, the strains were calculated using large crystal compliances, S11 =
23.3 TPa�1, S12 = �10.7 TPa�1 and S44 = 23.8 TPa�1.



values (0 and 90�)] allows X-ray strain analysis of {111} fiber-

textured films regardless of grain-interaction models. In fact,

the average strain f"gaverage (that is, the average of the two

X-ray strains obtained in the proposed configurations, namely

longitudinal and transverse) is shown to vary linearly with

sin2  , the involved features being independent of the grain-

interaction model. Moreover, this analysis can be used to

extract elastic constants of elastically anisotropic films, this

method being available for any in-plane biaxial stress state.
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