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A B S T R A C T

In Vacuum Assisted Resin Transfer Molding (VARTM), fabrics are placed on a tool surface and a Distribution
Media (DM) is placed on top to enhance the flow in the in-plane direction. Resin is introduced from one end and
a vacuum is applied at the other end to create the pressure gradient needed to impregnate the fabric with resin
before curing the resin to fabricate the composite part. Heterogeneity in through the thickness permeability of a
woven fabric is one of the causes for the variability in the quality of the final composite part fabricated using the
VARTM process. The heterogeneity is caused by the varying sizes of pinholes which are meso-scale empty spaces
between woven tows as a result of the weaving process. The pinhole locations and sizes in the fabric govern the
void formation behavior during impregnation of the resin into the fabric. The pinholes can be characterized with
two parameters, a gamma distribution function parameter and Moran's I (MI). In this work, manifold em-
bedding methods such as t – Distributed Stochastic Neighborhood Embedding (t_SNE) and Principal Component
Analysis (PCA) are used to visually characterize fabrics of interest with the two variables, and MI, through the
reduction of dimensionality. To demonstrate the manifold embedding method, a total of 450 training sample
data with ranges of from 1 to 3 and MI from 0 to 0.5 were used to create a map in three-dimensional space for
ease of visualization and characterization. The method is validated with a plain-woven fabric sample in a testing
step to show that the two parameters of the fabric are identified with its corresponding and MI using these
machine learning algorithms. Numerical flow simulations were carried out for varying , MI, and DM perme-
ability, and the results were used to predict final void percentage. The quick online identification of the fabric
parameters with machine learning algorithms can instantly provide expected variability in void formation be-
havior that will be encountered in a VARTM process.

1. Introduction

In the VARTM process, a fiber preform is placed on the tool surface
that conforms to the part shape and a flow enhancement media known
as the distribution media (DM) is placed on top of the fabric. A vacuum
bag covers the fabric and the DM. In this mold assembly, resin at at-
mospheric pressure can enter the inlet on one end which is connected to
the DM. A vacuum is applied at the outlet at the other end to pull the
resin from the inlet gate to the outlet vent impregnating the DM and the
fabric layers of the preform placed on top of a rigid tool. Schematic of
the VARTM process is presented in Fig. 1. The DM enhances the resin
flow in the in-plane direction which reduces the mold filling time [1].
The resin flow in the anisotropic preform is described with Darcy's law
which is given in Equation (1). As the resin flow is through an

anisotropic fibrous porous media, the permeability of the preform is a
second order tensor as shown in Equation (2) in Cartesian coordinates.
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In Equation (1), ū is the volume averaged resin velocity, µ is resin
viscosity, P is the pressure gradient across the resin domain, and K is
the anisotropic permeability tensor, which is positive definite and
symmetric. The permeability tensor, K, shown in Equation (2) is a
measure of how easily resin moves through a fibrous reinforcement. In-
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plane permeability values (Kxx, Kyy and Kxy) and through the thickness
permeability values (Kxz, Kyz and Kzz) are six independent components
of the permeability tensor. The skew terms (Kxz, Kyz and Kyz) char-
acterizes the ease of resin flow in the chosen direction of the coordinate
system. The skew terms, especially through the thickness terms, can
significantly influence the resin flow dynamics when the fabric layers
are woven or stitched in through the thickness direction (3D fabric)
[2,3]. The value of these skew terms is zero if the principal direction of
the fabric coincides with the chosen coordinate direction.

There are several reported causes for the stochastic variation in the
permeability values of a fabric. Variation in the fabric architecture,
handling of layers as they are placed over a tool surface, placement of
the layers that nest to form the preform, and the manufacturing process
all play a role [4,5]. Previous studies by Yun et al. found that there is an
inherent randomness in through the thickness permeability of any
woven fabric which can locally cause large variations in resin flow in
through the thickness direction resulting in void formation [6]. The
inherent variation in through the thickness permeability arises from the
varying size of meso-scale spaces (pinholes) between woven tows. An
example of an image of a woven fabric is presented in Fig. 2 (a). The
raw picture of a woven fabric is given in Fig. 2 (a) and a filtered image
using a proper threshold by MATLAB is presented in Fig. 2 (b). The
pinholes of varying sizes act as easy pathways for resin from the DM to
race through the thickness direction to reach the bottom layer of the
stacked layers of fabrics. This results in uneven flow and possible
merging of the flow fronts trapping the air which forms the voids [6].
The varying sizes and locations of the pinholes are statistically char-
acterized with two statistical properties: a distribution function fit to
the histogram of calculated permeability of pinholes (Kpin) and spatial
correlation of pinhole areas [7]. The method to calculated Kpin, , and
MI is well described in paper [6,7], and Appendix A. The distribution

function best fit to the histogram is found to be gamma distribution and
one of its parameter, the shape factor , has been explored to in-
vestigate its effects on the overall Kpin. The example of the gamma
distribution fitting the histogram of pinhole permeability of the fabric
presented in Fig. 2 is displayed in Fig. 3(a) [7]. The gamma distribution
shifts to the right as α increases from 1 to 4 as seen in Fig. 3(b). Phy-
sically this means that as that as α increases the average pinhole size
increases and consequently Kpin values also increase. The spatial cor-
relation between pinhole areas and no pinhole areas is visually shown
in Fig. 2 (c) as a matrix composed of black (no pinhole) and white
(pinhole) areas. Moran's I (MI) is a statistical measure of spatial cor-
relation [8]. For this study, MI is used to study the spatial relationship
between pinhole areas and no pinhole areas. The examples of varying
MI are presented in Fig. 4. The value of MI varies from 0 (no spatial
correlation) to 0.5 (statistically significantly positively correlated). The
range for these two important parameters of Kpin field to describe the
fabric variability ( of 1–4 and MI of 0–0.5) should cover most of the
woven fabrics. The mean radius of pinhole of as it increases from 1 to
4 increases from 0.7mm to .1.7 mm. One will rarely encounter a woven
fabric with pinhole size between two tows to be larger than 1.7mm. For
MI, one is hardly likely to encounter a woven fabric of MI over 0.5 as
can be seen in Fig. 4.

Numerical simulations were carried out to study the effects of MI
and on the flow pattern of resin and resulting void percentage.
Table 1 shows the effect of these two parameters of fabric on the void
percentage formed in a VARTM process. Liquid Injection Molding Si-
mulation (LIMS) was utilized to run numerical simulations that describe
Darcy's flow of resin into an anisotropic fabric in a 3D mold in which
pinholes can be introduced in through the thickness direction. The
implementation of pinhole permeability is well described in Ref. [7].
The pinhole location and size were selected by the value of and MI.

Fig. 1. Schematic of the VARTM process to describe the impregnation of resin into the reinforcing woven fabric with high permeability distribution media placed on
top of fabric layers to enhance the in-plane flow.

Fig. 2. Image of E-glass fabric (60mm by 60mm) (a), binary image (b), and pinhole matrix(c). Black indicates no pinhole area and white signifies presence of
pinhole.



Note that although and MI value may be same, the distribution of
pinholes and their correlation matrix can embody different patterns.
The DM permeability can also be changed but was set to 1.4 ×10−8m2.
Mean percentage of voids by running 150 simulations for a given and
MI was found to increase with increasing and MI. This is a predictable
result because higher value of results in higher permeability of pin-
holes and higher value of MI leads to more highly clustered pinhole
spaces (positive correlation between pinhole areas).

Characterizing the fabric with these two parameters in real time can
allow one to forecast the possible void percentage in a VARTM process
for a given value of DM permeability. Machine learning methods are
effective in achieving this goal of identifying a fabric with these two
parameters quickly. Linear and non-linear dimensionality reduction
methods are types of machine learning processes which visualize and
characterize a group of high dimensional input data through a reduc-
tion of dimensionality. Machine learning methods such as Principal
Component Analysis (PCA), t – Distributed Stochastic Neighboring
Embedding (t_SNE), and Locally Linear Embedding (LLE) are widely
used to treat image, voice, and other types of samples with a high di-
mension [9–19]. These techniques visualize and characterize a large
number of samples with a high dimension in either two or three di-
mensional space (map). In this study, the map refers to a 2D or 3D
representation of high dimensional input data obtained through mani-
fold learning techniques. The map is a useful co-relation tool as it helps
one to identify which cluster the new sample will belong to in the map
and this way the new sample can be classified accordingly. There are
previously reported studies of dimensional reduction and data visuali-
zation using LLE [13,18], PCA or kPCA [9,10,20], and SNE or t_SNE

method [11,14,19,21]. In this study, the objective is to identify two
important parameters ( , MI) from a high dimensional input using di-
mensionality reduction methods (PCA and t_SNE) to predict the void
contents in a composite part by running numerical simulations.

2. Methodology

Two charts of the entire procedure which provides the void fraction
range from an image of the fabric in real time is presented in Fig. 5. The
procedure consists of a training step and a testing step. For this study, a
total of 450 samples for 9 cases (3 MIs of 0, 0.3, and 0.5 and 3 αs of 1, 2,
and 4) are used as a training data set. The detailed procedure to create
the training samples is well documented in Ref. [7]. In the training step,
450 images and matrices are first processed to generate frequency fil-
tered version of input data by Fast Fourier transformation (FFT). The
frequency matrices are further processed by PCA first to identify the

Fig. 3. Histogram of pinhole permeability of a plain woven fabric in Fig. 2 and its best fit gamma distribution function (a) and gamma distributions with varying α
(b).

Fig. 4. Samples of 21× 21 mesh size and varying Moran's I. MI of 0 (a), 0.3 (b), and 0.5 (c and d representing two different realizations) Black indicates no pinhole
area and white means pinhole area.

Table 1
Void percentage obtained from numerical simulation with varying and MI
(MI).

= 1
MI= 0

=1
MI=0.3

= 1
MI=0.5

= 2
MI=0.3

= 4
MI=0.3

Range (%) 0.7–2.6 0.9–3.8 0.9–4.6 1.3–4.2 1.3–4.3
Mean (%) 1.35 1.90 2.05 2.30 2.54
Standard

deviation (%)
0.37 0.65 0.75 0.47 0.50



important frequencies and ignore the others. Then, the more advanced
t_SNE machine algorithm is applied to create 3D maps in which the
input samples are separated based on α and MI. Once the maps in three
dimensions show clear separation for these parameters, a binary image
of a new sample of fabric is subjected to the machine learning methods
in the testing step which will place it in a cluster of the created 3D map
thus identifying its and MI value. Once these two parameters are
known, the numerical simulations were performed with these values of
α and MI for different DM permeability values. The corresponding
range of void fractions can then be forecasted from the numerical si-
mulations of the VARTM process from using just the binary image of the
fabric sample.

2.1. Image processing

There are two types of image samples for the process. This binary
image of size of 205× 205 (dimensionality of 44100) pixels in Fig. 2
(b) is one type of input data which is obtained by filtering the original
image with a selected threshold. The binary image contains the in-
formation of both the size and the location of the pinholes. The second
input data is a pinhole matrix of size of 21×21 (dimensionality of 441)
produced from the binary image as shown in Fig. 2 (c). Each cell of the
matrix has information contained in 5mm×5mm square of the binary
image. The distance of 5mm is the average distance between pinholes
(tows) which lie horizontally or vertically. MATLAB is employed to
import the images into binary matrix. The accuracy of the process of
importing images is well documented in the paper [6,7]. The matrix
elements are composed of 1 (no pinhole) and 0 (pinhole).

2.2. FFT and machine learning methods

2.2.1. Fast Fourier transformation (FFT)
In order to reduce the dimensionality and the noise within the do-

main, the images and matrix of a woven fabric are transformed by FFT
to output in a frequency domain using MATLAB [22]. FFT is a method
to carry out Discrete Fourier Transformation (DFT) quickly and effi-
ciently. DFT is a method that converts an input data in a spatial domain
to output data with sine and cosine components in frequency domain.
The elements in the binary image and pinhole matrix (X) are trans-
formed to corresponding frequency ( ) by FFT. The output of FFT , is a
matrix with each point displaying a particular frequency which is then
addressed by the machine learning algorithm PCA followed by t_SNE.

2.2.2. Principal Component Analysis (PCA) and t – distributed Stochastic
Neighbour Embedding (t_SNE)

PCA and t_SNE both are used to reduce the dimensionality of the
processed matrix and images by FFT in this study. In PCA, the data in a
principal sub-space is obtained using eigenvectors (principal compo-
nents) of the covariance matrix of the input data [10,23]. t_SNE is a
variation of SNE which is a nonlinear dimensionality reduction tech-
nique by minimizing a cost function of probability distributions of
neighboring points over the input data. It is easier to implement and
yields much better visualization in a low dimensional space than
standard SNE [14,21].

The procedure begins by subtracting mean from the processed fre-
quency matrix, to obtain matrix, D1. Covariance matrix ( ) of D1 is
calculated and eigenvalues and eigenvectors of the covariance matrix
( ) are obtained. K largest eigenvectors are then multiplied to the
frequency matrix ( ) to obtain a matrix of reduced dimensionality ( 1)
in PCA space [24,25]. In this study, K is 30 which means the initial
dimensionality (44100 or 441) are reduced to 30 first eigen vectors
using PCA method. The PCA treated matrix ( 1) is then processed by
t_SNE to obtain a final matrix (y) of reduced dimension 3. First, the
probabilities (p q, ) converted from euclidean distance between data
points (in 1( 1 , 1 , , 1 )n1 2 1 for p and y (y y y, , , n1 2 1) for q) are
presented (Equations (3) and (4)) [14].
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Where the variance of the Gaussian is centered data point, 1iThese
pairwise similarities (probabilities, p q, ) should be the same if the new
map (y) models the similarities of input matrix ( 1) correctly. The cost
function (C) in Equation (5) below measures the difference between
two probabilities and it should be minimized to obtain the final matrix
(y).

= =KL P Q p log
p
q

C ( )
i j

ij
ij
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The cost function, C, aims to minimize a single Kullback-Leibler
divergence between p and q.

The early employment of PCA in the process helps to define the

Fig. 5. Flow charts showing the process to obtain void fraction from an image of the fabric. Training step (a) and testing step (b).
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main manifold from a linear dimensionality reduction perspective. It
was found that FFT and PCA filters were necessary before employing
t_SNE. MATLAB is employed to carry out the machine learning process
implementation.

2.3. Numerical simulation (LIMS)

Numerical flow simulation with the generated random field where
Kpin (permeability of a pinhole) values are assigned to through the
thickness permeability allows us to study the effect of heterogeneity on

the flow. LIMS is a finite element/control volume flow simulation
software which was developed at the University of Delaware [26]. The
woven fabric with pinholes in Fig. 2 was modeled into a 3D mesh with
1D elements representing the pinhole values for the simulation. The
mesh is shown in Fig. 6.

Four layers of fully nested fabrics (0.12m by 0.53m) and pinholes
are simulated using 3D elements (representing the woven fabric) and
1D elements (representing the pinholes). The thickness of each layer of
fabric is 0.7 mm under vacuum (fully nested). One layer of DM (0.11m
by 0.48m) with thickness of 1mm is simulated using 2D elements. The
permeability tensor of the woven fabric was obtained experimentally
using the methodology presented in Ref. [3]. The values of the bulk
permeability components are presented in Table 2.

The Kpin field was generated using the methodology documented in
Ref. [7] and was assigned to the 1D elements. Three values of DM
permeability (KDM of × × ×m m m1.45 10 , 8.5 10 , and 4 1008 2 09 2 09 2)
were used to study the effect of KDM on void formation. Other experi-
mental conditions such as fabric volume fraction, pressure, and visc-
osity are listed in Table 3.

The simulations were run to find the final void content. The void
fraction was calculated as the area of the voids divided by the mold
area. These numerical results along with the result from the machine
learning method are used to provide the range of void content for any
new image of the fabric.

3. Results

3.1. Results of manifold embedding method

The results of manifold embedding of 450 images and matrices of
varying α (1, 2, and 4) and MI (0, 0,3, and 0,5) are obtained and pre-
sented in Figs. 7 and 8. A 3D map of clearly separated clusters based on
was obtained using binary images of resolution of 205×205 pixels in

the training step as can be seen in Fig. 7. As briefly mentioned in In-
troduction section, affects the size of pinholes. The higher the value of
, it signifies on an average a larger size pinhole. Considering this, the
result makes sense that images rather than matrices are proper training
samples for the characterization of input data with in a reduced 3D
space because the images show the size of pinholes. On the other hand,
the second type of input data, matrices of 21×21 elements, only
contains the information of the location of pinholes in a unit size of

Fig. 6. Woven fabric layer modeled as 3D elements and pinholes as 1D elements
in the flow simulation [6].

Table 2
Experimentally determined permeability values of the components of the 3D
permeability tensor of the plain woven fabric.

K m( )xx 2 K m( )yy 2 K m( )zz 2 K m( )xz 2 K m( )yz 2 K m( )xz 2

8.8× 10 11 9.1× 10 11 1.36× 10 12 9.89× 10 16 1.58× 10 15 1.00× 10 15

Table 3
Experimental condition for numerical simulation study.

Fabric volume fraction 0.45
Inlet Pressure (Pa) 1× 105

Resin Viscosity (Pa.s) 0.1

Fig. 7. Manifold embedding of input of images of fabric of 205× 205 size in 3D space. Α separation of value of 1, 2 and 4 (a) and Α separation of value varying in
range (0.5–4) (b). Here RP means reduced parameter.



fabric (105mm by 105mm) and of spatial correlation between pinholes
and no pinhole areas. Therefore, matrices rather than images are
chosen to be the training samples for characterization of data based on
MI values and the results are presented in Fig. 8. Additional samples of
intermediate α of 0.5, 1.5, 2.5, and 3.5 were included in the training

pool along with samples of MI of 0.15 and 0.4. Figs. 7(a) and 8(a) show
the result from manifold learning process with 9 samples (MI 0, 0.3 and
0.5. α of 1, 2, and 4). Figs. 7(b) and 8(b) show the results with all
samples including the intermediate values of α and MI. is set to 1 for
samples with varying MI, and MI is set to 0.3 for samples with varying

Fig. 8. Manifold embedding of input matrix of 21× 21 size in 3D space. MI separation of value of 0, 0.3, and 0.5 (a) and MI separation of value varying in range
(0–0.5) (b). Here RP means reduced parameter.

Fig. 9. Plain woven fabric of size of 105 mm×105 mm the width of tow is 5mm original image (a) binary image (b) pinhole matrix (c). Black indicates no pinhole
area and white indicates pinhole.



. These 3D maps can now be used to identify α and MI for a fabric of
interest from its image as shown in the next section.

3.2. Experimental results

The plain woven fabric presented in Fig. 2 was used as an input
sample to identify its α and MI value using the method discussed in the
previous section. The original image of size of 105 mm×105mm,
binary image (205×205 pixels), and pinhole matrix (21×21 pixels)
are displayed in Fig. 9. The image and matrix data were processed by
FFT first before subjecting it to the manifold embedding method. The
position of the new sample in a 3D space is shown to belong to the
cluster which has α in the range of 0.5–1.5 and MI in the range 0.15–0.4
in Fig. 10. With this characterization of the fabric, one can forecast the
expected void percentage range from the previously compiled library of
numerical simulation results for various α and MI values. For α of 1 and
MI of 0.3, the expected void fraction are presented in Table 4 and
Fig. 11.

The numerical results show that the void fraction increases with
higher DM permeability [3,7], and it could be up to 4.26% for this type
of fabric with α of 1 and MI of 0.3.

4. Summary and conclusions

Manifold embedding method is successfully used to characterize the
architecture of a fabric of interest with important variables such as α
and MI. A total 450 training samples of varying α and MI were used for
the manifold embedding method, PCA and t_SNE, to build a 3D map

showing distinctly separate clusters of input data separated based on
the two variables (α and MI). To test the method, the manifold em-
bedding method was carried out on an image of a new sample of a
plain-woven fabric with tow width of 5mm to identify the cluster of α
and MI it belonged to in the 3D map of clusters created from the
training samples. The α and MI were found to be in the range of 0.5–1.5
and 1.5–4, respectively for the fabric. The range of void fraction for this
fabric was forecasted for the three DM cases to vary between 0.1 and
4%. This quick and efficient approach to characterize a fabric with two
variables allows for forecasting the likelihood of void formation and its
extend in the VARTM process and also provides textile manufacturers
information on the effects of variability in their equipment on the
manufacturing of the fabrics so steps could be taken to reduce this
variability.

Fig. 10. Identification of the value of α (Fig. 10a) and MI (Fig. 10b) of the new woven fabric sample in the clustered manifold map built with 450 training samples
(see Figs. 7 and 8) Here RP means reduced parameter.

Table 4
Void percentage obtained from numerical simulations performed with gener-
ated pinhole positions and sizes for various α and MI values.

KDM(m2) Simulation results Void (%)

Range (%) Mean (%) Standard deviation

1.45× 10 08 1.06–4.26 1.90 0.56

8.5× 10 09 0.31–3.72 1.39 0.54

4× 10 09 0.12–3.33 0.79 0.47

Fig. 11. Histogram of void percentages calculated from the simulations with
generated pinhole fields. Different colors represent different DM permeability
magnitudes [7]. (For interpretation of the references to color in this figure le-
gend, the reader is referred to the Web version of this article.)



Appendix A

Moran's I index varies from −1 (negatively correlated) to 1 (positively correlated).
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WhereWij is the binary weight matrix, xi is the Kpin value at location i, xj is the Kpin value at location j, and x̄ is the global mean of Kpin, values and n is
the total number of pinholes.

In equation (A2),

= > +f x x e and x( )
( )

, , 0 0X
x1

(A2)

Where x is the gamma random variable (in our case the Kpin value) and f x( )X is the gamma random variable density function, is a scale factor, and
is a shape factor. The fitted gamma distribution of histogram of Kpin values is presented in Fig. 3 for which = 1.16 and =1.08.
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