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Abstract—In this work, we consider the problem of graph
signals classification. We investigate the relevance of two at-
tributes, namely the total variation (TV) and the graph energy
(GE) for graph signals classification. The TV is a compact and
informative attribute for efficient graph discrimination. The GE
information is used to quantify the complexity of the graph
structure which is a pertinent information. Based on these two
attributes, three similarity measures are introduced. Key of these
measures is their low complexity. The effectiveness of these
similarity measures are illustrated on five data sets and the results
compared to those of five kernel-based methods of the literature.
We report results on computation runtime and classification
accuracy on graph benchmark data sets. The obtained results
confirm the effectiveness of the proposed methods in terms of
CPU runtime and of classification accuracy. These findings also
show the potential of TV and GE informations for graph signals
classification.

I. INTRODUCTION

Discrete Signal Processing on Graphs (DSPG) is an emerg-
ing topic that has drawn much interest recently in multiple
disciplines [1]-[2]. Graphs are data structures well suited to
represent complex relationships among high-dimensional data
and can be used in many fields of engineering and science.
The graph can be constructed using the data to capture the
underlying geometry. With the growth of information and
communication, data signals are generated at different rate
from various sources, including social networks, biological,
citation and physical networks. Nowadays, many data analysis
and processing tasks have to handle large structured datasets,
where the structure information carries important information
about the nature of the observations. Unlike time series or
images, these data have complex and irregular structures,
which require new processing methods leading to the emerging
field of DSPG. Classical DSP can be viewed as a special case
of DSPG. More precisely, signal processing on graphs aims
to extend the tools used for analysis, denoising, classification,
machine learning and interpolation of traditional signals to
signals defined on graphs. The aim of graph signals processing
framework is to allow us to process given data while taking
into consideration the underlying connectivity between the
data points. Due to their ability to capture the complex
relationships in high-dimensional datasets, graphs constitute a
potential tool for data analysis such as classification, which is
an important problem in machine learning and data mining [3].
The present paper deals with the classification of graph signals
using similarity measures exploiting the total variation (TV)
[4],[5], [6], and the Laplacian graph energy [7] informations.

The graph energy is a measure of the graph complexity and
TV operator takes into account both data and graph structure.
More precisely, TV of a graph signal measures how much the
signal changes between node values and thus measures the
change upon the graph structure. Based on these two attributes
three similarity measures are introduced. These measures are
of low complexity and easy to implement. The effectiveness
of these similarity methods are illustrated on five data sets and
the results compared to those of five kernel-based methods of
the literature. Before graph signals classification, we need to
ensure that the data are well mapped to the graph space and
that the interpretation will be more realistic in the new space
[8].

II. BASICS OF GRAPH SIGNALS

A graph is defined with a finite non-empty set V of N
points called vertices and with another set E of M unordered
pairs of distinct points of V . A graph with N vertices and
M edges is called a (N,M) graph. In other words, a graph
is a set of vertices with a connectivity relation between its
elements. A labelled graph with N vertices and M edges can
be represented with an (N×N) adjacency matrix (A = [aij ])
where the element aij is equal to one if the vertex vi is
connected to the vertex vj . If not, aij is zero. A graph signal
is given by a mapping of a real (or complex) dataset to a graph
structure and is noted as :

X : V → R,
vn → Xn (1)

The dataset of the graph signal can be written as a vector:

X = [X0, X1, . . . , XN−1]
T ∈ RN (2)

Each element Xn is mapped to a vertex vn of a graph G(V,A)
completing the graph signal construction. In the following, a
graph signal G(X,A) is defined as the association of data
supported by nodes and a graph structure defined by its
adjacency matrix.

III. GRAPH TOTAL VARIATION

Classical TV of a discrete signal is defined as the accumu-
lation of the differences between consecutive signal samples
[2]:

TV(X) =
∑
k∈Z
| Xk −Xk−1 | (3)



For a finite time series where Xn = XnmodN , the TV is
defined as:

TV(X) =

N−1∑
n=0

| Xn −Xn−1modN | (4)

TV, given by Eqs. (3)-(4), measures the variation of the signal
in the time. Equation (3) calculates a cumulative difference
of the signal over the time. TV compares the original signal
X to its shifted version. When signal variation is low, then
the accumulation difference is also low. TV (3) can be written
using a cyclic permutation matrix C:

TV(X) =|| X−CX||1 (5)

where || . ||1 is the l1-norm. TV, given by (5), measures the
cumulative difference between the signal data at each node and
its neighbours. In DSPG framework, relation (5) is generalized
for any graph signal G(X,A) by considering the TV quantity
as a measure of the difference between a graph signal and its
shifted version:
Definition : the TVG [9] of a graph signal G(X,A) is defined
as

TVG(X) =|| X−AX||q (6)

where A is the normalized adjacency matrix of the graph and
AX is the shifted version of the signal. The graph TV can
be based on the lq−norm.

IV. GRAPH SIGNALS SIMILARITY MEASURE BASED ON TV

TV characterizes the oscillations of the signal values upon
the structure of the graph, where high variations give indica-
tions about high frequency components [2]. These frequencies
depend directly on both signal values on each node and
their respective degrees. A high local oscillation corresponds
to abrupt variation of the signal value with respect to its
neighbours. The more the neighbourhood is large the more
important the oscillation is. Given the structure of the graph
signal and its node values, the TV can be considered as a good
and informative descriptor for graph discrimination. More pre-
cisely, TVG is well suited for graph signals comparison. Let us
consider two graph-signals {Gi(Xi,Ai), Gj(Xj ,Aj)} ⊆ G
where Ai and Xi are respectively the adjacency matrix and
the vector of the scalar data supported on the graph nodes,
with G being the set of graph signals. Using relation (6), the
TV of the kth graph signal is given by :

T̃VGk
=

TVGk

Nk
=
|| Xk −Ak Xk||q

Nk
(7)

where Nk is the number of the nodes of Gk. We define
the difference between two graph signals, Gi(Xi,Ai) and
Gj(Xj ,Aj), as the difference of their respective mean TVG
as :

TVG(Gi, Gj) =| T̃VGi
− T̃VGj

| (8)

The smallest the difference is, the highest the similarity is.
It is important to point out that the similarity between graph
signals involves both the node values and the graph structure

(Eq. 7). Besides the TV measure, the complexity information
of the graph structure is pertinent attribute for graph signals
classification.

V. GRAPH COMPLEXITY

Due to its practical importance, graph complexity quantifi-
cation has attracted significant attention in various domains
such as pattern recognition, control theory or network analysis
[10]. The measure of this complexity is important for different
applications including embedding [11], classification [12] and
filtering of image description hierarchies [13]. The graph com-
plexity can be measured in different ways [10]. An attractive
measure is the Laplacian graph energy (GE), introduced by
Gutman and Zhou [7], which has shown promising results,
for example, in image processing [13]. This information is
exploited for similarity measure of graph signals.

A. Laplacian graph energy

The concept of GE has a chemical motivation and goes
back to the work of Hückel on the approximate solution of
the equation of Schrödinger of certain organic molecules [14].
Based on facts observed in molecular theory, Gutman [15]
introduced the definition of the GE as follows:

E(G) =
N∑

k=1

| µk | (9)

where µk are the eigenvalues of the adjacency matrix of
graph. This spectrum-based graph invariant has been largely
studied in both chemical and mathematical literature. Instead
of Eq. (9), a GE-like quantity defined in terms of Laplacian
and preserving the main features of the original GE has been
proposed by Gutman and Zhou [7]:

LE(G) =
N∑

k=1

∣∣∣∣∣ωk −
2M

N

∣∣∣∣∣ (10)

where ωk are the eigenvalues of the Laplacian matrix of graph
and 2M

N is the average vertex degree. Using this energy index
two measures of similarity of graph signals are introduced.

B. Laplacian graph energy similarity measure

The first measure, GE, is based on the difference in energy
between two graph signals Gi and Gj as follows

GE(Gi,Gj) = |LE(Gi)− LE(Gj)| (11)

C. Joint Energy Total variation similarity measure

The second measure is a joint difference of GE and the
TVG called JET

JET(Gi,Gj) = λ×GE(Gi,Gj)+(1−λ)×TVG(Gi,Gj) (12)

where λ ∈ [0, 1] is a weighted parameter controlling the
contributions of GE and TVG. The JET measure takes account
both the complexity of the graph and the interaction between
graph structure and data supported by nodes.



VI. GRAPH KERNEL BASED ON TVG, GE AND JET
SIMILARITY MEASURES

In kernel strategies, patterns are represented by pair-
wise similarity function instead of individual feature vec-
tors. Let us consider a pattern data set D with M objects
{d1, d2, . . . , dM} ⊂ P , where P is the space of all possible
patterns, and a similarity function K : D × D → R, known
as kernel function. It associates to each pattern pair a kernel
value Kij(di, dj), These values can replace inner products
in learning algorithms and permit the accomplishment of
the learning task in a higher implicit vector space. Kernels
extract relevant information for classification insofar as some
criteria are respected. That is, kernel values must be obtained
from a symmetric and positive definite function [16] so that
they are called valid kernels or Mercer Kernels [17]. Several
graph kernels have been developed and tested in literature
[18],[19] such as diffusion kernels, walk kernels, convolution
kernels [20], and Weisfeiler-Lehman kernels [21].Inspiring
from Radial Basis Function kernel [16], we built a graph
signals kernel by the integration of TVG, GE and JET on
an exponential function. We associate to each pair of graph
signals Gi, Gj the quantity:

Ki,j =

∞∑
n=0

1

n!
(−γ s(Gi,Gj))

n = exp(−γ s(Gi,Gj)) (13)

where K is the kernel matrix and s(Gi,Gj) is one of similarity
measures proposed above (TVG, GE and JET), γ is a smooth-
ing factor. Using the kernel (13), graph signals are classified
in a hidden infinite dimensional Euclidean space instead of
one dimensional raw space.

VII. EXPERIMENTAL RESULTS

A. Graph Signals Data sets
To show the effectiveness of the proposed similarity

measures, five data sets are used, all concerning chemi-
cal/biological compounds. MUTAG [22] is a data set of
188 mutagenic aromatic and heteroaromatic nitro compounds
labeled according to whether or not they have mutagenic effect
on the Gram-negative bacterium Salmonella typhimurium .
NCI1 and NCI109 represent two balanced subsets of data sets
of chemical compounds screened for activity against non-small
cell lung cancer and ovarian cancer cell lines [23]. ENZYMES
is a data set of protein tertiary structures obtained from [24]
consisting of 600 enzymes from BRENDA enzyme database
[25]. In this data set, the task is to assign each enzyme to one
of the 6 top-level classes. D&D is a data set of 1178 protein
structures [26]. Each protein is represented by a graph, in
which the nodes are amino acids and two nodes are connected
by an edge if they are separated by less than 6 Angström. The
classification task is to distinguish protein structures between
enzymes and non-enzymes. Note that all these graphs are
graph signals with labelled nodes.

B. Experimental configuration
The kernel used (Eq. 13) is integrated on Support Vector

Machine algorithm and 10-fold cross-validation strategy is

performed using 9 folds for training and 1 for testing. Data
sets are randomly shuffled before partitioning and the whole
experiment is repeated 10 times to avoid random effects of
fold assignments. The kernel factor γ is set to 1. The best
performance of the JET measure, in term of classification
accuracy, is obtained by a suitable selection of λ. We find
the best value by varying this parameter from 0 to 1 and
picking out the value where the classification accuracy is
maximal. This parameter is not known a-priori and has to
be determined based on the data set used. For TVG and
JET measures, the norm 2 (q = 2 ) is used to calculate TV
operator. Average classification accuracies and the associated
standard deviations are summarized in Table I. Performances
of kernel based on TVG, GE and JET measures are compared
to different kernels of the literature in terms of prediction
accuracy and computation runtime on graph signals bench-
mark data sets. The most known graph kernels are tested:
those based on walks, Weisfeiler-Lehman isomorphism and
limited-size subgraphs. Our similarity measures are compared
to the fast geometric random walk kernel proposed by Vish-
wanathan et al. [27], counts common labelled walks and to
p-random walk kernel that compares random walks up to
length p in two graphs (a special case of random walk kernels:
Kashima et al. [28], Gärtner et al. [18]). In the case of
limited-size subgraphs family, we compare with an extension
of the graphlet kernel proposed by Shervashidze et al. [29]
that counts common induced labelled connected subgraphs of
size 3. From Weisfeiler-Lehman kernels, we picked up the
Weisfeiler-Lehman edge kernel [21],[29]: it counts matching
pairs of edges with identically labeled endpoints (incident
nodes) in two graphs. Computing set-up, accuracy and runtime
values of the benchmark kernels are performed and reported
by Shervashidze et al. in [21]. As reported in Table II, runtime
in minutes and seconds of our methods are measured in
Anaconda2 4.1.1 Python 2.7.12 Lab installed on a PC with
3 GHz Intel 8-Core processor and 16GB RAM.

C. Evaluation

Overall, as shown in Table I, On NCI1, NCI109, ENZYMES
and D&D Weisfeiler-Lehman edge kernels reach the highest
accuracy but perform less then JET kernel on MUTAG. As
shown in Table I, on MUTAG, NCI1, NCI109, and D&D,
the TVG, GE, JET based kernels reach good accuracy and
are competitive with other kernels. On MUTAG, the GE
and JET based kernels give the second best accuracy and
perform better than random walk and Weisfeiler-Lehman edge
kernels. On NCI1, NCI109, ENZYMES, and D&D, the JET
kernel reaches the third best accuracy and performs better
than random walk kernels. In term of computation runtime,
on all data sets the JET, TVG and GE kernels are more faster
than all other kernels and particularly compared to Ramon
and Gärtner kernel. As shown in Table II, our similarity
measures outperform state-of-the-art graph kernels in term of
computation runtime. The best computational time over all
the data sets and all the considered methods is provided by
the TVG kernel. This result highlights the low complexity of



TABLE I
CLASSIFICATION ACCURACY (± STANDARD DEVIATION)ON GRAPH SIGNALS BENCHMARK DATA SETS.

Methode/Dataset MUTAG NCI1 NCI109 ENZYMES D&D
Graph Signal Total Variation TVG 77.88 (±1.43) 55.91 (±0.38) 56.62 (±0.10) 20.36 (±0.91) 75 (±0.10)

Graph Signal Energy GE 82.34 (±1.25) 61.81 (±0.40) 62.22 (±0.35) 23.33 (±1.44) 64.45 (±0.61)
Energy and Total Variation JET 83.51 (±1.14) 64.43 (±0.21) 64.88 (±0.16) 31 (±0.53) 75 (±0.04)

Ramon and Gärtner 85.72 (±0.49) 61.86 (±0.27) 61.67 (±0.21) 13.35 (±0.87) 57.27 (±0.07)
p-random walk 79.19 (±1.09) 58.66 (±0.28) 58.36 (±0.94) 27.67 (±0.95) 66.64 (±0.83)
Random walk 80.72 (±0.38) 64.34 (±0.27) 63.51 (±0.18) 21.68 (±0.94) 71.70 (±0.47)
Graphlet count 75.61 (±0.49) 66.00 (±0.07) 66.59 (±0.08) 32.70 (±1.20) 78.59 (±0.12)

Weisfeiler-Lehman edge 81.06 (±1.95) 84.37 (±0.30) 84.49 (±0.20) 53.17 (±2.04) 77.95 (±0.70)

TABLE II
CPU RUNTIME FOR KERNEL COMPUTATION ON GRAPH SIGNALS CLASSIFICATION BENCHMARK DATA SETS.

Methode/Dataset MUTAG NCI1 NCI109 ENZYMES D&D
Graph Signal Total Variation TVG 0.036′′ 17′′ 17.4′′ 0.4′′ 1.4′′

Graph Signal Energy GE 0.12′′ 20.6′′ 21.8′′ 1′′ 2′19′′

Energy and Total Variation JET 0.18′′ 51′′ 51.2′′ 1.6′′ 2′21′′

Ramon and Gärtner 40′6′′ 81 days 81 days 38 days 103 days
p-random walk 4′42′′ 5 days 5 days 10′ 4 days
Random walk 12′′ 9 days 9 days 12′19′′ 48 days
Graphlet count 3′′ 1′27′′ 1′27′′ 25′′ 30′21′′

Weisfeiler-Lehman edge 3′′ 1′5′′ 58′′ 11′′ 3 days

this kernel. Note that the JET kernel is faster (×2000) than
Weisfeiler-Lehman edge kernel in D&D data set with almost
the same accuracy (75% vs 78%). By combining TVG and GE
similarity measures, we improve their individual performance
about 7% for ENZYMES, 3% for NCI1/NCI109 and 1% for
MUTAG. While for D&D, no improvement is obtained, the
best accuracy is reached by TVG alone. Figure 1 shows the
behaviour of prediction performance of JET kernel according
to the weighting factor λ. We note that the maximum accuracy
is obtained between the limit values of λ (λ ∈ [0, 1]), which
confirms that with the contribution of both TVG and GE
measures, higher accuracy rates can be reached.

Fig. 1. Accuracy variation of JET based kernel in function of λ.

VIII. CONCLUSION

In this work, new graph-signals similarity measures based
on graph TV and Laplacian GE are proposed. These measures

are not limited to unweighed graphs. TVG measure is an
informative and efficient descriptor for graph signals discrim-
ination. It quantifies the interaction between the node values
and the supporting structure of the graph. GE information is
a pertinent characteristic that measures the complexity degree
of the graph signal. It takes into account both connections
distribution of the network and its density. These two measures
integrated in an exponential kernel showed competitive perfor-
mance on binary and multiclass graph signals classification.
TVG and GE are combined into a new and relevant joint
measure, JET. TVG, GE and JET measures are illustrated on
five data sets and the results compared to those of five kernel-
based methods of the literature. Our measures yield competi-
tive accuracy levels on all considered data sets and outperform
state-of-the-art graph kernels in term of computation runtime.
Results of JET measure show the benefits of hybrid approaches
on discriminating graph signals without significant increase
of complexity. This work opens up new perspectives and
encourages us to carry out more studies about joint similarity
measures and graph signals energy distribution. We aim to
optimize JET measure and study further its behavior in other
special graph signals datasets. We plan to develop a strategy
to select automatically the best λ value and to test TVG, GE,
JET measures according to different values of kernel parameter
γ. Finally, it would be interesting to investigate the effect of
different lq−norms (q 6= 2) on the obtained accuracy levels.
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