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Abstract 

This work aims at assessing different Uncertainty Quantification (UQ) methodologies for the stochastic analysis and 

robust design of Organic Rankine Cycle (ORC) turbines under multiple uncertainties. Precisely, we investigate the 

capability of several state-of-the art UQ methods to efficiently and accurately compute the average and standard 

deviation of the aerodynamic performance of supersonic ORC turbine expanders, whose geometry is preliminarily 

designed by means of a generalized Method Of Characteristics (MOC).  Stochastic solutions provided by the adaptive 

Simplex Stochastic Collocation method, a Kriging-based response surface method, and a second-order accurate 

Method of Moments are compared to a reference solution obtained by running a full-factorial Probabilistic 

Collocation Method (PCM). The computational cost required to estimate the average adiabatic efficiency, Mach 

number and pressure coefficient, as well as their standard deviations, to within a given tolerance level is compared, 

and conclusions are drawn about the more suitable method for the robust design of ORC turbines.  
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1. Introduction

The design under multiple uncertainties is a technique called Robust Optimization (RO), which allows 

achieving designs with stable performances under random variations of the design parameters. Here we 

consider an Organic Rankine Cycle (ORC) supersonic impulse expander working under stochastic 

operating and geometrical conditions.  In order to carry out a robust design, which takes into account the 

non-deterministic nature of inputs, the sensitivity of the 2D turbulent flow through a geometry 

representative of a typical supersonic ORC turbine nozzle cascade is preliminarily investigated via 

different uncertainty quantification (UQ) algorithms coupled with an in-house finite-volume dense gas 

flow solver. The supersonic nozzle is designed by means of an in-house software based on the method of 

characteristics extended to dense gases [1], which are peculiar of ORC applications. Dense gases are 

molecularly complex gases with a strongly non-ideal thermodynamic behavior in a thermodynamic region 

above the liquid/vapor saturation curve, where the speed of sound exhibit a behavior opposite to that of 

standard gases when the fluid undergoes isentropic transformations. Unfortunately, experimental 

comparisons are not possible since for dense gas flows no experimental data of any kind are available in 

the literature up to now [2]. This is a well-known difficulty in the ORC community. Attempts to build 

experimental setups to provide data are currently underway at several universities. ORC systems are 

subject to multiple uncertainties, like fluctuating operating conditions, geometric tolerances and ill-known 

fluid properties, which should be taken into account at an early stage of the design process (see, e.g. [1]). 

Problems involving a high number of uncertain parameters suffer from the so-call "curse of 

dimensionality" problem [3,4], since the number of code runs required to approximate the statistical 

moments of the probability density functions associated to the output quantities of interest increases 

exponentially with the number of parameters. Besides, due to the complexity of the geometry and 

computational cost associated with the ORC geometries and working fluids, no advanced UQ method has 

been applied so far to these turbines and little work has been done on uncertainty quantification in 

turbomachinery in general [5]. A few applications of non-intrusive, sparse grid Generalized Polynomial 

Chaos methods to simple ORC turbine simulations exist [4,6]. For realistic applications such the ORC 

turbines considered in this paper, the overall computational cost of an UQ calculation becomes 

prohibitive. Computational cost is especially crucial when the aim is using robust design techniques in an 

industrial context. To overcome these limitations, the selection of efficient sampling techniques of the 

parameter space is of vital importance. Then, the aim of the paper is to assess and compare very different 

UQ techniques, in terms of accuracy and efficiency, for a realistic ORC nozzle configuration and to 

suggest useful guidelines to engineers and designers for selecting an efficient UQ method for this kind of 

problems.  

2. Dense gas solver

In the numerical simulations presented in this work, the viscous governing equations are discretized 

using a cell-centered finite volume scheme for structured multi-block meshes of third-order accuracy, 

which allows the computation of fluids modelled by the Peng-Robinson-Stryjek-Vera cubic equation of 

state in order to take into account the real gas effects [7]. The closure of the RANS equations system is 

achieved by implementing the Spalart-Allmaras turbulence model. The scheme is obtained by correcting 

the dispersive error of the classical second-order accurate Jameson’s scheme [8]. To preserve the high 

accuracy on non-Cartesian grids, the numerical fluxes are constructed by using weighted discretization 

formulas, which take into account the mesh deformations [9]. This ensures third-order accuracy on 

moderately distorted meshes and second-order accuracy at least on highly deformed mesh. The equations 

are then integrated in time using a four-stage Runge-Kutta scheme. Local time stepping, implicit residual 



 

smoothing and multi-grid acceleration are used in order to drive the solution to the steady state. The 

accuracy of the numerical solver has been already demonstrated in previous works [7-10].  

3. Uncertainty quantification models

In this Section a short description of the UQ models used in this work is provided. Two non-intrusive

models (Simplex Stochastic Collocation (SSC) and Bayesian-Kriging (BK) methods) and one 

deterministic model (Second Order Second Moment (SOSM) method) have been coupled with the dense 

gas solver in order to evaluate the response of the ORC injector to the stochastic variations of the inputs. 

As described in the next Section, the results are compared with those provided by a full-factorial analysis 

performed with a Probabilistic Collocation Method (PCM). 

3.1. Probabilistic Collocation Method (PCM) 

In the PCM [11] the multi-dimensional random space parameters is discretized in a full-factorial way 

by means of multiple one-dimensional tensor products. If we consider the generic partial differential 

equation system 𝐿(𝒙, 𝜔, 𝑢) = 𝑓(𝒙, 𝜔) (where x are the spatial variables and 𝑢 = 𝑢(𝒙, 𝑡, 𝜔) is the random 

solution depending on time, space and the random parameter ω), the solution is decoupled in a 

deterministic part 𝑢(𝒙, 𝑡) and in a stochastic part ℎ(𝜉(𝜔)), where 𝜉 is the input random variable. The 

random solution 𝑢 is expanded by means of a Lagrange polynomial chaos according the equation (1): 

𝑢(𝒙, 𝑡, 𝜔) = ∑ 𝑢𝑖(𝒙, 𝑡)ℎ𝑖(𝜉(𝜔))
𝑁𝑝

𝑖=1
(1) 

The number of terms Np for the expansion increases exponentially as function of the number of random 

variables nξ according to the relation 𝑁𝑝 = (𝑃 + 1)𝑛𝜉, where P is the degree polynomial. This feature is

typical of the full-factorial sampling and introduces the “curse of dimensionality” problem, which has a 

dramatic impact on the computational costs. The statistics (mean and variance) are evaluated by means of 

a Galerkin projection of the solution on the polynomial basis, with the collocation points calculated as the 

nodes of the Gaussian quadrature integration performed by implementing the Golub-Welsch algorithm 

[12]. 

3.2. Simplex Stochastic Collocation with Extremum Diminishing (SSC-ED) method 

To alleviate the high computational cost associated to a full-factorial sampling, a more efficient 

technique is proposed in [13]. The hypercubic space parameters is discretized in a unstructured way under 

the form of simplexes by means of an adaptive Delaunay triangulation. A random sampling is performed 

in order to avoid clustering of points and high order polynomial interpolation allows to reconstruct the 

random solution for each simplex. This method is suitable for dealing with discontinuities, such as 

shocks, thanks to the local smoother based on a Local Extremum Conserving criterion. A super-linear 

convergence is reached during the simplex refinement process. The statistics are evaluated using the 

definition of expectation by means of a Monte-Carlo integration on the polynomial interpolation. The 

refinement process for a generic simplex is carried out according to a local error, which depends 

exponentially from the local polynomial degree and the number of random variables. The adaptive 

random sampling of the space parameters is expected to improve the efficiency, leading to a lower overall 

number of deterministic calculations than the full-factorial sampling. 

3.3. Bayesian Kriging (B-K) 



The third approach we compare is a Kriging-like surrogate model of the random output, derived by 

using a Bayesian framework [14]. We are interested in the value of a quantity of interest (QoI) as function 

of certain random variables at n locations 𝜉𝑖 contained in the hypercube space parameters. At m of these

locations the QoI is observed and known (by running a deterministic calculation) while at the remaining 

m-n points it needs to be estimated. Following a Bayesian inference approach, the probability distribution 

of the QoI can be calculated as the posterior distribution resulting from the combination of a multivariate 

normal prior distribution and likelihood function. In the latter, the covariance matrix takes into account 

the spatial correlation among the random variables by means of a geometrical correlation range. Then, for 

each location 𝜉𝑖 , the solution is approximated by a Gaussian distribution with a certain mean and

variance. The error of the surrogate model respect to the observation is provided at the random locations i 

by the standard deviation, as √Σ̂𝑖𝑖, where Σ̂  is the covariance matrix.

3.4. Mean Value Second Order Second Moment method (MVSOSM) 

The Mean Value Second Order Second Moment method (MVSOSM or simply SOSM) is a so-called 

deterministic UQ model which computes the statistics of the random QoI by means of a Taylor expansion 

around the mean value. In this work the mean and variance are obtained with a second and a first order 

truncated expansion respectively, according to equations (2)-(3): 

𝜇𝑄𝑜𝐼 = 𝑄𝑜𝐼(𝜇𝒙) +
1

2
∑

𝛿2𝑄𝑜𝐼

𝛿𝑥𝑖
2𝑖 (𝜇𝒙𝒊

)𝜎𝑥𝑖
2 (2) 

𝜎𝑄𝑜𝐼
2 = ∑ (

𝛿𝑄𝑜𝐼

𝛿𝑥𝑖
(𝜇𝒙𝒊

)𝜎𝑥𝑖
)2

𝑖 (3) 

The cross derivatives are neglected in the Taylor expansion, i.e. the interaction among the random 

parameters are not considered here. If a centered scheme is used for all the derivatives, the number of 

deterministic calculations Np varies linearly with the number of random variables 𝑛𝜉 , as 𝑁𝑝 = 2𝑛𝜉 + 1.

The method requires a relatively low number of samples and is expected to be cheap in terms of 

computational costs. An additional deterministic calculation is required in order to evaluate the QoI at the 

mean value of the random inputs. 

4. Results

The objective of this work is to assess which is the more suitable UQ model for performing a

sensitivity analysis of the ORC injector designed with the MOC under stochastic input parameters. After 

discussing the deterministic numerical results at nominal conditions, we analyse the stochastic solutions 

provided by the different UQ methods under investigation. 

4.1. Nominal operating conditions results 

 First of all, the performances at nominal operating conditions have been evaluated by means of the 

dense gas solver. A deterministic run requires about 10 hours of CPU time on a single processor machine. 

The Reynolds-Averaged-Navier-Stokes (RANS) equations where solved numerically on a structured C-

shaped mesh with 384 ∗ 128 cells. The inlet total thermodynamic conditions, periodicity in peripheral 

direction and a supersonic outlet are imposed as boundary conditions. The working fluid is penta-fluoro-

propane R245fa, largely used in ORC applications, and the operating conditions are chosen close the 

saturation curves in the supercritical region, characterized by significant dense gas effects. The injector 

geometry has been preliminarily designed by using the MOC, with the inlet total reduced pressure and 
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temperature (pr
0, Tr

0), the target massflow G and the Mach number Me at exit section (see table 1) as input 

conditions. 

Table 1. Design parameters of the ORC expander and nominal thermodynamic conditions 

Fig. 1. Mach number distribution for a viscous deterministic calculation at nominal operating conditions 

Fig. 2. From top-left to right: (a)  Standard deviation contours of the Mach number; (b) ANOVA analysis of the Mach number; (c) 

Mean pressure coefficient along the blade wall; (d) Variance of the pressure coefficient along the nozzle axis 

𝑝𝑟
0 𝑇𝑟

0 G [kg/(s*m)] Me 

1.28 1.15 20 2 



Figure 1 shows the results at nominal operating conditions in terms of Mach number distribution. The 

flow expands up to a Mach number of 2 in the exit cross section area, as expected from the MOC design. 

Afterwards it continues to accelerate guided by the suction side wall and then is decelerated by a weak 

oblique shock departing from the trailing edge. A viscous wake is visible at the exit and an interaction 

between the oblique shock and the boundary layer can be noticed close to the suction side wall. These 

phenomena are expected to be cause of high variability in the flow and, then, a UQ analysis is carried out.  

4.2. Full-factorial sensitivity analysis with PCM 

Five uncertain parameters are considered in this analysis: inlet total reduced pressure and temperature (pr, 

Tr), with a variability of 5% around the nominal point, and inlet flow incidence angle β, blade thickness ε, 

stagger angle θ, with a variation of 1% around the design values. First of all, a full-factorial analysis via 

PCM has been carried out. By considering a second order polynomial chaos expansion and the five 

uncertain parameters, the number of deterministic calculations is 𝑁𝑝 = 243, requiring 3000 hours of total

calculation time. Second-order polynomial chaos was found to provide a good compromise between 

accuracy and computational cost [6]. In figure 2a the distribution of the Mach number variance shows the 

presence of regions with high uncertainty close to the wall of the divergent part and to the trailing edge, 

which can be addressed to the viscous effects. In a second step the random space parameters cardinality 

has been lowered in order to take into account only the most influential random parameters by means of 

an analysis of variance (ANOVA) [15]. This allows reducing the number of the deterministic calculations 

and, then, saving computation time. Figure 2b compares the contributions of the five uncertain parameters 

to the global variance of the Mach number and shows a great influence of the blade thickness, the inlet 

total pressure and temperature, while the incidence and stagger angles have a negligible effect. As 

consequence, the uncertain parameter space is reduced to these three uncertain variables and the four UQ 

models are applied to the reduced space in order to compare their performances in terms of accuracy and 

calculation time requirements.  

4.3. UQ models comparison 

The reduced parameter space has been sampled by using the UQ models described in the previous 

Section. The results are shown in figures 2c-2d under the form of pressure coefficient mean (along the 

blade wall) and variance (on the nozzle blade axis). The mean distributions provided by the four models 

show similar results, with variations below 2% respect to the PCM, while the analysis of the variance 

diagram reveals that SOSM results are not very accurate, due to the first order approximation of variance 

and neglecting cross interaction. The B-K model, trained with a set of 20 observations, under-estimates 

the variance in the leading edge region respect to SSC-ED and PCM which, instead, show very close 

results. However, the three models all agree about the higher variance on the trailing edge, where the 

viscous effects are important.  

Table 2. Performance analysis of the UQ models 

UQ model Np Polynomial order Calculation time [hours] 

PCM 27 2 264 

SSC-ED 25 83%3; 17%2 270 (+2.1% for LEC criterion) 

B-K 20 - 193 

SOSM 7 - 73 



The analysis of the UQ models performances (see table 2) in terms of calculation time provides that the 

SSC-ED model is the more expensive, with a computational cost higher and a number of deterministic 

calculations required Np slightly lower than PCM, but with higher accuracy. Indeed, a third order 

polynomial reconstruction is obtained on 83% of the total simplexes after refinement, against the 2th 

global order of PCM. In order to compare these two UQ models based on a polynomial expansion with 

the B-K surrogate model, a B-K error based criterion has been used. The nodes of the PCM full-factorial 

and SSC-ED multi-dimensional grids of the parameter space have been used as training set for the B-K 

model and the cell center values as prediction set. In this way, a criterion to compare the efficiency of the 

discretization of the space parameters is provided. The maximum error value of the B-K predictions with 

the PCM and SSC-ED grids is compared with that provided by the B-K for 20 randomly distributed 

observations (see figure 3). The SSC-ED provides the lower error, with a value slightly below the B-K 

one. This analysis shows that the random adaptive unstructured SSC-ED grid refinement criterion is very 

accurate for this application, but its computational cost remains relatively high. Finally, the SOSM 

method is the cheapest one, with only 7 deterministic calculations required, however its low accuracy for 

calculating second moments makes it suitable only for fast preliminary analyses.   

Fig. 3. Comparison of the maximum Kriging error among the PCM, SSC-ED and B-K grids 

5. Conclusions

In this work a comparison of different UQ methods, coupled with a numerical solver suitable for dense 

gas calculation for ORC applications, has been carried out in order to choose the more efficient and 

accurate one. The PCM, SSC-ED and B-K provide similar quantitative results. PCM and SSC-ED use 

approximately the same number of samples and then lead to a similar computational cost, however the 

SSC-ED is more accurate thanks to the higher order polynomial approximation and better distribution of 

points in the space parameters grid. Also PCM and B-K lead to almost the same results, but B-K is 70% 

faster for a slightly higher error. Then, for the present application, the B-K results to be a good 

compromise between low computational cost requirement and accuracy. The SOSM, with cross-

derivatives neglected and first order expansion of the variance, shows low accuracy but gives useful 

information for engineering design purposes with a very low computational cost. 
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