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Optimal perturbation for two-dimensional
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We investigate perturbations that maximize the gain of disturbance energy in a
two-dimensional isolated vortex and a counter-rotating vortex pair. The optimization
is carried out using the method of Lagrange multipliers. For low initial energy of the
perturbation (E(0)), the nonlinear optimal perturbation/gain is found to be the same
as the linear optimal perturbation/gain. Beyond a certain threshold E(0), the optimal
perturbation/gain obtained from linear and nonlinear computations are different. There
exists a range of E(0) for which the nonlinear optimal gain is higher than the linear
optimal gain. For an isolated vortex, the higher value of nonlinear optimal gain is
attributed to interaction among different azimuthal components, which is otherwise
absent in a linearized system. Spiral dislocations are found in the nonlinear optimal
perturbation at the radial location where the most dominant wavenumber changes.
Long-time nonlinear evolution of linear and nonlinear optimal perturbations is studied.
The evolution shows that, after the initial increment of perturbation energy, the
vortex attains a quasi-steady state where the mean perturbation energy decreases on
a slow time scale. The quasi-steady vortex state is non-axisymmetric and its shape
depends on the initial perturbation. It is observed that the lifetime of a quasi-steady
vortex state obtained using the nonlinear optimal perturbation is longer than that
obtained using the linear optimal perturbation. For a counter-rotating vortex pair,
the mechanism that maximizes the energy gain is found to be similar to that of
the isolated vortex. Within the linear framework, the optimal perturbation for a
vortex pair can be either symmetric or antisymmetric, whereas the structure of the
nonlinear optimal perturbation, beyond the threshold E(0), is always asymmetric. No
quasi-steady state for a counter-rotating vortex pair is observed.

Key words: nonlinear instability, vortex dynamics, vortex instability

1. Introduction
From giant cyclones to small-scale structures in turbulence, vortices are present in

almost all natural flows. They play a crucial role in the transport of mass, momentum
and energy in flow processes. Perhaps this is why Küchemann (1965) observed that

† Email address for correspondence: navrose@iitk.ac.in

http://orcid.org/0000-0002-2837-259X
mailto:navrose@iitk.ac.in
https://doi.org/10.1017/jfm.2018.689
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


‘vortices are the sinews and muscles of fluid motion’. As such, vortices have been
extensively studied for their role in flow transition and turbulence. For a detailed
examination of different types of vortical flows, the interested reader is referred to
Lugt (1983), Saffman (1992) and Green (1995).

The mathematical analysis of vortex systems can be traced back as early as 1880.
Kelvin (1880) investigated wave motions in a column of uniform vorticity surrounded
by irrotational flow (popularly referred to as the Rankine vortex model). These so-
called Kelvin waves were the starting point for several later works on the dynamics
of the Rankine vortex as well as other vortical flows. One such topic is the stability
of vortex columns. A general perturbation to a Rankine vortex can be represented as
a linear combination of the various Kelvin waves. If the perturbation is small, the
nonlinear term in the flow equations can be dropped. Within the linear framework,
the evolution of each wave component occurs independently from the rest. Therefore
the stability of a vortex column can be determined by analysing the stability of each
wave component separately. For an inviscid vortex, the waves are neutrally stable. In
the presence of viscosity, the waves decay exponentially in time. For other vortex
models (for example, the Lamb–Oseen vortex), additional waves can exist (Fabre, Sipp
& Jacquin 2006). Still, all waves decay exponentially under the action of viscosity.
Thus, any infinitesimal perturbation to an isolated vortex will eventually decay in time.

Linear stability analysis (LSA) is useful for studying the asymptotic response of
a fluid system to infinitesimal perturbations. In the long term, the least stable – or
most unstable – mode is expected to dominate the flow evolution. However, many flow
processes occur on a finite time scale. LSA fails to capture such transient processes
that might contribute to the growth of perturbation energy (E). The transient growth
of perturbation energy is attributed to non-normality of the linearized Navier–Stokes
operator (Farrell 1988; Trefethen et al. 1993). As a consequence of non-normality, the
eigenmodes associated with the operator are non-orthogonal. Therefore, it is possible
to combine different eigenmodes and form an initial perturbation for which the rate of
change of perturbation energy (dE/dt) with time is positive, despite all the eigenmodes
being linearly stable. For unstable systems, eigenmodes can be suitably combined to
give a higher growth rate of perturbation energy than the most unstable eigenmode.
During the transient phase (of stable/unstable flows), the perturbation may become
strong enough for secondary instabilities to occur. The subsequent flow evolution will
then be different from that of the linearized system. An example of such behaviour is
plane Couette flow (PCF). LSA predicts that PCF is stable for all Reynolds numbers
(Re). However, experiments show that turbulence can be produced and sustained in
PCF for Re as low as ∼300 (Barkley 2016). The transient growth of perturbation
energy might fill in the gap between experimental observation and results of LSA.

The inability of LSA to describe flow evolution during the transient phase motivates
us to take an alternative perspective on stability of flow systems. The new approach is
based on seeking a perturbation that maximizes the perturbation energy over a given
horizon time (T). We note that this approach introduces T as a stability parameter.
The perturbation satisfying the maximization criterion is referred to as the optimal
perturbation and the corresponding energy gain at t=T is the optimal gain. The shape
of the optimal perturbation and the value of the optimal gain depend on T . A recent
article by Schmid & Brandt (2014) provides an overview of the various tools and
techniques that have been developed to compute optimal gain and perturbations in flow
systems.

The optimal perturbation for an isolated vortex has been studied mainly within
the linear framework (Antkowiak & Brancher 2004, 2007; Pradeep & Hussain
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2006; Mao & Sherwin 2011, 2012). Antkowiak & Brancher (2004) carried out
optimal perturbation analysis for two-dimensional (2D) and three-dimensional (3D)
perturbations with azimuthal wavenumber m = 1. They observed that the linear
optimal perturbation consists of vorticity filaments in a spiral arrangement near the
outer periphery of the vortex core. The energy growth mechanism was attributed to a
combination of the Orr mechanism (Orr 1907) and vortex induction. During the Orr
mechanism the spiral filaments that are inclined against the base flow are uncoiled,
resulting in the growth of perturbation energy. This uncoiling, in turn, was found
to promote vortex induction along the vortex axis. Furthermore, they reported that
the linear optimal gain for small axial wavenumbers (k→ 0) is significantly higher
than for large wavenumbers. For k= 0, the linear optimal gain was found to increase
linearly with T . Pradeep & Hussain (2006) investigated 3D linear optimal perturbation
for various (m, k) combinations and identified the corresponding physical mechanism
behind the energy growth. They reported that the axisymmetric mode (m= 0) results
in the largest growth of perturbation energy in the full computational domain. The
m= 1 (bending) mode, on the other hand, causes the largest perturbation to the vortex
core. They speculated that the bending wave might be responsible for core transition
to turbulence. Antkowiak & Brancher (2007) observed that a perturbation consisting of
a stack of azimuthal velocity streaks leads to an amplification of perturbation energy
in columnar vortices. The velocity stack evolves to form vortex rings around the core
of the vortex. Based on this observation, they surmised that a similar mechanism
might be at play in the development of vortex rings around a columnar vortex when
it is submerged in a turbulent background.

In the present work, we investigate nonlinear optimal perturbation of an isolated
Lamb–Oseen vortex. The only work in this direction is by Bisanti (2013). Bisanti’s
analysis was restricted to m= 2 perturbations, and the value of nonlinear optimal gain
obtained in the work was found to be lower than the linear optimal gain. We do not
place any restriction on m in our work. Our results show that the interaction between
different azimuthal components can result in higher optimal gain than the linear
optimal gain. Bisanti (2013) reported that, if the initial energy of the perturbation is
large, the m = 2 nonlinear optimal perturbation triggers a subcritical bifurcation
to a quasi-steady rotating tripolar perturbation. The existence of quasi-steady
non-axisymmetric vortex states has been established in several earlier works (e.g.
Rossi, Lingevitch & Bernoff 1997; Le Dizes 2000). We have studied the long-term
nonlinear evolution of the linear and nonlinear optimal perturbations. Dipolar, tripolar
and quadrupolar vortex states that retain their shape for several rotation periods are
observed in our simulations. This suggests that optimal perturbation serves as a good
initial condition to realize quasi-steady non-axisymmetric vortex states. Our work also
brings out the significance of the critical layer in the evolution of non-axisymmetric
vortices.

One of the major motivations for studying vortex dynamics is its application in
the analysis of aircraft wakes. The vorticity sheet generated over the wings of an
aircraft roll up downstream to form a pair of counter-rotating vortices. These wake
vortices are quite resilient to surrounding turbulence and remain in the atmosphere
for many rotation periods of the vortex. If an aircraft encounters wake vortices,
there is a possibility of loss of control. Such a scenario would be catastrophic
during take-off or landing, as the aircraft may not have sufficient altitude to recover.
To avoid this situation, regulations have been imposed to set a minimum distance
between two aircraft. This allows time for the wake vortices to decay naturally or
to be convected away. Owing to the continuing increase in demand for air transport,
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such regulations have led to the saturation of aircraft operations in many major
airports. There is an urgent need to find a solution to the saturation problem. One
possibility would be to develop strategies for alleviation of wake vortices. In this
regard, optimal perturbation in double-vortex systems may provide a lead. It is
expected that the optimal perturbation will hasten the transition to turbulence in
wake vortices, thereby rendering the wake benign for vortex encounter. Compared
with the single-vortex system, the double-vortex system has been considerably less
explored. The stability of a vortex pair was investigated in earlier works (e.g. Crow
1970; Tsai & Widnall 1976; Pierrehumbert 1980). In two dimensions, Brion, Sipp
& Jacquin (2014) showed the existence of several unstable modes for a vortex pair.
Recently, Jugier (2016) pursued this flow and investigated linear optimal perturbation
for a pair of counter-rotating vortices. He found that a transient mechanism can
lead to higher energy gain than the most unstable mode. In the present work we
investigate linear and nonlinear optimal perturbations in a counter-rotating vortex pair.
The vortex pair is obtained by superimposing the velocity fields for two Lamb–Oseen
vortices of opposite circulation placed at a certain distance from each other, and
letting the resultant flow evolve for some time. The flow evolution stage is important
as the superimposed flow is not an exact solution of the Navier–Stokes equations.
Such a technique has been used in earlier numerical works on double-vortex systems
(Brion 2009; Jugier 2016). Our results show that the mechanism of transient energy
growth in a counter-rotating vortex pair is similar to that of an isolated vortex. This
reinforces the relevance of studying an isolated vortex to the analysis of vortex-pair
dynamics. However, unlike an isolated vortex, nonlinear transient processes do not
lead to a quasi-steady dynamics for the vortex pair. Instead, the flow switches to
an unstable evolution beyond a certain time. In this situation, optimal perturbation
(linear/nonlinear) can be used to hasten the rate of flow destabilization.

The paper has been organized as follows. First, § 2 describes the governing
equations and the optimization strategy. Next, results from optimal analysis for
an isolated Lamb–Oseen vortex are presented in § 3. Results for a counter-rotating
vortex pair are presented in § 4. We conclude the paper in § 5.

2. Problem formulation
2.1. Governing equations

The flow is governed by the incompressible Navier–Stokes equations

∇ · u = 0, (2.1)
∂u
∂t
+ (u · ∇)u = −∇p+

1
Re
∇

2u, (2.2)

where u, p and Re are the velocity, pressure and Reynolds number, respectively.
Equations (2.1) and (2.2) are accompanied by initial and boundary conditions for the
flow variables. The flow (represented by q = (u, p)) is written as the sum of base
flow (Q= (U, P)) and perturbation (q′ = (u′, p′)),

q=Q+ q′. (2.3)

The decomposition (2.3) is generally useful when the base state evolves on a time
scale that is much slower than the evolution of the perturbation. More often than not,
the steady solution of (2.1) and (2.2) is selected as the base flow. Substituting (2.3)
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into (2.1) and (2.2) and subtracting from it the equations for the base state, we get 
the equations governing the evolution of the perturbation:

∇ · u′ = 0, (2.4)
∂u′

∂t
+ (U · ∇)u′ + (u′ · ∇)U+ (u′ · ∇)u′ = −∇p′ +

1
Re
∇

2u′. (2.5)

Equations (2.4) and (2.5) are accompanied by initial conditions for the perturbation
(q′t=0) and homogeneous boundary conditions. In the linear framework, the nonlinear
term (u′ · ∇)u′ is dropped from (2.5).

2.2. Optimization
We seek an initial perturbation (q′0) that maximizes the gain of perturbation kinetic
energy over a given horizon time T . The kinetic energy associated with the
perturbation at any time instant is taken as

E(t)=
∫
Ω

u′(t) · u′(t) dΩ, (2.6)

where Ω is the computational domain. The energy gain with respect to the initial
perturbation is

G(q′0, t)= E(t)/E(0), (2.7)

where E(0) is the energy of the perturbation at t = 0. Therefore, the optimal
perturbation maximizes the value of G at T . We use the method of Lagrange
multipliers to solve the optimization problem. The Lagrangian functional, L, is
defined as

L(q′, q+, q′0, q+0 , λ)=G(q′0; T)− 〈q
+,F(q′)〉 − λ(E0 − E(0)), (2.8)

where F(q′) = 0 represents the equation system (2.4) and (2.5) (or the linearized
version of it for linear optimization), q+ and λ are the Lagrange multipliers and 〈·, ·〉
denotes the inner product of two vectors,

〈a, b〉 =
∫

T

∫
Ω

a · b dΩ dt. (2.9)

Here, F is usually referred to as the Navier–Stokes operator. The boundary conditions
accompanying equations (2.4) and (2.5) are implicit in the definition of L. The
parameter E0 constrains the kinetic energy of the perturbation at t = 0 to a fixed
value (equal to E0) via the last term on the right-hand side of (2.8). The constraint is
set using a geometric update technique described later in this section. The optimization
procedure, therefore, yields optimal perturbation/gain corresponding to a given value
of E0. Within the linear framework, the optimal gain is independent of the initial
energy of the perturbation. Nonlinear optimal gain/perturbation, on the other hand,
depends on the value of E0.
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For optimality, the gradient of L with respect to all the variables should be zero.
Setting to zero the gradient of L with respect to

(i) q+, returns (2.4) and (2.5);
(ii) q′, gives the adjoint equations

∇ · u+ = 0, (2.10)

∂u+

∂t
+ (U · ∇)u+ + (u′ · ∇)u+

= u+ · (∇U)T + u+ · (∇u′)T −∇p+ −
1

Re
∇

2u+; (2.11)

(iii) q+0 , gives the compatibility equation

u+(T)= 2
u′(T)

E0
; (2.12)

(iv) q′0, gives the optimality equation

∇q′0L= u+(0)− 2
ET

E2
0

u′(0). (2.13)

For a detailed derivation of (2.10)–(2.13) the interested reader is referred to Farrell
(1988), Corbett & Bottaro (2000), Zuccher, Bottaro & Luchini (2006), Cherubini et al.
(2011), Cherubini & De Palma (2013), Schmid & Brandt (2014) and Kerswell (2018).

An iterative procedure is employed to arrive at the optimal initial condition. Each
iteration loop consists of the following four steps:

(1) equations (2.4) and (2.5) (also referred to as direct equations) are marched
forwards in time from t= 0 to T;

(2) equation (2.12) is used to compute the adjoint field at T;
(3) equations (2.10) and (2.10) are solved backwards in time from t= T to t= 0;
(4) equation (2.13) along with the geometric update technique proposed by Douglas,

Amari & Kung (2000) are used to set the next guess for q′0.

The geometric update technique sets the initial energy of the perturbation. First, the
component of ∇q′0L that is normal to q′0 is scaled as per the initial energy constraint,

N j
= E(0)1/2

∇q′0L⊥
‖∇q′0L⊥‖

, (2.14)

where j is the iteration number and ⊥ denotes the normal component. The initial
perturbation for step 1 of the next iteration is then given by

q′ j+1
0 = q′ j0 cos(α)+N j sin(α). (2.15)

In (2.15), α is the step length and its starting value is unity. A simplified line search
is implemented to choose the right value of α. If at the end of step 1 the energy
gain has a higher value than the previous iteration, then α is not changed. If the gain
is lower than the previous gain, α is reduced successively by a factor of 2 until the
energy gain has a higher value compared to the last iteration. For the first iteration
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loop, the initial perturbation for step 1 is random white noise. In linear optimization
the terms (u′ · ∇)u+ and u+ · (∇u′)T are not present in (2.10).

The computations have been carried out using Nek5000 (Fischer, Lottes &
Kerkemeier 2008), which is an open-source spectral element solver for incompressible
and weakly compressible flows. For the single-vortex system, a circular computational
domain is used. For the double-vortex system, computations are carried out in a
rectangular domain. The computational domain is divided into a large number of
spectral elements. Each spectral element is further discretized using Gauss–Lobatto–
Legendre (GLL) points. Near the vortex core region, the spatial resolution of the
mesh is kept high in order to capture the flow gradients accurately. The resolution
decreases towards the boundary of the computational domain. Convergence studies
have been carried out to establish the adequacy of the extent of the computational
domain and mesh resolution. The effect of the size of the computational domain for
an isolated vortex is discussed in § 3.2.2.

2.3. Linear stability analysis of Lamb–Oseen vortex
The flow state is written in normal-mode representation,

q′(r, θ, t)= q̂(r)eimθeλt, (2.16)

where m is the azimuthal wavenumber, and q̂ and λ are complex quantities.
Substituting (2.16) in the linearized version of (2.4) and (2.5), we get a generalized
eigenvalue problem:

Aq̂= λBq̂. (2.17)

The real and imaginary parts of λ correspond to the growth rate and frequency of
the eigenmode, respectively. In the discrete version of the problem, A and B are non-
symmetric matrices. A shift-inverse transformation is used to compute the eigenmodes
and eigenvalues.

3. Isolated vortex
3.1. Base flow

The base flow for carrying out the optimal analysis is a Lamb–Oseen vortex. Its
velocity distribution in the cylindrical coordinate system is given by

ur = 0, uθ =
Γ

2πr
(1− e−r2/a2

), (3.1a,b)

where ur and uθ are the radial and azimuthal components of velocity, Γ is the
circulation associated with the Lamb–Oseen vortex, a is the vortex dispersion radius
and r is the distance from the origin. The vortex strength (Γ ) is related to vorticity
(ω) by

Γ =

∫
Ω

ω dΩ. (3.2)

In (3.2), the integration is carried out over the entire computational domain. The
vortex dispersion radius (a) is given by

a=

√√√√∫
Ω

r2ω dΩ

Γ
. (3.3)
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The Lamb–Oseen vortex is assumed to be frozen in time. The length and velocity
scales have been rendered non-dimensional using a and Γ /2πa, respectively. The
Reynolds number (Re = Γ /2πν) for all simulations is Re = 5000. Bernoff &
Lingevitch (1994) analysed the relaxation of a perturbed Gaussian vortex and found
that the perturbations evolve on an Re1/3 time scale. For Re= 5000, the time scale for
evolution of the perturbation is several orders lower than that for viscous dissipation
(τν = 2πa2/ν). It is, therefore, reasonable to assume that the base flow is steady
during perturbation evolution. This is confirmed in appendix A where optimization
results obtained for T = 4.8 using an evolving base flow are found to be nearly the
same as those obtained using the frozen base-flow approach. For very large horizon
times the frozen base-flow approach is inadequate and serves as an approximation.
Compared to an evolving base flow, the frozen base-flow approach has significant
advantages in terms of computational memory and time.

3.2. Linear analysis
3.2.1. Optimal gain and perturbation

Optimal perturbation for an isolated vortex has been studied mostly in three
dimensions and almost exclusively within the linear framework (Antkowiak &
Brancher 2004, 2007; Pradeep & Hussain 2006). Antkowiak & Brancher (2004)
investigated linear optimal perturbation (LO-P) for azimuthal wavenumber m = 1. In
the present study, we extend the 2D optimization work of Antkowiak & Brancher
(2004) by considering additional wavenumbers.

The general perturbed state of a Lamb–Oseen vortex is amenable to Fourier decom-
position in the azimuthal direction:

q′(r, θ, t)=
∑
m∈Z

qm(r, t)eimθ
+ c.c. (3.4)

Here (r, θ) represents a spatial location with respect to the centre of the cylindrical
coordinate system, m is the azimuthal wavenumber, that takes non-negative integer
(Z) values, and c.c. denotes the complex conjugate. In the linear framework, different
azimuthal components evolve independently from one another. Therefore, we carry
out linear optimization for different wavenumbers m separately. Linear optimal gain
(LO-G) for a given horizon time T is the largest gain of all azimuthal wavenumbers.
Figure 1 shows the variation of largest gain with T for various m. The horizon
time has been rendered non-dimensional by the rotation period of the base flow
(τ = 4π2a2/Γ ). The LO-G curve, shown as a thick solid line in figure 1, is the
envelope of the different m gain curves. It is observed that LO-G increases with T up
to the largest horizon time that has been studied. For T< 5.5, the optimal perturbation
has azimuthal wavenumber m> 1. For T > 5.5, LO-P corresponds to m= 1. A kink
is observed in the LO-G curve at T = 5.5 that marks the shift of LO-P from m= 2
to 1 (see the inset of figure 1). For T > 5.5 the optimal gain increases linearly with
T . This is consistent with the Re = 1000 result of Antkowiak & Brancher (2004).
The gain curve reported by them is shown by a dashed line in figure 1. The slope
of the LO-G curve for Re= 5000 is higher than that for Re= 1000. Accordingly, as
T increases, the difference between LO-G for the two Reynolds numbers grows.

The vorticity field associated with LO-P for different horizon times is shown in
figure 2(a). In figure 2(b), the corresponding evolved vorticity field at t= T is shown.
LO-P consists of vorticity filaments in spiral arrangement. Energy growth for such
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FIGURE 1. (Colour online) Results for Re= 5000 isolated vortex: variation of the largest
energy gain with the horizon time for m= 1, 2 and 3. The linear optimal gain curve is
the envelope of the gain curves for different m and is shown by a thick solid line. Inset
is a magnified view of the part of the gain curve where the linear optimal perturbation
switches from m> 1 to m= 1. The variation of the 2D linear optimal gain for Re= 1000
and m= 1 reported by Antkowiak & Brancher (2004) is shown by a dashed line.

(a)

(b)

FIGURE 2. (Colour online) Results for Re= 5000 isolated vortex: (a) vorticity field of the
linear optimal perturbation for varying horizon time; (b) the corresponding vorticity field
at the horizon time t= T .

flow structures is attributed to the Orr mechanism (Orr 1907). The Orr mechanism is
typical of plane shear flows. Its relevance in rotational flows has been demonstrated
by Antkowiak & Brancher (2004) and Pradeep & Hussain (2006). As T increases, the
vortex filaments move away from the vortex centre. During the flow evolution, the
vorticity filaments uncoil. For large T , a dipolar perturbation appears in and around
the core region of the vortex. This can be observed in the last column of figure 2. The
effect of the dipolar structure is to shift the vortex core from its unperturbed location.
For lower horizon times (T < 5.5), the optimal perturbation leads to a quadrupolar
(m = 2) or a hexapolar (m = 3) structure, which does not induce any shift in the
position of the vortex core.

3.2.2. Long-term linear evolution of the linear optimal perturbation
Direct time integration of the linearized version of (2.4), (2.5) is carried out using

LO-P for various T as the initial condition. The time evolution of the energy gain is
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FIGURE 3. (Colour online) Results for Re = 5000 isolated vortex: evolution of the
energy gain with time for computations initiated with the linear optimal perturbation
corresponding to different horizon times. The azimuthal wavenumber of linear optimal
perturbation is written inside parentheses in the legend. The evolution of perturbation is
governed by the linearized version of equation system (2.4) and (2.5). The variation of
the linear optimal gain with T is shown using a dashed line. The long-term perturbation
vorticity field for the computations initiated with the T = 2.0 and 7.0 linear optimal
perturbations are shown as insets. The time instants from which the two fields are taken
are marked by arrows.

shown in figure 3. In each case, the gain reaches a peak value and then decreases
rapidly. The peak gain corresponding to each T is nearly the same as LO-G for the
same T . For T < 5.5, the gain continues to decrease rapidly even at large times.
The long-term perturbation field consists of vorticity filaments similar to those of
the initial perturbation but in an opposite spiral arrangement (inset of figure 3; cf.
figure 2). For T > 5.5 the rapid decay of perturbation energy seems to arrest after
some time. Subsequently the energy decays very slowly and the perturbation has a
dipolar structure (see inset of figure 3).

LO-P for a given horizon time can be written as a linear combination of the
eigenmodes of the linearized Navier–Stokes operator (Pradeep & Hussain 2006).
Owing to the non-orthogonality of the eigenmodes, transient growth of perturbation
energy is possible in vortex systems (Antkowiak & Brancher 2004; Pradeep &
Hussain 2006). However, in the long term, the most unstable or the least stable
mode is expected to dominate the flow evolution. Fabre et al. (2006, hereafter FSJ
2006) carried out LSA of a Lamb–Oseen vortex and found that all the eigenmodes,
other than the 2D displacement mode (m = 1), have negative growth rate. The 2D
displacement mode is neutrally stable and its effect on the base flow is to shift the
location of the vortex centre. It is observed that the long-term perturbation field for
T > 5.5 in figure 3 is very similar to the 2D displacement mode. This implies that the
2D displacement mode contributes to the LO-P for T > 5.5. As the 2D displacement
mode has zero growth rate, the perturbation energy at large time is expected not to
vary with time. We, however, observe that the perturbation energy decays slowly at
large time. The reason for this is the finiteness of the computational domain used
for the present work. To elucidate this, we present the variation of the growth rate
(λr) and the frequency (λi) of the 2D displacement mode obtained via LSA (§ 2.3)
with the radius of the computational domain (R) in figures 4(a) and 4(b), respectively.
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FIGURE 4. (Colour online) LSA results for Re= 5000 of an isolated Lamb–Oseen vortex:
variation of the non-dimensional (a) growth rate and (b) frequency of the displacement
mode with the size of the computational domain. The results have been rendered
non-dimensional with respect to the rotation time of the vortex τ . The growth rate of
the perturbation calculated using the energy decay rate at large time for T = 7.0 in
figure 3 is shown by a bull’s eye symbol. (c) Part of the continuous spectrum for m= 1.
(d) Vorticity distributions for eigenmodes from the continuous spectrum corresponding to
two eigenvalues. Here r denotes the radial distance from the origin of the cylindrical
coordinate system.

It can be observed that both λr and λi are close to, but not equal to, zero. Both
quantities seem to approach zero as R → ∞. Owing to the negative growth rate
of the 2D displacement mode in the finite domain, the perturbation decays long
term for T > 5.5. This is confirmed by noting that the decay rate derived from the
energy evolution curve for T > 5.5 at large time (shown by the bull’s eye symbol
in figure 4a) is close to the growth rate of the 2D displacement mode obtained via
LSA. The difference between the two values is because of the presence of other
modes, albeit with lower magnitude than the 2D displacement mode. If the linearized
simulations are carried on further, the difference is expected to become smaller.

A question that arises in view of the sensitivity of LSA results to the extent of
the computational domain is: Does the size of the domain affect the value of the
LO-G? Our computations show that, beyond a certain radial extent, LO-G is
unaffected. Table 1 lists the values of LO-G for T = 4.8 and 7.0 for different
values of domain radius R. The suitable size of the computational domain for optimal
analysis depends on the horizon time T . This is because the vortex filaments of the
LO-P move away from the vortex centre as T increases. In the present case R= 15a
appears to be adequate to carry out linear optimization at least up to T = 7.
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R T = 4.8 T = 7.0 T = 4.8
linear linear nonlinear

15a 109.4 163.6 140.8
26a 109.5 163.9 141.9
37a 109.5 164.6 141.9

TABLE 1. Effect of the size of the computational domain on the value of optimal gain
for T = 4.8 and 7.0 (R is the radius of the computational domain). The nonlinear gains
are for E(0)= 0.01.

Figure 1 shows that LO-G increases monotonically with T . Therefore, a Lamb–
Oseen vortex can support transient growth up to very large horizon times, despite
being linearly stable. The reason is understood to be the existence of a continuous
spectrum for the Lamb–Oseen vortex. Mao & Sherwin (2011, 2012) found that, in
addition to the discrete spectrum, two continuous spectra exist for the Batchelor vortex.
The tangential and radial velocity distributions of a Batchelor vortex are similar to
those of a Lamb–Oseen vortex. However, unlike a Lamb–Oseen vortex, which is a 2D
model, a Batchelor vortex is characterized by a Gaussian distribution of axial velocity.
As for the Batchelor vortex, a continuous spectrum exists for a Lamb–Oseen vortex as
well. Figure 4(c) shows a part of the continuous spectrum of a Lamb–Oseen vortex for
m= 1. The computations have been carried out in a domain of radial length R= 100a.
It is observed that the modes from the continuous spectrum can have a very low decay
rate. The lower the decay rate, the further the mode is located from the vortex core
(figure 4d). The discrete modes are generally located near the vortex centre (FSJ 2006).
We recall that, with increasing T , LO-P moves away from the vortex centre. Therefore,
LO-P at large T is constituted of modes from the continuous spectrum that have a
low decay rate. Consequently, the continuous spectrum and the 2D displacement mode
combine to exhibit transient growth of perturbation energy up to very large values of
horizon time.

We end this section on linear analysis with a short note on the applicability of
finite-domain simulations. In practical scenarios, an isolated vortex does not exist. In
most situations, a vortex belongs to part of a multi-vortex system, for example, trailing
vortices in the wake of an aircraft. The effect of surrounding vortices in such situations
can be emulated by using appropriate boundary conditions, albeit in a finite domain.
We would like to point out that in practice it is impossible to carry out infinite-domain
computations.

3.3. Nonlinear analysis
Recent works on nonlinear optimization of flows (like boundary layer flow, PCF)
have shown that, for the same horizon time, nonlinear optimal perturbation (NLO-P)
can result in higher gain than LO-P (Cherubini et al. 2011; Cherubini & De
Palma 2013; Kerswell 2018). We extend nonlinear optimization to the Lamb–Oseen
vortex. Nonlinear optimization is carried out by retaining the nonlinear terms in
the direct-adjoint iterative process (§ 2.2). The adjoint equations require the input
of the direct perturbation field. Hence, the time history of the direct flow is saved
at each iteration of the optimization process. This increases the computational cost
significantly when compared with linear optimization. Unlike for LO-G, nonlinear
optimal gain (NLO-G) depends on the initial energy of the perturbation (E(0)).
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FIGURE 5. (Colour online) Results for Re = 5000 isolated vortex: (a) variation of the
nonlinear optimal gain for T = 4.8 with initial energy of the perturbation. The azimuthal
velocity field associated with nonlinear optimal perturbation (at t = 0) for E(0) = 10−4

and E(0)= 3× 10−3 is shown in (b) and (c), respectively. A magnified view of the two
spiral dislocations in the nonlinear optimal perturbation is provided. A synthetic two-colour
scheme has been used in the magnified view to display the dislocations clearly. In (a) the
value of the linear optimal gain is indicated by a dashed line.

Therefore, the nonlinear framework presents a richer parameter space than the linear
framework. For each horizon time, computations are carried out for varying values of
E(0). The general variation of NLO-G with E(0) is found to be similar for different
horizon times T . We have selected T = 4.8 to present a detailed analysis. Unless
stated otherwise, the results for nonlinear optimization of the isolated vortex are for
T = 4.8.

3.3.1. Optimal gain
Figure 5(a) provides the variation of NLO-G with E(0) for T = 4.8. The

corresponding LO-G is shown using a dashed line in the same panel. For low
values of the initial energy (E(0) 6 5 × 10−4), NLO-G is nearly the same as LO-G.
Beyond E(0) = 5 × 10−4, NLO-G departs from the linear value. At first, NLO-G
increases with E(0) and reaches a peak value for E(0) = 0.03. The NLO-G value
for E(0)= 0.03 is ∼50 % higher than LO-G. With further increase in E(0), NLO-G
decreases monotonically; G becomes lower than LO-G for E(0) > 0.07. Therefore,
there exists a range of E(0) for which NLO-P yields higher gain than the LO-P.

Table 1 demonstrates the effect of the size of the computational domain on the value
of NLO-G. Similarly to LO-G, the NLO-G for T 6 7.0 is unaffected by expansion of
the domain beyond 15a.
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Cherubini & De Palma (2013) investigated NLO-P for PCF and reported a similar
variation of NLO-G with E(0) as in figure 5(a). Unlike in the present work they
considered 3D perturbations in their analysis. We note that the base state for both
flows is 2D and linearly stable. In both flows, there exists a threshold value of
E(0) below which NLO-G remains nearly the same as LO-G; above the threshold
value, NLO-G shows significant departure from LO-G. However, unlike PCF, where
NLO-G remains higher than LO-G for E(0) greater than the threshold, NLO-G
for a 2D Lamb–Oseen vortex becomes lower than the LO-G for large values of
E(0). The explanation may be that in PCF, for large values of E(0), the flow field
at the horizon time becomes turbulent. With the restriction of 2D perturbation for
Lamb–Oseen vortex, there is no possibility of flow transition even with large E(0),
and any initial perturbation must eventually decay as suggested by the result of LSA.

3.3.2. Optimal perturbation
Figures 5(b) and 5(c) give the vorticity fields associated with NLO-P for

E(0) = 10−4 and 3 × 10−3, respectively. We recall that the LO-P for T = 4.8 has
azimuthal wavenumber of m= 2 (figure 1). The shape of NLO-P for E(0)= 10−4 is
very similar to that of the m = 2 linear optimal. Thus, for low E(0), both NLO-G
as well as the shape of NLO-P are similar to those obtained via linear analysis.
This is so because the contribution of the nonlinear terms to the evolution of the
perturbation becomes smaller as E(0) tends to zero. Beyond the threshold energy
(E(0) > 5× 10−4), two major differences are observed with respect to the LO-P. First,
the vorticity filaments far from the vortex core appear less diffused. Second, two
spiral dislocations are observed. A spiral dislocation is identified by the merger of
two vorticity filaments of the same sign. In figure 5(c), the locations of the two spiral
dislocations is shown by solid ellipses. The dislocations are situated at distances of
∼1.1a and ∼3.6a from the vortex centre. A magnified view of the two dislocations
using a synthetic two-colour scale is provided in figure 5(c). In the first dislocation
(r∼ 1.1a), two negative vorticity filaments, which are separated by a positive vorticity
filament, merge. In the second dislocation (r∼ 3.6a), two positive vorticity filaments
merge. The general shape of NLO-P for E(0) > 5× 10−4 is similar.

Figure 6 shows the relative contribution of different azimuthal wavenumbers to
the E(0) = 3 × 10−3 NLO-P as a function of distance from the vortex centre. The
contributions of |m| > 4 are relatively small and hence are not included in figure 6.
The data have been generated by using Fourier decomposition of the azimuthal
component of the perturbation velocity for several radial locations. Unlike LO-P,
NLO-P has contributions from different azimuthal wavenumbers. At any given
radial location, the azimuthal mean of the velocity is non-zero, as indicated by
the presence of m = 0 component. Among the non-zero wavenumbers, the most
significant contribution to NLO-P is from m= 1 and 2. The shaded region in figure
6 corresponds to the radial location between the two spiral dislocations in NLO-P
(figure 5c). It is observed that in the shaded part m = 2 is the most dominant
component, whereas outside the shaded part the most dominant wavenumber is m= 1.
It appears that spiral dislocation is the consequence of the switch in the dominant
wavenumber within the NLO-P.

Recently, Bisanti (2013) investigated NLO-P for a 2D Lamb–Oseen vortex. The
work was restricted to m= 2 perturbations. For T= 4.8 and E(0)= 0.01 Bisanti (2013)
found the value of NLO-G to be lower than LO-G. Our computations show that for
the same parameters NLO-G is higher than LO-G (figure 5a). Figure 7(a) shows
the variation of energy gain with iteration number during the optimization process

https://doi.org/10.1017/jfm.2018.689
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


10–4

10–1

10–2

10–3

10 2
r
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(t= 0) velocity field at various radial locations. Here m is the azimuthal wavenumber. The
shaded part corresponds to the radial segment between the two spiral dislocations in the
nonlinear optimal perturbation shown in figure 5(c).
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FIGURE 7. (Colour online) Results for Re = 5000 isolated vortex: variation of (a) the
nonlinear optimal gain and (b) the increment in gain with iteration number during the
optimization process for T = 4.8 and E(0)= 0.01. The suboptimal and optimal states are
labelled A and B, respectively. The optimal gain reported by Bisanti (2013) is indicated by
a dashed line in (a). (c) Vorticity field for the m= 2 optimal perturbation and its evolved
state at t= T as reported by Bisanti (2013). (d) Vorticity field for suboptimal perturbation
and its evolved state at t= T as obtained in the present work.

for T = 4.8 and E(0) = 0.01. It is observed that, close to the value of the optimal
gain reported by Bisanti (2013), the variation of gain seems to plateau (point A);
the increment in the value of optimal gain with each iteration (J) is O ∼ 10−3 and
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FIGURE 8. (Colour online) Results for Re= 5000 isolated vortex: variation of (a) the ratio
between the nonlinear optimal gain and the LO-G with initial energy of the perturbation
for T = 4.8 and 5.5, and (b) linear and E(0)= 0.01 nonlinear optimal gain with horizon
time.

it decreases near point A (see figure 7b). We refer to point A as a suboptimal state.
Figure 7(c) shows the vorticity field corresponding to the optimal perturbation and its
evolved state at t= T as reported by Bisanti (2013). Figure 7(d) gives the same field
for the suboptimal state obtained in the present work. The fields are very similar;
therefore the suboptimal state corresponds to the m = 2 optimal state reported by
Bisanti (2013). If the iterations are continued further, J starts to increase again. The
value of gain increases with Niter and a converged state (point B) is reached with
higher energy gain. Beyond point B, the energy gain does not change significantly
with Niter up to Niter ∼ 500, which is when we terminate the nonlinear optimization
process. The value of J in the converged state is O ∼ 10−5. As shown in figure 6,
NLO-P for T = 4.8 and E(0)= 0.01 has, in addition to m= 2, significant contributions
from other azimuthal wavenumbers. The difference between the optimal gain reported
by Bisanti (2013) and NLO-G of the present work is therefore attributed to nonlinear
interactions between different azimuthal components. We would like to mention here
that, in nonlinear optimization with the direct-adjoint technique, it is not possible
to completely ascertain if point B is the global optimum. We carried out T = 4.8,
E(0)= 0.01 nonlinear optimization with different initial guesses, for example, random
perturbation, linear/nonlinear optimal perturbation for different T . In each case the
converged solution corresponds to point B. It is, therefore, likely that point B is
the global optimum, and that there is no jump in energy gain beyond point B in
figure 7(a).

3.3.3. Effect of the horizon time
Figure 8(a) displays the effect of T on NLO-G. For a given initial energy of the

perturbation, NLO-G increases with T . The peak optimal gain for different T occurs
for nearly the same value of E(0). It is observed that the threshold energy below
which the NLO-G and the LO-G are nearly the same decreases with increasing T .
The threshold energies for T=4.8 and 5.5 are 10−3 and 10−4, respectively. Figure 8(b)
shows the variation of NLO-G for E(0) = 10−2 with horizon time. For T 6 3.0, the
linear and nonlinear optimal gains are nearly the same. This implies that the threshold
energy for T 6 3.0 is higher than 10−2. For T> 3.0, the threshold energy is lower than
10−2 and the linear and nonlinear optimal gains are different. The difference between
LO-G and NLO-G increases with T up to T = 7.0. The threshold energy decreases
with increasing T .
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FIGURE 9. (Colour online) Results for Re = 5000 isolated vortex: evolution of energy
gain with time for computations initiated with (a) linear optimal perturbation and
(b) E(0)= 0.01 nonlinear optimal perturbation, for different horizon times. The evolution
of perturbation is governed by equation system (2.4) and (2.5).

3.3.4. Long-term nonlinear evolution of linear and nonlinear optimal perturbation:
appearance of a quasi-steady non-axisymmetric vortex

Rossi et al. (1997) carried out numerical simulations to investigate the evolution of
non-axisymmetric perturbations to a 2D Lamb–Oseen vortex. They observed that, for
weak non-axisymmetric perturbation, the vortex relaxes towards an axisymmetric state.
If, however, the perturbation is strong enough, a quasi-steady non-axisymmetric vortex
state can be reached. A quasi-steady vortex, as defined by Rossi et al. (1997), is one
that maintains approximately the same relative distribution of vorticity over several
rotation periods of the vortex and diffuses on a slow time scale. The results presented
in the previous sections show that linear and nonlinear optimal perturbations can result
in a large energy gain at the horizon time. Furthermore, the evolved perturbation
field at the horizon time is non-axisymmetric. Therefore, it is plausible that, as the
perturbation relaxes from its high energy state, the vortex might exhibit quasi-steady
non-axisymmetric behaviour. To explore this, we carry out direct time integration of
the equations (2.4) and (2.5) governing the nonlinear evolution of the perturbations.
The computations are initiated with optimal perturbations, linear and nonlinear, for
various T .

First, we present results from computations initiated with LO-P. The initial
perturbation energy for all of the computations is E(0) = 10−2. Figure 9(a) shows
the temporal evolution of the perturbation energy for T = 2.0, 4.8 and 5.5 LO-P. The
perturbation energy (E) has been normalized by E(0). Initially, E grows in time and
its evolution is very similar to that obtained via linear simulation (figure 3). It attains
a peak value near the horizon time. The peak value of E obtained from the nonlinear
computation is lower than that of the linear computation. The differences between
the peak linear and nonlinear perturbation energies for T = 2.0, 4.8 and 5.5 are 14 %,
58 % and 21 %, respectively. After reaching the peak, E decreases for some time and
then exhibits fluctuations. For T = 2, the fluctuations decay rapidly and thereafter
E decreases monotonically with time. However, for T = 4.8 and 5.5, the energy
fluctuations persist for a long time (more than 40 rotation periods of the vortex) and
are quasi-periodic. Two time scales can be identified for T = 4.8 and 5.5. The slow
time scale corresponds to the decrease in the mean value of perturbation energy per
cycle of energy fluctuation. The fast time scale corresponds to the time period of
energy fluctuation. Figures 10(a) and 11(a) show the variation of energy on the fast
time scale for T = 4.8 and 5.5, respectively. The fast time scale is attributed to energy
exchange between the base flow and perturbation. During one half of the cycle, the
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FIGURE 10. (Colour online) Results for Re = 5000 isolated vortex: (a) variation of the
energy gain during one rotation period of the quasi-steady non-axisymmetric state for
computations initiated with the T= 4.8 LO-P; (b) the perturbation vorticity field at various
time instants marked by solid circles in the gain curve.
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FIGURE 11. (Colour online) Results for Re = 5000 isolated vortex: (a) variation of the
energy gain during one rotation period of the quasi-steady non-axisymmetric state for
computations initiated with the T= 5.5 LO-P; (b) the perturbation vorticity field at various
time instants marked by solid circles in the gain curve.

perturbation draws energy from the base flow; and in the other half, the perturbation
returns energy to the base flow. The periodic fluctuation of perturbation energy is
associated with the quasi-steady non-axisymmetric vortex state (discussed in the next
paragraph). Since viscous effects in the quasi-steady state take place on the slow
time scale (Rossi et al. 1997), we attribute the decrease in mean energy per cycle of
energy fluctuation to viscosity.

Figure 10(b) shows the perturbation vorticity field at different time instants over
a cycle of energy fluctuation for T = 4.8. The perturbation has non-axisymmetric
structure; at least six regions of concentrated vorticity can be identified in figure 10(b).
A Fourier decomposition of the perturbation field in the azimuthal direction shows that
only the m= 0 (axisymmetric) and m= 2 components are significant (figure 12a). We
recall that in the linear framework the evolutions of different azimuthal components
occur independently from one another. Hence, during linearized evolution of T = 4.8
LO-P, the perturbation flow at any time instant is m = 2. Nonlinear effects, on the
other hand, may allow transfer of energy between different azimuthal components.
To monitor the transfer of energy from the m = 2 component to other components
during nonlinear evolution of T = 4.8 LO-P, we plot the time evolution of the relative
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FIGURE 12. (Colour online) Results for Re= 5000 isolated vortex: Fourier decomposition
of the azimuthal component of perturbation velocity in the azimuthal direction at a time
instant in the quasi-steady non-axisymmetric state for computations initiated with (a) the
T = 4.8 LO-P, (b) the T = 5.5 LO-P, and (c) the T = 4.8, E(0)= 0.01 NLO-P. The time
instants are t= 25.5, 31.8 and 59.9, respectively.
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FIGURE 13. (Colour online) Results for Re = 5000 isolated vortex: variation of the
contribution of different azimuthal components of perturbation velocity in the azimuthal
direction with time, for nonlinear simulation initiated with T = 4.8 LO-P and E(0)= 0.01.
The key is the same as in figure 12.

contribution of different azimuthal components to the perturbation flow. The plots are
shown in figure 13. It is observed that, as the flow evolves with time, the axisymmetric
component in the flow becomes comparable to the m = 2 component beyond t ∼ 2.
The contribution of other azimuthal components remains relatively small during the
flow evolution (and are not shown in figure 13). The perturbation field (figure 10b)
rotates in time and the relative orientation of the vorticity patches remains the same
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FIGURE 14. (Colour online) Results for Re = 5000 isolated vortex: (a,c,e) displacement
of the vortex centre with time for computations initiated with the LO-P for (a,b) T = 2.0,
(c,d) T = 4.8 and (e, f ) T = 5.5; (b,d, f ) corresponding trajectory of the vortex centre in
the X–Y plane.

during rotation. The rotation period of the perturbation is equal to the time period
of energy fluctuation. As the mean energy decreases on a slow time scale, the non-
axisymmetric perturbation remains in the flow for several rotation periods. Such a
perturbation state, based on the definition used by Rossi et al. (1997), corresponds
to a quasi-steady non-axisymmetric perturbation. Figure 11(b) shows the perturbation
vorticity field during a cycle of energy fluctuation for the T = 5.5 case: a quasi-steady
non-axisymmetric state exists for this case as well. The perturbation field is dominated
by the m = 1 component (figure 12b). Near the vortex centre the perturbation has
dipolar structure. The dipole does not rotate completely about the vortex; instead it
exhibits small rotational oscillations about the vortex centre. The oscillation manifests
in the movement of the vortex core. This can be observed in figure 14(e, f ), which
shows the time history of the location of the vortex centre. The location of the vortex
centre is the barycentre of vorticity for the total flow, that is, base flow added with
perturbation. Figure 14(a,c,e) shows the displacement of the vortex centre along the
X- and Y-axes, and the right column shows the trajectory of the vortex centre. The
X- and Y-axes are oriented along the horizontal and vertical directions with the origin
at the centre of the unperturbed vortex. Unlike in the T = 5.5 case, the vortex centre
does not move significantly for the T = 2.0 and 4.8 cases (figure 14a–d).
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FIGURE 15. (Colour online) Results for Re=5000 isolated vortex: (a) displacement of the
vortex centre with time for computations initiated with the T = 4.8, E(0)= 0.01 nonlinear
optimal perturbation; (b) trajectory of the vortex centre in the vortex plane.
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FIGURE 16. (Colour online) Results for Re = 5000 isolated vortex: (a) variation of the
energy gain during one rotation period of the quasi-steady non-axisymmetric state for
computations initiated with the T= 4.8, E(0)= 0.01 nonlinear optimal perturbation; (b) the
perturbation vorticity fields at the time instants marked by solid circles in the gain curve.

Next we present results from computations initiated with the E(0) = 0.01 NLO-P.
Figure 9(b) gives the evolution of the perturbation energy for T = 2.0, 4.8 and 5.5.
Similarly to the LO-P, initially the energy increases and then fluctuates with time.
However, the energy fluctuation in the case of the NLO-P persists for a longer time
than that of the LO-P. For example, for T = 4.8 the energy fluctuations are observed
up to t = 68 for the LO-P, while for the E(0) = 0.01 NLO-P fluctuations persist up
to t = 160. Figure 15(a) shows the time history of the location of the vortex centre
along the X- and Y-axes with time for the T = 4.8 NLO-P. It can be observed that the
displacement of the vortex centre in the two directions is more accentuated than the
situation where the simulations are initiated with the LO-P. The vortex centre follows
a spiral trajectory about its original unperturbed location (figure 15b). Figure 16(b)
provides the perturbation vorticity field at various time instants in a cycle of energy
fluctuation. Close to the vortex core, the perturbation has a dipolar structure and is
dominated by the m= 1 component. Far from the centre, other non-zero wavenumbers
become significant as well (figure 12c). Outside the vortex core region, two vorticity
patches can be identified. The strength of the positive vorticity patch is lower than
that of the negative one and of the dipole present close to the vortex centre, as is
evident from figure 16(b). Thus the perturbation field can be considered as a tripole
consisting of a dipole and negative satellite vortex. The tripole rotates around the
vortex centre and has a rotation period equal to the time period of energy fluctuation.
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Interestingly, the angular speed of the vorticity patch that is present outside the vortex
core is close to the azimuthal velocity of the base flow at that location. This condition
corresponds to the criterion of existence of critical layers in shear flows. In a critical
layer, the nonlinear terms and/or the viscosity of the flow are significant and allow one
to deal with singularities of an otherwise inviscid description of the flow. Habermann
(1972) gave a criterion to distinguish between nonlinear and linear critical layers. As
per the criterion, a critical layer is nonlinear if ε3/2Re� 1; ε is a measure of the
perturbation amplitude and Re is the Reynolds number. If ε3/2Re � 1, the critical
layer is of the viscous type. For ε3/2Re ∼ 1, both nonlinear and viscous effects are
significant in the critical layer. We use the Habermann criterion to identify the nature
of the critical layer in figure 16. The tripolar perturbation structure is observed after
the perturbation reaches its peak energy. Therefore, it is reasonable to assume that
ε ∼O(100). Consequently, ε3/2Re∼O(105): the critical layer observed in figure 16 is
nonlinear. We suspect that the long-term persistence of the energy fluctuation might
be attributed to the role of the nonlinear critical layer. This, however, has not been
investigated further as part of the present work.

4. Vortex pair
Our principal objective for investigating optimal perturbation of an isolated vortex

is its possible application in hastening the decay of aircraft trailing vortices. In
general, a trailing vortex system consists of a pair of counter-rotating vortices (in
some situations there can be additional vortices). It has been shown in earlier studies
that a vortex can experience significant modification to its shape under the strain
field of its counter-rotating pair. A question that then arises is: Can the optimization
results for isolated vortex be extended to counter-rotating vortex air? We explore the
answer to this question by carrying out linear and nonlinear optimization of a vortex
pair.

4.1. Base flow
The base flow is a pair of equal-strength, counter-rotating vortices. The base flow is
created by initializing the flow with a pair of counter-rotating Lamb–Oseen vortices
and letting it evolve for some time. Since the Lamb–Oseen vortex pair is not a
solution of the Navier–Stokes equations, this evolution allows the flow to adjust.
During this transient period, the shape of the vortices changes from axisymmetric to
elliptic. The flow then evolves on a diffusive time scale. This approach has been
used in earlier works on counter-rotating vortex pairs (Sipp, Jacquin & Cossu
2000; Brion 2009). Owing to its symmetry, we consider only one side of the
flow for characterizing the vortex pair. Let the half-domain on the side of the
anticlockwise-rotating vortex (positive vorticity) be denoted by Ω+. The location of
the vortex centre, with respect to any origin, is given by

rc =

∫
Ω+

rω dΩ

Γ
, (4.1)

where r is the position vector with reference to the same origin. The circulation (Γ )
and vortex dispersion radius (a) are given by (3.2) and (3.3), respectively, where the
domain of integration is Ω+. Because of self-induction, the vortex pair translates at
a speed equal to Γ /2πb, where b is the distance between the two vortex centres.
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FIGURE 17. (Colour online) Results for Re = 1000 vortex pair: (a) streamlines and
(b) vorticity field for the base flow. The Kelvin oval is indicated using dotted lines in
the two panels. The vortex separation is denoted by b. The approximate boundary of the
two vortex core regions is indicated by a dashed circle in (b). The radius of the circle is
equal to the vortex dispersion radius calculated using (3.3).

The simulations have been carried out in a frame of reference that moves with the
vortex pair. Uniform velocity of magnitude Γ /2πb is specified at the inlet boundary
and a stress-free condition is imposed on the outflow and side boundaries. As for
the isolated vortex, the base flow for the analysis of the vortex pair is assumed to
be frozen. The ratio between the vortex dispersion radius and the separation between
vortex centres is a/b ∼ 0.18. The length and velocity scales have been rendered
non-dimensionalized using b and Γ /2π. The Reynolds number for all vortex-pair
simulations is Re = (Γ /2πν) = 1000. Figure 17 shows the streamlines and the
vorticity field for the base flow. Two flow regions can be identified in figure 17. In
the first region, the streamlines are closed. In the second region, the flow has an open
trajectory. The two flow regions are separated by a limiting streamline referred to as
the Kelvin oval.

4.2. Linear optimization
Unlike the single-vortex system, a pair of 2D counter-rotating vortices is linearly
unstable (Brion et al. 2014). In the long term, the most unstable mode will dominate
the perturbation evolution. However, before the exponential behaviour sets in, transient
(algebraic) growth of perturbation energy may occur due to the non-normality
of the linearized Navier–Stokes operator. Therefore, it is possible that for some
initial perturbations the energy gain at a given horizon time is higher than the gain
obtained using the most unstable mode as the initial perturbation (see appendix B).
For the optimization process, as the computations are carried out in the moving
reference frame, homogeneous Dirichlet boundary conditions are specified at the
inlet and a stress-free condition is applied at the outflow and side boundaries for
the direct equations. For the adjoint equations, a homogeneous Dirichlet boundary
condition is applied on the outlet and stress-free conditions on the inlet and sidewalls.
Figure 18(a) shows the variation of the LO-G with horizon time (T) on log–linear
axes. Time is rendered non-dimensional using the time taken by a system of two
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FIGURE 18. (Colour online) Results for Re= 1000 vortex pair: (a) variation of the linear
optimal gain with horizon time. The gain obtained using the most unstable mode as
the initial perturbation is indicated by a dotted line. The bottom row shows the velocity
component parallel to the centreline for the LO-P corresponding to (b) T=0.5, (c) T=1.0
and (d) T = 5.0. The solid circles (respectively hollow squares) in (a) correspond to data
points for which the LO-P is symmetric (respectively antisymmetric).

line vortices of strength ±Γ to translate a distance equal to b under self-induction
(τb = 2πb2/Γ ). Also indicated by a dotted line is the energy gain corresponding to
the most unstable mode. It can be observed that the difference between the two gains
increases with T up to T = 4.0. For T > 4.0, LO-G increases exponentially with
T according to the growth rate of the most unstable mode; the exponential growth
appears as a linear curve on log–linear axes. Therefore, the maximum duration for
which transient processes contribute to the linear optimal gain is 4τb.

Any perturbation to a vortex pair can be split into symmetric and antisymmetric
components. The velocity field for the (anti)symmetric component is (anti)symmetric
about the centreline. Within the linear framework, the two components evolve
independently from each other. Therefore, the LO-P can be either symmetric or
antisymmetric. A common approach adopted for optimization of a counter-rotating
vortex pair is to use half of the computational domain and to prescribe a symmetry or
antisymmetry boundary condition on the centreline. In this approach, symmetric and
antisymmetric LO-P are obtained separately. We have used a different approach where
computations are carried out for the full computational domain. This is because of
the unavailability of an antisymmetry boundary condition in Nek5000. LO-P obtained
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FIGURE 19. (Colour online) Results for Re=1000 vortex pair: variation of the LO-G with
horizon time rendered non-dimensional by the rotation period of the vortex. Also shown
is the LO-G curve for an isolated vortex for Re= 5000.

using the full domain approach is the one that has higher energy gain between
symmetric and antisymmetric LO-P. For T < 0.6 and T > 4.0 LO-P is antisymmetric,
whereas for 0.6 6 T 6 4.0 the LO-P is symmetric. Figure 18(b–d) gives the velocity
component normal to the centreline for the LO-P corresponding to three horizon
times. With increasing T , LO-P moves away from the vortex centre. For large T ,
LO-P is primarily located on the Kelvin oval and along the centreline.

We now compare LO-G for an isolated vortex and vortex pair. To do so, we
chart the variation of the LO-G with T∗ on log–linear axes where T∗ is the horizon
time rendered non-dimensional by the rotation time of a vortex (T∗ = Tτb/τ and
τ = 4π2a2/Γ ) in figure 19. The LO-G curve for the isolated vortex presented earlier
(see § 3.2) is included in figure 19. Since, for a vortex pair, G increases exponentially
with T for large T (figure 18a), the same variation is observed in the G–T∗ curve
for large T∗. In figure 19, the exponential behaviour for the vortex pair sets in for
T∗ & 60. For T∗ . 60, the variation of G with T∗ for the vortex pair is qualitatively
similar to that of an isolated vortex. Furthermore, for a given T∗, the linear evolutions
of the LO-P for the two systems are also similar. We consider linear flow evolution
for T∗= 2.5 LO-P to demonstrate this. The initial perturbation is antisymmetric about
the centreline. Figure 20 shows the shape of LO-P and its evolved state at T∗. The
LO-P for both isolated and vortex-pair systems consist of vorticity filaments in a
spiral arrangement around the vortex core. The evolved perturbation state at T∗ has a
quadrupolar structure near the vortex centre. Therefore, it appears that the mechanism
for the largest gain in perturbation energy for a vortex pair is the same as that of an
isolated vortex. In other words, the interaction between the two vortices of the vortex
pair has no significant effect on the physical processes that yield the largest energy
gain. The same inference is made with flow evolution of symmetric LO-P.

4.3. Nonlinear optimization
Figure 21 shows the variation of the NLO-G with initial energy of the perturbation
(E(0)) for various horizon times. NLO-G has been normalized using the LO-G.
As for the isolated vortex, there exists a threshold value of E(0) below which NLO-G
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FIGURE 20. (Colour online) Perturbation vorticity field for (a) Re= 5000 isolated vortex
and (b) Re= 1000 vortex pair. The left column shows the field corresponding to T∗∼ 2.5
LO-P and the right column shows its evolved state at t= T∗.
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FIGURE 21. (Colour online) Results for Re = 1000 vortex pair: variation of (a) the
nonlinear optimal gain with the initial energy of the perturbation for different horizon
times, T = 0.3 (E), T = 0.5 (u), T = 0.6 (A), T = 0.8 (@), T = 1.0 (C), T = 1.2 (p)
and T = 2.0 (q); and (b) the horizon time for E(0)= 0.05.

is nearly the same as the LO-G. Above this threshold, the optimal gain is different
from the LO-G. With increasing T , the threshold E(0) decreases. The peak difference
between the nonlinear and linear optimal gains increases with horizon time up to
T = 0.6 (figure 21b). For T = 0.6, the NLO-G is higher than the LO-G for the largest
range of E(0). For T > 1.0, the NLO-G is lower than the LO-G for all the values of
E(0) that were considered in this work.
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FIGURE 22. (Colour online) Results for Re = 1000 vortex pair: perturbation vorticity
field of the T= 0.6 nonlinear optimal perturbation for (a) E(0)= 10−4 and (b) E(0)= 0.02.
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FIGURE 23. (Colour online) Results for Re = 1000 vortex pair: (a) time evolution of
the energy gain for computations initiated with the LO-P and the E(0)= 0.02 nonlinear
optimal perturbation. (b) Perturbation vorticity field at t = 0.6 and t = 6.0 for the
computation initiated with the LO-P. (c) Perturbation vorticity field at t= 0.6 and t= 6.0
for the computation initiated with the E(0)= 0.02 nonlinear optimal perturbation.

Next we discuss the shape of the NLO-P for a vortex pair. Figure 22 shows the
vorticity field of the T=0.6 nonlinear optimal perturbation for E(0)=10−4 and E(0)=
2× 10−2. The threshold energy for T = 0.6 is E(0)= 6× 10−4. Below the threshold
energy, the nonlinear and linear optimal perturbations have identical shape. Above the
threshold energy, the nonlinear optimal perturbation has an asymmetric structure: the
perturbation is stronger in the positive vortex than in the negative vortex.

4.4. Long-term nonlinear evolution of the optimal perturbation

Figure 23 gives the time history of the energy gain for computations initiated with the
LO-P and the E(0)= 0.02 NLO-P for T = 0.6. The initial energy of the LO-P is also
set to E(0)= 0.02. Initially, the perturbation energy increases because of the transient
processes. The peak gain reached during the transient phase for NLO-P is higher
than that reached by the LO-P. In the long term, the LO-P results in higher energy
gain than the NLO-P. The perturbation vorticity field at two time instants during the
flow evolution are shown in figure 23(b,c). For the LO-P, the flow field at t = T is
nearly symmetric; whereas for the nonlinear optimal, the flow field is asymmetric. At
large times (t= 6), the perturbation has a dipolar structure near the vortex core. The
vortex dipoles provoke a displacement of the vortex cores in the left and downwards
direction.
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5. Conclusions
Results have been presented for the optimal perturbation of single- and double-

vortex systems. The optimal perturbation corresponds to the initial condition
that results in largest gain of perturbation energy for a given horizon time T .
A direct-adjoint approach is employed to compute the optimal perturbations and
corresponding gains. Both linear and nonlinear optimizations have been performed.

The single-vortex system is modelled as an isolated 2D Lamb–Oseen vortex. The
Reynolds number based on the vortex circulation is Re=5000. Linear analysis showed
that the optimal perturbation for low horizon time T is of azimuthal wavenumber m>
2. For large T , the linear optimal perturbation (LO-P) is of m= 1. In general, LO-P
consists of vorticity filaments in a spiral arrangement. With increasing horizon time
T , the vorticity filaments move away from the vortex centre. For low values of the
initial perturbation energy (E(0)), linear and nonlinear optimal analyses yield the same
result. However, beyond a threshold value of E(0), the nonlinear optimal perturbation
(NLO-P) and the corresponding gain are different from those obtained via linear
computation. Fourier decomposition of the NLO-P beyond the threshold energy
shows contributions from multiple azimuthal wavenumbers. The interaction between
different wavenumbers results in higher optimal gain than that of the linear optimal
for a range of E(0).

Long-term nonlinear evolution of linear and nonlinear optimal perturbations is
studied. It is observed that, after the transient energy growth, the perturbation relaxes
towards a quasi-steady non-axisymmetric state. The shape of the perturbation in the
quasi-steady state depends on the structure of the optimal perturbation. For example,
for the T = 4.8 linear optimal perturbation, the quasi-steady state consists of six
vorticity patches; while for the T = 4.8 NLO-P, the quasi-steady state has a tripolar
structure. In the tripolar structure, a satellite vortex rotates around a vortex dipole.
The appearance of the satellite vortex is attributed to a nonlinear critical layer effect.
The optimal perturbations, linear and nonlinear, are a good initial condition to obtain
non-axisymmetric vortices.

The two-vortex system has been modelled as a pair of equal-strength counter-
rotating vortices. Such a flow configuration is relevant for the study of vortex
dynamics in the wake of an aircraft. A counter-rotating vortex pair is a linearly
unstable flow system (Brion et al. 2014). However, it supports transient growth
of perturbation energy that may lead to significantly higher energy gain than that
reached by the most unstable mode. For small and large horizon times T , the LO-P
of a vortex pair is antisymmetric about the centreline; whereas for moderate T ,
the LO-P is symmetric. It is observed that for 2D perturbations, the mechanism of
transient growth in a vortex pair is similar to that of an isolated vortex. Adding a
counter-rotating vortex in the vicinity of the first vortex does not have a significant
effect on the shape of the optimal perturbation within the first vortex. Similarly to the
isolated vortex, a threshold value of E(0) exists beyond which the nonlinear optimal
gain is higher than the linear optimal gain. In this situation the NLO-P is asymmetric
about the centreline.
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Frozen base flow Diffusing base flow

Linear 109.4 109.4
Nonlinear E0 = 10−2 140.3 139.8

TABLE 2. Linear and nonlinear E0= 10−2 optimal gains G(T) obtained for a Lamb–Oseen
vortex at Re= 5000, with T = 4.8 using a frozen base flow and a diffusing base flow.

T Cmum(T)

0.1 0.7
0.25 1.9
0.4 3.5
4.0 39.2
6.0 41.6

TABLE 3. Value of Cmum (defined by (B 1)) calculated for LO-P corresponding to various
horizon times.
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Appendix A. Validation of the frozen base-flow approach
In this appendix, the validity of the frozen base-flow approach for linear and

nonlinear optimization processes is demonstrated. We select T = 4.8 and compute
the nonlinear and linear optimal gains with frozen as well as diffusing base flow.
Table 2 lists the values of the optimal gain obtained via the two approaches. It can
be observed that the difference between the two approaches is less than 0.5 %. The
slightly lower value of optimal gain obtained using diffusing base flow is attributed
to reduction of vortex strength under the action of viscosity.

Appendix B. Vortex pair: contribution of most unstable mode to LO-P
A pair of counter-rotating planar vortices is a linearly unstable flow system (Brion

et al. 2014). The long-time response of the linearized system will be governed by
the most unstable mode. However, owing to the non-normal nature of the linearized
operator, the most unstable mode alone cannot be representative of short-time transient
flow processes. To confirm this, we calculate the following ratio for LO-P computed
for various horizon times:

Cmum(T)=
(uopt(T), u+m)
(um, u+m)

. (B 1)

In (B 1), the numerator on the right-hand side is the scalar product between the
velocity field corresponding to linear optimal perturbation (uopt), and the adjoint of
the most unstable mode of the vortex-pair system (u+m). The denominator on the
right-hand side of (B 1) is the scalar product between the most unstable mode (um)
and u+m. In the calculation of the scalar product, only spatial integration is carried
out (unlike the inner product defined in (2.9), where the integration is carried out in
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both space and time), and all the vectors are normalized with respect to their norm.
The ratio Cmum is a measure of the contribution of the most unstable mode (mum)
to LO-P. This follows from the bi-orthogonality relation between the eigenmodes of
the direct and adjoint systems. Table 3 shows the value of Cmum calculated for LO-P
corresponding to various horizon times. For large T , Cmum is relatively high. This
suggests a large contribution of the most unstable mode in long-time LO-P. On the
other hand, for low T , the contribution of the most unstable mode to LO-P is low,
as evidenced by the relatively small value of Cmum.
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