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ABSTRACT

In this work, we study the nonlinear coupling between the transverse modes of nanoresonators such as nanotubes or nanowires
in a singly clamped configuration. We previously showed that at high driving, this coupling could result in a transition from inde-
pendent planar modes to a locked elliptical motion, with important modifications of the resonance curves. Here, we clarify the
physical origins, associated with a 1:1 internal resonance, and study in depth this transition as a function of the relevant parame-
ters. We present simple formulae that permit to predict the emergence of this transition as a function of the frequency differ-
ence between the polarizations and the nonlinear coefficients and give the “backbone curves” corresponding to the elliptical
regime. We also show that the elliptical regime is associated with the emergence of a new set of solutions of which one branch
is stable. Finally, we compare single and double clamped configurations and explain why the elliptical transition appears on dif-
ferent polarizations.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5053955

I. INTRODUCTION

Nanotubes and nanowires (NNs) that can sustain very
large mechanical oscillation amplitudes represent ideal objects
for studying nonlinear effects and in particular nonlinear cou-
pling phenomena. These nonlinearities on the one hand
impose limitations for the use of NNs in applications involving
nanoelectromechanical systems (NEMS), e.g., for the funda-
mental limit of the minimum detectable frequency shift,1 and
on the other hand, they can reveal rich and complex dynamical
behaviors. Within this context, nonlinear coupling between
mechanical modes in NEMS has recently become a topic of
some interest.2–4 Such coupling can be important for NEMS
applications as they can influence the resonator parameter
that is being exploited. For example, one can tune the reso-
nance frequency and quality factor of one mechanical mode
through a nonlinear coupling to a second mode.4,5 Also, using

this coupling for a non-invasive detection means that the dis-
placement of any mode can be detected by measuring the
response of another mode.

Such couplings can be categorized in the wide family of
modal interactions, known as internal resonances, that charac-
terize coupling between several resonance frequencies that
satisfy a commensurate relationship.6,7 References 4 and 5 cor-
respond, for example, to (1:2) and (1:3) internal resonances phe-
nomena. A huge amount of literature has been dedicated to
internal resonances in the nonlinear dynamics community
over the past 50 years, since they are commonly observed in
macrostructures, for instance, in the case of nonlinear musical
instruments.8,9 For micro/nano resonators, internal resonance
received increasing attention10–12 over the past few years. In
the special case of a resonator with two vibration modes of
almost identical eigenfrequencies, a so-called one to one (1:1)
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internal resonance can be observed. This occurs especially in
the case of resonators with particular symmetries, such as cir-
cular or square plates, for which the coupling is observed
between degenerate companion modes.13,14 The same property
occurs for beams with a symmetrical cross section, between
the degenerate modes in the two transverse orthogonal direc-
tions or polarizations. Among others, see Ref. 15 in the case of
a string, Refs. 16 and 17 in the case of clamped-clamped beams,
and Refs. 18 and 19 for a singly clamped beam.

In the case of NEMS, we previously showed experimen-
tally, for a singly clamped configuration,20 that beyond the
classical Duffing phenomenon characterized by jumps and hys-
teresis, a transition from planar to elliptic vibration occurs
for the higher frequency polarization. Simulations of the
dynamics using a model based on cubic nonlinear coupling
terms between the polarizations were in good agrement with
the experiments. This succinct treatment opens many interest-
ing questions of direct interest for experiments such as the
dependence of the threshold of the elliptical transition on
vibration amplitude and the frequency difference between
polarizations, whether the transition can appear on the first
polarization, etc. Here, we go beyond the original basic dynami-
cal simulations with a self consistent approach (see next) and
also develop semi-analytic and predictive formulae allowing an
in-depth understanding of this rich phenomenon.

The numerical simulations have been realized using the
MANLAB21 software which is a free Matlab package that com-
bines the harmonic balance method (HBM) and a continuation
method22 to follow the periodic solutions of dynamical system
when a control parameter is varied. Moreover, it includes
stability analysis based on computing the Floquet exponents in
the frequency domain with a Hill eigenvalue problem.23,24 The
analytical treatment is used to clarify the physical origins of
this transition and gives simple formulae for the transition
depending on the geometric parameters of the NNs. The
validity of these formulae is confirmed by comparison with
simulations. Finally, simulations were also used to explore
more widely the phase space of these equations, allowing us
to present a new set of solutions that appears as a conse-
quence of the elliptical transition.

II. EXPERIMENTAL OBSERVATION

It is useful to start by giving a brief description of the
experimental observations. The transition was first observed
during field emission (FE) experiments on nanowires20 in
which an applied voltage causes electrons to be emitted from
the nanowire apex. They are then accelerated by the field onto
a viewing screen placed at several centimeters which gives a
projection image of the apex emission zone. The nanowires
were electrostatically excited during FE and the cycle-averaged
variation of the FE pattern serves for motion detection. The FE
configuration has the advantage of giving a greatly magnified
image (�105) of the apex displacement in the x-y plane25 so
that the elliptical transition is a clear and even striking
phenomenon. Direct observations of the oscillations20 and
the elliptic transition of various excited NNs were also

carried out in both Scanning and Transmission Electron
Microscopes (SEM and TEM) that confirmed the FE experi-
ments. Experiments have been carried out extensively on
SiC nanowires having resonant frequencies for the funda-
mental mode between a few kilohertz and a few megahertz
depending on their dimensions. Their pristine quality factors
range from a few hundred to several tens of thousands in
vacuum. A rapid heat treatment is generally realized and
quality factors between few tens of thousands and up to 100000
can be obtained.26

Figure 1 shows SEM observations of the elliptical move-
ment of a SiC nanowire stuck at the end of a large tungsten
support tip. The NN is excited by an open loop piezoelectric
actuation. The sample is positioned so that the nanowire
points almost along the electron beam axis, giving a very
shortened projection in the image plane [Fig. 1(a), NN at rest].
Though this configuration is a little tricky to visualize, the
advantage is that the images follow quite directly the move-
ment in the x-y plane (perpendicular to the length of the
wire) of the NN apex (for more details, see Fig. 1 of the supple-
mentary material). As the excitation frequency is increased,
the lower planar polarization is first observed [Fig. 1(b)] result-
ing in a straight line in the image. At higher frequency the
second planar polarization is observed orthogonal to the first

FIG. 1. SEM images of a resonating nanowire and the apparition of the transi-
tion characterized by elliptical oscillations. (a) The nanowire at rest. The nano-
wire is almost vertical and the projected length is very small. (b) and (c) The
two orthogonal and planar polarizations corresponding to the fundamental
mechanical mode. (d) Beyond the transition, we observe the elliptical
oscillations.
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polarization [Fig. 1(c)] which increases in amplitude as the res-
onance is swept (the somewhat non-linear shape is due to the
rather convoluted projection of a tilted, oscillating, finite-
length nanowire). At a certain amplitude (or frequency), the
planar oscillation starts to become elliptical. As the frequency
is increased above this transition, the size of the ellipse slowly
increases and its eccentricity decreases [Fig. 1(d)]. The NN res-
onance ends with a jump to zero amplitude like a classic hard
spring Duffing behavior.

III. ANALYTICAL MODEL

We demonstrated previously that cubic coupling terms
were sufficient to explain this elliptical transition. This two
dimensional model can be written in the following form (see
Refs. 20 and 19 and the supplementary material for detailed
treatment):

[1þ β(x2 þ y2)]€xþ 1
Q

_xþ �
1þ α(x2 þ y2)þ β( _x2 þ _y2)

�
x

¼ F1 cos (Ω t), (1)

[1þ β(x2 þ y2)]€yþ 1
Q

_yþ �
1þ 2μþ α(x2 þ y2)þ β( _x2 þ _y2)

�
y

¼ F2 cos (Ω t), (2)

where x and y correspond to the two dimensionless orthogo-
nal polarization directions and the displacements of the free
apex normalized to the total length of the wire. The coeffi-
cients α and β are coupling terms that depend on the mode
considered (see the supplementary material). Practically, they

correspond to the nonlinear terms in potential and kinetic
energy, respectively. Q is the quality factor of the resonance
(assumed equal for both polarizations) and μ represents the
frequency difference between the two polarizations. Ω is the
external excitation frequency, and we use two different exci-
tations F1 and F2 as experimentally the excitations are never
exactly symmetric. Note that, in the following, we will always
consider the case where the two polarizations are well sepa-
rated. Formally, these conditions can be written μ . 2=Q, that
is our case experimentally.

To emphasize the consequences of the coupling between
the polarizations, simulations presented in Fig. 2 are realized
with and without the coupling between the polarizations using
Eqs. (1) and (2) implemented in MANLAB. In the second case,
the nonlinear terms are preserved but without the crossed
coupling between the polarizations as presented in Ref. 27 or in
the supplementary material. The frequency difference between
the polarizations is 0.5% and the intrinsic quality factor of each
mode is Q ¼ 5000. Excitations (F1, F2) are chosen to obtain a
maximum normalized amplitude of 0.1 and 0.2, respectively, for
the x and y polarizations (QF1 ¼ 0:1 and QF2 ¼ 0:2). The values
of α and β correspond to tabulated values for the fundamental
mode shape (see the supplementary material). Simulation
results then give the different harmonic components of x(t)
and y(t) at Ω, 2Ω, 3Ω… The first harmonic response of x(t)
and y(t), plotted in Fig. 2, can then be written in the form
x(t) ¼ Rx cos (Ωtþ θ) and y(t) ¼ Ry cos (Ωtþ θ þ w). Rx and θ
(respectively, Ry and θ þ w) are plotted in blue (resp. red) and
the relative phase, w, is plotted in black in (b) and (d).

For the uncoupled equations [Figs. 2(a) and 2(b)], the two
classical planar resonances with hard-spring behavior are
observed (stable solutions are drawn using thick lines, whereas
unstable solutions are presented with thin lines). Simulations
using exactly the same parameters than in (a) and (b) but with
the coupling terms between the polarizations are presented in
(c) and (d). For the lower polarization, no important modifica-
tion is observed. The situation changes radically for the second
polarization. For low amplitudes, we still observe planar oscilla-
tions. However, above a critical amplitude, we observe a strong
modification of the amplitude-frequency curve of the y polari-
zation and the x polarization is once again excited. In the
phase figure, this transition is characterized by a phase differ-
ence w that locks on the value π=2. This leads to an elliptical
movement in which the major axis corresponds to y and the
minor axis to x, as experimentally observed. As the frequency
is increased, the phase difference w is fixed, while θ still varies
and the eccentricity of the ellipse decreases (the ellipse tends
toward a circle). After the transition, the range of frequencies
for which the elliptical oscillations continue is very large and
the jump corresponds to a lower y amplitude compared to the
uncoupled case. Note that the fact that no transition occurred
on the x polarization does not depend of the chosen parame-
ters. As we will see later, it is a generic effect that is the result
of the nonlinearities of the problem.

To go further in the analysis, it is convenient to seek the
solutions in the form x(t) ¼ Rx cos (Ωtþ θ) and y(t) ¼ Ry cos
(Ωtþ θ þ w). Injecting these forms and neglecting the higher

FIG. 2. Simulated resonance curves for the amplitude and phase of the two
polarizations of the fundamental mode without [(a) and (b)] and with [(c) and (d)]
the nonlinear coupling terms between polarizations (more precisely, the curves
(c) and (d) were obtained from Eqs. (1) and (2), whereas (a) and (b) were
obtained from equations presented in Ref. 27). Responses of the x and y polari-
zations are presented, respectively, in blue and red. Stable and unstable solutions
are presented with thick lines and thin lines, respectively. Without coupling, only
classical hard spring Duffing behavior is observed. With coupling, the emergence
of the elliptical oscillations is observed on the higher frequency polarization.
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order terms (see the supplementary material for two time
scale treatment), the following equations are obtained, after
some algebraic manipulation:

€xþ 1
Q
þ
R2
y

4
sin (2w)(α � 2β)

" #
_x

þ 1þ R2
x
4
(3α � 2β)þ

R2
y

4
[2α þ cos (2w)(α � 2β)]

( )
x ¼ F1 cos (Ω t),

(3)

€yþ 1
Q

� R2x
4
sin (2w)(α � 2β)

� �
_y

þ 1þ 2μþ
R2y
4
(3α � 2β)þ R2

x
4
[2α þ cos (2w)(α � 2β)]

( )
y ¼ F2 cos (Ω t):

(4)

One can immediately identify the prefactors of x, _x, y, and _y
with effective frequencies and dissipations and see that they
are interdependent through the amplitudes and phases of the
transverse oscillations. To simplify further, first define the
effective x and y quality factors as

1
Qx,eff

¼ 1
Q

þ α � 2β
4

R2
y sin 2w, (5)

1
Qy,eff

¼ 1
Q
þ α � 2β

4
R2
x sin 2w (6)

and effective x and y frequencies as

ω2
x,eff ¼ 1þ R2

x

4
(3α � 2β)þ R2

y

4
[2α þ cos (2w)(α � 2β)], (7)

ω2
y,eff ¼ 1þ 2μþ R2

y

4
(3α � 2β)þ R2

x

4
[2α þ cos (2w)(α � 2β)]: (8)

The equations then become

€xþ _x
Qx,eff

þ ω2
x,eff x ¼ F1 cos (Ω t), (9)

€yþ _y
Qy,eff

þ ω2
y,eff y ¼ F2 cos (Ω t): (10)

Particularly, Eqs. (7) and (8), which define the effective
frequencies as a function of the amplitude of the system
response when neither damping nor forcing are present, are
called the “backbone curves” of the x and y polarizations.
These backbone curves will be used intensively for analytical
treatments. One of the most important aspects is that the fre-
quency of one polarization is tuned by the other polarization.
This tuning depends on the square of the amplitude of the other
polarization and on the relative phase, w. In fact, for the funda-
mental mode shape, we have 2α = 1.6356 and α � 2β ¼ �1:48

so that the coupling always leads to an increase of the effective
frequency of the other polarization. In Eqs. (5) and (6), the evo-
lution of the quality factors reveals the internal energy
exchange between polarizations as discussed in more detail in
the supplementary material.

One can notice that the analytical approach followed in
the present article to derive analytical solutions, based on
ansatz functions for x(t) and y(t), is pragmatic and is, as it
will be shown, validated by numerical simulations. A more
mathematically rigorous analysis would have been to apply a
perturbation method (such as the multiple scale method6)
that would have given additional results about the stability
of the solution branches and the type of bifurcations. This
kind of analysis has been proposed for 1:1 internal resonance
in mechanical structures in moderate rotations, based on
Eqs. (1) and (2) with β ¼ 0, in Ref. 28 for the free response and
in Ref. 29 for the forced response. The extension of those
analysis for the case β = 0 is not available in the literature at
the moment and is left for further studies.

IV. RESULTS

Now let us examine the emergence of the elliptical transi-
tion only on the second polarization. As mentioned in Fig. 1, an
important aspect used for our analytical treatment is that near
the transition, w is very close to π

2. When the second polariza-
tion is excited, the increase of Ry increases the effective fre-
quency of the x polarization. If this frequency increases until
it reaches the excitation frequency, the x polarization will be
once again excited. This is the key to understand the elliptical
transition. To determine the conditions in which this transi-
tion can occur, let us examine the evolution of these frequen-
cies. As w � π

2, we can write the effective frequency of the x
polarization as (before the transition, Rx is negligible)

ωx,eff ¼ 1þ R2
y (α þ 2β)=8: (11)

In the same conditions, the backbone curve of the y polariza-
tion is given by

Ω ¼ 1þ μþ R2
y(3α � 2β)=8: (12)

If we consider that the transition occurs when ωx,eff ¼ Ω (that
is a slight overestimation as we will see later), we obtain the
critical amplitude Ry,c for which the transition occurs and that
is given by

Ry,c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4μ
�α þ 2β

s
: (13)

The critical amplitude simply depends on the frequency dif-
ference between the polarizations and the nonlinear coupling
terms. Now, during the elliptical movement, the effective res-
onance frequencies of the x and y polarizations are nearly the
same. Equalizing the two (taking w � π

2) gives the relation
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between Rx and Ry and we obtain R2
x ≃ R2

y � R2
y,c. Re-injecting

this relation into Eqs. (7) and (8), one obtains the backbone
curves for Rx and Ry versus the frequency throughout the
elliptical regime (denoted ωy,e and ωx,e with e for elliptical).
Practically, we obtain

ωy,e ¼ 1� μ

2
3α � 2β
�α þ 2β

� �
þ α

2
R2
y , (14)

ωx,e ¼ 1þ μ

2
α þ 2β
�α þ 2β

� �
þ α

2
R2
x: (15)

Note that, for the fundamental mode shape, we have
3α�2β
�αþ2β ¼ 0:104 and αþ2β

�αþ2β ¼ 2:1. Practically, the backbone curve
for the y polarization is little sensitive to μ and we can reason-
ably write ωy,e ≃ 1þ α

2R
2
y .

MANLAB simulations using various frequency differences
that demonstrate the validity of our analytical formulae are
presented in Fig. 3. For simplicity, the natural frequency of
the x polarization is set to 1 and the frequency difference is
modified by varying the value of μ. Simulations with frequency
differences of 0.5%, 1%, 2%, 2.5%, and 3% and an excitation F2
that corresponds to a normalized maximum amplitude of 0.25
in the y direction are given. The backbone curves for the y
and x polarizations during the transition [Eqs. (14) and (15)]
are plotted using the black dotted lines for μ ¼ 0:5%. There is
a good quantitative agreement between our analytical formu-
lae and simulations. For 0.5%, 1%, and 2%, the amplitude Ry

reaches the critical amplitude and the elliptical transition
occurs. The limit case corresponds to μ ¼ 2:5%. For a higher μ
(and for our chosen excitation), no transition occurs, and we
only observe the classical case as if the polarizations were
uncoupled. Of course, it does not mean that no elliptical tran-
sition could appear for a frequency difference of 3%, but it
would require higher excitation.

To clarify this aspect, the inset of Fig. 3(b) presents the
normalized critical amplitude Ry,c versus the frequency differ-
ence between polarizations following Eq. (13). According to
the graph, the elliptical transition should easily be observed
for μ of a few percent that can be obtained for a large variety
of nanowires or nanotubes. If a maximum normalized ampli-
tude of 0.4 is considered, which can in practice be obtained
for the fundamental mode, the elliptical transition should be
observed for all nanowires with μ , 5%. In fact, it is surprising
that such behavior is not more often reported in the litera-
ture. Note that for superior modes, the elliptical transition
appears for much lower amplitudes as we will see later.

We have seen that the transition occurred when the
higher polarization hardened the lower polarization enough
so that it could once again be excited by the driving fre-
quency. For the fundamental mode, this is the only possibility
as the parameters show that the excitation of one polarization
can only increase the frequency of the other. To better visual-
ize this effect, we present in Fig. 4 the effective frequencies
ωx,eff and ωy,eff of the two polarizations as a function of the
excitation frequency. This is done by taking the oscillation

parameters from MANLAB simulations and re-injecting them
into the frequency dependance in Eqs. (7) and (8). The blue
line represents the lower (x) effective frequency ωx,eff , the red
line the higher effective frequency ωy,eff , and the black line the
excitation frequency. As expected, when the lower polariza-
tion is excited, it increases the effective frequency of the
other polarization and no transition can occur. In contrast
when the second polarization is excited, the lower effective
frequency is pulled toward the excitation frequency and the x
polarization is once again excited. Once the elliptical transi-
tion is activated, the nonlinear terms couple the two polariza-
tions together and they start to behave as a strong hard spring
resonator that can be excited over a large frequency range.
We can also observe that even if the ωx,eff is increased almost

FIG. 3. Simulations showing the evolution of the elliptical transition as a function
of the frequency difference between the polarizations. The simulations corre-
spond to frequency differences of 0.5%, 1%, 2%, 2.5%, and 3%. The black
dashed lines trace the backbone curves corresponding to the elliptical regime
for μ = 0.5% following Eqs. (14) and (15). (a) 3 dimensional representation of
the different response curves. (b) Projection of the response curves showing
that the different transitions are well fitted by the backbone curve. Inset:
Evolution of the critical amplitude, Ry,c , versus the frequency difference, μ.

https://aip.scitation.org/journal/jap


to the excitation frequency, it remains, however, always slightly
inferior. This explains that in our analytic treatment where
we defined the beginning of the transition for ωx,eff ¼ Ω, we
made a small overestimation. However, the fact that our for-
mulae fit correctly the simulations confirms that our approx-
imation is reasonable.

An interesting question is whether the elliptical solu-
tions presented above are the only solutions in the presence
of the nonlinear coupling. In fact, we show next that the
elliptical regime leads to the emergence of another indepen-
dent set of solutions. Figures 5(a) and 5(b) present amplitude
and phase diagrams of these new solutions obtained by
MANLAB. Depending on the excitation frequency, we can
have zero, two, or four solutions. More importantly, the
stability analysis predicts that one part of these solutions is
stable and hence physically obtainable. To better understand
these new solutions, Fig. 5(c) shows the superposition of all
the solutions and it can be seen that the closed curve of the
new solutions corresponds partially to the truncated part of
the classical Duffing mode of an independent y resonance.
One can distinguish two branches in this new set of solu-
tions. One branch corresponds to the higher part of the
planar excitation of the y polarization. However, this part is
now unstable. The second branch corresponds to another
elliptical oscillation and one part of these solutions is stable.
As before, we see in the phase diagram that the relative
phase between the polarizations for the new elliptical solu-
tions is locked but this time at the value w ¼ �π=2. The inset
in Fig. 5(c) presents a zoom of the solutions in the elliptical
zone. We see that the two stable elliptical solutions become
very close in amplitude, the new elliptical solution, however,

staying above the other solution. We then have two stable
elliptical solutions but rotating in opposite directions.

This phenomenon is analogous to the one observed in
the case of the coupling of companion modes in circular
plates14,29 or in a string.15 It can be explained by a pitchfork
bifurcation point, for which a single stable branch (associated
with the planar solution) becomes unstable and gives birth to
two stable (nonplanar) solutions, with the same amplitude but
with different phase differences +π=2. The two stable non-
planar solutions have opposite directions of motion. More
precisely, because F1 and F2 are both chosen nonzero in the

FIG. 4. Evolution of the effective frequencies of the polarizations as a function
of the excitation frequency. When the first polarization is excited, the frequency
of the higher polarization is further increased and no transition is possible for
the lower polarization. As the second polarization is excited, the effective
frequency of the lower polarization is increased almost at the frequency of the
higher mode and the elliptical oscillations begin.

FIG. 5. Characterization of the new set of solutions appearing with the elliptical
transition of which one branch is stable. (a) Amplitude and (b) phase diagrams
of the new solutions. (c) Superposition of the different solutions of the equations.
The inset is a zoom at the beginning of the transition.
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simulations, the pitchfork bifurcation is in fact degenerate, so
that the computed branches have a slightly different topol-
ogy: the þπ=2 branch is connected to the stable planar
motion branch, and the �π=2 is isolated, with a saddle-node
bifurcation in the vicinity.30

To better understand the origin of the elliptical transition,
we have plotted in Fig. 5(c) (black dashed lines) the evolution
of ωx,eff versus the amplitude Ry and the backbone curve of the
unperturbed y polarization [Eqs. (11) and (12)]. We see that the
transition occurs when the two effective frequencies are
crossing each other. We know that two linear resonators, line-
arly and symmetrically coupled, lead to anti-crossing phe-
nomena. In our case, the nonlinearly coupled equations lead
to a more complex configuration with the apparition of new
solutions that correspond to the elliptical movement and the
apparition of an isolated set of solutions. For the effective fre-
quencies, the family of the second solution is characterized by
the fact that the ωx,eff can be higher than the y polarization
(see Fig. 2 of the supplementary material).

Now, we examine the effects of nonlinear coupling on
the higher modes. In this case, the nonlinearities actually
strengthen and the hard spring behavior, characteristic of the
fundamental mode shape, becomes soft spring. Moreover, for
the second mode shape, we have 2α ¼ 13:82 and α � 2β ¼
�65:4528 so that one polarization, depending on the relative
phase w, can increase or decrease the effective frequency of
the other polarization. We do not pretend that our analysis
exhausts all the possibilities of these nonlinear couplings;
however, the main characteristics observed for the fundamen-
tal mode also apply to the second mode. Figure 6 presents
MANLAB simulations performed on the second mechanical
mode with a frequency difference between polarizations of
2%. Figure 6(a) presents the continuation amplitude diagram
where we observe again the elliptical transition on the higher
polarization. As the second polarization is excited, we
observe first the planar oscillation that exhibits soft spring
behavior and the curve is bent to the left. As the amplitude
increases, we reach the transition and the elliptical regime
can occur. As the backbone curve of the elliptical movement
is always oriented to the right (it depends only on α which is
positive and then behave as hard spring), it results in a direc-
tion change in the amplitude continuation diagram. These
elliptical solutions have been experimentally reported in Ref. 20.
Figure 6(b) presents the closed family of solutions that con-
sists once again in part of the truncated part of the y polari-
zation that is unstable and of other elliptical solutions. The
transition occurs for lower amplitudes as the term �α þ 2β ¼
65:48 for the second mode shape compared to 1.48 for the
first mode shape. The backbone curves for the elliptical
regime [Eqs. (14) and (15)] are presented in (a) and are once
again in good agrement with simulations.

The case of higher modes is extremely similar to the
second mode with a transition appearing for still smaller
amplitudes. As well, for higher modes, the α terms become
negligible compared to the β terms and the backbone curves
[Eqs. (14) and (15)] for the elliptical regime tend to the equa-
tion ωy = x,e ¼ 1þ μ

2 þ α
2R

2
y =x. We did not seek numerically the

existence of the isolated solutions for mode 3 or higher, but
we see no reasons why they would disappear.

V. DISCUSSION

Several more aspects of the elliptical transition are worth
discussing.

Firstly, the analytical treatment was based on the fact
that the phase difference, w, increases through the first reso-
nance and then begins to decrease in the second until it locks
at π=2 during the elliptical regime [see Fig. 2(d)], i.e., the model

FIG. 6. Characterization of the elliptical transition for the second mode. (a)
Frequency response of the polarizations showing soft spring Duffing behavior.
Once again, for the higher polarization, the elliptical regime is observed with hard
spring behavior. The dashed lines present the analytical backbone curves for the
elliptical regime [Eqs. (14) and 15]. (b) New isolated set of solutions corresponding
to the elliptical regime. (c) Superposition of the two sets of solutions.
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is based on two well separated polarizations. As a conse-
quence, our model is not well suited for very low quality
factors or polarizations very close in frequency. The equa-
tion that roughly characterizes the frontier of our model has
been given above: μ . 2=Q. This means, for example, that for
μ = 0.01, we must have Q . 200, that is, our case experimen-
tally. To examine the effects of lower Q values, we present in
Fig. 7 a series of simulations with quality factors of 104, 2000,
500, 200, 100, 50, and 20, the same for the two polarizations,
the excitation being increased accordingly to keep the same
amplitudes (QF ¼ constant). The value of Q ¼ 10 000 corre-
sponds to the parameters used in Fig. 3 (μ ¼ 0:01) which
serves here as a reference. For Q ¼ 2000, the peaks enlarge as
expected, but no significant change is observed. For Q ¼ 500,
the two resonances begin to merge, but the phase locking at
π=2 is still clearly visible. We note an earlier emergence of the
transition since the amplitude increases for lower frequen-
cies. At Q ¼ 200, the peaks merge even more and the phase
locking is not so well pronounced. For Q ¼ 100, the phase dif-
ference never reaches π=2, and, finally, for very low Q, only
one very large peak is observable hiding the two polariza-
tions. Note that for the lowest values of Q, when the two res-
onance curves merge, if the system is excited at a frequency
in the overlap, the observed oscillations would also be ellipti-
cal with a major axis of the ellipse that would depend on the
relative phase between polarizations. However, in this case,
these ellipses are really trivial and would be observed even
without nonlinear coupling terms. These ellipses, obtained
for merged resonance curves, have to be clearly differenti-
ated from the elliptical transition observed when the two
resonances are well separated.

Secondly, once the elliptical regime is reached, the funda-
mental mode can be observed for a wide frequency range
compared to its linear width. It is interesting to predict the
end of this elliptical resonance. This aspect is not trivial in the
general case but can be reasonably treated in some favorable
cases. In the following, such a case is examined that corre-
sponds to Fig. 3 (μ ¼ 1%). Just considering the energy balance,
there are two sources of dissipation and two sources of
energy injection that depend on the relative phase of the
motions with the excitation, the phase difference being locked
during the elliptical regime. On the one hand, the dissipated
power is given by R2

x=2Qþ R2
y=2Q (we neglect higher harmonic

contributions). Remembering that during this regime one
has R2

x ≃ R2
y � R2

y,c, the dissipated power can be written as
(2R2

y � R2
y,c)=2Q. On the other hand, the injected power can be

written as F1Rxsin(� θ)=2þ F2Rysin(� θ � w)=2. In our example,
QF1 ¼ 0:1 and QF2 ¼ 0:25 so that F2 . F1, and for the jump, we
have θ þ w ≃ �π=2 leading to θ ≃ �π. So, the injected power
can be simplified as F2Ry=2 and now the energy balance corre-
sponding to the jump is given by QF2Ry ¼ 2R2

y � R2
y,c. For the

fundamental mode shape and a frequency difference of 1 %,
one has Ry,c ¼ 0:164. As no term is negligible, the second order
equation has to be solved to obtain the value of the maximum
amplitude obtainable, Ry,max. Re-injecting this value into Eq. (14)
gives the frequency at which the jump occurs. In our case, the
calculations give a frequency for the jump of 1.01490 and the

simulation a value of 1.01486, evidently in good agrement.
However, this good quantitative agreement relies on the fact
that the chosen parameters matched well with the hypothesis
done for our analysis. In the general case, such an oversimpli-
fied analysis would not give such a precise estimation.

Thirdly, the nonlinear behaviors of our systems are gov-
erned by the combination of the terms α and β that corre-
spond to nonlinear contributions coming from both potential

FIG. 7. Evolution of the elliptical transition as the quality factor decreases.
The frequency difference is set to 1% and the excitation is increased to have
Q*F = constant.
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and kinetic energy. They combine in various and mode-
dependent ways and can even have opposing effects. An illus-
tration of the latter is the classical Duffing behavior which is
described by the (3α � 2β) terms in Eq. (3). This explains why a
hard spring Duffing behavior for the fundamental mode shape
and soft spring for the higher modes shape are observed.
Consequently, it would be interesting to modify α and β to
change the response of our resonators. This approach has
already been proposed and tested in NEMS by Refs. 31 and 32,
for example, to improve the dynamic range of nanoresonators,
but here we are also interested in how these modifications
can alter the elliptical regime. Modifying the nonlinear coeffi-
cients can be realized for singly clamped nanowires over a
limited range by applying a longitudinal tension, as can be
done by applying a voltage difference between the nanowire
and its environment. This creates a strong electric field at the
apex that in turn results in a longitudinal electrostatic force.
The rigidity of nanowires is small, and thus, this electrostatic
tension term can be of the same order or even higher allowing
to electrostatically tune the resonance frequencies of NNs
over a wide range.33 The contribution of the longitudinal
electrostatic force to the potential energy is twofold. First, it
changes the evolution of the stored energy as the amplitude
increases and secondly, it modifies the linear shape of the
mode. The consequence is that the value of α is now a func-
tion of the applied voltage V. For kinetic energy, the mode
shape evolution also results in a variation of β. It is conve-
nient here to define Vc as the voltage for which the generated
longitudinal force is T ¼ EI

L2.
26 The mechanical effects of an

applied voltage V then only depend on the ratio V/Vc. In
Fig. 8, we present the evolution of α, β, 3α � 2β, and �α þ 2β
as a function of the applied voltage for the fundamental
mode. Interestingly, the 3α � 2β term that is positive for low
voltages (hard spring behavior) cancels for intermediate volt-
ages and becomes negative (soft spring behavior) for higher
voltages. It means first that it is possible to cancel the cubic
nonlinear terms and to obtain a linear response over a large
amplitude range and secondly that soft spring behavior should
be observable for highly strained nanowires. In fact, for very
thin nanotubes (single or double wall nanotubes), we effectively
only observe soft spring behavior during field emission experi-
ments.34 Concerning the elliptical transition, it remains over
the whole voltage range and even appears for lower critical
amplitudes as can be seen by the increasing value of �α þ 2β.
Consequently, adding a longitudinal tension to the nanowire
can modify the nonlinear response but does not remove the
elliptical regime.

Finally, the analysis above shows the existence of an iso-
lated set of solutions that in particular contains stable solutions,
a fact explained by a degenerate pitchfork bifurcation, analo-
gous to string vibrations.15 Figure 5(c) shows that there can be
as many as seven solutions for some frequencies in which three
are stable. Note that the third stable solution is in an isolated
set and this means that practically this solution cannot be
obtained by increasing quasi-statically the excitation frequency.
Furthermore, the fact that these two elliptical solutions are
very close in amplitude is insidious. In the four dimensional

state space that characterizes the system (we can choose Rx,
Ry, θ, and w as axes), these two stable solutions are very well
separated since their projections on the w axis are, respectively,
þ π

2 and � π
2. Thus, to obtain this solution, we have to perturb

the system enough so as to reach the correct basin of attrac-
tion. This can be done a priori by adding temporarily another
excitation such as a voltage pulse. In a macro circular plate, the
isolated �π=2 solution was experimentally observed after a
small mallet hit on the plate, enabling a jump from the π=2
solution to the �π=2 solution.14 A more interesting and
sophisticated strategy to produce this state is to reach its
basin of attraction by a controlled and reproducible procedure.
Kozinsky et al.,35 for example, have experimentally character-
ized the basin of attraction of a Duffing oscillator. By control-
ling the amplitude and delay of a preliminary excitation, they
controlled their starting point in the phase space and could
measure which final solution they obtained. Once character-
ized, they can obtain the desired solution at will. Another
example of such a control is provided by the electromechanical
parametron developed by the NTT laboratory.36 In their system,
the mechanical resonator is actuated by a piezoelectric modu-
lation at twice its natural frequency. The resulting parametric
resonance is bi-stable and two solutions can be obtained differ-
ent in phase (0 or π). The oscillation can then be made to repre-
sent a binary digit by the choice between two stationary phases
π radians apart. Our system presents several similarities with
the parametron as we also have two elliptical solutions that can
be very close in amplitude but whose phase difference is sepa-
rated by π radians. Interestingly, Mahboob and Yamaguchi36

have shown that they can prepare their system to obtain the
desired solution with a yield that can reach 100%. Obtaining
one or the other stable elliptical solution should then be possi-
ble by a precise preparation of the system.

The rather detailed analysis above is developed for the
elliptical regime we observed for singly clamped resonators.
Actually, the doubly clamped configuration has been much
more investigated than the singly clamped and previous works

FIG. 8. Evolution of the parameters α, β, 3α � 2β, and �α þ 2β for the
fundamental mode as a function of the longitudinal tension in the simply
clamped configuration.
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present the apparition of an elliptical regime.16,17 It is therefore
interesting to compare the two cases and to treat them with
the same approach. As previously, we are not interested here
in the case where the two resonance curves are merged and
for which ellipses are trivial. For example, the article of Conley
et al.37 describing nonplanar dynamics of suspended nano-
tubes belongs to this category. Detailed models of nonlinearly
coupled doubly clamped resonators can be found elsewhere.37

For comparison, we simulate here a doubly clamped resonator
with no applied stress and having a ratio L=r ¼ 100. The oscil-
lation amplitudes are normalized by the resonator’s length.

It is well known that for a doubly clamped configura-
tion, the nonlinear coupling is realized by the stretching of
the resonator during oscillation. Physically, it means that we
have cubic nonlinear terms in the potential energy but none
in the kinetic energy. Consequently, the nonlinear equations
describing the doubly clamped configuration are exactly the
same as those in Eqs. (1) and (2) with β ¼ 0 and α having a
high positive value. Applying the same treatment as earlier
one obtains Eqs. (3) and (4) but conserving only the α term.
One now observes that the self tuning effect (3α) becomes
more important than the effect of the other polarization
[the term 2α þ α cos (2w) vary between α and 3α and is equal to
α for w ¼ π=2]. It means that if we excite the second polariza-
tion, the effective frequency of the lower polarization cannot
reach the higher frequency. The elliptical transition is then no
longer possible for the second polarization. However, if we
excite the lower polarization, the effective frequency of the
lower polarization will increase more rapidly than the higher
one. If the frequency difference between polarizations is not
too large, the effective frequency of the lower polarization can
catch up to the effective frequency of the higher polarization
and an elliptical transition can appear. From this analysis, it can
be concluded that an elliptical regime for the doubly clamped
configuration should only be possible for the lower polarization.
Figure 9(a) presents MANLAB simulations for a doubly clamped
configuration with no applied stress and μ ¼ 1%. As expected,
an elliptical transition is observed on the lower polarization,
but the modifications corresponding to this transition are
less evident compared to the singly clamped configuration.
To clarify this continuation diagram, parts of this diagram are
presented separately in Figs. 9(b) and 9(d). These parts would
correspond more likely to experimental results depending if
one starts a frequency scan at points 1 or 2 indicated in (a).

The situation corresponding to the initial point 1 is pre-
sented in Figs. 9(b) and 9(c) for the amplitude and phase dia-
grams, respectively. As the frequency is increased, we naturally
begin to excite the lower polarization and, firstly, a planar hard
spring resonance is observed. Interestingly, as the excitation
frequency reaches the value of the natural resonant frequency
of the second polarization [dashed vertical line in Fig. 9(b)], its
amplitude does not increase as one might expect. The reason is
that the effective frequency of the second polarization has
been increased by the lower polarization amplitude as can be
seen in Fig. 9(e) where the effective resonance frequencies of
polarizations are plotted during the frequency scan (the same
principle as in Fig. 4). As the frequency and Rx still increase, the

FIG. 9. Simulation of the elliptical transition in a doubly clamped configuration.
(a) Total continuation diagram showing the emergence of the elliptical regime on
the first polarization. (b) Part of the continuation diagram that would correspond
to a frequency scan starting at point 1. (c) Phase diagram associated with
the amplitude diagram presented in (b). (d) Second part of the continuation
diagram. It would rather correspond to a frequency scan starting at point 2.
Only the hard-spring planar Duffing behavior is observed on this polarization.
(e) Evolution of the effective frequencies of the polarizations as a function of
the excitation frequency.
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elliptical transition limit is reached [schematically represented
by the black vertical line in (b)]. As previously, the elliptical
regime is characterized by a value of w that locks on π=2, an
abrupt change in the slope of Rx(ω), an increase of Ry, and the
two effective frequencies being very close. As the frequency is
still increased, the ellipse enlarges and, finally, the system
jumps out of the resonance. In contrast, starting at point 2, for
example, by turning on the generator at this frequency, the res-
onance curve presented in Fig. 9(d) is obtained. It corresponds
to the excitation of the planar hard spring second polarization
at the expected value. A high amplitude was used to verify that
no transition is observed. In Fig. 9(e), it can be seen that, as
expected, the effective frequency of the lower polarization is
increased but cannot reach the driving frequency.

As previously, the backbone curves corresponding to the
elliptical regime can be estimated. This time, the critical
amplitude, Rx,c, for which the transition occurs, is given by

Rx,c ¼
ffiffiffiffi
4μ
α

q
and during the elliptical regime, R2

x ≃ R2
y þ R2

x,c. This

leads to the backbone curves ωx,e ¼ 1� μ
2 þ α

2R
2
x and

ωy,e ¼ 1þ 3μ
2 þ α

2R
2
y. These backbone curves are plotted in

Fig. 9(b), showing a good agrement with the simulations.
Finally, in the simulation presented here, no mechanical

tension was applied to the nanowire. The application of a
mechanical stress only changes the value of α, and, conse-
quently, it does not change the principle of the elliptical tran-
sition. As well, the modeling of the higher modes results in an
increase of the α values, but the elliptical regime remains.

VI. CONCLUSION

The intriguing elliptical regime comes about naturally from
standard coupling intrinsic to a large class of nanometric reso-
nators with two degrees of freedom. In this work, we attempt
to give a full but comprehensible treatment useful for active
researchers in the field of NEMS with an attention to providing
simple guidelines to understand measurements and interesting
new mechanical responses to explore. Specifically, the article
contains analytical expressions characterizing the emergence of
the transition as a function of the frequency difference between
the polarizations and the evolution of the obtained ellipses that
were given. We also showed the existence of a new set of solu-
tions for which one branch is stable and could have potential
applications. The comparison of nonlinearities between the
singly and doubly clamped configurations showed that an ellip-
tical transition appears in both configurations but on different
polarizations. The better understanding of this transition can
open original perspectives for NEMS applications.

SUPPLEMENTARY MATERIAL

The supplementary material includes a schematic of the
experimental SEM configuration used for the observations of
the elliptical transition, a detailed treatment of the 2D nonlinear
equations of coupled polarizations leading to the emergence of
the elliptical transition, and the two-time scale treatment of
these equations.
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