
Science Arts & Métiers (SAM)
is an open access repository that collects the work of Arts et Métiers Institute of

Technology researchers and makes it freely available over the web where possible.

This is an author-deposited version published in: https://sam.ensam.eu
Handle ID: .http://hdl.handle.net/10985/15019

To cite this version :

Hadj-Ahmed BAY-AHMED, Abdel BOUDRAA, Delphine DARE-EMZIVAT - A Joint Spectral
Similarity Measure for Graphs Classification - Pattern Recognition Letters - Vol. 120, p.1-7 - 2019

Any correspondence concerning this service should be sent to the repository

Administrator : archiveouverte@ensam.eu

https://sam.ensam.eu
https://sam.ensam.eu
http://hdl.handle.net/10985/15019
mailto:archiveouverte@ensam.eu
https://artsetmetiers.fr/


1

A Joint Spectral Similarity Measure for Graphs Classification
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ABSTRACT

In spite of the simple linear relationship between the adjacency A and the Laplacian L matrices, L=D-A
where D is the degrees matrix, these matrices seem to reveal informations about the graph in different
ways, where it appears that some details are detected only by one of them, as in the case of cospectral
graphs. Based on this observation, a new graphs similarity measure, referred to as joint spectral simi-
larity (JSS) incorporating both spectral information from A and L is introduced. A weighting parameter
to control the relative influence of each matrix is used. Furthermore, to highlight the overlapping and
the unequal contributions of these matrices for graph representation, they are compared in terms of the
so called Von Neumann entropy (VN), connectivity and complexity measures. The graph is viewed as
a quantum system and thus, the calculated VN entropy of its perturbed density matrix emphasizes the
overlapping in terms of information quantity of A and L matrices. The impact of matrix representation
is strongly illustrated by classification findings on real and conceptual graphs based on JSS measure.
The obtained results show the effectiveness of the JSS measure in terms of graph classification accu-
racies and also highlight varying information overlapping rates of A and L, and point out their different
ways in recovering structural information of the graph.

1. Introduction

Graph spectral analysis is one of the hot topics in data
processing community, motivated by the prominent need to
develop new mathematical tools to process networked and
structured data. These data are generated from various sources,
as sensor, social, biological or transportation networks, where
the information resides in complex and irregular structures.
For this purpose, eigen-spectrum of matrices associated with
graphs are often closely studied. Recent works of the literature
have emphasized the importance of matrix representations
for graph characterization, pointing out the advantages and
the drawbacks of some spectra associated to graphs [1],[2],
including, those of adjacency (A), Laplacian (L), signless
Laplacian | L | and distance (DG) matrices. The spectrum of L
matrix is indeed widely studied in spectral graph theory [3],
in reason of the symmetry and positive semi-definiteness of
the matrix, which is useful for determining cuts and inherent
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graph components. Otherwise, the spectrum of A matrix is
mainly used for the study of regularity [4], isomorphisms [5]
and bipartition [6] of graphs. The question of choosing either A
or L matrix for graph representation is still a subject of debate.
For instance, in graph signal processing theory, Shuman et al.
[7] define the graph Fourier basis as the eigenbasis of L matrix,
while Sandryhaila and Moura [8] prefer the eigenbasis of A

obtained via a Jordan decomposition. This difference can be
justified in part by the nature itself of the decomposition basis,
and also by the fact that not all graphs are determined by their
spectra and there is a family of graphs that shares the same
spectrum in respect to some matrix representation, commonly
called cospectral graphs [9]. The distinction between these
cospectral graphs or between very similar graphs via their
spectra is a tough task as stated in [1]. A big part of graph
comparison algorithms aims to sort them using some structural
similarity criteria without implicitly resorting to spectral
analysis. This is the case of the aligned subtree kernel [10]
that incorporates explicit subtree correspondences between the
compared graphs, as well as other substructure based kernels
[11] [12] [13] [14], which decompose the graphs into smaller
sub-graphs and try to find the optimal bijection between them.
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In spite that, spectral similarity measures remain attractive
and hold many strengths [2]. We propose in this work to
tackle the problem of graph classification using a spectral
measurement of similarity called Joint Spectral Similarity
(JSS) which compares two graphs using jointly the spectra of
A and L. Such measure is interesting to distinguish graphs that
have close spectral properties or even for sorting cospectral
graphs which is a hard task when using only the spectrum
of A or L at once. To understand the contribution of each
matrix in graph information recovering, we investigate the
framework of structural complexity measurements of graphs,
more specifically, energetic and entropic measurements [15].
Inspired from information theory and statistical mechanics,
these measures capture similarities and differences between
networks and quantify the organization level of the underlying
graph structure. Among them, we focus on Laplacian graph
energy and VN entropy that can be used as a measure of
regularity in graphs [16],[17].

In this paper, we show the effectiveness of the JSS similarity
measure for graphs classification. We highlight the graph’s rep-
resentation disparity between A and L matrices illustrated via
entropy, connectivity and complexity measures. Combined in
a heat kernel, the JSS measure shows promising results in real
world graph data, built from chemical components and in real
time series. These results are compared to the state-of-art graph
kernels in terms of classification accuracy and computing CPU
time.

2. Graphs basics

An undirected graph is defined with a finite non-empty set V
of N elements called vertices (or nodes), and with a set E of M
unordered pairs of distinct elements of V representing the con-
nexions between vertices. A labelled graph with N vertices and
M edges is represented with an (N × N) A matrix (A = [ai j]),
where the element ai j is one if the vertex vi is connected to the
vertex v j and zero otherwise. Due to the symmetric relationship
between nodes in undirected graphs, their adjacency matrix is
also symmetric with zeros as diagonal entries. An alternative
representation of graphs is given by Laplacian matrix L = D−A,
where D is a diagonal matrix in which, the ith entry is the degree
di of the node vi ∈ V, representing its number of neighbors. In
the case of a weighted graph, the degree di is equal to the sum of
the weights wi j of edges related to vi, and the Laplacian matrix
takes the form L = D − A, where A is the weighted A matrix.

3. Graphs representation via A and L spectra

The matrices A and L are compared in terms of entropic infor-
mation, connectivity and complexity measures. A proposition
is also formulated, giving corrective terms in the VN entropy
expression due to changes in graph structure related to A and L.

3.1. Entropic information measure

In quantum mechanics, objects modify their states according
to the presence or not of an observer. They take only one state

among other possible states, called pure states. But, it happens
also that the observer measures a mixture of states, then the ob-
ject is said to be in a mixed state or in a superposition. Such
phenomenon is usually studied using the so called density ma-
trix ρ, which has the occurrence probability of each pure state
in the mixture as diagonal elements, and the confusion degree
between them in the off-diagonal elements. This matrix is sym-
metric and positive semi-definite of trace one. To measure the
uncertainty degree (mixedness) of a quantum system in a super-
position state, Von Neumann introduced an entropic measure
[16] which takes the form −Tr(ρ log2 ρ), which includes the di-
agonal elements of ρ and determines the amount of unknown or
missing information about the real state of the system. The off-
diagonal elements are interpreted as confusion or noise degree
in the mixed state. The link between graphs and quantum me-
chanics has been established in [18], [19]. The beginning was
from the fact that L matrix is symmetric (for undirected graph)
and positive semi-definite. Hence, once normalized in appropri-
ate way, it can be treated as a density matrix of a quantum sys-
tem in a superposition state. Considering nodes as pure states
in the standard basis of an Hilbert space of dimension N, the
graph is seen as a superposition (mixture) of those pure states
(nodes). Therefore, the VN entropy could be then calculated
using L matrix scaled by the degree-sum of the graph: ρ = L∑

i
di

.

Let λN > . . . > λ2 > λ1 = 0 and λ̃N > ... > λ̃2 > λ̃1 = 0 be
respectively the eigenvalues of L and ρ, the VN entropy takes
the form :

S (ρ) = −

N∑
i=1

λ̃i log2 λ̃i = −Tr(ρ log2 ρ) (1)

with 0 log2(0) = 0 by convention. Otherwise, Bai et al.
[20] [21] used an alternative density matrix σ based on both
continuous-time and discrete-time quantum walk to compare
graphs. Their idea is to build a kernel which compares the den-
sity matrices associated to graphs using the Quantum Jensen-
Shannon divergence as a similarity measure: DQJS (σ1,σ2) =

S [1/2(σ1 + σ2)] − 1/2 S (σ1) − 1/2 S (σ2), where σ1,σ2 are
a pair of density matrices. The density matrix σ is calculated
using a transition matrix for the quantum walk which includes
information about the degrees and the structure of the graph.
This approach does not require any calculation of eigenvalues
nor those of A neither of L. Since the graph VN entropy is in-
terpreted as a measure of the information content, we wonder
about the contribution of each matrix (A and L) in the measured
quantity of information. A part of the answer comes from quan-
tum perturbation theory where the sensitivity of eigenvalues to
density matrix perturbations has been studied. Some of these
studies have been extended by Chen to include the case of per-
turbations on VN entropy [22]. This opens the way to project
the study on to the general case of graphs. The goal is to deter-
mine the cost of structural modifications of the graph in terms
of information quantity, and to clearly understand the relation-
ship between A and L in a purely entropic framework. To this
end, A matrix is perturbed and the VN entropy of the perturbed
density matrix ρ is computed.

Proposition 1. Let G be a weighted graph whose the unper-
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turbed density matrix is ρ0. If ρ0 undergoes a perturbation ρ∗,
the VN entropy of the resulting perturbed matrix, ρ = ρ0 + ξ ρ∗,
expanded up to the second order is given by

S (ρ) = S (ρ0) + ηDiagonal(ρ∗) + ηOff−Diagonal(ρ∗) (2)

where

ηDiagonal(ρ∗) =−ξ
∑

n

ρ∗nn log2 λ̃n −
1
2
ξ2

∑
n

(ρ∗nn)2

λ̃n
+ o(ξ2)

ηOff−Diagonal(ρ∗) =−ξ2
∑

n

∑
m,n

∣∣∣ρ∗nm

∣∣∣2
λ̃n − λ̃m

log2 λ̃n + o(ξ2) (3)

with ξ is a scalar parameter supposed to be small, and λ̃n , λ̃m

∀ n , m are the eigenvalues of ρ0.
Proof :
Since ρ is a density matrix, the perturbations are introduced in
such way that Tr(ρ) = 1 and ρ = ρT . Restricting Taylor expan-
sion to the second order [17], the corrections to the eigenvalues
are written as :

λ̃(t)
n = λ̃n + ξλ̃(1)

n + ξ2λ̃(2)
n + o(ξ2) (4)

where the first and second order eigenvalue perturbations are
given by

λ̃(1)
n = ρ∗nn, λ̃(2)

n =
∑
m,n

∣∣∣ρ∗nm

∣∣∣2
λ̃n − λ̃m

(5)

Therefore, the perturbed VN entropy can be written as

S (ρ) = −Tr(ρ log2 ρ) ≈ −
∑

n

λ̃(t)
n log2 λ̃

(t)
n (6)

On the other hand, the Taylor expansion of S (ρ) around zero up
to second order is written as

S (ρ) ≈ S (ρ0) + ξ
dS (ρ0)

dξ
+

1
2
ξ2 d2S (ρ0)

dξ2 + o(ξ2) (7)

Chen in [22] gives the first and second order derivatives of
S (ρ0)

dS (ρ0)
dξ

= −
∑

n

ρ∗nn log2 λ̃n (8)

d2S (ρ0)
dξ2 = −

∑
n

(ρ∗nn)2

λ̃n
− 2

∑
n

λ̃(2)
n log2 λ̃n (9)

By substituting (5), (8) and (9) in equation (7), we get

S (ρ) ≈ S (ρ0) − ξ
∑

n

ρ∗nn log2 λ̃n −
1
2
ξ2

∑
n

(ρ∗nn)2

λ̃n︸                                        ︷︷                                        ︸
ηDiagonal

+ ξ2
∑

n

∑
m,n

∣∣∣ρ∗nm

∣∣∣2
λ̃n − λ̃m

log2 λ̃n︸                           ︷︷                           ︸
ηOff−Diagonal

+o(ξ2) (10)

A careful examination of equation (10) shows that the correc-
tive terms ηDiagonal and ηOff−Diagonal, include respectively both
diagonal and off-diagonal perturbation elements. Since changes

in edge weights of A lead to changes in node degrees, perturba-
tions affect at first place off-diagonal elements of A. Thus, it
is expected that changes in weights introduce only off-diagonal
elements in the entropy expression (10). But, diagonal elements
related to node degrees changes appear also. Due to the linear
relationship L=D-A, these diagonal elements are introduced to L
via D and thus they may explain why L matrix is more sensitive
to structural changes of the graph than A.

3.2. Connectivity measure

In spectral graph theory, L matrix is often used for struc-
tural properties study of graphs. This is essentially motivated
by its algebraic characteristics as the non-negativeness of its
eigenvalue spectrum, or its interesting quadratic form written
as yTLy =

∑
u∼v

(y(u) − y(v))2, with y is a function that assigns to

each vertex v of the graph a real value y(v), and
∑
u∼v

denotes the

sum over all unordered pairs (u, v) for which u and v are adja-
cent. This quadratic form is useful for getting a variational char-
acterizations of the eigenvalues in terms of Rayleigh quotient
[3]. The eigenpairs (λk, fk) of L can be formulated as convex
optimization problems

λk = min
y⊥f1,...,fk−1

y,0

yTLy
yTy

= min
y⊥f1,...,fk−1

y,0

∑
u∼v

(y(u) − y(v))2∑
v

y(v)2 (11)

fk = arg min
y⊥f1,...,fk−1

y,0

yTLy
yTy

= arg min
y⊥f1,...,fk−1

y,0

∑
u∼v

(y(u) − y(v))2∑
v

y(v)2 (12)

It can be easily deduced from equation (11) that 0 is an eigen-
value of L corresponding to the constant eigenvector f1 = 1.
The second eigenvector must be orthonormal to the constant
eigenvector (〈f2, 1〉 =

∑
v

f2(v) = 0). Therefore, a null second

eigenvalue implies that the graph is composed of two discon-
nected components. This leads to the fundamental result of
graph algebra which states that the multiplicity of zero eigen-
value corresponds to the number of the disconnected clusters
in the graph. In connected graphs, the second eigenvalue is
non-zero and corresponds to the minimal cost of the connec-
tions which can be lost in case of segmentation of the graph
in two connected sub-graphs. This quantity has been defined
by Fiedler as the algebraic connectivity of the graph, the cor-
responding second eigenvector is called Fiedler vector [23].
In the following example, we consider an undirected and un-
weighed random graph that contains implicitly two communi-
ties. We observe that the A matrix hides almost all indications
about the existence of such communities or at least they remain
difficult to detect (Fig. 2(a)). Fig. 1(b) shows that the Fiedler
vector of L matrix associates to the nodes values of opposite
signs in order to cluster them into subgroups. Using those
labels, we reordered the raws and columns of A matrix in a
way that reveals more structural information about the graphs
(Fig. 2(b)). This example illustrates the interest of L matrix for
recovering homogeneous clusters of nodes.
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Fig. 1: Laplacian’s second eigenvector (Fiedler vector) of a connected random
graph with 300 nodes. In the left: labels associated to nodes before sorting (a).
In the right: After sorting (b).

Fig. 2: Adjacency matrix of the connected random graph with 300 nodes. In
the left: the original A matrix (a). In the right: the reordered A matrix using the
Fiedler labels order (From L matrix) (b).

3.3. Complexity measure

Based on facts observed in molecular theory, Gutman et al.
[24] introduced the A based graph energy (AE) as

AE(G) =

N∑
k=1

| µk |, LE(G) =

N∑
k=1

∣∣∣∣∣∣λk −
2M
N

∣∣∣∣∣∣ (13)

where µk are the eigenvalues of A. This spectrum-based graph
invariant has been largely studied in both chemical and mathe-
matical literature. An AE-like quantity LE, defined in terms of
Laplacian and preserving the main features of the original AE
has been proposed in [25]
where λk are the eigenvalues of L and 2M/N is the average ver-
tex degree. Both LE and AE measure the graph complexity.
We illustrate this fact by using Erdös-Rényi random graphs
parametrized with a connectivity probability parameter p. As p
increases from zero to one, the model becomes more and more
likely to include graphs with more edges and less and less likely
to include graphs with fewer edges. As shown in Fig. 3, the
quantities LE and AE are effectively relevant for measuring the
complexity of graphs. Their respective curves take a smooth
upward rate when the Erdös-Rényi probability increases. The
growth tendency is very different, revealing the disparity be-
tween A and L in recovering the structural changes in the graphs,
thus their complexity. Moreover, according to these findings,
LE estimates more accurately the connectivity of the graph, and
performs better than the smallest second eigenvalue (λ2) of L in
Erdös-Rényi random graphs.

3.4. Graphs Cospectrality Issue

The spectrum of different matrix representations of graphs
holds a variety of informations that differs from one matrix
to another [26]. This is seen in the existence of cospectral

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Fig. 3: A and L based graph energy evolution in terms of the graph’s structural
complexity. Illustrated in Erdös-Rényi random graphs with 700 nodes.

graphs, or graphs that share the same spectrum for a particu-
lar matrix, A, L or others. They are called non-DS graphs re-
ferring to ”Non Determined by the Spectrum”. Among many
graph families, Schwenk stated that almost all trees are non-DS
graphs in respect to A [27]. Furthermore, Godsil and McKay
proposed a method based on edge switching to make two non-
isomorphic graphs A-cospectral [9]. Likewise, many families
of L-cospectral graphs were defined in literature, such those in
[28]. We show in Figure 5 an example of two graphs that share
the same Laplacian spectrum despite of their structural differ-
ences. As cospectrality appears to be a challenge to distinguish
graphs via their spectra, it remains nevertheless surmountable
by using a variety of spectral metrics simultaneously in the
graph identification process. Figure 4 shows that it is possi-
ble to recognize A-cospectral graphs via their L spectrum, and
inversely in Figure 5. This justifies more our idea of combining
both spectra of A and L in JSS measure for comparing graphs.

(a) (b)

Fig. 4: Two A-cospectral graphs
σa(A) = σb(A) =

[−1.9,−1,−1, 0.2, 1, 2.7]
σa(L) = [0, 1, 1, 3, 3, 6]
σb(L) = [0, 0.5, 1.2, 3.4, 4, 4.7]

(a) (b)

Fig. 5: Two L-cospectral graphs
σa(L) = σb(L) = [0, 0.7, 2, 3, 3, 5.2]
σa(A) = [−2.1,−1,−0.5, 0, 1.2, 2.5]
σb(A) = [−2.5,−0.7, 0, 0, 0.7, 2.5]
where σ(B) means the eigen spec-
trum of the matrix B.

4. Joint spectral similarity of graphs

Let G be a set of undirected graphs, and consider two graphs
G1(A1, L1) and G2(A2, L2) ∈ G with A1, A2 their adjacency ma-
trices and L1, L2 their Laplacian matrices where (λ1i,λ2i) and
(µ1i,µ2i) are the eigenspectra of their Laplacian and adjacency
matrices ordered in descending order. Information about the
degree distribution is encoded mainly in the eigenvalues of L as
well as the number of components of the graph, while informa-
tion about walks, paths and the bipartition of the graph are in the
eigenvalues of A [1]. Also to avoid the problem of cospectrality
when comparing graphs via A and L spectra, we quantify the
associated spectral similarity of the graphs as the trade-off be-
tween them. The introduced JSS measure aims to exploit both A
and L spectral informations to better discriminate graphs. This
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measure, sum of two weighted spectral components, is given by
the following convex linear combination :

JSS(G1, G2) = αJSSA(G1, G2) + (1 − α)JSSL(G1, G2) (14)

with α ∈ [0, 1], a weighting factor and where the components
are given by :

JSSL(G1, G2) =

k∑
i=1

(λ1i − λ2i)2, JSSA(G1, G2) =

k∑
i=1

(µ1i − µ2i)2

(15)
where k = min(N1, N2) and N1, N2 are the numbers of eigenval-
ues corresponding to each graph. k represents the important
common eigenvalues between the graphs, however, this crite-
rion is particularly suitable for graphs of similar and compara-
ble sizes. The weighting factor α controls the significance of
each distance and allows more importance to be given to the
A-spectral distance or to the L-spectral distance.

5. Experimental Results

We illustrate the information conveyed by A and L matri-
ces on real graphs (molecular data) and on conceptual ones
obtained by mapping time series to the graph using Visibility
Graph (VG) algorithm [29]. There are altogether nine bench-
mark real data sets used in our experiment.

5.1. Graphs from molecular data
Natural graphs are derived from databases built from chem-

ical/biological data. MUTAG [30] is a data set of 188 mu-
tagenic aromatic and heteroaromatic nitro compounds labeled
according to whether or not they have mutagenic effect on
the Gram-negative bacterium Salmonella typhimurium. NCI1
and NCI109 represent two data sets of chemical compounds
screened for activity against non-small cell lung cancer and
ovarian cancer cell lines [31]. ENZYMES is a data set of pro-
tein tertiary structures obtained from [32] consisting of 600 en-
zymes from BRENDA enzyme database [33] where the task is
to assign each enzyme to one of the 6 top-level classes. D&D
is a data set of 1178 protein structures [34], the classification
task is to distinguish protein structures between enzymes and
non-enzymes.

5.2. Time series data
Four problems are considered namely [35]: Computers is

a data about home electricity consumption to help reduce the
UK’s carbon footprint, it concerns the use of computers in the
houses, the purpose is to know if it is a Desktop or a Lap-
top computer. The ToeSegmentation data are derived from the
CMU Graphics Lab Motion Capture database, walk motions
in the database are classified by their nature, whether they are
normal or abnormal. SonyAIBORobotSurface1 database is do-
nated by Carnegie Mellon University. The robot Sony1 has
roll/pitch/yaw accelerometers whose task is to detect the sur-
face being walked on whether is cement or carpet. Lightning2
is a database that was built using FORTE satellite, that detects
transient electromagnetic events associated with lightning. The
aim is to classify power densities into two different categories
of lightning.

5.3. Building Graphs from time series

To map time series into complex networks on the graph do-
main, the VG algorithm is used [29]. This algorithm defines
connections between nodes and the weights of the graph from
a time series. Every node of the graph corresponds, in the same
order, to a sample from the series, and two nodes are connected
if visibility exists between the corresponding samples. More
formally, two arbitrary samples (ta, ya) and (tb, yb) will have vis-
ibility, and they are represented by two connected nodes in the
associated graph, if any other sample (tc, yc) placed between
them fulfills :

yc < yb + (ya − yb)
tb − tc
tb − ta

(16)

We consider the edge weight between two nodes as the absolute
value of the angle between the straight line that connects them
and the horizontal axis. Formally it is written as :

wab =

∣∣∣∣∣ arctan
(yb − ya

tb − ta

)∣∣∣∣∣ (17)

The weights wab are the entries of A associated to the VG graph.

5.4. Experimental configuration

As for Radial Basis Function (RBF) kernel, the spectral sim-
ilarity measure is integrated in a classical exponential function,
leading to the following distance between the graphs Gi, G j

Ki, j = exp
(
−γ s(Gi, Gj)

)
(18)

where K is the kernel matrix and s(Gi,Gj) can be JSS, JSSA or
JSSL measure. The parameter γ is a smoothing factor. The ker-
nel matrix is integrated on a support vector machine (SVM) al-
gorithm. Next, 10-fold cross-validation approach is performed
using 9 folds for training and 1 for testing. Data sets are ran-
domly shuffled before partitioning and the whole experiment is
repeated 10 times to avoid random effects of fold assignments.
The kernel factor γ is set to 1. Average classification accuracies
and their corresponding standard deviations are summarized in
Tables 1 and 3. For molecular data, the measures JSS, JSSA and
JSSL are compared to some kernels of the literature in terms
of prediction accuracy and computation runtime. For time se-
ries data, only prediction accuracies are reported. Otherwise,
the well-known graph kernels are tested: those based on walks,
sub-trees and Weisfeiler-Lehman isomorphism. Else, the mea-
sures are compared to the fast geometric random walk kernel
[36], counts common labelled walks and to p-random walk ker-
nel that compares random walks up to length p in two graphs
[37]. From sub-tree kernels, we chose Ramon Gärtner kernel
[38] which compares all pairs of nodes from two graphs by
iteratively comparing their neighbourhoods. From Weisfeiler-
Lehman kernels, we picked up the Weisfeiler-Lehman edge ker-
nel [39]: it counts matching pairs of edges with identically la-
beled endpoints in two graphs. For molecular data, comput-
ing set-up, accuracy and runtime values of the benchmark ker-
nels are performed in [39]. We followed the same procedures
to compute random walk and Weisfeiler-Lehman edge kernels
for time series data, without Ramon Gärtner and p-random
walk kernels because of runtime constraint. The time series
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results are also compared to Linear and RBF kernels, applied
directly on the samples of time series without converting them
to graphs. As reported in Table 2, runtime in minutes and sec-
onds of our method is measured using Anaconda2 4.1.1 Python
2.7.12 Lab installed on a PC with 3 GHz Intel 8-Core processor
and 16GB RAM.

5.5. Results analysis

As expected, the obtained results confirm the unequal contri-
bution of both A and L matrices and their overlapping in terms
of graphs representation. The reported results in Tables 1 and 3,
and in figure 6 show that the achieved classification accuracies
of JSS measure are promising with respect to some state-of-
the-art methods. The JSS based kernel performs well in the
majority of datasets. In molecular data, it reaches second best
accuracy in all datasets (MUTAG, NCI1, NCI109, ENZYMES
and D&D) compared to the benchmark kernels. But in terms
of CPU time, the JSS based kernel is faster than other kernels
in many cases, such as in MUTAG, ENZYMES and mostly in
D&D, where JSS kernel performs almost as well as Weisfeiler-
Lehman edge kernel (75.75 Vs 77.95), while execution time
is 600 times faster. In Table 3, the JSS based kernel provides
good results applied to time series classification problems. Es-
pecially in the Lightning2, ToeSegmentation1 and Computers
databases, it performs better than other graph kernels, and even
better than kernels applied directly to time series. The repre-
sentation of time series as VG allowed a clear improvement of
the classification accuracy, approaching 12% for ToeSegmen-
tation1, 8% for Lightning2 and 6% for Computers. The re-
ported results, on different data sets with varying complexity
and heterogeneity, in terms of classification accuracy and com-
putational cost, demonstrate the effectiveness and the interest
of the proposed JSS measure. This spectral similarity gener-
alizes the spectral distance between graphs based on purely A

(JSSA) or L (JSSL) matrix.As reported in Tables 1 and 3, and
figure 6, JSS is well sensitive to these graph properties and al-
lows to effectively handle them. Figure 6 shows that the JSS-
based method highly outperforms the method purely based on
JSSA or JSSL. A careful examination of figure 6 shows that
for both α = 0 and α = 1, corresponding respectively to JSSL
and JSSA, neither of JSSA nor JSSL is able to perform better
than JSS. However, overall, JSSA achieves better results than
JSSL and this can be attributed, as expected, to the less sen-
sitivity of A to structural changes, compared to L matrix, but
more efficient for graph discrimination. According to these re-
sults, the weighting parameter lies in ]0; 1[, showing that L and
A are complementary and thus carry different information about
the underlying graph. For all data sets, we have the parameter
α , 0.5, which indicates that JSSL and JSSA are unequally con-
tributed and highlights that the A and L representation matrices
recover different structures of the graph. Also, these results
show that JSS effectively captures information conveyed by A

and L matrices. The fact that the assigned weighting parame-
ter α varies from one data set to another emphasizes that each
graph has its own structure and also that both A and L matrices
convey different information.

Fig. 6: Accuracy variation of JSS based kernel as function of α.

6. Conclusion

The representation of graphs using matrices plays an impor-
tant role in graph spectral theory and in many other applications
dealing with graphs. In this paper a new joint spectral similarity
(JSS) measure for graphs classification is introduced. We have
shown that both adjacency and Laplacian matrices carry dif-
ferent structures information of the underlying graph. The ad-
jacency matrix characterizes the topological graph complexity
in terms of connections between nodes and their intensities, and
also underscores the local cohesiveness of nodes. These proper-
ties explain why the good classification accuracies achieved by
JSS measure are more attributed to adjacency matrix (α > 0.5).
Through VN entropy, it is easy to see that Laplacian matrix
brings out changes in node degrees information. Furthermore,
this matrix is well suited to recover information about clusters
of the graph and thus capture its inherent structure. The ob-
tained results highlight the fact that JSS combines both advan-
tages of Laplacian and adjacency matrices. Also, these findings
confirm that these matrices contribute unequally and emphasize
the fact that they represent differently information about struc-
tures of the underlying graph. Additionally, these results show
the interest of the VG approach for classification of time series.
As a result of this work, we hope to have increased the awere-
ness about the importance of the properly choice of the repre-
sentation matrix for graph spectral analysis purposes. Even the
JSS measure handles cospectral graphs with respect to both A

and L, it can be extended to the case of graphs that are cospectral
in regard to a large class of graph representation matrices. At
last, the optimal value of α is in general not known and is deter-
mined only through experimentation. As future work we plan
to develop a strategy to find automatically the optimal value of
α .
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