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A B S T R A C T

This paper focuses on a systematic isogeometric design approach for the optimal petal form and size
characterization of tetra-petals auxetics, considering both plane stress and plane strain conditions. The
underlying deformation mechanism of a tetra-petals auxetic is analyzed numerically with respect to several
key parameters. Design optimizations are performed systematically to give bounding graphs for the min-
imum Poisson’s ratio achievable with different stiffness constraints. Tunable design studies with targeted
effective Poisson’s ratio, shear modulus and stiffness are demonstrated. Potential application for function-
ally graded lattice structures is presented. Numerical and experimental verifications are provided to verify
the designs. The out-of-plane buckling phenomenon in tension for thin auxetics with re-entrant features is
illustrated experimentally to draw caution to results obtained using plane stress formulations for designing
such structures.

1. Introduction

The tetra-petals auxetic structures, proposed recently in the work
in Ref. [1], have the following interesting features:

• Compared to the star-shaped auxetics of which the deforma-
tion mechanism relies on a hinge and elastic support system,
e.g. shown in Fig. 1 (a), the petal-shaped auxetics can be
modeled and built as a continuum, hence averting the diffi-
culty of manufacturing and introducing flexible vertexes design
space leading to improved auxeticity. This have been briefly
presented in Ref. [1], with a focus on numerical techniques
for the design of exterior petal boundaries only, without any
change in the reference petal form and size, as illustrated
in Fig. 1 (b).
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Fig. 1. (a) Star-shaped auxetics and the mechanism at the vertices. The study in Ref. [1] focuses on (b) the design of exterior petal boundary subjected to a geometric width
constraint, while the study in this work focus on (c) the optimal shape form and part width of tetra-petals auxetics.

• Compared to the tri- and hexa-petals auxetics that are studied
in Ref. [2] with numerical optimization techniques to explore
the petal forms and sizes, the tetra-petals auxetics studied in
this work generally demonstrate much better auxeticity, which
can be tuned by using the same method, as illustrated in Fig. 1
(c). Moreover, as will be demonstrated later, the auxeticity of
the tetra-petals auxetics is mainly dependent on the petal form
and size, with a negligible influence from the connecting bar
size. This feature is attractive for designing wearable electronic
skins (e-skins) with tailored local properties, such that the elec-
tronic responses and the shape conformance to body joints can
be improved, as demonstrated in Refs. [3-5]. The use as e-skins
concerns mainly about the negative Poisson’s ratio effect and
the effective tensile stiffness, for which design studies based on
plane stress conditions are mostly adopted.

In this work, the tetra-petals auxetics are systematically stud-
ied for both plane stress and plane strain conditions, by exploring
the design space of petal form and size. In general, there are two
broad approaches for designing such structures ([6]). A common
design strategy is to first obtain an in-depth understanding on the
interactions between deformation mechanisms of underlying com-
ponents, to guide the subsequent design of auxetic structures. This
was done in the pioneering work of Ref. [7], where an auxetic struc-
ture with re-entrant features was designed using rods, hinges and
springs. Since then, the auxetic behavior of various structures have
been studied intensively, e.g. star-shaped [8,9], chiral [10-13], re-
entrant [14-16], rotating polygons/polyhedrons [17,18], star-shaped
pores [19] and those with buckling mechanisms [20-22] — see also
the details highlighted in recent surveys [23,24]. Potential applica-
tions in terms of auxetic nail [25], tubular [26] and energy absorption
structures [11,27–30] have also been investigated.

Another broad design strategy is to adopt numerical optimization
techniques. This approach is mostly based on topology optimization,
e.g. the works of Refs. [31-38], while a few works focus on the struc-
tural shape optimization of auxetic structures (e.g. Refs. [1,2,39,40]).
Among these works, Wang et al. [1] proposed the smoothed petal-
shaped auxetics of which the difficulty of manufacturing hinges
and stress concentration induced by sharp corners are significantly
reduced, compared to the reference star-shaped auxetics. Following
this, the optimal form and size characterization for planar isotropic
petal-shaped auxetics, specifically, the tri- and hexa-petals with
rotational symmetry, is systematically studied in Ref. [2]. In this
paper, we focus on the optimal design of tetra-petals. Departing
from Ref. [1], where a fixed petal form was utilized, the framework
adopted here follows the form finding strategy in Ref. [2]. Specifi-
cally, the petal form and the uniform part width are set as design
variables to ensure a larger search space for design purpose.

It should be noted that the design optimization tools used in
this work are based on isogeometric analysis (IGA), which adopts

non-uniform rational B-spline (NURBS) basis function as the shape
function and hence provides significant advantages to perform struc-
ture design optimization (see Ref. [41]). Other works using NURBS as
a tool for shape optimization can be found in Refs. [42-44].

One aspect of tetra-petals that will be highlighted later is the
possible applications as functionally graded lattice structures (e.g.,
Refs. [45-50]), by focusing on the petal form to achieve the targeted
properties. This concept dates back to the work of Ref. [31], and is
getting increasing attention for special structural designs with tai-
lored local properties, e.g., recent developments in Refs. [51-60]. In
addition to their general lightweight property, the lattice patterns
can also demonstrate extraordinary properties, e.g. the recent works
in Refs.[11,61,62]. In this work, bounding graphs of achievable neg-
ative Poisson’s ratio are presented for different stiffness constraints
in both plane strain and plane stress conditions, which serve as a
guide for designing tetra-petals auxetics with tunable properties.
Then, design studies with tunable effective material properties are
performed based on the guiding graph. A functionally graded struc-
ture made from tetra-auxetic units with same stiffness (same shear
and tensile modulus) and varying target effective Poisson’s ratios
at different locations is presented to demonstrated the potential
applications.

The paper is organized as follows: A brief comparison of the star-
and petal-shaped auxetics is presented in Section 2. The param-
eterization method and the mechanisms underlying the auxetic
behaviors for tetra-petals structures are discussed in Section 3. A sys-
tematic numerical design study for tetra-petals auxetics is given in
Section 4. Design studies for unit structures with tunable effective
properties and a functionally graded structure made from units with
same stiffness yet different effective Poisson’s ratios are presented
in Section 5, together with numerical verifications of the effective
properties. The in-plane anisotropic behavior is also highlighted.
Numerical and experimental validations are presented in Section 6,
with discussions upon the out-of-plane buckling under tension for
re-entrant structures. Finally, some concluding remarks are provided
in Section 7.

2. Scope and focus

Star-shaped auxetics, as shown in Fig. 1 (a), is one of the most rec-
ognized auxetic structures since [63]. Two important features for the
star-shaped auxetics are the re-entrant parts and hinge-functional
vertices. In literature, the mechanism underlying star-shaped aux-
etics has been analyzed by assuming that the re-entrant parts and
the vertices are hinges with elastic supports, where each member
of the structure is modeled as a rod, e.g., in Refs.[64,65]. It is high-
lighted that the hinge function and the elastic support are both
crucial for the auxetic performance. Without the elastic support,
the entire hinge-connected system is unstable. However, such an
analysis approach has limited practical usage, due to manufacturing



difficulties in achieving the required stiffness of the stated elastic
supports, and the hinge connections at vertices.

The building of star-shaped structures as a continuum model, e.g.,
the work presented in Ref. [8] is a more accurate description of the
actual structure. However, this leads to limited auxetic performance
and high stress concentrations [1]. Motivated by the need to reduce
stress concentration effect, and to achieve better auxetic perfor-
mance, petal-shaped auxetics with curved features were proposed in
Ref. [1], where the hinge functions and elastic support mechanism
are replaced by curved continuum (Fig. 1 (b) and (c)). However, the
work in Ref. [1] focused on the design of exterior petal boundary
with a fixed petal form (Fig. 1 (b)). In this work, an expanded design
space is considered systematically to find the optimal petal form
and width for tetra-petal-shaped auxetics, schematically illustrated
in Fig. 1, subjected to different stiffness constraints under both plane
stress and plane strain conditions. The optimal results form bound-
ing graphs that depict the minimum Poisson’s ratio achievable under
certain stiffness constraints. Studies with tunable material proper-
ties are demonstrated. A functionally graded structure design with
different local tetra-petals auxetics is illustrated. Finally, numerical
and experimental verifications are performed, and an out-of-plane
buckling under tension for re-entrant auxetics under plane stress
condition is discussed.

3. Parameterization method and deformation mechanisms

3.1. NURBS-based parameterization

The curved geometry is described using NURBS, with each petal or
connecting bar corresponding to one NURBS patch. The NURBS patch
describing the petals is characterized in a referential space using 7
design parameters, as depicted in Fig. 2. The interior boundary of
the petal is defined with 6 parameters identifying the locations of 10

control points. Variable w1 defines the location of control point C1

at the right end of the boundary curve in x1 direction. The location
in x2 direction is characterized as h1 = w1 tan(h), with h = p/2.
The location of control point C2 is defined by moving control point
C1 along the inward direction normal to

−−→
OC1 by a distance of d1.

Variables w2, w3 and w4 define the locations of control points C3, C4

and C5 in the x1 direction, respectively. The location of C5 in the x2

direction is defined by variable h4. The locations of C3 and C4 in the
x2 direction are set as a linear interpolation between h1 and h4, i.e.,
h2 = (h4 − h1)/3 + h1 and h3 = 2(h4 − h1)/3 + h1. The loca-
tions of the control points on the left of the center-line are obtained
by mirroring the control points on the right. The exterior bound-
ary of the petal can be identified by offsetting the interior boundary
with a width parameter d2. The petal geometry defined in the ref-
erential space is transformed into the physical location to form the
petal-shaped auxetics. The width of the connecting bar is charac-
terized with variable d3, while the length of the connecting bars, lb,
can be identified based on variable w1 and the unit dimension. The
effective properties in the linear regime are non-dimensional. For
convenience, we use a dimension of 20 × 20 for each unit. All of
the parameter values are normalized based on this dimension, e.g.,
for an actual unit structure with a dimension 100 × 100, all of the
parameters need to be scaled by 5.

To generate the full unit of a tetra-petals auxetic structure, the
petal geometry characterized using the above-mentioned parame-
ters is firstly transformed by a distance of d4 =

√
2d3/2 along the

x2 direction such that the connecting bars can be placed together
with the petal (Fig. 2 (c)). Next, the petals and bars are patterned in
a circular fashion to form a full unit structure, as indicated in Fig. 2
(d). If the width of the connecting bars is set to be d3 = d2, the
presented parameterization scheme only require 7 design parame-
ters, i.e., wi (i = 1, 2, 3, 4), h4 and di (i = 1, 2), to characterize the
tetra-petals structures.

Fig. 2. Parameterization scheme for the tetra-petal-shaped auxetics: (a) interior petal boundary parameters, (b) exterior petal boundary generated by NURBS offsetting, (c) NURBS
patch of a parent petal, and (d) connecting bars placement. The design in (e) corresponds to parameters of w1 = 1.5, w2 = 1.0, w3 = 1.0, w4 = 0.5, h4 = 10.25, d1 = 0.5,
d2 = 0.5, and d3 = 0.5.



The additional parameters shown in Fig. 2 (c) and (e) are as fol-
lows: H is the petal height, R is the re-entrant depth and L is the side
length of a unit cell. For convenience, the quantities R/H and H/L are
termed re-entrant ratio and petal size ratio, respectively, hereinafter.

3.2. Deformation mechanism

The effective material properties of the tetra-petals auxetic can
be evaluated using numerical homogenization method, which con-
siders a square domain to be a representative volume element with
the petals and bars as solid and the rest as void. To accommodate
the curved features in tetra-petals auxetics, isogeometric analysis,
which uses NURBS basis function as the shape functions to discretize
the displacement field, is used as a tool for the numerical evaluation.
The details about the numerical homogenization using isogeomet-
ric analysis for plane stress condition, including the strong and weak
formulations of the corresponding boundary value problem, the iso-
geometric discretization scheme, and the multiple patches coupling
method, can be found in the works of Refs.[1,2]. For convenience,
the effective Poisson’s ratio, Young’s modulus and shear modulus are
denoted as m̄, ĒY and Ḡ, respectively, hereinafter. Due to in-plane
cubic symmetry of the considered periodic patterns, these three
moduli entirely characterize the in-plane effective behavior of the
architectured material.

Here, we consider a unit design with the following base parame-
ter: w1 = 0.80, w2 = 0.50, w3 = 0.50, w4 = 1.19, h4 = 11.00,
d1 = 1.00, d2 = 0.20, and d3 = 0.20. The influence of the vari-
ous parameters on the underlying deformation mechanisms, and the
resulting effect on the effective properties, are briefly summarized as
follows:

• Influence of w1 and w2

– The parameter analysis is performed by varying w1 and
w2 simultaneously from 0.8 to 3. The sample tetra-petal
structures in Fig. 3 (a) –(d) show that these two parame-
ters control the opening of a petal. From Fig. 3, it is easily

observed that as the petal opening increases, the auxeticity
reduces significantly, with a marginal increase in stiffness
and shear modulus. The underlying reason is that a big-
ger opening corresponds to a smaller re-entrant ratio, thus
reducing the auxeticity and increasing the tensile and shear
stiffness.

• Influence of w3 and w4

– A smaller curvature (larger radius) increases the compli-
ance of the structure. By increasing parameters w3 and
w4 from 0.5 to 3 simultaneously, the curvature of the
petals tips decreases monotonically, as depicted by the sam-
ple tetra-petals structures in Fig. 4. It is shown in Fig. 4
that as the tip curvature decreases, the effective Pois-
son’s ratio increases while the effective tensile modulus
decreases, with a negligible change of the shear modu-
lus. When subjected to a tensile loading, the more com-
pliant petal tip, induced by the smaller curvature, helps
to “absorb” the corresponding deformation in the trans-
verse direction. Compared to the influence of parameters
w1 and w2, the negligible change of the shear modulus
indicates that the shear modulus is highly dependent of
the petal openings and almost independent of the petal
curvature.

• Influence of the petal width d2

– The effective stiffness and the Poisson’s ratio versus the
petal width are plotted in Fig. 5. Both effective Poisson’s
ratio and Young’s modulus increase significantly with petal
width, with a marginal increase of the shear modulus. For
a given curvature at the petal tip, the transverse deforma-
tion corresponding to a lateral tensile strain decreases with
the structural stiffness. When the widths of the bars and
petals are similar, the shear modulus is sensitive to the petal
width change.

Fig. 3. Parameter analysis with respect to w1 and w2 that control the opening and re-entrant ratio of the petals. The solid symbols denote the effective properties for structures
(a)–(d), corresponding to w1 = w2 = 0.8, 1.5, 2.5,and 3.0, respectively.



Fig. 4. Parameter analysis with respect to w3 and w4 that control the curvature of the petal tips. The solid symbols denote the effective properties for structures (a)–(d),
corresponding to w3 = w4 = 0.5, 1.5, 2.5,and 3.0, respectively.

• Influence of the width of the connecting bars d3

– The effective stiffness and the Poisson’s ratio versus the
width of the connecting bars are plotted in Fig. 6. Note
that the change in the connecting bar width results in
a slight repositioning of the petal tips — see the overlay
of two tetra-petals in Fig. 6. The slight change in the
petal geometry induces a very small change in effective
stiffness and Poisson’s ratio, as depicted in Fig. 6. This

suggests a negligible influence of the connecting bar
width, departing from the observations for tri- and hexa-
petals auxetics in Ref. [2]. Henceforth, the design param-
eter d3 is not considered in this work for designing
tetra-petals auxetics. For the shear modulus, a simi-
lar observation to the petal width d2 is can be found,
i.e., the shear modulus is sensitive to the bar width
change only when the widths of the bars and petals
are similar.

Fig. 5. Parameter analysis with respect to the petal width d2. The solid symbols denote the effective properties for structures (a)–(d), corresponding to d2 = 0.2, 0.5, 0.8,and 1.0,
respectively.



Fig. 6. Parameter analysis with respect to the width of the connecting bars d3. The change of the effective NPR and the normalized effective Young’s modulus is relatively small.
The solid symbols denote the effective properties for structures (a)–(d), corresponding to d3 = 0.2, 0.5, 0.8,and 1.0, respectively. The overlay of (a) and (d) shown in the graph
depicts a slight change in petal tip positioning.

• Influence of petal size ratio H/L

– The petal size ratio, H/L, also affects the effective auxetic
performance. This is studied by increasing the unit size,

i.e. the side length L, from 20 to 40, while keeping other
parameters the same. The effective properties versus length
L are plotted in Fig. 7. It shows that by increasing the length
L (decreasing the petal size ratio), the effective Young’s

Fig. 7. Parameter analysis with respect to the unit side length L that is inversely proportional to the petal size ratio (H/L). The decrement of the effective NPR is relatively small.
The solid symbols denote the effective properties for structures (a)–(d), corresponding to L = 20, 26, 32,and 40, respectively.



modulus increases significantly, with a negligible change of
the effective shear modulus and Poisson’s ratio, which indi-
cates that a negligible influence of the connecting bar length,
(or the petal size ratio) on the auxetic performance.

We note that some of the deformation mechanisms discussed
here draw parallels with those for the reference star-shaped aux-
etics, e.g., on the re-entrant ratio, petal (star) and connecting bar
widths. Other mechanisms related to the curvature of petal tips are
distinct features of the tetra-petals structures. It is not the intention
of this section to elaborate on the deformation mechanisms under-
lying a tetra-petals structure. Rather, it is to briefly highlight the
extent of influence on the effective properties for the various geo-
metrical parameters, at times leading to conflicting overall trends
(e.g., Figs. 4 and 5). It is emphasized that while a deformation mech-
anism associated with a geometrical feature can be easily identified,
it is not a straight forward task to establish a general relation-
ship between all geometrical parameters and the resulting overall
effective Young’s modulus, shear modulus and Poisson’s ratio. To
facilitate the design of tetra-petals with targeted effective properties,
a systematic optimization framework is thus provided below.

4. Design bounding graphs for different stiffness constraints

4.1. Design optimization framework

The problem statement is to design an auxetic structure with
tunable Poisson’s ratios at a given stiffness. As shown in Section 3.2,
the width parameter d3 of the connecting bars has a negligible influ-
ence on the effective properties. Hence, in this work, we use the
same width for petals and connecting bars, i.e., d2 = d3. Eventually,
the design problem is to find a set of optimal values for the design
variables w = [w1, w2, w3, w4, h4, d1, d2] such that a cost function is
minimized with constraints satisfied. For a tunable target material
property design framework, the objective function can be set as

min V[w] := (m̄ − ˇ̄m)2, (1)

subjected to

⎧⎨
⎩XY [w] := ĒY − ˇ̄E

Y
= 0

XS[w] := Ḡ − ˇ̄G = 0
(2)

The quantity ˇ̄m in the objective function V is a target Poisson’s

ratio, ˇ̄Em
Y

in the design constraint XY is the given effective Young’s
modulus, and ˇ̄G in the design constraint XS is the given effective
shear modulus. The constraints XY and XS may exist together at the
same time or separately depending on the design requirements. The
optimization problem may be formulated as

{
find w̃i ∈ [wi, w̄i], i = 1, 2, · · · , such that

V[w̃] ≤ V[w], XY [w̃] = 0, XS[w̃] = 0, ∀w̃i ∈ [wi, w̄i],

(3)

where wi and w̄i are the lower and upper bounds of wi, respectively.

4.2. Design optimization setting

In the optimization studies, it is essential to set upper and lower
bounds for the design variables such that the solutions are feasible

and meaningful, e.g., the size of the petals should not be too big
to overlap with other parts; the relative width of the components
should not be too small to cause significant manufacturing difficulty;
the curvature of the curved parts should not be too big to introduce
high stress concentrations. For the problems shown in this paper, the
upper and lower bounds for the design variables w1,2,3,4 are set to
be [3, 3, 3, 1] and [0.8, 0.5, 0.5, 0.25], respectively, to avoid overlaps
between the petals and connecting bars. The upper and lower bounds
for design variable h4 are set to be 13.5 and 7, respectively, such that
the petals are small enough to fit within a unit cell, and yet of a suf-
ficient size to generate a relatively large curvature at the vertices.
Referring to Fig. 2 (a), the upper bound of the offsetting variable d1 is
set to be 1, such that a reasonable gap exists between the two arms
of the petal, and the lower bound is set to be 0.3 such that a mini-
mal distance is maintained between control points C1 and C2. For the
petal and connecting bar widths d2 and d3, the upper bound is set
as 1 to control the parametrization modeling. To account for a possi-
ble minimum thickness constraint in the manufacturing process, the
lower bound for d2 and d3 is set as 0.2.

A unit cell has an area of 400, with the initial design depicted in
Fig. 2 (e). The initial design has an effective Poisson’s ratio of m̄ =
−0.67 and effective Young’s modulus ĒY = 1.24 × 10−4EY

0 for plane
stress condition, and m̄ = −0.58 and ĒY = 9.55 × 10−4EY

0 for plane
strain condition. The quantity EY

0 is the Young’s modulus of the base
material.

4.3. Bounding graphs of auxetic limits with different stiffness
constraints

It should be noted that a target effective property may not be
achievable for the presented design framework. Hence, it is useful
to have bounding graphs indicating the limiting Poisson’s ratio with
different stiffness constraints, e.g., the graphs shown in Ref. [16]. By
setting a target value of ˇ̄m = −1 for the effective Poisson’s ratio in the
objective function V in Eq. (1), a solution is obtained with the lowest
achievable Poisson’s ratio, i.e., the design limit of the auxeticity. To
accommodate the possible application mentioned in Section 1, the
analysis are done in both plane stress and plane strain conditions.

For simplicity, the bounding graphs obtained here only consider
the constraints of different effective Young’s moduli. The constraint
of shear modulus can be included based on practical requirements,
which is elaborated with design studies with tunable effective prop-
erties in Section 5. The design optimization study is implemented
sequentially over a range values of ĚY to generate the design limit
curves in Fig. 8. The optimized designs corresponding to each data
point in Fig. 8 are depicted in Fig. 9 for both plane stress and plane
strain conditions. The optimal design parameters for the optimal
solutions are listed in Table 1.

The bounding graphs depicted in Fig. 8 can be used as a guide on
the effective properties that can be obtained from these tetra-petals
auxetics. This information can be helpful for designing novel func-
tional structures with programmable local properties, e.g., the novel
lattice structures presented in Refs. [47-49].

4.4. Discussion

From Figs. 8 and 9 and Table 1, it is observed that the optimal
solutions of the plane stress and plane strain conditions for each
stiffness constraint are similar. Stationary points at the stiffness of
ĒY

EY
0

= 8 × 10−6 are obtained with the lowest attainable Poisson’s

ratio at cases A3 and B3. Away from the stationary point with a
higher/lower effective stiffness, the auxeticity of the petal-shaped
structures reduces.



Fig. 8. Design bounding graphs of the minimum achievable Poisson’s ratio for the tetra-petals auxetic structures. The results based on the plane stress formulation are relatively
close to those based on plane strain formulation.

The optimal results in Fig. 9 and Table 1 conform to the mecha-
nisms discussed in Section 3.2:

• For all optimal designs, the design parameter w1 reaches its
lower bound to obtain good auxetic performance with maxi-
mum re-entrant ratio; so does the parameter w2 except for case
B1;

• The optimal parameters of cases A1 and A2 are identical, except
parameters w3 and w4 which control the curvature of the petals
tips. Compared to case A2, case A1 has a much smaller curva-
ture, which helps to increase the compliance of the structure to
eventually form a softer auxetic;

• As the stiffness constraint increases, the petal size ratio H/L
decreases and the petal width increases. The increase in stiff-
ness is achieved at the expense of auxeticity;

• A lower stiffness of the tetra-petals structure can be achieved
either by reducing the part width, or by changing the petal

shape. Once the minimum width is reached, the petal shape
becomes the dominant factor;

5. Tunable designs, potential applications, numerical
verifications and effective anisotropy

5.1. Design with tunable effective properties

As a demonstration of the framework presented in Section 4.1,
design studies are carried out for both plane stress and plane strain
conditions to obtain effective Poisson’s ratios of: (a) ˇ̄m = −0.75;
(b) ˇ̄m = −0.5; and (c) ˇ̄m = −0.25; subjected to a Young’s modulus
constraint ĒY = 4.0 × 10−4EY

0 and a shear modulus constraint Ḡ =
1.0 × 10−4EY

0 . The designs obtained are depicted in Fig. 10, with an
exact match of the target material properties. The optimized design
parameters for these cases are listed in Table 2. Such designs with
tunable effective properties help to provide the necessary freedom

Fig. 9. Optimal solutions of the tetra-petals structures for cases with stiffness constraints indicated in Fig. 8.



Table 1
The optimal design parameters and the volume fraction of each optimized solution in
Fig. 8.

Cases Design variables Volume fraction (%)
w = [w1, w2, w3, w4, h4, d1, d2]

A1 [0.80, 0.50, 2.17, 3.00, 11.00, 1.00, 0.20] 0.07
A2 [0.80, 0.50, 0.50, 1.19, 11.00, 1.00, 0.20] 0.06
A3 [0.80, 0.50, 0.50, 0.25, 11.00, 1.00, 0.21] 0.06
A4 [0.80, 0.50, 0.50, 0.25, 11.00, 1.00, 0.23] 0.07
A5 [0.80, 0.50, 0.50, 0.25, 11.00, 1.00, 0.29] 0.09
A6 [0.80, 0.50, 0.50, 0.25, 11.00, 1.00, 0.37] 0.11
A7 [0.80, 0.50, 0.50, 0.25, 11.00, 1.00, 0.42] 0.13
A8 [0.80, 0.50, 0.50, 0.25, 11.00, 1.00, 0.47] 0.14
A9 [0.80, 0.50, 0.50, 0.25, 11.00, 1.00, 0.51] 0.15

A10 [0.80, 0.50, 0.50, 0.25, 11.00, 1.00, 0.65] 0.19
A11 [0.80, 0.50, 0.50, 0.25, 11.00, 1.00, 0.83] 0.25
A12 [0.80, 0.50, 0.50, 0.25, 11.00, 1.00, 0.97] 0.29
A13 [0.80, 0.50, 0.50, 0.25, 10.25, 1.00, 1.00] 0.28
A14 [0.80, 0.50, 0.50, 0.25, 9.44, 1.00, 1.00] 0.27
A15 [0.80, 0.50, 0.50, 0.25, 7.25, 1.00, 1.00] 0.23
A16 [0.80, 0.50, 0.50, 0.25, 5.43, 1.00, 1.00] 0.19
B1 [0.80, 1.64, 2.92, 3.00, 11.00, 0.30, 0.20] 0.07
B2 [0.80, 0.50, 0.50, 1.86, 11.00, 1.00, 0.20] 0.06
B3 [0.80, 0.50, 0.50, 0.25, 11.00, 1.00, 0.20] 0.06
B4 [0.80, 0.50, 0.50, 0.25, 11.00, 1.00, 0.22] 0.07
B5 [0.80, 0.50, 0.50, 0.25, 11.00, 1.00, 0.28] 0.08
B6 [0.80, 0.50, 0.50, 0.25, 11.00, 1.00, 0.36] 0.11
B7 [0.80, 0.50, 0.50, 0.25, 11.00, 1.00, 0.41] 0.12
B8 [0.80, 0.50, 0.50, 0.25, 11.00, 1.00, 0.45] 0.14
B9 [0.80, 0.50, 0.50, 0.25, 11.00, 1.00, 0.49] 0.15

B10 [0.80, 0.50, 0.50, 0.25, 11.00, 1.00, 0.63] 0.19
B11 [0.80, 0.50, 0.50, 0.25, 11.00, 1.00, 0.81] 0.24
B12 [0.80, 0.50, 0.50, 0.25, 11.00, 1.00, 0.94] 0.28
B13 [0.80, 0.50, 0.50, 0.25, 10.51, 1.00, 1.00] 0.29
B14 [0.80, 0.50, 0.50, 0.25, 9.68, 1.00, 1.00] 0.27
B15 [0.80, 0.50, 0.50, 0.25, 7.45, 1.00, 1.00] 0.23
B16 [0.80, 0.50, 0.50, 0.25, 5.61, 1.00, 1.00] 0.19

for designing novel functionally graded structures, such as e-skins
with tunable local properties.

5.2. Functionally graded structures made with tetra-petals auxetics

It was demonstrated in the previous section that tetra-petals
auxetics can be designed to have the same stiffnesses, with differ-
ent effective Poisson’s ratios. This facilitates design of functionally

Fig. 10. Tunable material property designs with different target Poisson’s ratios of
−0.75 (TA1 and TB1), −0.50 (TA2 and TB2) and −0.25 (TA3 and TB3), respectively, with
TA1–3 for plane stress cases and TB1–3 for plane strain cases. The depicted designs
match the target Poisson’s ratios exactly with the same normalized Young’s modulus
of ĒY = 4.0 × 10−4EY

0 and shear modulus of Ḡ = 1.0 × 10−4EY
0 .

Table 2
The optimal design parameters and the volume fraction of each optimized solution in
Fig. 10, with TA1–3 for plane stress cases and TB1–3 for plane strain cases.

Cases Design variables Volume fraction (%)
w = [w1, w2, w3, w4, h4, d1, d2]

TA1 [2.07, 1.73, 1.28, 0.31, 9.09, 0.30, 0.67] 0.15
TA2 [1.66, 1.29, 1.20, 0.47, 9.96, 0.32, 0.74] 0.19
TA3 [1.38, 0.60, 0.70, 0.57, 10.76, 0.73, 0.80] 0.22
TB1 [1.81, 1.93, 1.57, 0.34, 9.25, 0.35, 0.68] 0.16
TB2 [1.70, 1.29, 1.20, 0.47, 9.97, 0.31, 0.71] 0.18
TB3 [1.41, 0.60, 0.72, 0.58, 10.78, 0.74, 0.77] 0.21

graded structures with tunable local material properties. To demon-
strate this potential application, we adopt the design cases of TA1–3
to build a lattice structure shown in Fig. 11 (a), with a uniform bar
width of 0.77. The deformed shape in tensile loading is shown in
Fig. 11 (b). It is clear that the functionally graded structure exhibits
a variable vertical expansion at different locations, which can be
utilized for the design of shape matching structures shown in Ref.
[47].

5.3. Numerical verifications using ABAQUS and auxeticity in nonlinear
deformation regime

The isogeometric analysis codes used to design the tetra-auxetic
structures had been verified in multiple ways before performing
the design studies in this work. However, to make sure that the
designs presented are correct, numerical verifications using the com-
mercial finite element software ABAQUS are carried out for case
TB3 shown in Fig. 10. The unit cell is firstly saved into a format
based on Initial Graphics Exchange Specification (IGES) and subse-
quently imported into ABAQUS with the same material property
used for design. Tensile and pure shear loadings are applied to
the plane strain mesh separately to compute the effective Pois-
son’s ratio and elastic modulus, as depicted in Fig. 12 (a) and (b),
respectively. The results match with the IGA solutions well. A com-
pression loading case is also performed with the same NPR com-
puted as the tension loading case, which indicates that in the linear
elastic regime, the effective Poisson’s ratio are identical in tension
and compression.

The deformation mechanisms of the tetra-petals in tension and
compression are also briefly illustrated here. The tetra-petals in
Fig. 13 (a) is subjected to tensile and compressive loadings with
geometrical nonlinearity considerations. In the linear elastic regime,
the effective Poisson’s ratio is identical in tension and compression,
as shown in Fig. 13 (e). Beyond a deformation limit into the large
deformation regime, however, the auxeticity of the tetra-petals differ
significantly in tension and compression. In tension, the re-entrant
ratio in the loading direction decreases, as shown in Fig. 13 (b). The
resulting auxeticity thus reduces with tensile deformation, similar to
the observations in Fig. 3. In compression, the converse is true, where
the re-entrant ratio increases with deformation, as shown in Fig. 13
(c). Accordingly, the auxeticity increases with compressive deforma-
tion. However, the petal arms come into contact with one another at
a compressive deformation threshold, which hinder the deformation
mechanism underlying the auxeticity effect. The effective Poisson’s
ratio in Fig. 13 (f) thus increases rapidly in compression once the self-
contact between petals is established. A further compressive loading
leads to an inter-petal contact between neighboring units, see the
limiting point in Fig. 13 (d) where the petals touch the boundaries
of the unit cell. Note that the deformation mechanisms highlighted
in this section pertains to the large deformation regime, which is



Fig. 11. A functionally graded structure built from unit structures of TA1, TA2 and TA3. The blue dash rectangular describes the region of the undeformed structure. The defor-
mation is scaled by a factor of 5. The structure exhibits a variable vertical expansion at different locations under tensile deformation, which can be utilized for the design of shape
matching structures, e.g., in Ref. [47]. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

beyond the scope of the presented framework. Its extension to the
large deformation regime will be the focus of future work.

5.4. Anisotropic effective behavior

It should be noted that the effective material properties of
tetra-petals auxetics are in-plane anisotropic — a feature that
is not commonly discussed in the literature of architecture
materials. Depending on the types of applications, this behav-
ior can be interesting (e.g. in sensor systems where variable
deformation are required along different directions) or undesir-
able (e.g. in a support system providing resistance against dif-
ferent loading directions). To illustrate this, the effective prop-
erties are evaluated along different directions for cases TB1–3,
which are depicted as polar plots in Fig. 14 to give the following
observations.

• Fig. 14 (a) shows a wide region around 0◦ and 90◦ with strongly
negative Poisson ratio, with a narrow band around ±45◦ where
auxeticity vanishes.

• With respect to the reference vertical and horizontal direc-
tions, Fig. 14 (b) shows that the effective Young’s mod-
ulus can reduce by 2.6 times at ±45◦. In contrast, the
effective shear modulus in Fig. 14 (c) is significantly
higher at ±45◦.

This example clearly illustrates a significant anisotropic effect of
tetra-petals auxetics. For applications concerned with targeted direc-
tional responses, additional constraints involving effective prop-
erties in different directions can easily be incorporated into the
presented optimization framework.

Fig. 12. (a) Tensile loading with left and bottom roller constrained. Traction loaded at the right end is 7.72 × 10−5 (the bar width is 0.772 and distributed traction is 1.0 × 10−4),
leading to a effective stress of 7.72 × 10−5/20 and effective strains of E11 = 0.192/20; E22 = 0.143/20, which corresponds to a effective tensile modulus of 4.01 × 10−4 and a
effective Poisson ratio of −0.7448, matching the design model computed using IGA. (b) Pure shear loading case with same magnitude of shear traction, leading to a effective shear
stress of 7.72 × 10−5/20 and shear strain of E12 = 0.7788/20, which corresponds to a shear modulus of 0.99 × 10−4, matching the IGA solution.



Fig. 13. Compression and tension loadings for design case TB3 under plane strain condition with geometrical nonlinearity effects. (a) Boundary conditions setting: left end with
x-direction fixed; lower end with y-direction fixed; right end with compression/tension load; and upper end free. (b) The tension deformation stage with a strain of 16.83%. (c)
Deformed geometry with compression strain of −12.43% where petal self-contact occurs. (d) The compression deformation stage with a strain of −14.9% where inter-contact
between neighboring units occurs. Effective Poisson’s ratio in the (e) small and (f) large deformation regime.

6. Experiments

6.1. Out-of-plane buckling for thin samples

For re-entrant structures that are thin in out-of-plane direction,
buckling can develop in tension loading, as demonstrated in Fig. 15

(a). This draws caution to results obtained using plane stress for-
mulations for such thin structures. Importantly, the out of plane
buckling should be treated for practical applications. For wearable
electronic devices, this problem can be resolved with an extra mem-
brane layer coating on the auxetic structure and sticking to skin, as
implemented in Refs.[3,5]. For thick structures designed based on

Fig. 14. Effective (a) Poisson’s ratios, (b) Young’s moduli and (c) shear moduli along different directions for design cases TB1, TB2 and TB3.



Fig. 15. (a) Out-of-plane buckling under tension of unit sample A9. (b) Testing platform for the unit samples.

Fig. 16. Unit samples of cases A9, A11, A14 and A15 with a dimension of 20 × 20 cm.

plane strain formulations with thick out-of-plane dimensions, the
out-of-plane buckling is not a problem.

6.2. Experimental verifications

To verify the effective properties, numerical cases A9, A11, A14
and A15 shown in Figs. 8 and 9 are fabricated using laser cutting tech-
nology. The sample units have a dimension of 20 × 20 cm, as shown

in Fig. 16. The material used for these samples is Acrylonitrile Buta-
diene Styrene (ABS) with a Young’s modulus about 2.3 GPa and a
Poisson’s ratio about 0.3. The thickness of a sample is about 1.6 mm.

The samples are placed on a platform shown in Fig. 15 (b) with
one end fixed and the other end loaded such that a unit structure
deform with a strain between 3% and 5 %. To avoid out of plane
buckling of the samples in tension (see Fig. 15 (a)) that leads to a
“softer” material, a transparent acrylic plate is placed on the top of
the samples. The gap between the acrylic plate and the platform is

Fig. 17. A unit sample (case A9) before (left) and after (right) tension loading. The in-plane bar/petal width is 5.1 mm, much larger than the out-of-plane thickness of 1.6 mm,
which is a key factor of the out-of-plane buckling under tension.



Table 3
The numerical effective Poisson’s ratio (PR) and the tested results for the unit samples.

Sample Numerical Tested PR Error

ID PR Loading 1 Loading 2 Average

A9 −0.908 −0.885 −0.892 −0.889 2.15%
A11 −0.862 −0.841 −0.861 −0.851 1.33%
A14 −0.782 −0.755 −0.760 −0.758 3.07%
A15 −0.665 −0.632 −0.637 −0.635 4.51%

Table 4
The normalized effective Young’s moduli (YM) and the tested results for the unit
samples.

Sample Numerical Tested YM Error

ID YM Loading 1 Loading 2 Average

A9 2.3 × 10−4 2.067 × 10−4 2.2 × 10−4 2.133 × 10−4 7.25%
A11 9.2 × 10−4 9.730 × 10−4 9.459 × 10−4 9.595 × 10−4 4.29%
A14 23 × 10−4 22.667 × 10−4 22.000 × 10−4 22.333 × 10−4 2.90%
A15 46 × 10−4 46.759 × 10−4 45.833 × 10−4 46.292 × 10−4 0.64%

about 2 mm. This means that the out-of-plane displacement of the
specimen, if any, would be about 0.4 mm. The 0.4 mm gap provides
sufficient space to prevent a significant friction influence and an
out-of-plane displacement that is too big, to significantly affect the
measured property. The tension experiment of a unit of design case
A9 is depicted in Fig. 17.

The tested results of the effective Poisson’s ratios of the four sam-
ples are presented in Table 3, which match the numerical predictions
very well. The tested results of the effective Young’s modulus are
presented in Table 4, showing a good agreement between the numer-
ical simulations and the experimental results. Note that the error
between the numerical and experimental results of the Young’s mod-
ulus decreases as the effective stiffness increases. This is because the
re-entrant feature leads to an out of plane buckling, as depicted in

Fig. 15 (a), which occurs more easily with a lower effective stiffness
(softer design).

To further verify the effective Poisson’s ratio, another experimen-
tal test is carried out using a lattice sample for design case A14, as
depicted in Fig. 18. The sample is placed on a platform with one end
fixed and the other end stretched such that the structure deforms
with a strain of 3.33%. The orthogonal strain is 2.52%, correspond-
ing to an effective NPR of −0.758. The error between the numerical
and experimental results is 3.31%, indicating a good match. The
results here also suggest that the sample unit cell experiment can
characterize the effective properties sufficiently.

7. Conclusions

In this work, we seek to provide a systematic design study for
tetra-petal auxetics. To deal with the curved features of the petal-
shaped auxetics, NURBS parameterization and isogeometric anal-
ysis are adopted to achieve a seamless transition between design
and analysis models. Using numerical homogenization method, the
mechanism of the tetra-petals auxetics is studied based on sequen-
tial parameter analysis. By understanding the mechanism, design
studies using structural optimization technique are performed to
obtain bounding graphs of the minimum achievable Poisson’s ratio
subjected to different stiffness constraints for both plane stress and
plane strain conditions. The bounding graphs can be used as a guide
to design innovative structures with programmable local properties.
Design studies with tunable effective material properties are per-
formed and a potential application of functionally graded structure
made from these designs is presented. Finally, numerical and experi-
mental verifications are performed to verify the isogeometric design
results.

The tetra-petals auxetics studied in this work have a relatively
large design space in terms of petal form and size modification, to
achieve a wide range of effective Young’s modulus and negative
Poisson’s ratio. The almost independence of the connecting bar size
facilitates the design of functionally graded structures with tunable
local performances. Finally, the anisotropy of tetra-petals auxetics is

Fig. 18. Testing platform: the initial (left) and the loaded (right) states of a lattice sample with design case A14.



highlighted — a topic which is not commonly discussed in the litera-
ture of architecture materials. To achieve targeted directional behav-
ior, additional constraints involving effective properties in different
directions can be incorporated into the presented framework.
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