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a b s t r a c t

Honing is a manufacturing process which uses friction and abrasion mechanisms at a reduced velocity to
print a multiscale and anisotropic texture on the liner surface of automotive engines. It enables to
enhance the functional performances of a ring-pack system. However, industrial honing basically gen-
erates cross-hatched rectilinear textures. This paper proposes new surface textures, generated by an
innovative honing prototype machine, with original patterns (circles and ellipses) at different size and
aspect ratio. Then, the friction performances of each generated surface are evaluated using a recipro-
cating ring–liner tribometer and compared with industrial helical slide honed (HSH) texture. The results
show that ellipse patterns oriented at ring sliding direction contribute the most to reduce the friction
coefficient.

1. Introduction

In an automotive industry, manufacturing low emission
engines with optimized performances is a major objective. The
cylinder surface texture has a high contribution towards engine
functional performances (friction, oil consumption, wear, etc.).
This texture is generated by three superfinishing honing process
stages (rough honing, finish honing and plateau honing). Different
honing techniques are used in industry such as Plateau Honing
(PH), Helical Slide Honing (HSH) and Slide Honing (SH). They
generate cross-hatched textures with different surface roughness
and anisotropy [1–3].

Two optimal honing cross-hatched angle ranges ([25–55°] and
[120–140°]) for friction reduction were identified by ring liner
simulation models [4,5] and friction test rig [2,6]. Engine tests
[1,7,8] confirmed these two groove orientations. They correspond to
that generated by PH/SH and HSH processes, respectively. Never-
theless, HSH honed surface (cross-hatched orientation of about
[120–140°]) has shown better functional performances. On the one
hand, their friction losses are lower and less sensitive to roughness
amplitude than PH surfaces [2,4,9]. An experimental study using a
tribometer showed a friction reduction until 20% of HSH texture in
comparison to PH surface [2]. On the other hand, HSH contributes
to lower oil consumption. Some studies using engine tests showed
an oil consumption reduction greater than 40% for HSH surface in

comparison to PH one [1,7,10]. Unfortunately, only cross-hatched
rectilinear texture patterns can be basically generated with abrasive
honing, due to the kinematics industrial honing machine cap-
abilities [11].

Moreover, original surface patterns form and size, like circle
and ellipses cavities, generated experimentally by etching, Laser
Surface Texturing (LST) process or simulated numerically using
virtual texturing approach have shown improved functional per-
formances (friction, lubrication) in comparison to abrasive indus-
trial honed surface texturing (SH or PH)) [6,12–17].

However, abrasive industrial honing has an advantage to be
more reliable, with a good repeatability in mass production and
reduced manufacturing costs, compared to other surface finishing
and texturing processes such as Laser Surface Texturing (LST) or
Ultraviolet (UV) laser [1].

In this paper, new texture patterns are generated (circles and
ellipses) using abrasive honing process through an innovative
honing prototype machine, open for texture programming and
with enhanced kinematics [18]. For that, different honing kine-
matics are used in order to obtain circular and elliptical patterns at
different size and aspect ratio (perpendicular ellipse axis/long-
itudinal ellipse axis ratio).

Then, the friction performance of each generated surface is
evaluated at different lubrication conditions with a reciprocating
ring–liner tribometer. The obtained results show the contribution
of pattern size and orientation (of major ellipse axis) on friction
performances. Finally, friction reduction of these original textures
is compared to an optimized industrial texture (HSH).
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2. Experimental procedure

2.1. Honing experiments

Flexible honing experiments have been carried out on an
instrumented vertical prototype honing machine with an
expandable tool (Fig. 1) in order to generate innovative circular
and elliptical texture patterns. Moreover, an HSH texture pattern is
generated for comparison. The considered part is a gray cast iron
cylinder liner for combustion engines with a diameter of 72.2 mm
and a height of 127 mm.

Table 1 describes the general honing operating conditions. First,
during the rough honing stage, enough material is removed to reach
the desired cylindricity. At this stage, all of the process parameters
are kept constant for all the honed bores. Then, for the finish stage,
which enables to obtain the desired texture patterns, different
kinematics are used in order to obtain circular and elliptical grooves
pattern at different sizes and orientations. Finally, the third stage
(plateau stage) is used to obtain plateaued surface textures [2,19].
Each texture was generated at least three times.

Three different texture anisotropies with two size levels
(Rm�7.5 mm and Rm�14 mm for the small and big size respec-
tively) were generated and considered in this study and compared
to an HSH surface

1. Small size circular patterns (SC).
2. Big size circular patterns (BC).

3. Big size elliptical texture patterns oriented at the longitudinal
direction of the ring sliding direction (BLE).

4. Small size elliptical texture patterns oriented at the longitudinal
direction of the sliding direction (SLE).

5. Big size elliptical texture patterns oriented at the transverse
direction of sliding direction (BTE).

6. Small size elliptical texture patterns oriented at the transverse
direction of sliding direction (STE).

To generate circular and elliptical trajectory, the prototype
machine use an ISO programming mode which has the advantage
to synchronize rotation motion to stroke motion using a circular
interpolation [11,18]. For circular pattern a series of circular arc at
the same radius is generated (Fig. 2(a)). For elliptical patterns a
series of two tangent circular arcs at different radius (R1 and R2) is
made (Fig. 2(b) and (c)). The orientation of ellipses (longitudinal or
transverse) depends on the radius and length of each circular arc.

The size is evaluated using the mean radius Rm expressed by:

Rm¼ X=2þY=2
2

ð1Þ

Where X and Y are the width (transverse to the sliding direction)
and the length (on the sliding direction) respectively, as shown in
Fig. 2. Furthermore, surface patterns orientation can be evaluated
by the X/Y ratio (X/Y¼1 for circles, X/Y41 for transverse ellipses
and X/Yo1 for longitudinal ellipses).

Table 2 resumes the kinematics honing operating conditions for
the different circular and elliptical textures.

For the HSH texture, the classic honing mode is used, like
industrial honing machines [2,9,19], with a rotation speed of
70 rpm and an axial velocity of 38 m/min.

Work-head carriage (translation)

Rotation motor

Linear motor

Electro-mechanical actuator

Force sensor

Honing tool (rotation only)

Liner part

Fig. 1. Vertical honing prototype machine with an expansible tool.

Table 1
General honing operating conditions.

Honing parameters Rough
honing

Finish
honing

Plateau step

Cutting speed (m/min) 49 22 22
Contact force (N) 800 700 250
Honing duration (s) 120 60 10
Number of stones 8 8 8
Abrasive grit type Diamond Silicon

carbide
Silicon
carbide

Grit size (mm) 149 107 30
Bond type Metallic Vitrified Vitrified
Size of honing stones
(mm�mm�mm)

3�5�80 6�6�35 6�6�35

Nomenclature

Spk 3D roughness parameter for reduced peak height (mm)
Sk 3D roughness parameter for depth of the roughness

core profile (mm)
Svk 3D roughness parameter for the reduced valley depth

(mm)
SC small size circular texture patterns
BC big size circular texture patterns
BLE big size elliptical texture patterns oriented at the

longitudinal direction of the ring sliding direction
SLE small size elliptical texture patterns oriented at the

longitudinal direction of the ring sliding direction
BTE big size elliptical texture patterns oriented at the

transverse direction of sliding direction

STE small size elliptical texture patterns oriented at the
transverse direction of sliding direction

mD lubricant viscosity, Pa.s
v mean sliding velocity during friction tests
FN normal contact force between ring and liner surface
FT tangential contact force between ring and liner

surface
ly contact width between ring and liner surface
HSH helical Slide Honing or Helical Slide Honed (surface)
COF coefficient of friction
S average Sommerfeld number S¼ μD�v

FN=ly
R1 radius of first ellipse arc
R2 radius of second ellipse arc
X ellipse width (on the transverse direction of sliding)
Y ellipse length (on the sliding direction)
Rm average radius of ellipse or circle
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After texture generation, the honed liners were first cut in
order to extract portions with dimensions of 127 mm (length)�
60 mm (width)�2 mm (thickness) (Fig. 3), in order to facilitate
optical measurements and to carry out the tribological tests and
surface topography measurements.

2.2. Surface topography measurements

Surface topography measurements are carried out before tri-
bological tests in order to ensure that all generated surface tex-
tures are at the same roughness level. A three-dimensional ana-
lysis was undertaken at the mid-height (i.e. at the mid dead cen-
ter) of liner samples. Measurements were performed using a
three-dimensional white light interferometer, WYKO 3300 NT
(WLI). The surface topography area is determined by several tests
showing the repeatability of the measurements at the different
locations in the considered region. The surface is then sampled at
640�480 points with the same step scale of 1.94 mm in the both -x
and -y directions (the surface size is therefore 1.2 mm�0.93 mm).
The form component is removed from the acquired 3D data using
least square method based on a cubic spline function. Further-
more, ISO standard 3D (ISO 25178-2 standard) roughness para-
meters (Sa, Sk, Spk and Svk) were extracted using a standard filtering
[20, 21].

2.3. Tribological tests

Friction tests are carried out once for each honing configuration
at an ambient temperature (around 24 °C) through a reciprocating
ring–liner tribometer driven by a slider–crank mechanism with a
stroke length of 80 mm (Fig. 4 and Fig. 6(a)). The contact surface is
lubricated using 10W40 synthetic oil (mD equal to 0.08 Pa s at
40 °C). The amount of the poured lubricant, at each test, is 2–3 ml.

Friction tests are mainly undertaken at a mixed lubrication
regime (boundary lubrication can occur at the ends of the liner
surface and hydrodynamic regime occurs at the middle part of the
liner). However, the boundary lubrication regime is considered for
a friction coefficient higher than �0.11 (dry friction coefficient
between cast iron (liner) and chromium (ring coating) is 0.14) [2,6]
and hydrodynamic regime is specified for a friction coefficient
lower than �0.06 [22]. Two load levels (25 N and 50 N) and dif-
ferent motor velocities are used to reach different average Som-
merfeld numbers (S between 2�10�6 and 2�10�5) [23]. Before
the tribological tests, a running-in period of 6 min is observed
(3 min at 25 N and 3 min at 50 N) at an average rotation velocity of
190 rpm. Fig. 5 shows the evolution of friction force (before signal
filtering) during the running-in period with a transient zone at the
beginning and a period of friction stability afterwards.

Due to a small contact surface between the ring and liner
surface (the contact width is 4–5 mm, the contact length 1.15 mm
and therefore the contact area is 4–6 mm2), the contact pressure
can reach up to 25 MPa. Concerning the ring characteristics, it

consists of cast iron with chromium coating, its geometry is
represented in Fig. 6 and its 3D arithmetic average roughness, Sa is
0.2570.05 mm.

Friction coefficient is then calculated using the ratio between
the average normal force FN and the average tangential force FT,
evaluated using strain gauges after filtering signal disturbances
due to vibration using moving average filtering. This is a well-
known low-pass filter, one of the most used filtering methods in
signal processing [24,25] . It is efficient for reducing noise while
keeping the main features of the signal [25]. The method consists
of averaging a number of points (N) from the input signal (x(i)) to
obtain the output signal, using the following formula [24,25](2) :

yðiÞ ¼ 1
N

XN�1

k ¼ 0
xði�kÞ ð2Þ

To filter correctly the input signal, N have to be properly chosen
[24]. An example of a friction force filtered signal, using a moving
average filter with N¼51, is shown in Fig. 7. Here, the noise (high
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Fig. 2. Description of the honing kinematics for (a) circular (BS, SC), (b) longitudinal ellipse (SLE, BLE), (c) transverse ellipse texture (BTE, STE).

Table 2
Kinematic honing operating conditions.

Pattern type R1 (mm) R2 (mm) X/2 (mm) Y/2 (mm) Rm (mm) X/Y

BC 14.18 14.18 14.18 14.18 14.18 1.00
SC 7.25 7.25 7.25 7.25 7.25 1.00
BTE 10.00 22.40 16.20 11.66 13.93 1.39
STE 4.40 14.50 9.45 5.75 7.60 1.64
BLE 21.78 9.72 11.34 15.75 13.55 0.72
SLE 14.29 4.34 5.68 9.31 7.49 0.61

Fig. 3. Specimen cut from cylinder liner.

Rotating slider crank
mechanism

Electrical motor

Liner specimen

Ring

Fig. 4. Reciprocating ring–liner tribometer.
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frequencies) is removed while maintaining the gauge signal global
behavior. The inversion zones of the liner, where the absolute
value of sliding velocity is the lowest (before the sliding direction
change), and the central zone of the liner, where absolute value of
sliding velocity reaches a maximum value (before decreasing), are
clearly identified (Fig. 7.(b)). Afterwards, the average friction force
is calculated from the absolute value of the filtered signal.

3. Results and discussions

The analysis of the experimental results is based on the char-
acterization of the surface finish and surface texture. It is used to
evaluate the impact of the surface patterns anisotropy and its size
on ring-liner friction performances. Then, the surface frictional
performances are evaluated using tribological tests. Finally, the
correlation between surface texture and friction surface perfor-
mance is discussed in order to propose an innovative low-friction
surface texture.

3.1. Surface aspect observations

The surface textures of engine liners are examined for each
honing operating conditions. Fig. 8 shows the aspect of the dif-
ferent surface patterns (circles, transverse ellipses and long-
itudinal ellipses) at two different size levels. Globally, the mor-
phology of textures (between circles, longitudinal and transverse
ellipses) can be differentiated. Here, longitudinal ellipses consist
mainly of vertical grooves whereas transverse ellipses mainly

consist of horizontal grooves. However, due to the “polishing
phenomena”, some grooves appear quite erased for both circular
and longitudinal small ellipses (Fig. 8a1 and Fig. 8b1). Concerning
HSH texture (Fig. 8d), cross-hatched grooves with a honing angle
of �130° can be clearly observed.

3.2. 3D surface roughness comparison

Fig. 9 represents the 3D surface roughness (Sa, Sk, Spk and Svk) of
each surface texture morphology, according to ISO 25178-6 stan-
dard [4]. Sa is the arithmetic roughness and represents the average
global roughness. Sk, Spk and Svk are the 3D equivalent ISO 13565-2
standard functional parameters standard and based on the bearing
curve [4,20,26]:

1. Spk is the reduced peak height, average height of the protruding
peaks above the roughness core profile.

2. Sk is the depth of the roughness core profile.
3. Svk is the reduced valley depths, average depth of the protruding

valleys below the roughness core profile.

The Fig. 9 demonstrates that the surface roughness is at the
same order for all the novel textures samples taking into account
the standard deviation. Therefore, friction performances should be
affected essentially by lateral surface texture when the novel
surfaces textures are compared together.

However, HSH surface, i.e. the surface taken as reference, pre-
sents a lower valley depth (�15%) as shown in Fig. 9 (Svk para-
meter). Then, HSH friction that will be considered here for com-
parison with novel textures friction will be slightly lower than
expected if HSH surface has the same valleys depth as the novel
surface textures [4,9].

3.3. Frictional performances

Fig. 10 represents the friction coefficient (COF) evolution as a
function of the average Sommerfeld number (S) for the different
texture anisotropies. For Rm�7.5 mm (Fig. 10(a)), COF is reduced
significantly when S is relatively high (when S41�10�5) for SC
and SLE textures compared to STE texture. Here, the COF difference
is not important between circles and longitudinal ellipse textures.
For Rm�14 mm (Fig. 10(b)), the COF variations between each tex-
ture pattern can be easily observed for relatively high values of S
(S41�10�5). COF is the lowest for longitudinal ellipses (BLE) and
is the highest for transverse ellipses (BTE). This can be explained by
the fact that, in hydrodynamic regime, friction is mainly improved
when textured surface grooves are oriented in the sliding direction
as the case of the (BLE) texture [2]. In other words, friction behavior

Normal Load

Ring

Reciprocating motion

Liner

Liner

Ring

Fig. 6. (a) Representation of the ring–liner contact, (b) Sectional view of ring–liner contact.

Transient zone Zone of friction stability

Fig. 5. Evolution of friction during running-in with a normal force of 50 N (unfil-
tered signal).
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depends both on the lubrication regime and groove orientation.
According to Yuan et al [3], mainly the longitudinal texture orien-
tations enable to reduce friction coefficient in mixed and hydro-
dynamic regimes. So, as shown by Costa and Hutchings, these
texture orientation enable to a better lubrication with a better oil
motion, contrary to the transverse textures [27].

When S is relatively low (i.e. lubrication conditions close to the
boundary regime), there are no significant differences between the
different texture patterns. It can be explained by the fact that
curvilinear honed surface textures due to honing kinematics
contain mainly horizontal grooves at the top and bottom dead
center and where the sliding velocity is relatively low. The trans-
versal orientation of grooves contributes to increase friction force
in hydrodynamic and mixed regimes but are more beneficial
(better lubrication and lower friction coefficient) in boundary
lubrication due to a better oil retention at a low Sommerfeld
number [3].

Fig. 11 compares COF of the all textures for S¼1.6�10�5, which
corresponds to a rotation velocity of 290 rpm and a normal force
of 20 N. These conditions correspond to high values of S in mixed
lubrication regime, in which the texture effect on friction reduc-
tion is the most important [28]. It confirms the previous remarks
and shows that BLE textures are the most efficient in terms of
friction performances. These performances have to be compared
with an industrial texture.

3.4. Friction improvement compared to conventional HSH surface
texture

Afterwards, in order to evaluate their industrial interest, the
friction performances of each texture are compared with an
industrial HSH texture at comparable operating conditions
(S�1.6�10�5), for high values of S in the mixed lubrication
regime, where texture effect can be more easily observed [2,28].
The results are shown in Fig. 12. Here the relative friction reduc-
tion (%) is calculated using the following formula:

COF_reductionð%Þ ¼ COFHSH�COFTEXTURE
COFHSH

� 100 ð3Þ

Where COFTEXTURE is the friction coefficient of the considered
texture, and COFHSH the friction coefficient of an HSH industrial
texture.

It shows a sensible friction reduction for BLE textures of around
9%. A low COF reduction (around 3%) is noticed for SC. The other
textures seem to be not interesting in terms of COF reduction in
the mixed lubrication regime. It can be explained by their orien-
tation (for transverse ellipses) in which the lubricant flow is
opposite to groove orientation or/and “polishing phenomena” (for
SLE textures) with lower groove depth which is not beneficial to
good lubrication conditions [2].

For BLE textures, the results are very promising for friction
reduction and then the improvement of the efficiency of com-
bustion engines. For example, Howell–Smith showed an engine
power gain up to 4% for laser etched liner in comparison to
industrial honed liners [8]. Moreover, the process which generates
these textures is not very expensive compared to an innovative
finish processes for cylinder liners such as Laser surface texturing
[6,29] or bore spray coating [30]. In fact, it is the same process as
the mechanical abrasive honing process with different kinematics.

This promising innovative surface texture must be validated in
real combustion engine conditions and has the advantage, like
abrasive honed textures, to be quite easily manufactured.

3.5. Discussion about the most influent texture pattern parameters
on friction reduction

In order to see which aspect surface texture parameter influ-
ences the friction reduction most and to optimize the honing
kinematics, the linear correlation method is used to observe the
link between surface texture and its functionality [31–33]. From
this method, a correlation coefficient (between 0 and 1) is calcu-
lated, which correlates the evolution between two parameters (a
texture feature and friction coefficient). Here, the correlation is
considered strong when the absolute value of the correlation
coefficient is higher than 0.70. When the correlation coefficient
value is positive, it means that the texture parameter leads to an
increase in the friction. On the other hand, when the correlation
coefficient value is negative, it means that the texture parameter is
contributing more to reduce the friction. Six parameters which
describe the aspect of the proposed texture are considered:

1. Rm, the average radius.
2. R1, the first ellipse radius (perpendicular to the sliding

direction).

Fig. 7. Friction force (a) Initial signal (b) and filtered signal (using a moving average filter with N¼51).
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3. R2, the second ellipse radius (in the sliding direction).
4. X/2, the ellipse mid-width (perpendicular to the sliding

direction).
5. Y/2, the ellipse mid-length (in the sliding direction).
6. X/Y, the aspect ratio.

The obtained correlation coefficients between the aspect tex-
ture pattern and friction coefficient are shown in Fig. 13. Firstly, it
shows that patterns average radius (Rm) has a low influence on the
friction reduction, which means that pattern size has not a high
contribution on friction performances.

Secondly, the correlation coefficients of X/Y, X, Y R 1 and R2
parameters show that groove orientation has an important influ-
ence on friction reduction. In particular, the ellipse orientation,
characterized by the X/Y parameter, is the most relevant parameter
describing the friction variations. In fact, X/Y increase (to obtain a
more transverse texture), leads to an increase in COF and

conversely. Concerning X and Y parameters (texture width and
texture length respectively), they have a sensitive influence on the
COF increase and COF reduction respectively. Otherwise, the
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Fig. 8. Photographs of the aspect of (a) circular, (b) longitudinal ellipse, (c) transverse ellipse patterns for (1) Rm�7.5 mm and (2) Rm�14 mm equivalent size and (d) HSH
surface.
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longitudinal and transversal grooves curvatures, respectively
characterized by R1 and R2 aspect parameters, affect significantly
(in comparison with X and Y parameters) the friction coefficient.

Here the effect of texture parameters on COF variations can be
explained by the scale effect. Some studies have shown the
importance of the scale on friction performance of liner surfaces
[22,33,34]. In this study the scale depends on the orientation of
sliding motion and the contact area. Here the contact width is
about 5 mm and the textures with a value of R2 and X/2 far to the
contact width (BC, BTE and STE) contribute the most to increase
friction performances for S¼1.6�10�5.

4. Conclusions

The present study compares friction performances (through a
reciprocating tribometer) of different innovative texture patterns
(circles and ellipses at different sizes and orientations) generated
by abrasive honing process. It also identifies the most influent
geometrical texture parameters on friction variations.

Results show that BLE (big size longitudinal ellipse pattern)
surface texture leads to the best reduction of the COF for higher
values of S in mixed lubrication regime (i.e. lubrication conditions
close to the hydrodynamic regime), compared to the industrial
surface (HSH) surface texture. This is due to the vertical orienta-
tion (parallel to ring motion) of longitudinal ellipse patterns and
the scale effect which enable a better lubricant flow for ring–liner
contact.

In an industrial context, this is a promising result in terms of
engine performances and process costs since the process that
generates these textures is similar to that widely used actually in
automotive industry. However, the results have to be confirmed in
real combustion engine conditions and the honing kinematics can
be further optimized for lower friction losses.
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patterns (Rm�7.5 mm): SC, SLE and STE; for (b) big size patterns (Rm�14 mm): BC,
BLE and BTE.
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