
Science Arts & Métiers (SAM)
is an open access repository that collects the work of Arts et Métiers Institute of

Technology researchers and makes it freely available over the web where possible.

This is an author-deposited version published in: https://sam.ensam.eu
Handle ID: .http://hdl.handle.net/10985/15360

To cite this version :

Marguerite JOSSIC, Olivier THOMAS, Vivien DENIS, Baptiste CHOMETTE, Adrien MAMOU-
MANI, David ROZE - Effects of internal resonances in the pitch glide of Chinese gongs - Journal
of the Acoustical Society of America - Vol. 144, n°1, p.431-442 - 2018

Any correspondence concerning this service should be sent to the repository

Administrator : archiveouverte@ensam.eu

https://sam.ensam.eu
https://sam.ensam.eu
http://hdl.handle.net/10985/15360
mailto:archiveouverte@ensam.eu
https://artsetmetiers.fr/


Effects of internal resonances in the pitch glide of Chinese gongs

Marguerite Jossica)

Sorbonne Universit�e, CNRS, Institut Jean Le Rond d’Alembert, F-75005 Paris, France

Olivier Thomasb) and Vivien Denis
Arts et M�etiers Paristech, LISPEN EA 7515, 8 bd. Louis XIV, 59046 Lille, France

Baptiste Chomette
Sorbonne Universit�e, CNRS, Institut Jean Le Rond d’Alembert, F-75005 Paris, France

Adrien Mamou-Mani and David Roze
STMS UMR 9912, Sorbonne Universit�e, CNRS, Ircam, 1 place Igor Stravinsky, F-75004 Paris, France

(Received 20 November 2017; revised 19 March 2018; accepted 26 April 2018; published online
27 July 2018)

The framework of nonlinear normal modes gives a remarkable insight into the dynamics of nonlin-

ear vibratory systems exhibiting distributed nonlinearities. In the case of Chinese opera gongs, geo-

metrical nonlinearities lead to a pitch glide of several vibration modes in playing situation. This

study investigates the relationship between the nonlinear normal modes formalism and the ascen-

dant pitch glide of the fundamental mode of a xiaoluo gong. In particular, the limits of a single non-

linear mode modeling for describing the pitch glide in playing situation are examined. For this

purpose, the amplitude-frequency relationship (backbone curve) and the frequency-time depen-

dency (pitch glide) of the fundamental nonlinear mode is measured with two excitation types, in

free vibration regime: first, only the fundamental nonlinear mode is excited by an experimental

appropriation method resorting to a phase-locked loop; second, all the nonlinear modes of the

instrument are excited with a mallet impact (playing situation). The results show that a single non-

linear mode modeling fails at describing the pitch glide of the instrument when played because of

the presence of 1:2 internal resonances implying the nonlinear fundamental mode and other nonlin-

ear modes. Simulations of two nonlinear modes in 1:2 internal resonance confirm qualitatively the

experimental results. VC 2018 Acoustical Society of America. https://doi.org/10.1121/1.5038114

[TS] Pages: 431–442

I. INTRODUCTION

Musical instruments from the percussion family exhibit

various nonlinear features which are typically those encoun-

tered in plates, shells, and beams when geometrical nonlinear-

ities are present:1 amplitude-frequency dependence, internal

resonances (strong energy coupling between modes), har-

monic distortion, and chaos are some typical nonlinear fea-

tures that can be observed in such structures.2 In the case

of Chinese opera gongs, amplitude-frequency dependence

can be considered as a true musical pattern:1 the frequency

changes as the vibration decreases, which is highlighted by

a very characteristic “pitch glide” in playing situation. The

amplitude-frequency dependence can be either of softening

type—frequency increases with time in free vibration (xiaoluo
gong)—or hardening type—frequency decreases with time in

free vibration (daluo gong).

Surprisingly, only four studies have been carried out about

Chinese opera gongs: Rossing and Fletcher3 experimentally

studied the influence of radial tension or compression on the

type of nonlinearity (hardening or softening). Fletcher4 showed

that the pitch glide phenomenon depends on the ratio between

the thickness of the gong and the height of its central shell. Tsai

et al.5 performed an experimental and numerical linear analysis

of a daluo. Jossic et al.6 underlined the presence of internal res-

onances in the xiaoluo using modal active control. This small

interest is all the more surprising since, as it will be shown, a

single Duffing oscillator is sufficient to describe the frequency-

amplitude dependence; in contrast, many degree-of-freedom

models are required to describe internal resonances and/or

chaos phenomena, which have received considerable interest in

the case of gongs and cymbals7–10 or the steelpan.11,12

Many previous studies on plates and shells (see, e.g.,

Refs. 1, 2, and 13) have highlighted that geometrical nonli-

nearities lead to quadratically and/or cubically coupled modal

equations; conversely, the linear case is characterized by

uncoupled modal equations. In the nonlinear range, such cou-

plings are responsible for the loss of the linear eigenspace

invariance property, which in turn hinders finding nonlinear

reduced order models. In particular, truncating directly the

modal equations, i.e., keeping only one non-zero modal coor-

dinate in the equations, may lead to erroneous results in the

prediction of the nonlinearity trend.14–16

The concept of nonlinear modes allows us to overcome

some of these difficulties. The formalism relies on the normal

form theory16,17 which enables the reduction of the nonlinear

dynamics to invariant manifolds in the phase space, by a non-

linear change of variables of the initial (linear) modal coordi-

nates. Each invariant manifold in the phase space corresponds

to a nonlinear normal mode and is tangent to the linear
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corresponding eigenspace at the equilibrium point. When there

is no internal resonance in the system dynamics, the behavior

of the system can be described by a single nonlinear mode

which is able to efficiently capture the nonlinearity trend (hard-

ening/softening).

In this context, this paper investigates the relevance and

limits of a single nonlinear mode modeling to describe the pitch

glide of the fundamental mode of a xiaoluo gong in playing situ-

ation. In particular, one can wonder if the presence of internal

resonances in these instruments6 may impact the frequency-

amplitude behavior leading to the characteristic pitch glide. For

this purpose, this study compares the frequency-amplitude rela-

tionship (backbone curve) and frequency-time dependence

(pitch glide) of the gong fundamental mode in free vibration

in two experiments: (i) in the case of a single nonlinear mode

excitation in a frequency range that avoids the appearance of

internal resonances and (ii) in playing situation, where several

nonlinear modes are excited and internal resonances may occur.

Two main techniques have been recently used for the mea-

surement of backbone curves. First, the nonlinear phase reso-

nance testing (NPR) is an extension of linear phase resonance

testing18 for nonlinear systems, and consists in (i) setting the sys-

tem to a phase resonance for a given (nonlinear) mode by the

mean of force appropriation,19 and (ii) turning off the excitation

and measuring the free decay vibration regime. For lightly

damped systems, the invariance property guarantees that the free

regime stays on the conservative nonlinear mode manifold.19

The backbone curve is then extracted from the free vibration

regime using time-frequency analysis. The second and more

recent technique is referred to as experimental continuation, a

concept that is inspired by numerical continuation methods. The

first continuation technique is the control-based continuation20,21

that uses a combination of a stabilizing feedback control and a

path-following method. In the second continuation technique,

which is used in this study, the tracking of the backbone is car-

ried out in forced regime by setting the system at phase reso-

nance using a phase-locked-loop (PLL) controller.22–25 The

forcing amplitude is set incrementally step by step and the forc-

ing frequency is adjusted by the PLL in order to achieve the non-

linear phase resonance. The main advantage of continuation

techniques is to directly obtain the backbone curve from forced

regime rather than rely on the free vibration frequency-time

analysis, which is performed with the NPR method.

In the first experiment, we combine nonlinear phase

resonance testing and a PLL system to measure the backbone

curve and the frequency-time dependence of the nonlinear

fundamental mode of a xiaoluo. More precisely, the nonlinear

mode appropriation is realized in forced regime using the PLL

setup. Then, the excitation is stopped and the frequency-

amplitude-time relationships are extracted from free decay, as

in the nonlinear phase resonance testing. The main reason for

using the free vibration regime is to avoid thermal effects that

are induced by high-amplitude forced vibration at resonance.

These effects will be experimentally demonstrated. Results

from the first experiment are compared with estimation of the

same frequency-amplitude-time curves obtained from mallet-

strike excitation in the second experiment.

The paper is organized as follows: Section II provides

some background on the nonlinear mode formalism and the

PLL principle. Section III presents the experimental setup for

the two experiments. Measurements of the backbone curve and

associated thermal effects are reported in Sec. IV. Empirical

evidence of internal resonances is then presented in Sec. V and

are qualitatively assessed by simulations. Finally, some conclu-

sions and perspectives are given in Sec. VI.

II. THEORY AND METHODS

A. Background on nonlinear modes

Only the main ideas are proposed here and the interested

reader can refer to Refs. 24 and 25 for further details. We

consider the gong as an elastic shell with large amplitude

vibration and thus subjected to geometrical nonlinearities.

The transverse displacement wðx; tÞ at time t and position x

is expanded in a family of N eigenmodes of the linearized

model:

wðx; tÞ ¼
XN

k¼1

UkðxÞqkðtÞ; (1)

where ½xk;UkðxÞ� are the kth natural angular frequency and

mode shape. The modal coordinates qk(t) satisfy the follow-

ing set of coupled nonlinear equations, for all k¼ 1,…N:

€qk þ x2
kqk þ

XN

i;j¼1

bk
ijqiqj þ

XN

i;j;l¼1

ck
ijlqiqjqk ¼ 0; (2)

where bk
ij and ck

ijl are nonlinear coefficients stemming from

the geometrical nonlinearities. Here, only the conservative

unforced case is considered.

Using normal forms, as introduced in Refs. 14, 16, and

17, it is possible to simplify model (2) by introducing the fol-

lowing nonlinear change of coordinates, for all k¼ 1,…N:

qk ¼ uk þ Pð2Þk ðui; _uiÞ þ Pð3Þk ðui; _uiÞ; (3)

where PðpÞk ðui; _uiÞ; i ¼ 1;…N, is a polynomial function of

(ui; _uiÞ containing monomial terms of order p only. A new

dynamical system, a function of the normal coordinates uk(t),
is obtained, which has two properties: (i) it has fewer nonlin-

ear coupling terms than the initial one [Eq. (2)] and (ii) each

so-called normal oscillator is invariant if it is not involved in

an internal resonance with another one. The latter property

enables the association of each normal oscillator to a nonlin-

ear normal mode (NNM).14,25–27 It also means that in free

vibrations, if the motion is initiated on the kth normal oscilla-

tor, no energy is transferred to the others. In this particular

case, namely, if a motion on the ith NNM is considered, then

uj ¼ 0; _uj ¼ 0; 8j 6¼ i, and the dynamics of the system is thus

equivalent to

€ui þ x2
i ui þ C1u3

i þ C2ui _u2
i ¼ 0; (4)

where (C1, C2) are two coefficients depending on the nonlin-

ear coefficients bk
ij and ck

ijl of the initial dynamical system

[Eq. (2)], that take into account the influence of other linear

modes in the dynamics of the considered ith NNM.14
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A first order perturbation solution of Eq. (4) leads to

uiðtÞ ¼ a cosðxnltþ uÞ; (5)

with14

xnl ¼ xi 1þ Ta2ð Þ and T ¼ 3C1 þ C2x2
i

8x2
i

: (6)

It shows that to first order, the oscillations of a given

NNM are harmonic with a frequency xnl that depends on the

amplitude a of the motion. The so-called backbone curve is

obtained by plotting xnl as a function of a.2

In practice, the T coefficient can be experimentally

identified, but afterwards it is no longer possible to identify

separately the coefficients C1 and C2. Moreover, numerical

simulations of Eq. (4), with several values of (C1, C2) that

lead to the same value of T, show that for moderate ampli-

tudes, all backbone curves are merged into a single parabola

defined by Eq. (6). This result is valid for values of a corre-

sponding to a change of frequency xnl less than 10% (Ref.

25)—this condition will be satisfied in our experiments (see

Sec. II C). Consequently, we propose to approximate the

dynamics of a given NNM by a single Duffing oscillator:

€ui þ x2
i ui þ ~C0u3

i ¼ 0; (7)

with

~C0 ¼
8x2

i T

3
¼ C1 þ

C2x2
i

3
: (8)

In order to obtain the expression in the physical space of

the NNM described in Eq. (7), we replace the expression (5)

in the nonlinear change of variables in Eq. (3). To first order,

one obtains25

wðx; tÞ ’ UiðxÞuiðtÞ:

This last equation allows the NNM to be rewritten in physi-

cal space,

€w þ x2
i wþ C0w3 ¼ 0; (9)

with

C0 ¼ ~C0U
2
i ðxÞ:

This last equation shows that if Eq. (9) is used for the experi-

mental identification of the NNM, it leads to a value C0 of

the nonlinear coefficient that depends on the location x

where the displacement wðx; tÞ is measured. Otherwise, it is

necessary to correct it by taking into account the mode shape

UiðxÞ to estimate ~C0 of Eq. (7).

B. Backbone identification

1. Nonlinear phase resonance testing

The rigorous formalism of NNM recalled in Sec. II A has

recently contributed to the development of new nonlinear

modal identification techniques based on backbone curve mea-

surement. Among them, the NPR method extends the concept

of linear phase resonance28 to nonlinear systems, and allows

for excitation and identification of single NNMs. For a given

driven single oscillator, phase resonance occurs when the exci-

tation term exactly cancels, for all time t, the damping of the

system: in this case, the oscillator behaves as if it was in

undamped free oscillations. For a linear oscillator, it is well

known28 that phase resonance is achieved when the excitation

is in phase quadrature with the system displacement. In the

nonlinear case, the system response is often multiharmonic and

phase resonance is obtained by balancing each harmonic of the

damping term by a corresponding harmonic in the forcing.19

The NPR method has been first detailed by Peeters

et al.19 and follows a two-step process. First, the system is

driven to a single nonlinear mode phase resonance by apply-

ing a multipoint harmonic excitation at the mode natural

frequency. The quality of the nonlinear mode appropriation

is theoretically guaranteed by a phase quadrature indicator,

which is valid for linear systems and has been proved to be

generalizable to nonlinear systems.19 In practice, even an

imperfect force appropriation resulting from a single-point

mono-harmonic excitation may be sufficient for the NNM

appropriation.19 This approximation proves to be relevant as

all the harmonics higher than the fundamental governing the

NNM dynamics can be neglected.25 Therefore, the phase res-

onance can be achieved experimentally by ensuring the phase

quadrature on the first harmonic only.25 When the phase reso-

nance is reached, the applied excitation compensates for the

damping forces. As a result, the structure vibrates according

to the NNM of the underlying conservative system.

In a second stage, the excitation is turned off and the free

decay response of the NNM is measured. Due to the invariance

property of NNMs the system free vibration follows the non-

linear normal mode of the damped system. Specifically, in the

case of lightly damped systems such as gongs,6 the dynamics

of the damped NNM closely follows the underlying conserva-

tive NNM, whose dynamics is governed by Eq. (7).16 Tracking

of the frequency-amplitude behavior of the free damped

regime by time-frequency analysis is then performed in order

to compute the backbone curve of the associated NNM.

The NPR method has proved its robustness and accuracy

in various experimental studies19,29,30 and is therefore widely

used for nonlinear modal testing. The problem of NNM appro-

priation in the case of internal resonances was also addressed

in Ref. 31. The principal disadvantage of the method lies in the

excitation tuning: as the level of excitation energy increases,

jump phenomena may occur in the system frequency response

leading to a time-consuming tuning of the excitation.

2. PLL controller

The issue of excitation tuning has recently been overcome

by experimental continuation techniques for backbone curve

measurements. Among them, a major contribution has been

made with the use of PLL controllers.32 The approach is based

on the fact that phase-controlled self-excited systems do not

exhibit unstable behavior of the vibration amplitude.25,33 More

specifically, the amplitude-phase curve of single-degree-of-
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freedom systems is single-valued and flat near the resonance

for many nonlinear systems, contrary to the traditional jump

phenomenon encountered in the amplitude-frequency relation-

ship. This property remains valid as long as the frequency and

amplitude ranges do not allow for internal resonances.23

PLL controllers are designed in order to guarantee a

given phase lag between the forcing excitation of a system

and a reference signal (e.g., the system response: displace-

ment, velocity). More precisely, a PLL adjusts the forcing

excitation frequency (control command) in order to keep the

phase lag to a preset value. The phase lag value can be either

variable with time or fixed. In the first configuration, sweep-

ing the phase lag value over the range [0–p] while keeping

the excitation force constant allows for the reconstruction of

the complete frequency-amplitude curves of the NNM, thanks

to the monotony of the frequency-phase relationship.22,25 In

the second configuration, setting the phase lag value at 0 or

p/2 (depending on whether we measure the NNM velocity

or displacement, respectively) allows for the tracking of the

backbone curve (nonlinear phase resonance).23 This latter

configuration is used in the study.

The PLL controller consists of a phase detector, a

proportional–integral–derivative controller (PID), and a volt-

age controlled oscillator (VCO)23,34 (see Fig. 1). The overall

PLL system is the same as the one previously developed in

Ref. 25. The first step consists of choosing an initial forcing

excitation amplitude F, an initial forcing frequency x¼x0,

and a fixed phase lag command /ref . The nonlinear mode

response xm is measured along with the forcing excitation Fm.

The phase detector determines the phase shift / between xm

and Fm using a synchronous demodulation34 that estimates

the fundamental harmonic of xm and Fm from the forcing

excitation. The error e between the phase / and the phase

command /ref is then integrated by an integral controller

which gives a correction to the initial forcing frequency x0.

The new forcing frequency is determined by the voltage con-

trolled oscillator and leads to a new forcing excitation for the

system. Note that the excitation amplitude F is kept constant

during this process. The construction of the backbone curve is

realized by iterating the process for increasing excitation

amplitudes F: at each amplitude step, the phase controller

adjusts the excitation frequency in order to meet the phase

resonance criterion /ref .

C. Study protocol

Two experiments are carried out to test the validity of

single NNM modeling for the description of the pitch glide

in playing conditions.

The first experiment (experiment A) measures the gong

fundamental mode response in free vibration regime in the

case of single NNM excitation. This is achieved by performing

the fundamental nonlinear mode appropriation with the PLL

controller. The single NNM appropriation is guaranteed by set-

ting the initial forcing amplitude at a level that does not allow

for internal resonances. For this reason, the experiment is per-

formed over a limited frequency range (440�449 Hz). Beyond

this frequency range, the frequency shift of the nonlinear nor-

mal mode allows for the appearance of 1:2 internal resonances

between the nonlinear fundamental mode and other linear

modes (see Sec. V), breaking the single NNM appropriation.

Once the phase resonance is achieved using the PLL control-

ler, the excitation is shut down and the free vibration regime

of the single fundamental NNM is measured. The backbone

curve and the frequency-time relationship are then extracted

from the free vibration measurements.

The second experiment (experiment B) is carried out in

a playing situation: the gong is struck with various mallet

impacts. The pitch glide and the backbone curve of the fun-

damental nonlinear mode are extracted from the free vibra-

tion data, and compared to the results of experiment A.

In both experiments, frequency-time post-processing is

performed to extract the amplitude-frequency curve (back-

bone curve) and the frequency-time curve (pitch glide) from

the fundamental free vibration regime. The measurement of

the backbone curve in the free vibration regime using the

PLL setup set the first experiment (experiment A) a bit apart

from the previous PLL backbone curve measurements23,25

where the backbone curves were measured in forced regime.

This a priori choice avoids thermal effects evidenced in Sec.

IV C. The details about the two experiments are given in

Sec. III.

III. EXPERIMENTAL SETUPS

The setup of experiment A is displayed in Fig. 2.

The Chinese gong (approximately �220 mm large and 1 mm

thick) is excited with a homemade coil-magnet system fully

described in Ref. 35 [Fig. 3(a)] preceded by a power amplifier

(B&K 2719). The magnet is located on the edge of the gong

central area in order to (i) provide an efficient excitation of the

fundamental mode located in the center of the instrument6 and

FIG. 1. Phase-locked loop principle. The forcing amplitude F, the phase lag

/ref , and the initial pulsation x0 are defined by the user. Please refer to the

main text for the detailed description of the system.

FIG. 2. Setup for experiment A (PLL measurements, single nonlinear mode

excited).
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(ii) minimize the change of the fundamental mode frequency

stemming from the added mass of the magnet. The excitation

force is proportional to the current in the coil and is measured

by a current clamp. In order to keep the same instrumentation

in both experiments, the accelerometer used in experiment

B is also taped on the back of the instrument, co-localized

with the magnet [Fig. 3(b)]. The velocity is measured by a

laser vibrometer (Polytec PSV-400) at the same location as

the accelerometer, so that the instrument responses can be

compared between the two experiments. The PLL control dia-

gram is implemented using Matlab/Simulink, and the overall

phase control is driven by a DSpace MicroLabBox working at

10 000 Hz. First, the system is set at phase resonance using the

PLL controller. This is done by setting a relatively high excita-

tion amplitude, and waiting for the PLL to adjust the forcing

frequency in order to meet the resonance phase criterion /ref .

As we measure the nonlinear fundamental mode velocity,

/ref ¼ 0. Then, the excitation is stopped, and the free decay

vibration of the fundamental mode is measured. The backbone

curve and the frequency-time dependency are extracted from

the vibrometer data spectrograms.

The experiment B setup is represented in Fig. 4. The gong

is struck with various impact forces and impact locations using

a mallet. The nonlinear normal mode acceleration is measured

with the accelerometer (B&K 4374) pictured in Fig. 3(b). The

use of an accelerometer for experiment B is mandatory since

the movements of the instrument prevents the vibrometer from

correctly measuring the system velocity. Another accelerome-

ter (B&K 4374) is taped to the mallet stick [Fig. 5(a)] and is

calibrated in order to recover the impact force. The calibration

is realized by measuring the impact force of 50 mallet strikes

on a PCB 208C02 force sensor [Fig. 5(b)]. The ratio between

the force sensor and the accelerometer signals corresponding to

an equivalent mass revealed to be approximately constant

(�3 kg) whatever the mallet impact force amplitude. The mean

of the equivalent mass measured for all the different mallet

impacts is used to recover the impact force from the mallet

accelerometer signal. This is exemplified in Fig. 6, where

the impact force measured by the force sensor (blue line) is

compared to the reconstructed force obtained by the acceler-

ometer signal multiplied by the mean equivalent mass (red

line). The pale red area represents the standard deviation of the

reconstructed force due to the standard deviation of the equiva-

lent mass calculation. Note that the impact force is included in

the standard deviation of the reconstruction force, for both

small value (�6N) and high value (�95N). The main parame-

ters of experiment A and experiment B are summarized in

Table I.

IV. RESULTS: PITCH GLIDE AND NONLINEAR MODE
IDENTIFICATION

A. Pitch glide of the fundamental mode

The pitch glide of the gong fundamental mode is

highlighted in playing situation by striking the instrument with

increasing mallet forces (experiment B). Figure 7 shows four

spectrograms of the accelerometer signal for increasing mallet

impact forces F (F¼ 8N, F¼ 13N, F¼ 16N, F¼ 32N). These

spectrograms highlight two points. First, one can see that the

frequency-time dependence of the fundamental mode (around

450 Hz, black solid line in Fig. 7), which is absent from the

instrument response for a small impact force (F¼ 8N), starts

to appear from F¼ 13N, and gets larger as the impact force

increases. The change of frequency versus time is directly

related to (i) the combination of the frequency-amplitude phe-

nomenon due to geometrical nonlinearities and (ii) the damp-

ing of the system. It is also responsible for the characteristic

“pitch glide” one can hear when the instrument is played. The

FIG. 3. (Color online) Instrumentation of the gong. (a) Front of the xiaoluo
gong with magnet-coil system. (b) Back of the gong with the accelerometer

co-localized with the laser vibrometer.

FIG. 4. Setup for experiment B (mallet measurements, several nonlinear

modes excited).

FIG. 5. (Color online) Instrumentation

for mallet calibration: (a) mallet instru-

mented with an accelerometer and (b)

force sensor.
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frequency-amplitude behavior of the nonlinear mode associ-

ated to the fundamental mode is measured by experiment A

and the associated results will be exposed in Sec. IV B.

Second, the frequency of second harmonic distortion

around 900 Hz (black dotted line in Fig. 7) which is twice the

one of the fundamental mode, glides also upward and goes

through two other linear modes at 859 and 880 Hz (displayed

in red dot lines in Fig. 7). The experimental operational deflec-

tion shapes of the fundamental mode and these two modes

were recorded from a modal analysis performed with the vibr-

ometer used in Sec. III, and are shown in Fig. 8. This suggests

the presence of a 1:2 internal resonance (f2¼ 2f1) between

the fundamental mode at 447 Hz and the modes at 859 and

880 Hz, which are, respectively, called mode 1, mode 2, and

mode 3 in the following. Other modes present in the modal

analysis and visible in Fig. 7 (e.g., the mode at 811 Hz) are not

numbered since they are not involved in an internal resonance

with the fundamental mode. The effects of the internal reso-

nances between modes 1, 2, and 3 will be further exposed in

Sec. V.

B. Nonlinear mode identification

For experiments A and B, the backbone curves (ampli-

tude-frequency relationship) of the NNM were extracted from

the spectrogram of the free vibration regime. The (amplitude,

frequency) couple of the NNM is obtained as follow: for each

time, the amplitude is estimated by taking the maximum ampli-

tude of the spectrogram in the frequency window 400�500 Hz

around the fundamental harmonics of the signal, corrected

by taking into account the length of the time window of the

short time Fourier transform; the corresponding instantaneous

frequency is then taken as equal to the window maximum fre-

quency. Computing the spectrogram was done from vibrometer

data in the case of experiment A, and from accelerometer data

for experiment B. The resulting velocity and acceleration back-

bone curves were then divided once or twice by the pulsation

axis, respectively, in order to obtain the backbone curves in dis-

placement. In Fig. 9, the backbone curve corresponding to

experiment A is plotted along with a standard deviation which

corresponds to the standard deviation of five other PLL back-

bone curves measured at different times during the experimen-

tal process. Here two points should be emphasised. First, it is

worth noticing that geometrical nonlinearities in spherical

shells appear when the absolute value of the displacement is of

the same order of h3/d2 or h2/d, where h is the thickness of the

shell and d its radius.13 In our case, the values of the thickness

and the radius of the gong are h¼ 1 mm and d¼ 110 mm. This

leads to h2/d �10–2mm, which is at the same order of the

transverse displacement measured in Fig. 9. This confirms the

presence of geometrical nonlinearities in the gong. Second,

Fig. 9 shows that the values of the backbone curve measured

in experiment B are contained in the standard deviation of the

backbone curves measured in experiment A. This result high-

lights that, in a few Hertz frequency range around the modal

frequency, the fundamental nonlinear mode is able to describe

the frequency-amplitude behavior of the xiaoluo in free vibra-

tion regime. This result also demonstrates the link between the

fundamental pitch glide in Chinese gongs and the nonlinearity

trend of the associated nonlinear mode. This latter fact is an

important result since it has never been rigorously demon-

strated in the literature on Chinese opera gongs.

The nonlinear coefficient C0 of the nonlinear mode

characterized by Eq. (9) can also be identified using a second

order polynomial fit of the frequency-amplitude relationship

[see Eq. (6)]. The result of the polynomial fit is

represented with a red dot line in Fig. 9. The estimation of

C0 gives C0 ¼ �8:1� 107 mm�2s�2: Notice that, as explained

at the end of Sec. II A, the above value of C0 depends on the

measuring point, here at the edge of the gong central area.

C. Thermal effects in the coil-magnet system

This section underlines the thermo-mechanical effects

encountered in the experiments when measuring the back-

bone curves with the PLL setup. These thermal effects made

the backbone curve measurements delicate and justify that

the measures were performed in free vibration regime instead

of forced regime, as explained in the protocol (see Sec. II C).

The main drawbacks of PLL backbone curve measurements

FIG. 6. (Color online) Results of mal-

let calibration. Measured force (blue

line) and reconstructed force (red line)

are compared. Pale red area represents

the standard deviation of the recon-

structed force. (a) Low energy mallet

strike (�6N) (b) High energy mallet

strike (�95N).

TABLE I. Summary of the excitation characteristics, the number of modes

excited and the nonlinear mode response measurement for experiment A

and experiment B.

Experiment A B

Excitation type Forcing excitation Impulse

Excitation system Coil-magnet system Mallet

Numb. of modes excited n¼ 1 n> 1

Response measurement Vibrometer Accelerometer
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in forced vibration is that the process is longer than in free

vibration (�3 min in forced regime versus �30 s in free

vibration). As a consequence, the coil-magnet system, which

is used during the whole experiment, is more likely to heat-

up. This is illustrated in Fig. 10, where three different back-

bone curves have been measured at different amplitudes.

Each plot corresponds to a two step experiment: first, the

backbone curve is measured in forced vibration until a maxi-

mum forcing amplitude (black solid line). Second, the forcing

excitation is stopped and the system goes back to zero in free

vibration (black dot line). In the first step, the system

dynamics stands on the conservative NNM manifold,

whereas in the second step, it follows the damped NNM man-

ifold. As the viscous damping of the fundamental mode is

small (�0.1%, see Ref. 6), the frequency-amplitude curves

obtained in the two steps should be the same.16 However, one

FIG. 7. (Color online) Spectrograms of the accelerometer signal, for increasing mallet impact forces F. The instantaneous frequency of the fundamental mode

acceleration (experimental, bold dark line), its quadratic harmonic distortion (dash dark line, plotted by multiplying by two the frequency of the fundamental),

and the modes at 859 and 880 Hz which are supposed linear (theoretical, dashed red lines), are also plotted for easy readability. (a) F¼ 8N, (b) F¼ 13N, (c)

F¼ 16N, (d) F¼ 32N.

FIG. 8. (Color online) Experimental operational deflection shapes of the lin-

ear modes involved in a 1:2 internal resonance. (a) Mode 1: axisymmetric

mode (0,1) at 447 Hz. (b) Mode 2: asymmetric mode (1,1) at 859 Hz. (c)

Mode 3: asymmetric mode (7,1) at 880 Hz.

FIG. 9. (Color online) Backbone curves of the fundamental nonlinear mode

obtained from the free vibration regime in experiment A (PLL system, blue

circles) and in experiment B (mallet strikes, 15 data sets, grey lines). The

standard deviation of experiment A is indicated with a light blue area. The

polynomial fit performed on the backbone curve of experiment A is also rep-

resented with a red dot line.
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can see that it is not always the case. For small vibration

backbone curves, the two curves are identical [Fig. 10(a)].

But as the maximum amplitude of the backbone curve

increases, one can see that the frequency-amplitude curves

are not the same in forced regime and in free vibration

regime [Figs. 10(b) and 10(c)]. The higher the backbone

amplitude, the greater the frequency shift between the two

curves.

The frequency shift can be assessed by exciting the sys-

tem with a fixed excitation amplitude, and measuring the

temporal evolution of the frequency of the fundamental non-

linear mode—which corresponds to the frequency x in the

PLL diagram in Fig. 1. Results show that the frequency

increases with time (Fig. 11) which confirmed what has been

observed in Fig. 10: the longer the excitation, the larger the

frequency shift between forced and free regime. One inter-

pretation of the frequency shift in Fig. 10 is the heating of

the magnet as the duration or the amplitude of the excitation

increases. It is worth mentioning that thermal losses due to

the heating of the coil may impact the NNM damping factor

and thus change the conservative and non-conservative

NNM manifolds. However, we do think that these effects are

not great enough to induce a change in the NNM damping—

in fact no damping modification was measured between step

‹ and ›.

The influence of the coil heating on the NNM frequency

is investigated by studying numerically the influence of a

local temperature increase on modal frequencies of a shallow

spherical shell using finite element analysis. We assume that

the conical edge of the gong imposes a nearly rigid boundary

condition to the central vibrating section.4 Consequently, we

consider the central part of the gong as a clamped spherical

shell of thickness h, diameter D¼ 116 mm, and slope at the

edge w [Fig. 12(a)]. The finite element code Cast3M (Ref.

36) is used with a thermo-mechanical conduction model dis-

cretized by COQ3 elements (six degrees-of-freedom for rota-

tion and translation, and one thermal degree-of-freedom).

The mechanical characteristics are those of the bronze:

Young modulus E¼ 110� 109 Pa, Poisson’s ratio �¼ 0.34,

density q¼ 8560 kg m�3, coefficient of thermal expansion

d¼ 1.6� 10�5 K�1 and thermal conductivity K¼ 3.8 W

m�1.K�1. The temperature of the shell edges Te is set con-

stant with Te¼ 20 �C. Various temperatures Tc ranging from

Tc¼ 20 �C to Tc¼ 26 �C are imposed at the center of the

shell. The results for t¼ 0.95 mm are exposed in Figs. 12(a)

and 12(b). The increase of the central section temperature

results in a change of the fundamental mode frequency f1 that

depends on the angle w [Fig. 12(a)]. For plates and low cur-

vature shells (w< 0.14 deg), the fundamental frequency

decreases with a temperature increase (Df1< 0) [Fig. 12(b)].

In this case, the temperature increase leads to a dilatation of

FIG. 10. (Color online) Backbone curves obtained successively with the PLL setup in forced regime at phase resonance (equivalent to the undamped system,

black solid line, step ‹) and in free regime (red circles, step ›), for increasing amplitude levels.

FIG. 11. Temporal evolution of the fundamental mode frequency when forc-

ing the gong with a constant amplitude level 3.1 A.

FIG. 12. Evolution of mode 1 frequency of a clamped spherical shell for a

central temperature Tc ranging from 20 �C to 26 �C and a slope w ranging

from 0.1� to 0.5�. (a) Frequency f1 and (b) relative frequency variation Df1
of mode 1 as a function of slope w.
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the mean surface of the shell that is blocked by the clamped

boundary conditions, resulting in a decreasing of the linear

stiffness of the shell (a softening effect), and consequently of

the fundamental frequency. For more curved shells, with

w> 0.14 deg, the dilatation leads to a deformation of the shell

that increases its curvature, which has a stiffening effect,

larger than the above cited softening effect. As a result, the

fundamental frequency increases (Df1> 0). Other simulations

with several shell thicknesses h have been carried out, lead-

ing in each case to a limit value of w, that depends on h.

Note that our numerical model is designed without taking

into account the residual stress induced by the manufacturing

process, which is known to be used to tune the natural modes

of vibration to improve the sound of the instrument.37 We may

assume that taking into account the coupling between this

residual stress and the thermal effects may change the numeri-

cal results exposed in Fig. 12, however, it is not investigated in

the present work. Moreover, the numerical results are in agree-

ment with the experimental observations: in the present case

of the xiaoluo gong, the temperature increase has a stiffening

effect (Figs. 10 and 11), whereas for a less curved daluo gong

tested in Ref. 25, a softening effect has been noticed. Those

results are fully consistent with the above numerical study.

V. EFFECTS OF INTERNAL RESONANCES

A. Frequency-time analysis

Internal resonances are energy exchanges that occur

between modes that are strongly coupled by geometrical non-

linearities.2 They have been reported in numerous studies that

concern the nonlinear behavior of beams,38 plates,35 shells,13

and even other percussion instruments like large Chinese tam-

tams10 and steelpans.12 In the case of the Chinese opera gongs,

internal resonances have already been demonstrated using

modal active control.6

As noticed in Sec. IV A, Fig. 7 suggests the presence of

a 1:2 internal resonance between mode 1 whose frequency

f1 is such that f1(t) 2 [380�447 Hz], and modes 2 and 3

at f2¼ 859 Hz and f2¼ 880 Hz. For relatively small impact

forces, the pitch glide is not so important but it is sufficient to

make the second harmonic distortion reach the linear mode at

880 Hz [Fig. 7(b)]. As a result, a 1:2 internal resonance takes

place between the fundamental mode and the mode at 880 Hz,

and small frequency oscillations appear in both the fundamen-

tal mode and the second harmonic distortion. For high mallet

momentum [Figs. 7(c) and 7(d)], the fundamental pitch glide

is larger and a 1:2 internal resonance also takes place between

the fundamental mode and the mode at 859 Hz. Note that the

frequency oscillations are initiated in the fundamental mode

when the frequency of the second harmonic distortion (black

dot line) is equal to the frequency of the linear mode (red

dot line)—the synchronization of these two events is clearly

highlighted in Fig. 7(d). The frequency beats are more evident

by only looking at the time evolution of the fundamental

mode frequency (Fig. 13) of the spectrograms displayed in

Fig. 7. When the frequency range of mode 1 is large—that

is, when the impact force is sufficiently high—frequency beats

occur when the upward pitch glide reaches f1� 430 Hz

(impact force: 32N) and f1� 440 Hz (impact forces: 13N,

16N, and 32N). These frequency values are exactly half the

frequency values of modes 2 and 3.

Strikingly, this result is observed regardless of the

impact force, providing that it allows a pitch glide in the range

460�449 Hz. If the fundamental pitch glide of the mallet

strikes performed in experiment B [Fig. 14(a)] are selected in

the PLL frequency range 443�449 Hz [Fig. 14(b)], and are

then time-synchronized and merged [Fig. 14(c)], then perfect

synchronous frequency oscillations can be observed between

them. Figure 14(c) also shows the frequency glide of the same

nonlinear mode in the case of experiment A (single nonlinear

mode excitation, solid black line). Contrary to the playing situ-

ation of experiment B, the frequency-time dependence of the

fundamental mode in experiment A does not display any
FIG. 13. Instantaneous frequency of the fundamental mode of the signals

whose spectrograms are displayed in Fig. 7.

FIG. 14. (a) Pitch glides of the fundamental mode for the mallet strikes per-

formed in experiment B. (b) Selection of the pitch glides in the frequency

range 443�449 Hz. (c) Results of the temporal synchronization of the pitch

glides displayed in (b). The nonlinear mode pitch glide of experiment A

(single nonlinear mode excitation, black line) is also plotted.
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frequency oscillations. This last result clearly highlights the

limitation of a single nonlinear mode modeling for the descrip-

tion of the frequency-time dependency (pitch glide) in playing

situation.

B. Simulations

The effect of internal resonances on the pitch glide are

qualitatively investigated using a simulation of a two degree-

of-freedom system coupled with quadratic nonlinear terms. A

cubic term is added to the first oscillator in order to reproduce

the pitch glide phenomenon, and modal viscous damping is

assumed here. The normal form of a two degree-of-freedom

system with a 1:2 internal resonance (x2¼ 2x1) is13

€u1 þ 2n1x1 _u1þx2
1u1 þ ~C0u3

1 þ au1u2 ¼ 0;

€u2 þ 2n2x2 _u2þx2
2u2 þ bu2

1 ¼ 0: (10)

This two degree of freedom system aims at reproducing the

1:2 internal resonance between mode 1 and mode 2. The sec-

ond 1:2 internal resonance reported in Sec. V A and implying

mode 1 and mode 3 is not considered here for the sake of

simplicity. The first oscillator corresponds to a nonlinear

normal mode [Eq. (7)] with an added resonant quadratic cou-

pling term. The second oscillator does not have any cubic

nonlinear term because the frequency of mode 2 barely

moves, as depicted in the experimental spectrograms (Fig.

7). The two quadratic coupling terms correspond to

the resonant terms that cannot be canceled by the nonlinear

change of variables [Eq. (3)] leading to the normal form. All

other quadratic nonlinear terms have been canceled as they

are non-resonant: they do not drive one of the oscillators

close to its resonance and are therefore not important in the

system dynamics.

The simulation parameters are x1 ¼ 2p� 447rad:s�1;
x2 ¼ 2p� 859rad:s�1;n1 ¼ n2 ¼ 10�3; and ~C0 ¼�6:7� 106

mm�2s�2: The value of the linear parameter n1 is extracted

from a previous study.6 The value of ~C0 is estimated by mea-

suring the backbone curve with the vibrometer pointing at the

center of the instrument. This measure leads to a value of ~C0,

which is different from the value C0 measured in Sec. IVB, as

explained at the end of Sec. IIA. The nonlinear quadratic coef-

ficients a and b are not known a priori. An extensive presenta-

tion of the influence of a and b would be too tedious, but some

interesting values can be extracted in order to assess their influ-

ence on the system dynamics Eq. (10). When a¼b¼0, no

nonlinear coupling is present between the two oscillators, and

the system dynamics follows the traditional Duffing response.

This is confirmed by looking at the spectrograms of the simu-

lated displacement u1þu2 in Fig. 15. The influence of the non-

linear parameter a is investigated while keeping the nonlinear

parameter b to zero. If a<104mm�1s�2, no influence on the

pitch glide if observed. In Fig. 16, the spectrogram of the simu-

lated displacement u1þu2 is plotted for increasing values of a
in high vibration amplitude (pitch glide range �50Hz). One

can see that increasing the a parameter leads to a slope discon-

tinuity in the pitch glide of the fundamental mode, as noticed

in the experimental results in Figs. 6 and 7. The effect of

FIG. 15. (Color online) Spectrograms of the simulated displacement u1 þ u2, along with the instantaneous frequency of mode 1 (solid black line) and mode 2

(dash red line), and the quadratic harmonic distortion of mode 1 (black dash line, plotted by multiplying by two the frequency of mode 1). For all the spectro-

grams no coupling is present (a¼b¼ 0). Initial values u20 and u10 for u2 and u1 are such that u20¼ 5� u10. (a) u10¼ 0.05 mm, (b) u10¼ 0.30 mm, (c)

u10¼ 0.68 mm.

FIG. 16. (Color online) Spectrograms of the simulated displacement u1 þ u2 for increasing a values, with parameters b¼ 0 mm�1s�2, u10¼ 0.68 mm, and

u20¼ 5� u10. (a) a¼ 3� 104 mm�1s�2, (b) a¼ 5� 104 mm�1s�2, (c) a¼ 8� 104 mm�1s�2. Legend is the same as in Fig. 15.
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the change of the b parameter is illustrated in Fig. 17, where

spectrograms of the system response for increasing b values

are displayed. The first direct effect of the b term is to change

the behavior of the second oscillator with the source term bu2
1.

The modification of the second oscillator causes a second

effect by modifying the first oscillator response with the term

au1u2. The greater b is, the greater are the energy exchanges

between the two oscillators [Fig. 17(c)]. However, an exces-

sive increase of b also leads to a complex response in the sec-

ond oscillator, which is not the case in the experiments [see

Fig. 7(d)].

Figure 18 shows a qualitative correct choice of

a and b for the description of the experimental results:

a¼ 8� 104 mm�1s�2 and b¼ 3� 106 mm�1s�2. Note that

this choice has been empirically identified, and reproduce

the experimental results only qualitatively—for example,

the temporal duration of the pitch glide in the experiments

(Fig. 7) and in the simulations (Fig. 18) differs by a factor of

4. However, these simulations are able to reproduce the

slope discontinuity as well as the oscillations in the pitch

glide. Moreover, note that the oscillations start when the fre-

quency of the second harmonic distortion is equal to the fre-

quency of the mode at 860 Hz. This decisively points out the

role of internal resonances in the pitch glide of the gong fun-

damental mode.

VI. CONCLUSION

This paper investigates a reduced order model for the

description of the fundamental pitch glide of a Chinese opera

gong displaying an ascendant pitch glide. The study relies on the

nonlinear modes formalism and the measure of the backbone

curve and frequency-time relationship of the fundamental non-

linear mode, in free vibration regime. Two experiments were

carried out. The first experiment (experiment A) investigated a

single nonlinear mode modeling by measuring the backbone

curve and the frequency-time dependency of the fundamental

nonlinear mode alone, with no other nonlinear modes excited

during the experiment. The experimental and original protocol

combines the use of PLL setup, which is traditionally performed

in forced vibration, and free decay vibration on a nonlinear

mode manifold, which is the main idea of nonlinear phase reso-

nance testing. The second experiment (experiment B) performed

the same measurements than the first experiment, this time by

striking the gong with a mallet, allowing for a multi-modal exci-

tation that leads to internal resonances between the nonlinear

fundamental mode and higher frequency modes.

The comparison of the two experiments’ results show

that (i) in a small frequency range around the fundamental

modal frequency (�447 Hz), the single nonlinear mode model

is able to reproduce the frequency-amplitude dependency

(i.e., the pitch glide) of the fundamental mode in playing situ-

ation; (ii) the frequency-time analysis of the fundamental non-

linear mode reveals that internal resonances appear between

the fundamental mode and other linear modes. These internal

resonances happen when the frequency of the fundamental

mode, gliding upward, is the half of the frequency of two

other linear modes at 859 and 880 Hz. The energy exchanges

inherent to these resonances are highlighted by frequency

beats in the fundamental mode pitch glide. This latter result

was qualitatively demonstrated by simulating a quadratically

coupled two-degree-of-freedom system fulfilling a 1:2

FIG. 17. (Color online) Spectrograms of the simulated displacement u1 þ u2, with parameters a¼ 8� 104 mm�1s�2, u10¼ 0.30 mm, and u20¼ 5� u10. (a)

b¼ 5� 106 mm�1s�2, (b) b¼ 107 mm�1s�2, (c) b¼ 5� 107 mm�1s�2. Legend is the same as in Fig. 15.

FIG. 18. (Color online) Spectrograms of the simulated displacement u1þ u2, with parameters a¼ 8� 104 mm�1s�2, b¼ 3� 106 mm�1s�2, u20¼ 5u10. (a)

u10¼ 0.05 mm, (b) u10¼ 0.30 mm, and (c) u10¼ 0.68 mm. Legend is the same as in Fig. 15.
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resonance relationship (x2¼ 2x1); (iii) frequency shifts

appear when measuring the backbone curves; they were inter-

preted as thermal effects due to the heating of the magnet

used for the excitation. These thermal effects were

highlighted by a numerical study investigating the influence

of temperature on the fundamental mode of a clamped spheri-

cal shell. Results show that the frequency variation can be

either negative or positive, depending on the competition

between a compression effect and the curvature increase.

Finally, this study experimentally highlights the interac-

tion between the pitch glide phenomenon and internal reso-

nances in free vibration regime. It also provides the first step

for the detailed comprehension of the pitch glide in Chinese

gongs. In the case of the xiaoluo, a three modes model could

easily be determined by experimentally identifying the non-

linear coupling coefficients of each 1:2 internal resonance

that have been highlighted in the study, as previously made

for example in Ref. 12.
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