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Abstract

The current paper presents a two scale Finite Element approach (FE2),

adopting the periodic homogenization method, for fully coupled thermo-

mechanical processes. The aim of this work is to predict the overall response

of rate-dependent, non-linear, thermo-mechanically coupled problems of 3D

periodic composite structures. The material constituents implicated in the

analyses obey generalized standard materials laws, while the characteristic

equations of the problem (balance law, first law of thermodynamics) are ex-

pressed and satisfied in both microscopic and macroscopic scales. For the

numerical implementation in both scales, the finite element commercial soft-

ware ABAQUS is utilized in the framework of small strains and rotations.

A set of dedicated scripts and a specially designed Meta-UMAT subroutine

allow the connection between the macroscopic structure and the microscopic

unit cells attached to every macroscopic integration point. The two-scale fi-
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nite element framework is applied to simulate thermoelastic-viscoplastic ma-

terials of complex 3D composite structures, and its capabilities are demon-

strated with proper numerical examples. It is worth mentioning that the

proposed computational strategy can be applied for any kind of 3D periodic

microstructure and non-linear constitutive law.
Keywords: Multi-scale finite element computation, thermo-mechanical

processes, periodic homogenization, thermoelastic-viscoplastic material,

FE2 method.

1. Introduction

The increasing needs of combining high strength, ductility and durability

with light weight in many engineering applications, including the automotive

and aerospace industry, led to the growth of the use of composite materi-

als. The required composite materials should be able to be adopted in com-

plicated structures with high demands in lightness, multi-functionality and

durability. To design these structures it is essential to predict their thermo-

mechanical response, taking into account the effect of the microstructure, as

well as temperature effects arising mainly from mechanical dissipation and

thermo-mechanical coupling. To satisfy such high requirements, advanced

modelling and simulation approaches are required. These approaches consti-

tute an active area of research.

The composite materials are frequently utilized in dissipative regimes (like

plasticity, viscoelasticity or viscoplasticity) that could be coupled to damage

phenomena Aboudi (2004); Bertram and Krawietz (2012); Anagnostou et al.

(2018). Such mechanisms may be accompanied with significant temperature

2



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

change during solicitations, that influences the material and thus the struc-

tural response. This thermo-mechanical coupling is very important to be

taken into account, especially in the case of composites with thermoplastic

polymer matrix, whose operational use is in temperature ranges close to the

glass transition. Comprehensive thermo-mechanical couplings is naturally

deduced when the constitutive equations that govern the response of the ma-

terials are derived from a consistent thermo-mechanical framework Germain

(1973, 1982); Germain et al. (1983).

The scope of the present work is the prediction of the overall behavior

of heterogeneous, non linear, dissipative composite structures with periodic

microstructure. The developed framework should be equipped with fully

coupled thermo-mechanical homogenization equations and the FE2 compu-

tational scheme. Considering the pure mechanical response of composites,

numerous multiscale models for nonlinear materials have been proposed in

the literature Suquet (1987); Ponte-Castañeda (1991); Terada and Kikuchi

(2001); Meraghni et al. (2002); Yu and Fish (2002); Aboudi et al. (2003);

Aboudi (2004); Chaboche et al. (2005); Asada and Ohno (2007); Mercier

and Molinari (2009); Khatam and Pindera (2010); Kruch and Chaboche

(2011); Brenner and Suquet (2013); Mercier et al. (2012); Chatzigeorgiou

et al. (2015); Charalambakis et al. (2018). In the study of periodic com-

posite materials, the FE2 technique appears to be an appropriate solution

strategy to identify the macroscopic response of the structure, accounting

for all the mechanisms observed in the heterogeneous microstructure (Feyel

and Chaboche, 2000; Nezamabadi et al., 2010; Asada and Ohno, 2007; Tikar-

rouchine et al., 2018; Xu et al., 2018). However, very few works have been
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dedicated to thermo-mechanical coupling in the framework of FE2 strategy.

Indeed, most publications in the literature on periodic homogenization focus

on purely mechanical or uncoupled thermo-mechanical problems. Özdemir

et al. (2008b) proposed a multiscale uncoupled thermo-mechanical scheme as

an extension of the purely thermal FE2 solution, presented in Özdemir et al.

(2008a). Chatzigeorgiou et al. (2016), have proposed a fully coupled homoge-

nization framework, particularly suited for nonlinear dissipative composites.

It has been applied to study laminate periodic composite structures using a

closed form solution of the homogenization equations. Applications of fully

coupled thermo-mechanical FE2 schemes, based on the homogenization the-

ory, have been presented for shape memory alloy (Sengupta et al., 2012) and

2D thermo-viscoplastic composites (Berthelsen et al., 2017).

The novelty and originality of the present work is the development of a

fully coupled 3D thermo-mechanical homogenization framework, considering

small deformations, through the FE2 scheme, using the commercial Finite El-

ement software ABAQUS/Standard. The proposed approach addresses the

non-linear material response of composite structures in a general manner, in-

dependently of the type of constitutive laws, allowing different types of inelas-

tic material behaviors of the composite’s constituents. Illustrative numerical

applications consider thermoelastic-viscoplastic material constituents. The

described strategy, based on the concept of periodic homogenization, iden-

tifies the macroscopic behavior at each macroscopic integration point by at-

taching a periodic unit cell to it and solving the microscopic balance laws.

The unit cell includes the material and geometrical characteristics of the

different constituents (fiber, matrix) in the microstructure. Accordingly, a
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multilevel finite element analysis has been introduced, using an implicit reso-

lution scheme that integrates the return mapping algorithm to solve the local

constitutive equations.

The layout of the paper is as follows: in section 2, the theoretical for-

mulation of the homogenization theory, accounting for fully-coupled thermo-

mechanical processes is described, as well as the scale transition between the

microscopic and the macroscopic fields. In section 3, the numerical implemen-

tation of the iterative process is detailed for a general 3D non-linear problem,

including the computation of all the thermo-mechanical tangent operators.

The section also discusses briefly the rate dependent constitutive law consid-

ered for the matrix phase of the numerical examples. In section 4, the multi

scale FE2 algorithm for the fully coupled thermo-mechanical problem is pre-

sented. The capabilities of the strategy are demonstrated through simulating

the thermo-mechanical response of a 3D complex structure under different

thermo-mechanical loading paths. The numerical analysis demonstrates that

this approach is capable of rendering accurately the coupled response of non-

linear, time dependent, multiscale composite structures utilizing commercial

finite element analysis packages.

1.1. Notation

The following notation is adopted in this manuscript: the bar (•) above a
symbol denotes macroscopic fields. Bold characters denote vectors or second

order tensors, blackboard characters are used for fourth order tensors and

regular characters represent scalar quantities. The single, twice contracted
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and dyadic products are expressed as:

a · b = aibi, (A · b)i = Aijbj, (A ·B)ij = AikBkj,

A : B = AijBij, (A : B)ij = AijklBkl, (A⊗B)ijkl = AijBkl. (1)

In addition, the special tensorial products are defined

(A :̃ B)ijkl = AijmnBklmn, (A ·̃ B)ij = AikBjk. (2)

All the second order tensors considered in the manuscript are found to be

symmetric (Aij = Aji) and all the fourth order tensors posses at least the

minor symmetry (Aijkl = Ajikl = Aijlk). Consequently, all second and fourth

order tensors can be respectively reduced to 6×1 and 6×6 matrices according

to the Voigt notation. The operators hyd (σ) and dev (σ) denote respectively

the hydrostatic pressure and the deviatoric part of the stress tensor σ, and

eq (σ) is the equivalent Von Mises stress:

hyd (σ) =
1

3
tr (σ) , dev (σ) = σ − hyd (σ) I,

eq (σ) =

√
3

2
(dev (σ) : dev (σ)).

(3)

Finally, I and I correspond to the second and fourth order identity tensors

respectively.

2. Theoretical background and scale transition principles in com-

posites under thermo-mechanical processes

The homogenization of periodic media describes the composite as a two

scale problem (micro and macro). At the macroscopic level, the deformable

body occupies the volume V and is bounded by the surface ∂V with the
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outward unit vector n. Each macroscopic point is assigned with a position

vector x in V and is connected with a unit cell. At the microscopic level,

the material is considered as heterogeneous and the unit cell contains in-

formation about the different constituents and their geometry. The defined

periodic unit cell occupies the volume V and is bounded by the surface ∂V

with the outward unit vector n. Each microscopic point is assigned with a

position vector x in V . The two vectors x and x are connected through the

relation x = x/ε, where ε is the characteristic length of the microstructure.

According to the periodic homogenization theory, the separation of the over-

all problem in two scales provides accurate results as long as the characteristic

length is close to zero, i.e. the characteristic volume of the unit cell is much

smaller than the characteristic volume of the structure
(
V << V

)
(Figure 1).

From a practical standpoint, the minimum acceptable difference (for the va-

lidity of the proposed approach) between the size of RVE and the size of the

macrosctructure depends on two factors: (i) the variation in the boundary

conditions, which is related to the characteristic length of the phenomena,

and (ii) the contrast in the material properties of the RVE’s constituents,

corresponding to the characteristic length of the microstructure. For more

details see Bensoussan et al. (1978); Sanchez-Palencia (1978); Allaire (1992);

Murat and Tartar (1997).

The homogenization theory seeks to identify the macroscopic response at

each macroscopic point x, by computing the macroscopic thermo-mechanical

fields, using information from their microscopic counterparts. This goal is

achieved by introducing proper scale transition rules between the micro and

the macro scale variables. According to the average theorems, when uniform

7



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Figure 1: Schematic representation of the homogenization computational.

stress, strain, temperature gradient or heat flux is applied at the unit cell

boundaries, the average (in the unit cell volume) microscopic corresponding

field is equal to the applied field (Chatzigeorgiou et al., 2018). Such average

fields represent the macroscopic stress, strain, temperature gradient and heat

flux respectively (Hill, 1967). The relationships between the fields at the two

scales are given by the following equations:

σ = 〈σ〉 =
1

V

∫

V

σ dV =
1

V

∫

∂V

σ · n⊗ x dS, (4)

ε = 〈ε〉 =
1

V

∫

V

ε dV =
1

2V

∫

∂V

(u⊗ n+ n⊗ u) dS, (5)

∇θ = 〈∇θ〉 =
1

V

∫

V

∇θ dV =
1

V

∫

∂V

θn dS, (6)

q = 〈q〉 =
1

V

∫

V

q dV =
1

V

∫

∂V

(q · n)x dS. (7)

In the above expressions σ, ε, σ and ε represent the microscopic and the

macroscopic stress and strain tensors respectively, while ∇θ, q, ∇θ and q
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denote the microscopic and the macroscopic temperature gradient and heat

flux respectively. Moreover, u is the microscopic displacement vector. The

operator 〈•〉 corresponds to the mean (average) value of a microscopic field.

The motions of any macroscopic and microscopic material point M (x)

and M (x,x) respectively are governed by the macroscopic and the micro-

scopic equations shown in Table 1. In this Table, e and e = 〈e〉 are the mi-

croscopic and the macroscopic internal energy per unit volume respectively,

ρb and ρR denote the macroscopic body forces and heat sources respectively.

Moreover, η and η = 〈η〉 denote the micro and macroscopic specific entropy.

It is noted that the temperature θ appears only with its macroscopic value,

i.e. a unit cell corresponding to a macroscopic point is considered to be sub-

jected to uniform (macroscopic) temperature. This condition arises by the

zeroth order asymptotic expansion homogenization theory and its application

to the thermodynamics principles (Chatzigeorgiou et al., 2016, 2018).
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Table 1: Macroscopic and microscopic scale transition Chatzigeorgiou et al. (2016). The

scalars e and e denote microscopic and macroscopic internal energy respectively, while ρb

are the macroscopic body forces per unit volume.

Equations Macro-scale Micro-scale

∀x ∈ V ∀x ∈ V , ∀x ∈ V

Energy rate term r r = σ : ε̇− ė = 〈r〉 r = σ : ε̇− ė

Equilibrium div (σ) + ρb = 0 div(σ) = 0

Energy balance r − div (q) + ρR = 0 div (q) = 0

Kinematics ε = gradsym (u) ε = gradsym (u)

Constitutive law σ ≡ σ
(
x, ε, θ

)
σ ≡ σ

(
x, θ,x, ε

)

Strain energy rate Ẇ ε = σ : ε̇ Ẇε = σ : ε̇

Entropy inequality θη̇ + r − q

θ
·∇θ ≥ 0 θη̇ + r − q

θ
·∇θ ≥ 0

The following subsections of this section describe in a more precise manner

the fully-coupled thermo-mechanical problem in the two scales, the macro-

scopic and the microscopic.

2.1. Macroscopic problem

The deformable body V presented in Figure 1 is subjected to thermo-

mechanical conditions at the boundary surface of the body ∂V . Neglecting

inertia effects, the conservation of linear momentum and the energy balance
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equation are written at the macroscopic scale as

div (σ) + ρb = 0, (8)

r − div (q) + ρR = 0. (9)

Moreover, the kinematics and temperature gradient relations state that

ε = gradsym(u) in V . (10)

∇θ = grad(θ) in V . (11)

The conservation laws are generally accompanied by Dirichlet type, Neumann

type or mixed thermo-mechanical boundary conditions: Generally speaking,

prescribed displacement uprescribed can be applied on the surface ∂V EB, exter-

nal traction t can be imposed on the surface ∂V NB, prescribed temperature

θ
prescribed can be considered on the surface ∂V θB and external heat flux scalar

qs can be applied on the surface ∂V QB,




u = uprescribed on ∂V
EB
,

σ · n = t on ∂V
NB
,

θ = θ
prescribed on ∂V

θB
,

−q · n = qs on ∂V
QB
.

(12)

The previously defined surfaces are parts of the overall boundary surface ∂V ,

satisfying the conditions

∂V
EB ∪ ∂V NB

= ∂V , (13)

∂V
θB ∪ ∂V QB

= ∂V . (14)
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If convection is considered (Robin type boundary conditions), then a mixed-

type of thermal boundary condition, of the form

qc = hc
(
θ0 − θ

)
, (15)

can be assigned to a part of the boundary surface. In the last relation,

qc =
Q̇

A
is the prescribed heat flux, with Q̇ denoting the heat transferred

per unit time and A denoting the heat transfer area of the surface. hc is

the convective heat transfer coefficient of the process, which is a quantitative

characteristic of the heat transfer between a fluid medium and the surface

flowed over by the fluid. Moreover, θ0 and θ are the temperatures of the

surrounding fluid and the solid surface respectively.

2.2. Microscopic problem

As already mentioned previously, a periodic unit cell is assigned at ev-

ery macroscopic point, accounting for the geometrical and material charac-

teristics of the microstructure. As defined by the zeroth order asymptotic

expansion theory, at such unit cells the microscopic equilibrium equation is

solved considering constant macroscopic temperature at every point of the

unit cell. The energy rate term r and the thermomechanical tangent moduli

are also identified for the same macroscopic temperature. Considering the

pure thermal problem, the microscopic energy balance is reduced to steady

state heat conduction equation. In that sense, the coupled thermomechani-

cal and the pure thermal problems can be treated separately (Chatzigeorgiou

et al., 2016). Mathematically speaking, the underlying hypothesis behind this

condition is that the temperature converges strongly to a specific value, en-

forcing a uniform value (equal to the macroscopic temperature) at the unit

12
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cell corresponding to a macroscopic point. On the other hand, the gradi-

ent of the temperature converges weakly, which implies that the microscopic

temperature gradient varies inside the periodic unit cell and its average value

can be defined as the macroscopic temperature gradient at the macroscopic

point Chatzigeorgiou et al. (2018).

A way to relax this uncoupling for the microscopic problem is to employ

higher order homogenization theories. In that way, one can also account for

the size effects. While mathematically such approach is valid (see for instance

Dong et al., 2017 for thermoelastic materials), the thermodynamic implica-

tions are not fully clear. The second order homogenization in composites with

purely mechanical response introduces macroscopic strain gradients that en-

ter directly into the overall constitutive behavior Kouznetsova et al. (2002).

This behavior is compatible with existent thermodynamic frameworks Forest

(2009). On the other hand, the second order theory for thermo-mechanically

coupled processes introduces additional dependence of the stress on the tem-

perature gradient Dong et al. (2017). From a physical point of view such

relation is problematic and is not allowed in existent thermodynamic theo-

ries accounting for internal variables Coleman and Gurtin (1967); Germain

et al. (1983).

In this work the zeroth order homogenization theory, as described in

Chatzigeorgiou et al. (2016), is utilized. The assumption θ = θ, adopted in

that work, predicts thermal strains which are in full agreement with estab-

lished techniques in the micromechanics community (for instance, the well

known and widely utilized Levin’s formula for computing the thermal ex-

pansion coefficients tensor of a composite), as well as with other periodic

13
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homogenization studies in the cases of thermoelasticity Ene (1983); Temizer

(2012) and thermoviscoelasticity Yu and Fish (2002).

It is worth mentioning that the proposed micro-macro temperature relation

allows to establish a macroscopic representation of the second law of ther-

modynamics, as illustrated in Chatzigeorgiou et al. (2016). A more relaxed

micro-macro temperature relation, as the one proposed by Sengupta et al.

(2012), does not provide a clear definition for the macro-entropy and a macro-

scopic representation of the dissipation due to heat conduction. It should be

also noted that the homogenization framework obtained by the zeroth order

asymptotic expansion method does not account for size effects, i.e. the size

of the RVE does not influence the macroscopic response. Size effects may

appear either due to not sufficiently small microstructure or due to instability

related phenomena, like strain localization, interphase debonding etc. Under

these conditions strain gradient effects may be quite important and should

be taken into account through higher order homogenization theories.

Microscopic coupled thermo-mechanical problem

At each macroscopic point, the corresponding unit cell serves at identify-

ing the microscopic variables whose average values provide the macroscopic

fields. In the mechanical part of the problem, the microscopic stress is evalu-

ated through the microscopic equilibrium equation, in which the macroscopic

strain and temperature are used as input data. Once the microscopic me-

chanical problem is solved, the macroscopic stress is evaluated by averaging

the microscopic stresses over the unit cell. As additional information one

obtains also the macroscopic energy rate term r, which is equal to the aver-

age value of its microscopic counterparts. The energy rate term r depends

14
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exclusively on variables linked with the stress, the strain and the absolute

temperature, thus it can be computed once the microscopic equilibrium is

solved. Information about the microscopic temperature gradients are ob-

tained from the microscopic pure thermal problem and they are not required

at this stage.

The microscopic equilibrium system is solved under uniform macroscopic

temperature θ and periodic displacement boundary conditions. The peri-

odicity condition implies that the displacement field u of any microscopic

material point located in the position vector x is described by an affine part,

plus a periodic fluctuation ũ,

u (x,x, t) = ε (x, t) · x+ ũ (x,x, t) . (16)

The periodic fluctuating part ũ takes the same value on each pair of opposite

parallel sides of the unit cell. The strain average produced by ũ is null.

However, the total microscopic strain average is equal to the macroscopic

strain:

ε (u) = ε+ ε (ũ) , (17)

〈ε (ũ)〉 =
1

V

∫

V

ε (ũ) dV = 0, (18)

〈ε (u)〉 = ε + 〈ε (ũ)〉 = ε. (19)

In addition, the traction vector σ.n is anti periodic. The microscopic equi-

librium is free of body forces and the complete mechanical system of equations

15



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

is formulated as follows:




div
(
σ
(
x, θ,x, ε

))
= 0 ∀x ∈ V ,

σ = F
(
x, θ,x, ε

)
∀x ∈ V ,

θ = θ ∀x ∈ V ,

u i − u j = ε · (xi − xj) ∀x ∈ ∂V .

(20)

In the boundary condition (20)4, ui and uj are the displacement vectors at

the positions xi and xj respectively, which define a pair of parallel opposite

material points on the unit cell boundary. The solution of the above system

of equations using incremental approach is detailed in section 3.

Pure thermal problem: macroscopic thermal conductivity

The zeroth order homogenization theory reduces the microscopic energy

balance to the steady state heat conduction equation

div
(
q
(
x, θ,x

))
= 0, with q = −κ ·∇θ, ∀x ∈ V . (21)

Frequently in solids the thermal conductivity tensor κ is considered constant,

independent of the temperature. The energy balance equation (21) is solved

under periodic temperature conditions. The periodicity assumption implies

that the temperature field θ is equal to the sum of a macroscopic part ∇θ

and a periodic fluctuation part θ̃.

θ (x,x, t) = ∇θ (x, t) · x+ θ̃ (x,x, t) . (22)

The periodic fluctuation part takes the same value at each parallel opposite

point on the unit cell boundary. By applying the gradient operator, equation

(22) gives

∇θ = ∇θ + ∇̃θ. (23)
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Averaging (23) yields equation (6). As an additional constraint, the heat flux

vector −q · n should be anti periodic.

The microscopic energy balance in the form of (21) is a linear problem

that can be solved once in order to provide the macroscopic thermal conduc-

tivity tensor κ. Indeed, substituting equation (23) in (21) gives

div
(
κ ·
(
∇θ + ∇̃θ

))
= 0. (24)

Assuming that the macroscopic temperature gradient ∇θ is known, the solu-

tion of the above homogeneous equation is written under the following form

θ̃ = ψθ ·∇θ, (25)

where the vector ψθ is periodic and is called the corrector vector. Substitut-

ing (25) in (24) yields

∇θ div
([
κ+ κ ·̃ ∇ψθ

]T)
= 0. (26)

The last expression must be satisfied for any arbitrary value of the macro-

scopic variable ∇θ. This implies that the corrector vector has to satisfy the

linear equation

div
([
κ+ κ ·̃ ∇ψθ

]T)
= 0. (27)

With the help of equations (23) and (25), the heat flux (21)2 is written as

q = −κ ·Aκ ·∇θ, (28)

where

Aκ = I +
[∇ψθ

]T
. (29)
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Averaging the last expression over the unit cell and assuming that the macro-

scopic heat flux is expressed by a similar constitutive law with its microscopic

counterpart,

q = −κ ·∇θ, (30)

yields the macroscopic thermal conductivity tensor κ,

κ = 〈κ ·Ak〉. (31)

While the present article examines composites with constant thermal conduc-

tivities at the constituents of the microstructure, the proposed framework

allows to adopt temperature varied thermal conductivities. In such case,

the condition θ = θ of the zeroth order asymptotic expansion homogeniza-

tion theory enforces to consider that the microscopic thermal conductivities

should be expressed as functions of the macroscopic temperature.

The microscopic pure thermal problem is linear and no iterative procedure

is required for its solution. The numerical computation of the macroscopic

thermal conductivity is discussed in section 4.

3. Numerical implementation: iterative process and tangent oper-

ators

The resolution of the fully coupled thermo-mechanical homogenization

framework for composites consisting of generalized standard dissipative ma-

terials requires robust numerical procedure. Before proceeding to the nu-

merical schemes, the following definitions of increments and iterations are

introduced:
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In incremental schemes for nonlinear materials, the variable of time is dis-

cretized in various steps. Usually the time discretization follows a backward

Euler numerical procedure. During a time step, a nonlinear system of equa-

tions is solved iteratively. Within time step, iterations are usually necessary

to find the correct values that satisfies the system of equations. Thus, two

notations need to be defined:

• The symbol ∆ before a variable denotes the time increment of the

variable between two consecutive time steps. The updated value of the

variable φ is expressed from the previous time step n by the relation

φn+1 = φn + ∆φ.

• The symbol δ before a variable denotes the iteration increment of the

variable at a specific time increment. The current values of the variable

φ and its time increment ∆φ are updated from iteration k to iteration

k + 1 per
φ(n+1)(k+1) = φ(n+1)(k) + δφ,

∆φ(n+1)(k+1) = ∆φ(n+1)(k) + δφ.

An additional complexity of the homogenization procedure compared to

standard homogeneous materials is that the solution of the unit cell problem

strongly depends on the numerical solution of the macroscopic analysis and

vise versa in a coupled way. In other words, the problems in the two scales

(macroscopic and microscopic) should be solved simultaneously, through it-

erative schemes. Indeed:

• The unit cell problem at every macroscopic point is utilized for the

evaluation of the macroscopic stress σ, the macroscopic energy rate
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term r and the macroscopic thermomechanical tangent moduli (defined

later in this section). These quantities are computed through finite

element calculations considering periodicity displacement conditions at

the unit cell.

• The macroscopic analysis feeds back the microscopic problems with

the updated time increments of the macroscopic strain ∆ε and the

temperature ∆θ, as well as the history of all macroscopic fields.

The numerical solution steps and the iterative procedures are described in

the next subsections for both scales.

3.1. Macroscopic problem

The balance laws, kinematics and boundary conditions at the macro-

scopic scale, expressed by (8)-(11), (12) and/or (15), should be accompanied

with a macroscopic constitutive laws to be able to find the solution. For the

case of nonlinear materials and especially in nonlinear homogenization pro-

cedures, analytical expressions for the constitutive response are very seldom

and usually only incremental formalisms can be provided. At a specific time

increment, the macroscopic stress (σ) and energy rate term (r) iteration in-

crements are linked with the iteration increments of the macroscopic strain

(ε) and temperature (θ) through the relations

δσ = Dε
: δε+D

θ
δθ, δr = R

ε
: δε+R

θ
δθ, (32)

where

δε = gradsymδu. (33)
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In the above expressions Dε, Dθ, Rε and R
θ are the thermo-mechanical

macroscopic tangent operators. These operators are computed at every

macroscopic point and at every macroscopic iteration increment from the

resolution of a unit cell problem. This problem is described in the next sub-

section. The final constitutive relation, connecting the iteration increments

of the macroscopic heat flux and the macroscopic temperature gradient is

δq = −κ ·∇δθ, where ∇δθ = grad δθ. (34)

It is recalled that the macroscopic thermal conductivity tensor is considered

constant and is computed once from equation (31). With the help of these

increments, the stress, the energy term and the heat flux are iteratively

updated through the linearized expressions

σ(n+1)(k+1) = σ(n+1)(k) + δσ, r(n+1)(k+1) = r(n+1)(k) + δr,

q(n+1)(k+1) = q(n+1)(k) + δq = −κ · (∇θ
(n+1)(k)

+ ∇δθ). (35)

The values of σ and r at every macroscopic point and iteration increment

are provided by the solution of the microscopic unit cell problem, which is

explained in details in the next subsection.

With the updated values, the equilibrium (8) and energy balance (9)

equations are written as

divσ(n+1)(k+1) + ρb = 0,

r(n+1)(k+1) − divq(n+1)(k+1) + ρR = 0. (36)

The latter linearized system of equations accepts only the iteration incre-

ments of the displacements δu and the temperatures δθ as unknowns. Its
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resolution provides eventually the time increments of the macroscopic strains

∆ε and the temperature ∆θ at the complete macrostructure. These time in-

crements and the previous state of all macroscopic fields are the basic input

to the unit cells attached to every macroscopic point.

Equations (36) are solved iteratively until δu and δθ at every macroscopic

point converge with a predefined tolerance.

3.2. Unit cell problem

Having obtained the history of the macroscopic fields, as well as the time

increments of the macroscopic strains and temperature at a macroscopic

point, its attached unit cell is solved separately in two parts: The first part

is devoted to the computation of the macroscopic stress σ and the energy rate

term r and the second part is dedicated to the calculation of the macroscopic

tangent operators.

First part of unit cell problem: macroscopic stress

In the first part, the microscopic mechanical system of equations (20) is

solved for the time step tn+1 under uniform temperature θ(n+1)
= θ

n
+ ∆θ,

by using as additional input the macroscopic strain εn+1 = εn + ∆ε and the

values of all fields (macroscopic and microscopic) at the previous time step tn.

It is noted that the exponents n+ 1 and n denote quantities defined at time

steps tn+1 and tn respectively. In a return mapping algorithmic scheme, the

strain and temperature do not evolve with iterations, since these are provided

as input from the finite element solution of the balance equations (here they

are computed from the macroscopic analysis). In that sense, δε = 0 and

δθ = 0.
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The microscopic stress tensor at the time step n+ 1 can be expressed in

linearized form as follows:

σ(n+1)(k+1) = σ
(
x, θ

n+1
,x, ε(n+1)(k)

)
+ Dε : gradsymδu, (37)

where ε is the microscopic strain computed in the previous microscopic it-

eration step and Dε denotes the fourth order mechanical tangent operator

tensor. The microscopic stress σ and the microscopic thermomechanical tan-

gent moduli are obtained through the constitutive law of the material under

consideration. In finite element programs like ABAQUS the constitutive law

is numerically defined with the help of a user material (UMAT) subroutine.

Algorithmic structures of such subroutines for various types of constitutive

laws are presented in Chatzigeorgiou et al. (2018).

Combining all the above expressions, the mechanical system (20) is writ-

ten in the linearized form as



divσ(n+1)(k+1) = 0 ∀x ∈ V ,

u i − u j = εn+1 · (xi − xj) ∀x ∈ ∂V .
(38)

The latter is a linearized system with unknown displacement increment δu

and it has a unique solution as long as Dε is positive definite. Equation (38)

is solved iteratively, until δu at every microscopic point converges to a pre-

defined tolerance. Once the convergence is achieved, the computation of the

microscopic displacements u, strains ε and stresses σ follows. Additionally,

one can also compute the microscopic energy rate term r at every unit cell

point, without passing to the energy balance equation. Consequently, the

macroscopic stress σ and the macroscopic energy rate term r are computed

by averaging their microscopic counterparts.
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It is noted that the computation of the microscopic heat flux q is not

required for the macroscopic analysis, since the macroscopic thermal con-

ductivity κ is constant for specific unit cell geometric and material charac-

teristics.

Second part of unit cell problem: tangent operators

The second part is dedicated to the calculation of the macroscopic tan-

gent operators. For this part of the analysis, the macroscopic strain and

temperature iteration increments are assumed non-zero. In that case, the

iteration increments of the microscopic stress and of the energy rate term r

are expressed as

δσ = Dε : δε+Dθ δθ, δr = Rε : δε+Rθδθ, (39)

where

δε = δε+ gradsymδũ. (40)

The microscopic thermo-mechanical tangent operators Dε,Dθ,Rε andRθ are

instantaneous tangent tensors that are calculated at the end of the iterative

procedure of the first part of the unit cell problem. Thus, in the second part

they are considered constant and the microscopic equilibrium

div (δσ) = 0, (41)

or (after combining equations (41) and (39))

div
(
Dε : δε+Dθ δθ + Dε : gradsymδũ

)
= 0, (42)

is a linear problem with periodic boundary conditions in terms of δũ. Its

solution can be written in the form (Ene, 1983)

δũ = δε : χε + δθ χθ. (43)
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In the latter expression, the third order tensor χε and the vector χθ are

periodic and are called corrector terms. Substituting equation (43) in (42)

yields

δε : div
(
[Dε + Dε :̃ gradχε]T

)
+ δθ div

(
Dθ + Dε : gradχθ

)
= 0. (44)

The above homogeneous equation has a solution for arbitrary values of the

macroscopic variables δε and δθ only if the corrector terms satisfy the linear

equations

div
(
[Dε + Dε :̃ gradχε]T

)
= 0, div

(
Dθ + Dε : gradχθ

)
= 0. (45)

From this linear uncoupled system one obtains gradsymχε and gradχθ. Us-

ing equations (43), the increments of the microscopic fields are written in the

following form

δε = Aε : δε+Aθδθ,

δσ = Dε : Aε : δε+ [Dθ + Dε : Aθ]δθ,

δr = Rε : Aε : δε+ [Rθ +Rε : Aθ]δθ, (46)

where

Aε = I + I :̃ gradχε, Aθ = gradsymχ
θ. (47)

Averaging (46)1,2 over the unit cell volume yields that the macroscopic thermo-

mechanical tangent operators are given by the expressions

Dε
= 〈Dε : Aε〉, D

θ
= 〈Dθ + Dε : Aθ〉,

R
ε

= 〈Rε : Aε〉, R
θ

= 〈Rθ +Rε : Aθ〉. (48)

The above described incremental iterative procedure for the two parts of

the microscopic unit cell problem requires a well designed constitutive law
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for each material phase of the microstructure. In general, this constitutive

law, implemented in the form of a return mapping algorithm scheme, should

provide i) the stress σ and the internal state variables for given strain ε and

temperature θ and ii) the thermo-mechanical tangent operators Dε, Dθ, Rε

and Rθ.

Without loss of generality, the studied examples in this manuscript con-

sider two types of constitutive response: thermoelastic for the fibers and

thermoelastic-viscoplastic with isotropic hardening for the matrix phase.

While the numerical implementation details are not shown here, still for

the reader’s convenience the essential points of the matrix material behavior

are briefly discussed in the following subsection.

3.3. Thermoelastic-viscoplastic behavior with isotropic hardening

The thermoelastic-viscoplastic constitutive law chosen for the matrix phase

of the studied examples is formulated in the context of small deformations

and small rotations theory. In this framework the total strain ε is additively

decomposed into an elastic part εe, a viscoplastic part εp and a thermal part

εth:

ε = εe + εp + εth, εth = α
(
θ − θi

)
, (49)

where α is the second order thermal expansion coefficient tensor and θi is

the initial temperature. From a thermodynamical point of view, the state

laws for a generalized standard material are obtained by differentiating the

Helmholtz free energy potential with respect to the state variables. The cho-

sen state variables for the constitutive law in discussion are the total strain ε,

the temperature θ, and the internal state variables Vk that consist of the vis-

coplastic strain εp and the effective viscoplastic strain p. The Helmholtz free
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energy potential corresponding to a thermoelastic-viscoplastic material with

isotropic hardening takes the form Lemaitre and Chaboche (1990); Praud

et al. (2017); Chatzigeorgiou et al. (2018)

ψ = ψ (ε, θ,Vk) = ψ (ε, θ, εp, p)

=
1

2

[
ε− εp −α(θ − θi)

]
: Ce :

[
ε− εp −α(θ − θi)

]
︸ ︷︷ ︸

ψe

+ c0

[(
θ − θi

)
− θ ln

(
θ

θi

)]
− η0θ + e0

︸ ︷︷ ︸
ψth

+

∫ p

0

R(p′)dp′

︸ ︷︷ ︸
ψvp

. (50)

In the above potential, Ce denotes the elastic fourth order tensor, c0 is the

specific heat capacity per unit volume at constant pressure. Moreover, η0

and e0 are the initial entropy and the internal energy respectively. Finally,

R(p) is the hardening function related to the viscoplasticity, chosen here in

the power law form

R (p) = Kpn, (51)

where K and n are hardening related material parameters. Following the

classical procedure, derivatives of the Helmholtz free energy potential are

used to identify the associated forces to the thermodynamic variables. Table

2 summarizes the various variables implicated to the thermodynamic descrip-

tion of the constitutive law. According to the second principle of thermo-

dynamics, the dissipation is always positive or null. For this material, the

mechanical and thermal dissipations are assumed decoupled and viscoplas-

ticity is the only mechanism that stores energy permanently. From the usual

thermodynamic arguments, the mechanical (local) dissipation is eventually
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Table 2: State and evolution laws

Observable state Associated

variables variables

ε σ =
∂ψ

∂ε
= Ce : (ε− εp −α(θ − θi))

θ η = −∂ψ
∂θ

= α : σ + c0 ln

(
θ

θi

)
+ η0

Internal state Associated Evolution

variables variables laws

p R =
∂ψ

∂p
= R (p) ṗ = −∂F

∂R
λ̇ = λ̇

εp −σ =
∂ψ

∂εp
ε̇p =

∂F

∂σ
λ̇ =

3

2

dev(σ)

eq(σ)
ṗ

expressed as

Φ̇ = σ : ε̇p − Rṗ ≥ 0. (52)

Moreover, the evolution laws for εp and p are obtained from a yield-type

criterion

F (σ, R) = eq(σ)−R−R0, (53)

through the classical normality rule. In the latter expression, eq(σ) denotes

the von Mises equivalent stress and R0 is the elasticity threshold. The evo-

lution equations of the internal state variables are summarized in Table 2.

Due to the viscoplastic nature of the material, the criterion F is not similar
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to the one used in plasticity, i.e. always negative or zero. Instead, it satisfies

the following relation

{F }+ = Q (ṗ) , Q (ṗ) = Hṗm, (54)

where { • }+ are the Macaulay brackets andH,m are viscous related material

parameters.

The above constitutive law for thermoelastic-viscoplastic material is well

established in the literature (Lemaitre and Chaboche, 1990). Its numerical

implementation through a return mapping algorithm scheme (convex cutting

plane) and the identification of its continuum tangent operators Dε,Dθ,Rε

and Rθ are discussed in detail in Chatzigeorgiou et al. (2016, 2018).

4. Multiscale FE2 computation of fully coupled thermo-mechanical

problem

To predict the macroscopic behavior of a composite structure while tak-

ing into account the effect of the microstructure and the thermo-mechanical

couplings, a homogenization scheme within the framework of FE2 technique

has been implemented. The framework extends the approach developed in

Tikarrouchine et al. (2018), by accounting the thermal part of the homoge-

nization problem, as discussed in the previous section. At the macroscopic

level the material is assumed as a homogenized medium subjected to appro-

priate thermo-mechanical boundary conditions. The response of any macro-

scopic point is obtained through the solution of a coupled thermo-mechanical

microscopic problem, using periodic boundary conditions.

The algorithm of the two-scale finite element framework for the non-

linear thermo mechanical analysis, implemented in ABAQUS/Standard, is

29



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

summarized in Figure 2. The computation of the thermo-mechanical tangent

operators are described below:

Computation of thermo-mechanical tangent operators

The periodic boundary conditions in the unit cell can be numerically

applied by using the concept of the constraint drivers. This technique in-

troduces six constraint drivers as additional degrees of freedom that allow

to apply any state of macroscopic stress, strain or even mixed stress/strain

on a periodic finite element unit cell (see (Li, 1999; Shuguang and Anchana,

2004)). These degrees of freedom are linked to the unit cell through the kine-

matic equation (20)4. The assigned displacement on these degrees of freedom

represent macroscopic strains, as explained in detail in Tikarrouchine et al.

(2018).

To obtain the thermo-mechanical tangent operators, seven loading cases

are performed at the microscopic level (Figure 3). The microscopic tangent

operators at every point of the unit cell obtained at the end of the stress field

computations are utilized in these analyses and they are considered con-

stant. At first, six mechanical-type loading cases are carried out, in which

elementary strain states (one component equal to 1 and the rest zero) are

assigned at the constraint drivers. In each loading case, the forces gener-

ated at the constraint drivers divided by the volume represent a column of

the macroscopic tangent operator Dε (Tikarrouchine et al., 2018), while the

strains at every microscopic point represent a column of the concentration

tensor Aε. Assembling the results of the six mechanical cases and using the

formula (483), the macroscopic operators Dε and Rε are obtained. In the

seventh thermal-type loading case, zero displacement is considered at the
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initialization

- Apply the PBCs on the unit cell.

- Compute the macro thermal

conductivity κ.

- Compute the initial macro tangent

operators Dε,Dθ
,R

ε
, R

θ
.

Macro-level

- Solve the macro

problem.

- Get the macro strain

time increment ∆εn+1.

- Get the macro

temperature time

increment ∆θn+1.

Micro-level

- Compute the local fields

σ, r,Vk.

- Compute the local

tangent operators

Dε,Dθ,Rε, Rθ.

- Compute the macro

fields σ, r, q.

- Compute the macro

tangent operators

Dε,Dθ
,R

ε
, R

θ
using

Aε,Aθ.

Global

check

convergence

Next time

increment

n=n+1

Update all fields:

σ, r,Vk,Dε,Dθ,Rε, Rθ,

σ, r, q,Dε,Dθ
,R

ε
, R

θ
.

Dε,Dθ
,κR

ε
, R

θ

∆θn+1

∆εn+1

σ, r, q

Dε,Dθ
,

R
ε
, R

θ

no

yes

Figure 2: The flow chart of the two scales FE2 algorithm for the non-linear fully coupled

thermo-mechanical response of composite in ABAQUS/Standard.
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constraint drivers, while a temperature θ = 1 is assigned at every micro-

scopic point. The forces generated at the constraint drivers divided by the

volume represent the macroscopic tangent operator Dθ, while the strains

at every microscopic point represent the concentration tensor Aθ. The last

thermo-mechanical tangent operator Rθ is obtained by the volume averaging

formula of equation (48)4.

Figure 3: Connection of the constraint drivers with the unit cell.

Calculation of the macroscopic thermal conductivity

As described in the previous section, the macroscopic thermal conduc-

tivity κ is computed once through the periodic homogenization procedure

separately from the microscopic equilibrium. In that sense, it can be seen

as a separate calculation from the iterative FE2 procedure. In the finite el-

ement analysis for periodic media the unit cell is associated with periodic

mesh. This implies that, for each border node, there is always another node

at the same relative position on the opposite side of the unit cell. Applying

the macroscopic temperature gradient ∇θ on the unit cell, the temperature

fields for each pair of opposite parallel border nodes (denoted by the indices
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i and j), follow the general relationship (Suquet, 1983):

θi − θj = ∇θ · (xi − xj) . (55)

From a computational point of view, with the help of the concept of the

Figure 4: Opposite side of a unit cell are connected with constraint drivers.

constraint drivers, one can apply numerically the three components of the

macroscopic temperature gradient vector ∇θ on the unit cell, taking into

account the periodic boundary conditions (see Figure 4). More detailed ex-

position about this concept is given in Li (1999, 2000); Shuguang and An-

chana (2004). These constraint drivers (three additional nodes) are linked

to the mesh of the unit cell through equation 55. In the finite element cal-

culations in ABAQUS/Standard, the heat transfer analysis computes a heat

flux vector on the additional nodes that corresponds to the macroscopic heat

flux q multiplied by the volume V of the unit cell on the additional nodes.

Applying the three macroscopic temperature gradients

∇θ
1

= (1 0 0)T , ∇θ
2

= (0 1 0)T , ∇θ
3

= (0 0 1)T , (56)

33



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

the generated macroscopic heat fluxes q1, q2 and q3 correspond to the three

columns of the macroscopic thermal conductivity tensor:

(κ)ij = (qi)j. (57)

5. Applications and Capabilities of the FE2 framework

The proposed two-scale finite element framework presented in section 4

is applied considering thermoelastic-viscoplastic matrix, described in subsec-

tion 3.3, and thermoelastic reinforcement.

The main purpose of this section is to demonstrate the performance and

the capabilities of the thermo-mechanically, fully coupled two-scale finite el-

ement technique to predict the overall response of 3D composite structures

facing complex cases of thermo-mechanical loading. The section is parti-

tioned into three parts to highlight the different aspects of the proposed tech-

nique. The first part 5.1 present the validation of the multi-scale approach

by comparing the numerical results with that of the fully meshed Finite El-

ement (FE) model under adiabatic conditions. Therefore, a microstructure

with a spherical inclusion is considered under a given macroscopic load. In

the second part 5.2.1, a tensile test on 3D non-symmetric notched plate is

studied under three different displacement rates with Robin boundary con-

ditions that are applied in two different surfaces. Finally, the third part

5.2.2 corresponds to cyclic loading (tensile-compression) on the same non-

symmetric notched plate under varying thermal conditions. It should be

noted that in the last two examples, the composite material is considered as

a thermoelastic-viscoplastic matrix reinforced by thermoelastic aligned short

glass fibers.
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5.1. Validation of FE2 approach by comparison with full structure

In order to validate the proposed approach presented previously, the nu-

merical results are compared with that of a single scale FE computation,

considering a full structure of 10 × 10 × 10 unit cells (Figure 6) under the

same boundary conditions. For the two numerical simulations, a 3D com-

posite cube under displacement controlled loading in direction 11 (up to 10%

with a rate of 1% per s) and zero Neumann thermal boundary conditions is

simulated. The descritization of the FE2 for the macroscopic model and for

the unit cell at each macroscopic point is shown in figure 5. The coarse dis-

cretisation of the macroscopic model consists of 64 nodes and 27 elements of

type C3D8T (8 node with 8 integration points, 3D solid elements for coupled

temperature displacement analysis). Furthermore, the unit cell discretization

is performed using 292 nodes and 1219 C3D4 elements1 (Figure 5b). The unit

cell consists of thermoelastic-viscoplastic matrix reinforced by thermoelastic

spherical inclusion. On the other hand, the full structure consists of the

same unit cell, repeated periodically in the three spatial directions (Figures

6a and 6b). Its discretization is performed with C3D4T elements (4 nodes

tetrahedral elements with one integration point, 3D solid elements for cou-

pled temperature displacement analysis). The coarse discretization involves

208651 nodes and 1219000 elements (Figure 6). The volume fractions of the

matrix and the fibers are V m = 0.8 and V f = 0.2 respectively for the two

1From the microscopic analysis only the coupled thermo-mechanical terms are required.

These can be computed directly from the stress, the strain, the temperature and the

internal variables through the mechanical constitutive law. Thus, there is no need to

utilize thermomechanically coupled finite elements at this scale.
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models.

The two cases (FE2 and full structure) are subjected to the same thermo-

mechanical loading conditions. The material parameters of the two phases

are presented in Tab 3. For the macroscopic thermal conductivity κ, it is

found from the solution of the purely thermal problem (presented in section 4)

that κ is isotropic, with κ11 = κ22 = κ33 = 4.23 10−4 W/mmK. Figure 7 illus-

(a) (b)

Figure 5: Coarse FE discretization of (a) the macroscopic model and (b) the microstructure

observed at each macroscopic integration point of the FE2 simulation.

trates the macroscopic response on the whole volume of the FE2 model as well

as for full structure in terms of stress-strain in the direction 11. The results

of the two approaches show a very good agreement between the two analyses,

demonstrating the accuracy and the capability of the proposed FE2 method

to predict the overall response of 3D non-linear multi-scale composite struc-

tures. A similar validation can be found in (Drago and Pindera, 2007) for 2D

problems. The relative error plot
([
||σFE2

11 || − ||σFully meshed
11 ||

]
/||σFE2

11 ||
)
con-
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(a) Dimensions and Coarse FE discretiza-

tion of fully structure.

(b) Coarse FE discretization of the inclu-

sions.

Figure 6: Coarse FE discretization of the 3D fully structure.

firms the good agreement of the two simulations. The multi-scale solution,

compared to the full structure solution, presents a relative error between 0

and 0.3% (Figure 8). Figure 9 presents the macroscopic temperature differ-

ence between the two approaches in the point A situated in the same position

in the two structure. It must be noted that a numerical artifact of tempera-

ture elevation can be observed at the beginning of both FE2 and single scale

FE analyses. This non-physical temperature rise is due to the choice of the

large time step for reducing the computational time. In addition, one can also

observe that in the thermal response the maximum difference between the

two computations is 0.25 K, which is acceptable for such complex analysis.
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Figure 7: Comparison of the overall response of the FE2 and single scale FE solutions in

terms of σ11 Vs ε11.

Figure 8: Relative stress error of the macroscopic stress response of the FE2 and single

scale FE solutions.
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Figure 9: Comparison of the macroscopic temperature of the two approaches in point A

situated in the same position in the two structures.

5.2. 3D non-symmetric notched plate with short fiber reinforced composite

In order to demonstrate the approach capabilities in simulating the over-

all behavior of 3D composite structures, the present section deals with two

examples of FE2 analysis performed on 3D non-symmetric structure (Fig-

ure 10) made of polymer matrix reinforced with aligned glass short fibers

arranged in a periodic hexagonal array (Figure 11). Figure 10 presents the

dimensions of the macroscopic structure as well as the coarse FE discretiza-

tion that consists of 84 elements of type C3D8T. In the two examples the 3D

structure is subjected to a complex thermo-mechanical loading path. The

scope is to illustrate the ability of the technique to i) capture the rate effects

due to changes of the loading rate and ii) compute the dissipation at different

positions in the structure due to the cyclic loading.

The microstructure that represents every macroscopic point of the struc-
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Figure 10: Dimensions and a coarse discretisation of the macroscopic 3D non-symmetric

notched plate.

ture presented in Figure 11 is meshed using 5881 elements of type C3D4 (4

node with one integration point). The volume fractions of the matrix and

the fibers are V m = 0.844 and V f = 0.156 respectively. The aspect ratio for

the elliptic fibers is (4.5, 1, 1). The material properties for the thermoelastic

fibers and the thermoelastic-viscoplastic polymer matrix are listed in Tab.

3.

As it is discussed in the previous sections, the macroscopic thermal con-

ductivity is computed once, separately from the FE2 analysis. From the so-

lution of the purely thermal problem presented in section 4, it is found that

the macroscopic thermal conductivity (Eq. 57) presents transverse isotropy

for the short fibers reinforced composite, with x as the axis of symmetry.

The solution of the heat transfer analysis performed in ABAQUS is pre-
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(a) Composite microstructure. The gray

domain represents glass fibers and the

green domain represents the polymer ma-

trix.

(b) Dimensions and the spacial arrange-

ment of the short glass fibers.

Figure 11: Discretisation of the short fiber reinforced composite unit cell with tetrahedral

elements type C3D4 as well as the spacial dimensions.

sented in Figure 12 for the three components of the macroscopic thermal

conductivity vector κ. The computations yield that κ11 = 4.28 10−4 and

κ22 = κ33 = 4.02 10−4 W/mmK.

5.2.1. Strain rate controlled thermo-mechanical loading

In this example, the overall response of the 3D composite structure is pre-

dicted through the proposed fully coupled thermo-mechanical FE2 technique

and the results highlight the effect of the loading rate on the stress-strain

response, caused by the viscous behavior of the polymer matrix. Figure 13a

presents the macroscopic thermo-mechanical boundary conditions applied on

the structure. The structure is clamped on the left side and subjected to the

mechanical loading path of Figure 13b at the right side. The simulation is
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Table 3: Material parameters for the analyzed composite, consisting of short fiber rein-

forced thermo-viscoplastic polymer matrix

Parameter Matrix fiber unit

Young modulus Em 2.680 72.0 GPa

Poisson ratio νm 0.3 0.26 -

thermal expansion α 95.e-06 9.0e-06 1/K

density ρ 1.19e-03 2.53e-03 g/mm3

specific heat capacity Cp 1590 830 J/gK

thermal conductivity κ 0.35e-03 0.93e-03 W/mmK

elastic limit R0 15 – MPa

K 365.0 – MPa

n 0.39 – -

H 180.0 – MPa.sm

m 0.3 – -

θint 293.15 293.15 K

carried out considering Robin type thermal boundary conditions. In Figure

13a, qi is the heat flux across the surface, hci is the film coefficient of the fluid

surrounding the structure. θ and θ0 are the temperature at a point in the

surface and a reference sink temperature value respectively. The displace-

ment controlled path consists in two loading steps with different velocities

(u̇(1)x = 2.0 10−2mm.s−1 and u̇(2)x = 2.0 10−3mm.s−1) followed by an unload-

ing stage at a displacement rate of u̇(3)x = 2.2 10−2mm.s−1. In the first step,

the displacement u is increased linearly from 0 to 2mm in 100s. In the

second step, the loading rate is decreased and the displacement is increased
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(a) (b)

(c)

Figure 12: Fields generated for the calculation of the macroscopic thermal conductivity κ

in three directions: (a) κ11, (b) κ22 and (c) κ33 .

linearly from 2 to 2.2mm in 100s. After 200s, the applied displacement

decrease from 2.2 to 0mm in 100s. A constant time increment ∆t = 5s is

imposed throughout the whole analysis. The film condition is applied on

the front surface with film coefficient hc1 and the top surface with film co-

efficient hc2, as depicted in Figure 13b. The two film coefficients are equal

to hc1 = 2.10−4W/mm2K and hc2 = 6.10−4W/mm2K respectively and are

assumed to remain constant during the analysis. In this simulation, the ini-

tial temperature of the structure is θint = 293.15 K (20oC) and the sink

temperature is θ0 = 310.15 K (37oC). In the thermo-mechanical simulation,
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the temperature θint must be equal to θi of equation 49 to avoid the residual

stresses and to ensure that the initial state of the unloaded structure is in

thermal equilibrium.

(a) Thermo-mechanical boundaries condi-

tions on the 3D composite structure.

(b) Displacement controlled applied load-

ing ux path with several displacement

rates.

Figure 13: Applied thermo-mechanical boundary conditions and the mechanical loading

path on the macroscopic structure.

The obtained results of the analysis are demonstrated at characteristic

macroscopic points of the structure. The Figures 14 and 15 present the

macroscopic and microscopic stress fields in the direction 11 at t = 200s and

t = 300s. As expected, it can be clearly seen that the major part of the stress

in the direction of the mechanical loading is transferred to the fibers. Figure

16 shows the stress-strain curves at the macroscopic characteristic critical

point A of the structure (Figure 14) at the end of the thermo-mechanical

loading. The results illustrate also that the response of the composite is

highly influenced by the presence of the matrix through the relaxation phe-
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nomena. On the other hand, the temperature response exhibits an elevation

of 16◦C, which is mainly due to the thermal conditions (convection), as pre-

sented in Figures 17 and 18 for analysis times of t = 100s, t = 200s and

t = 300s. This elevation of the macroscopic temperature, demonstrated by

the FE2 computations, can have an important impact behavior of the ther-

moplastic due to its low thermal conductivity.

The interest of the FE2 approach resides also in the estimation of the local

and global dissipation. Figure 19 presents the local dissipation distribution

φ̇ in the microstructure at the critical point A for analysis times of t = 100s

and t = 300s. It can be clearly observed that the dissipation is localized

in the interface fiber-matrix and especially at the fibers end. In Figure 20

the evolution of the macroscopic local dissipation Φ̇ according to the time is

presented in several characteristic points of the structure (A, B, C, D, E and

F). It has a rapid increase when the composite enters in the plastic regime,

followed by a sudden drop and a long small decrease during the relaxation

and the unloading steps. Finally, a short increase during the compression is

obtained when the composite enters in the final stage of plastification close

to the end of the analysis.

5.2.2. Cyclic thermo-mechanical loading

The third numerical example presents a practical design application of

composite structures that requires the numerical study of the response under

cyclic loading. The structure is clamped at the left side and subjected to the

cyclic loading of Figure 21b on the right side ( tensile-compression test).

In the first steps (from t = 0s to t = 800s), the front and the top sur-

faces of the structure is the Robin boundary on which a forced convection
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Figure 14: Macroscopic stress field distribution in directions 11 (in MPa) using FE2 solu-

tion for analysis time of (a) t=200s and (b) t=300s.

Figure 15: Microscopic stress field distribution in directions 11 (in MPa) at critical point

A of the structure using FE2 solution for analysis time of (a) t=200 s and (b) t=300s.

heat transfer is modelled. Two different film coefficients on the two differ-

ent surfaces, as depicted in Figure 21a, are imposed. The film coefficient of

the front surface is assumed to be hc1 = 4.10−4W/mm2K, while the second

one on the top surface is assumed to be hc2 = 8.10−4W/mm2K. The other

step of simulation (from t = 800s to t = 1000s) is carried out with zero

Neumann boundary condition. The external temperature is assumed to be
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Figure 16: Evolution of the macroscopic stress as a function of the strain at the critical

point A of the structure Figure 14 in the directions 11, 22, 33 and shear 12.

Figure 17: Macroscopic spatio-temporal temperature distribution (in K) in the composite

structure for analysis time of (a) t=100s, (b) t=200s and (c) t= 300s. The heterogeneous

temperature field tends to be uniform by the end of the analysis.
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Figure 18: Evolution of the macroscopic temperature at the characteristic points (A, B,

C, D, E and F) for the total analysis time. An overall temperature elevation of 16◦C is

obtained during the thermomechanical loading of 300s.

(a) (b)

Figure 19: Local dissipation distribution field Φ̇ in the microstructure corresponding to

the characteristic critical point A of the structure for analysis time of (a) t=100s and (b)

t= 300s (in mW.mm−3).

θ0 = 313.15 K (40oC). It should be mentioned that, for this example, the

value of the specific heat capacity has been artificially increased 1000 times.
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Figure 20: Evolution of the macroscopic local dissipation Φ̇ at the characteristic points

(A, B, C, D, E and F) during the analysis.

This non-physical choice of value has been adopted to avoid some technical

problems encountered during the process computation using the thermome-

chanical solver of the FE software ABAQUS. Up to the authors knowledge,

these technical issues aborting the calculations are related to certain units

consistency in the ABAQUS solver. Nevertheless, this point does not alter

the goal of this example, which consists in demonstrating the capability of

the FE2 computations to simulate cyclic loading.

The stress fields, the macroscopic temperature and the evolution of dissi-

pation are presented at characteristic points of the structure. In the Figures

22 and 23, the macroscopic and the microscopic stress fields in direction 11

are presented for two analysis times that correspond to tensile (Figures 22a

and 23a) and compression (Figures 22b and 23b) conditions respectively. As

expected, the major part of the stress is transferred to the fibers and the

interface between fibers and matrix. Figures 24 show the macroscopic stress
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evolution due to cyclic loading at the critical point A of the structure in three

directions (11, 22, 33 and shear 12). It is clear that the higher amplitude

of stress is in the fibers direction. The material exhibits an accumulation

of strain from one cycle to another. In addition, hysteresis loops can also

be observed at each cycle due to the nature of the polymer matrix. Figure

25 presents the macroscopic temperature evolution due to the cyclic loading

and forced convection at different time steps. As expected, the temperature

elevation induced by the dissipative mechanisms and the forced convection

remains relatively low (about 1 to 4 oC, Figure 26). Between 0 and 800s the

macroscopic temperature presents an almost linear elevation, while at later

times the temperature is constant with a slight decrease. The temperature

elevation is mainly caused by the forced convection and is not significantly

influenced by dissipation, due to low number of cycles (3 - 5 cycles). At

low cycle loading the heating due to the dissipation is negligible, while for

high number of cycles (100 - 1000 cycles) the accumulation of dissipation

is expected to be significant and the relative increase of temperature easier

observable. From an energetic point of view, the spatial distribution of the

dissipation is presented in Figure 27 at the critical point A for three time

steps, t = 400s, t = 600s and t = 800s. It is worth noticing that, using the

energy balance equation, one can estimate the effect of the dissipation on the

temperature rate. Indeed, the macroscopic heat equation reads

ρCp θ̇ = −div(q) + thermomechanical terms + Φ̇. (58)

Figure 28 shows the temporal variation of the dissipation Φ̇ divided by the

ρCp =< ρCp > for different points of the structure during tension and com-

pression. As mentioned before, the heat generated by the dissipation appears
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to be small due to the low number of simulated cycles. Unfortunately, high

number of cycles, considering the full thermo-mechanical coupling in multi-

scale FE2 techniques, cannot be simulated easily, due to the computational

cost.

(a) Coarse FE discretisation and the

thermo-mechanical boundaries conditions

on the macroscopic composite structure.

(b) Mechanical cyclic loading path.

Figure 21: Coarse FE discretisation of the 3D structure and the applied thermo-mechanical

boundary conditions.
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Figure 22: Macroscopic stress field of the composite structure in direction 11 for analysis

time of (a) t=600s that correspond to the tensile and (b) t=800s that correspond to the

compression.

Figure 23: Microscopic stress field of the microstructure that correspond to the critical

point A of the structure in direction 11 for analysis time of (a) t=600s that correspond to

the tensile and (b) t=800s that correspond to the compression.
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Figure 24: Evolution of the macroscopic stresses with strain at the critical point A of the

structure Figure 22 in the directions 11, 22, 33 and shear 12.

Figure 25: Macroscopic temperature distribution (in K) in the structure for analysis time

of (a) t=600s, (b) t=800s and (c) t=1000s.
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Figure 26: Evolution of the macroscopic temperature at the characteristic points (A, B,

C, D, E and F) for the total analysis time.

Figure 27: Local dissipation field (in mW.mm−3) in the critical point A of the structure

for analysis time of (a) t=400s, (b) t=600s and (c) t=800s.
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Figure 28: Evolution of the local dissipation effect on the macroscopic temperature at the

characteristic points (A, B, C, D, E and F) during the analysis.
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6. Conclusions and further work

This work presents a multi-scale three-dimensional fully coupled thermo-

mechanical modelling strategy for composite structures, considering non-

linear material response and using the FE2 framework. The approach is

fully integrated in the finite element commercial code ABAQUS/Standard,

using parallel computations. An established framework restricted to me-

chanical loading (Tikarrouchine et al., 2018) is extended to fully coupled

thermo-mechanical homogenization scheme to predict the thermo-inelastic

structural response considering small deformations and rotations. The main

advantage of the developed simulation technique resides in its ability to in-

tegrate any kind of 3D periodic microstucture with any type of thermo-

mechanical non-linear constitutive model for the constituents (thermoplastic,

thermo-viscoelastic, thermoelastic-viscoplastic). The numerical applications

performed in this article focus on the thermoelastic - viscoplastic regime and

the obtained results capture the rate-dependency in the structural behav-

ior and the thermo-mechanical couplings in the polymer composites under

complex thermo-mechanical loading.

The proposed strategy has been validated through a comparison with

equivalent single scale simulations. Further simulations have been performed

to demonstrate the performance of the two-scale implementation. In the first

example, a 3D non-symmetric notched plate with thermoelastic-viscoplastic

polymer matrix reinforced by thermoelastic short glass fibers is examined un-

der complex thermo-mechanical loading. The first example shows the effect

of the loading path on the macroscopic response of the composite structure.

In the second example, a cyclic loading with varying thermal boundary con-
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ditions are applied on the 3D non-symmetric notched plate consisting of a

short glass fiber reinforced composite with thermoelastic-viscoplastic poly-

mer matrix. This example illustrates the evolution of the dissipation and

its influence on the temperature variations during the thermo-mechanical

loading.

From a practical point of view, the proposed strategy can be used in

cases of composites with strong interaction between the mechanical and

thermal fields, for instance reinforced polymeric materials whose viscoplas-

tic/viscoelastic behavior is sensitive to the temperature variations. Moreover,

further investigations on local behavior can be considered, e.g., coupling of

damage with the dissipation and the increase of temperature, as well as the

extension of the approach towards oligocyclic fatigue analyses and life-time

estimation of composite structures. It should be pointed out that such anal-

yses are computationally time consuming and requires then certain reduction

model strategies (Oliver et al., 2017).

References

Aboudi, J., 2004. Micromechanics-based thermoviscoelastic constitutive

equations for rubber-like matrix composites at finite strains. International

Journal of Solids and Structures 41 (20), 5611 – 5629.

Aboudi, J., Pindera, M.-J., Arnold, S.-M., 2003. Higher-order theory for

periodic multiphase materials with inelastic phases. International Journal

of Plasticity 19 (6), 805–847.

57



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Allaire, G., 1992. Homogenization and two-scale convergence. SIAM Journal

on Mathematical Analysis 23, 1482–1518.

Anagnostou, D., Chatzigeorgiou, G., Chemisky, Y., Meraghni, F., 2018. Hi-

erarchical micromechanical modeling of the viscoelastic behavior coupled

to damage in SMC and SMC-hybrid composites. Composites Part B: En-

gineering 151, 8–24.

Asada, T., Ohno, N., 2007. Fully implicit formulation of elastoplastic homog-

enization problem for two-scale analysis. International Journal of Solids

and Structures 44 (22), 7261–7275.

Bensoussan, A., Lions, J.-L., Papanicolaou, G., 1978. Asymptotic methods

for periodic structures.

Berthelsen, R., Denzer, R., Oppermann, P., Menzel, A., 2017. Computa-

tional homogenisation for thermoviscoplasticity: application to thermally

sprayed coatings. Computational Mechanics 60, 739–766.

Bertram, A., Krawietz, A., 2012. On the introduction of thermoplasticity.

Acta Mechanica 223 (10), 2257–2268.

Brenner, R., Suquet, P., 2013. Overall response of viscoelastic composites

and polycrystals: exact asymptotic relations and approximate estimates.

International Journal of Solids and Structures 50 (10), 1824–1838.

Chaboche, J.-L., Kanoute, P., Roos, A., 2005. On the capabilities of mean-

field approaches for the description of plasticity in metal matrix compos-

ites. International Journal of Plasticity 21 (7), 1409–1434.

58



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Charalambakis, N., Chatzigeorgiou, G., Chemisky, Y., Meraghni, F., 2018.

Mathematical homogenization of inelastic dissipative materials: a survey

and recent progress. Continuum Mechanics and Thermodynamics 30, 1–51.

Chatzigeorgiou, G., Charalambakis, N., Chemisky, Y., Meraghni, F., 2016.

Periodic homogenization for fully coupled thermomechanical modeling of

dissipative generalized standard materials. International Journal of Plas-

ticity 81, 18–39.

Chatzigeorgiou, G., Charalambakis, N., Chemisky, Y., Meraghni, F., 2018.

Thermomechanical Behavior of Dissipative Composite Materials. ISTE

Press - Elsevier, London.

Chatzigeorgiou, G., Chemisky, Y., Meraghni, F., 2015. Computational micro

to macro transitions for shape memory alloy composites using periodic

homogenization. Smart Materials and Structures 24 (3), 035009.

Coleman, B. D., Gurtin, M. E., 1967. Thermodynamics with Internal State

Variables. The Journal of Chemical Physics 47 (2), 597–613.

Dong, H., Cui, J., Nie, Y., Yang, Z., 2017. Second-Order Two-Scale Com-

putational Method for Nonlinear Dynamic Thermo-Mechanical Problems

of Composites with Cylindrical Periodicity. Communications in Computa-

tional Physics 21 (4), 1173–1206.

Drago, A., Pindera, M.-J., 2007. Micro-macromechanical analysis of

heterogeneous materials: Macroscopically homogeneous vs periodic

microstructures. Composites Science and Technology 67 (6), 1243 – 1263.

59



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

URL http://www.sciencedirect.com/science/article/pii/

S0266353806000844

Ene, H. I., 1983. On linear thermoelasticity of composite materials. Interna-

tional Journal of Engineering Science 21 (5), 443–448.

Feyel, F., Chaboche, J.-L., 2000. Fe2 multiscale approach for modelling the

elastoviscoplastic behaviour of long fibre sic/ti composite materials. Com-

puter Methods in Applied Mechanics and Engineering 183 (3), 309 – 330.

Forest, S., 2009. Micromorphic approach for gradient elasticity, viscoplastic-

ity, and damage. Journal of Engineering Mechanics 135, 117–131.

Germain, P., 1973. Cours de mécanique des milieux continus, Tome I: Théorie

Générale. Masson, Paris.

Germain, P., 1982. Sur certaines définitions liées à l’énergie en mécanique

des solides. International Journal of Engineering Science 20 (2), 245–259.

Germain, P., Nguyen, Q. S., Suquet, P., 1983. Continuum thermodynamics.

Journal of Applied Mechanics 50, 1010–1020.

Hill, R., 1967. The essential structure of constitutive laws for metal com-

posites and polycrystals. Journal of the Mechanics and Physics of Solids

15 (2), 79–95.

Khatam, H., Pindera, M.-J., 2010. Plasticity-triggered architectural effects

in periodic multilayers with wavy microstructures. International Journal

of Plasticity 26 (2), 273–287.

60



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Kouznetsova, V., Geers, M. G. D., Brekelmans, W. A. M., 2002. Multi-

scale constitutive modelling of heterogeneous materials with a gradient-

enhanced computational homogenization scheme. International Journal for

Numerical Methods in Engineering 54 (8), 1235–1260.

Kruch, S., Chaboche, J.-L., 2011. Multi-scale analysis in elasto-viscoplasticity

coupled with damage. International Journal of Plasticity 27 (12), 2026–

2039.

Lemaitre, J., Chaboche, J.-L., 1990. Mechanics of solid materials. Cambridge

University Press.

Li, S., 1999. On the unit cell for micromechanical analysis of fibre-reinforced

composites. Proceedings of the Royal Society of London A 455 (1983),

815–838.

Li, S., 2000. General unit cells for micromechanical analyses of unidirectional

composites. Composites: Part A 32, 815–826.

Meraghni, F., Desrumaux, F., Benzeggagh, M.-L., 2002. Implementation of a

constitutive micromechanical model for damage analysis in glass mat rein-

forced composite structures. Composites Science and Technology 62 (16),

2087–2097.

Mercier, S., Molinari, A., 2009. Homogenization of elastic–viscoplastic het-

erogeneous materials: Self-consistent and mori-tanaka schemes. Interna-

tional Journal of Plasticity 25 (6), 1024–1048.

Mercier, S., Molinari, A., Berbenni, S., Berveiller, M., 2012. Comparison

of different homogenization approaches for elastic–viscoplastic materials.

61



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Modelling and Simulation in Materials Science and Engineering 20 (2),

024004.

Murat, F., Tartar, L., 1997. H-convergence, in Topics in the mathemati-

cal modelling of composite materials. In: Cherkaev, A., Kohn, R. V.

(Eds.), Progress in Nonlinear Differential Equations and their Applica-

tions. Vol. 31. Birkhäuser, Boston, pp. 21–43.

Nezamabadi, S., Zahrouni, H., Yvonnet, J., Potier-Ferry, M., 2010. A mul-

tiscale finite element approach for buckling analysis of elastoplastic long

fiber composites. International Journal for Multiscale Computational En-

gineering 8, 287–301.

Oliver, J., Caicedo, M., Huespe, A., Hernández, J., Roubin, E., 2017.

Reduced order modeling strategies for computational multiscale fracture.

Computer Methods in Applied Mechanics and Engineering 313, 560 – 595.

URL http://www.sciencedirect.com/science/article/pii/

S0045782516303322

Özdemir, I., Brekelmans, W. A. M., Geers, M. G. D., 2008a. Computational

homogenization for heat conduction in heterogeneous solids. International

Journal for Numerical Methods in Engineering 73 (2), 185–204.

Özdemir, I., Brekelmans, W. A. M., Geers, M. G. D., 2008b. Fe2 computa-

tional homogenization for the thermo-mechanical analysis of heterogeneous

solids. Computer Methods in Applied Mechanics and Engineering 198 (3),

602–613.

62



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Ponte-Castañeda, P., 1991. The effective mechanical properties of nonlinear

isotropic composites. Journal of the Mechanics and Physics of Solids 39 (1),

45–71.

Praud, F., Chatzigeorgiou, G., Bikard, J., Meraghni, F., 2017. Phenomeno-

logical multi-mechanisms constitutive modelling for thermoplastic poly-

mers, implicit implementation and experimental validation. Mechanics of

Materials 114, 9–29.

Sanchez-Palencia, E., 1978. Non-homogeneous media and vibration theory.

In: Lecture Notes in Physics 127. Springer-Verlag, Berlin.

Sengupta, A., Papadopoulos, P., Taylor, R. L., 2012. A multiscale finite

element method for modeling fully coupled thermomechanical problems

in solids. International Journal for Numerical Methods in Engineering 91,

1386–1405.

Shuguang, L., Anchana, W., 2004. Unit cells for micromechanical analyses

of particle-reinforced composites. Mechanics of Materials 36 (7), 543–572.

Suquet, P., 1983. Analyse limite et homogeneisation. Comptes Rendus de

l’Académie des Sciences, Paris II 295, 1355–1358.

Suquet, P. M., 1987. Elements of homogenization for inelastic solid mechan-

ics. In: Lecture Notes in Physics. Vol. 272. Springer, Berlin, pp. 193–278.

Temizer, I., 2012. On the asymptotic expansion treatment of two-scale finite

thermoelasticity. International Journal of Engineering Science 53, 74–84.

63



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Terada, K., Kikuchi, N., 2001. A class of general algorithms for multi-scale

analyses of heterogeneous media. Computer Methods in Applied Mechanics

and Engineering 190 (40), 5427–5464.

Tikarrouchine, E., Chatzigeorgiou, G., Praud, F., Piotrowski, P., Chemisky,

Y., Meraghni, F., 2018. Three-dimensional fe2 method for the simulation

of non-linear, rate-dependent response of composite structures. Composite

Structures 193, 165–179.

Xu, R., Bouby, C., Zahrouni, H., Ben Zineb, T., Hu, H., Potier-Ferry, M.,

2018. 3d modeling of shape memory alloy fiber reinforced composites by

multiscale finite element method. Composite Structures 200, 408 – 419.

Yu, Q., Fish, J., 2002. Multiscale asymptotic homogenization for multiphysics

problems with multiple spatial and temporal scales: a coupled thermo-

viscoelastic example problem. International Journal of Solids and Struc-

tures 39 (26), 6429–6452.

64


