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The interplay of elastic anisotropy and disorder dictates many of the properties of ferroic materials, specifically
martensites. We use a phase-field model for ferroelastic athermal materials to study their response to an
increasing external stress that couples to the strain order parameter. We show that these systems evolve
through avalanches and study the avalanche-size distribution for ferroelastic systems (large anisotropy and/or
small disorder) and for the strain glass (small anisotropy and/or large disorder) using various statistical
analysis techniques, including the maximum likelihood method. The model predicts that in the former case the
distribution is subcritical or power law (in agreement with experimental observations), whereas in the latter case
it becomes supercritical. Our results are consistent with experiments on martensitic materials, and we predict
specific avalanche behavior that can be tested and used as an alternative means to characterize strain glasses.
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I. INTRODUCTION

Disorder is a key factor for the occurrence of inherent
inhomogeneities in ferroic materials on a mesoscopic spatial
scale [1]. Usually these textures precede a phase transition
to the ferroic phase and are thus signatures of the incoming
ground state [2]. Relaxor ferroelectrics [3] and random mag-
nets [4] are well-known examples of materials displaying this
behavior. In ferroelastic materials these kinds of precursors
are also known from a very long time. They usually show up
in the form of cross-hatched modulation patterns, denoted as
tweed [5], which are embedded in the high temperature phase
matrix. Therefore, precursor states are multiphase states,
which consist of coexisting regions with properties varying
over nanometer distances.

In this class of ferroic materials, the presence of disorder
gives rise to a distribution of energy barriers that, in some cir-
cumstances, is responsible for the suppression of the transition
to the long-range ordered ferroic state due to the breakdown
of the correlation effects [6–9]. Then, the inhomogeneous
state becomes frozen and the system displays glassy features.
This behavior is well known to occur in the case of relaxor
ferroelectrics and magnetic cluster glasses. More recently
it has been shown to occur in some ferroelastic-martensitic
systems as well [10], where it takes place mainly due to
kinetic arrest rather than geometrical frustration [11–13]. In
these materials it has been reported that above a certain critical
amount of disorder, which has been shown to depend on
the strength of an anisotropic long-range elastic interaction
[13], the transition to the twinned ferroelastic structure is
suppressed and glassy behavior ensues giving rise to a strain-
glass phase [6,14–16]. Glassy behavior occurs because while
local transformations to the ferroic phase take place at short

timescales, coalescence into a global phase requires much
longer times, which tend to diverge as temperature is lowered
[12]. Consequently, more and more time is required for the
system to reach for paths leading to the final state. This is
indeed the mechanism giving rise to kinetic arrest in this class
of materials.

It is known that within the glassy phase, application of
an external field that couples to the order parameter (mag-
netic, polar, structural) enables us to induce the otherwise
inhibited long-range ordered phase. The existence of disorder
together with the minor role played by thermal fluctuations
suggests that these externally driven systems should display
an intermittent, stochastic dynamics (or crackling noise) [17].
This means that the system may respond to changes of the
external driving conditions through discrete, impulsive events
spanning a broad range of sizes. Therefore, it is expected
that strain glasses evolve through a sequence of transition
events that can be described as an avalanche process. In fact,
such an intermittent avalanche dynamics has been reported
to occur associated with martensitic transitions induced both
thermally and by application of an external field (stress) in
many different materials [18,19].

It has been confirmed that often the avalanches occur with
the absence of characteristic scales. Actually, this scale-free
intermittent dynamics is then known as avalanche critical-
ity. An interesting result is that for this class of out-of-
equilibrium criticality to occur, some models suggest that a
critical amount of disorder is required [17], which has been
experimentally corroborated in a few cases [20]. This fact
immediately suggests the following question: Is this amount
of disorder related to the amount needed for glassy behavior
to occur? This is the main issue that we address in the present
paper. To this end, a phase-field model for a ferroelastic
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transition is used [2,13,14]. The model includes disorder and
an anisotropic long-range interaction and follows a purely
relaxational athermal dynamics. It was previously found that
the amount of disorder required for glassy behavior to occur
scales with the square root of the elastic anisotropy, which
controls the strength of the long-range elastic interaction [13].
In the present work we study the response of the model
system to an increasing external stress in both the martensite
and the strain-glass phase. At low temperature criticality is
found in the boundary separating both phases as well as in
the martensite phase. In contrast, in the strain-glass phase
the distribution of avalanches is supercritical [21]. At higher
temperatures, as the transition from these phases to the high
symmetry phase (austenite) is approached, the distribution
of avalanches in the martensite phase is consistent with a
subcritical distribution whereas in the strain-glass phase the
distribution remains supercritical.

The paper is organized as follows. The strain based marten-
sitic model is summarized in Sec. II. Section III presents the
numerical simulation results dealing with the dynamics of the
system driven by an applied external stress. The statistical
analysis of the avalanches obtained in the stress driven evo-
lution is given in Sec. IV. Finally, Sec. V provides a general
discussion of the results and concludes.

II. MODEL

The model used was introduced previously with the pur-
pose of studying various textures (or microstructure) in fer-
roelastics [2,13,14]. In this section we summarize its main
features.

The starting point is a strain-based two-dimensional
(2D) Ginzburg-Landau free-energy density for the square-to-
rectangle structural transition that includes local coupling to
quenched disorder. We recall that for this transformation the
three available elastic modes are e1 = (εxx + εyy )/

√
2 (bulk

dilatation), e2 = (εxx − εyy )/
√

2 (deviatoric strain), and e3 =
εxy (shear strain), where εij are the components of the linear
strain tensor. First, we write an expansion of the free-energy
density in terms of the deviatoric strain only, which is the
order parameter of the transition,

fGL = 1
2A2(T )e2

2 − 1
4βe4

2 + 1
6γ e6

2 + 1
2κ| �∇e2|2 − σ2e2, (1)

where the deviatoric stress, defined as σ2 = (σxx − σyy )/
√

2,
is the externally applied field. The harmonic coefficient A2

is related to the elastic constant C ′ = (C11 − C12)/2 = A2/2
and it is assumed to vary linearly with temperature, A2 =
a(T − Tc ), with a > 0 and Tc being the lower stability limit
of the square phase. The coefficients β and γ are higher-order
elastic constants and together with the parameter κ are taken
to be positive. The disorder is introduced via the harmonic
coefficient, A2, in a manner that is equivalent to introducing
a spatial dependence of the stability limit of the square phase,
Tc(r), and therefore of the transition temperature, T0(r).
That is,

Tc(r) = Tc[1 + η(r)], (2)

where η(r) is a Gaussian distributed random variable with
zero mean, standard deviation ζ , and spatially correlated

with an exponential pair correlation function with correlation
length ξ ,

〈η(r)η(r′)〉 = ζ 2 exp(−|r − r′|/ξ ). (3)

The spatial variation of the stability limit is intended to
reproduce the statistical fluctuations of composition in materi-
als. In addition, the spatial correlation of the disorder ensures
that such variations are smooth.

Another important ingredient is the effective long-range
strain interaction. Its origin lies in the contribution from
the non-order-parameter strain components arising from the
coherent matching between nearby transformed unit cells.
Consequently, we add to Eq. (1) the simplest expansion in e1

and e3,

f = fGL + 1
2A1e

2
1 + 1

2A3e
2
3, (4)

where the coefficients A1 = C11 + C12 and A3 = 4C44 are
again second-order elastic constants. Notice that the local
free-energy density f (r) is a functional of the strain fields
e1(r), e2(r), and e3(r). These are linked by the Saint-Venant’s
compatibility condition, which ensures the integrity of the
lattice [22]. Minimization of the integral free energy,

F =
∫

drf (r), (5)

with respect to the non-order-parameter strain components,
e1(r) and e3(r), with the constraint of compatibility yields the
free-energy density as a function of the order parameter only.
That is,

f (r) = fGL(r) + 1

2

∫
e2(r)U (r − r′)e2(r′)dr′. (6)

Interestingly, U (r − r′) is a long-range kernel that, in Fourier
space, is given by

Û (k) = A3

(
k2
x − k2

y

)2

(
A3
A1

)(
k2
x + k2

y

)2 + 8k2
xk

2
y

. (7)

This expression embodies the anisotropic character of the
free energy and is minimized when the strain modulations
are oriented along 〈11〉 directions (kx = ±ky). The magnitude
of such a long-range anisotropic term is directly propor-
tional to the elastic coefficient A3, provided that the ratio
A3/A1 is constant. Notice that the elastic anisotropy factor is
A= C44/C ′ = A3/2A2, so that at constant temperature
A∼ A3. This energy term enhances the correlation of the
order parameter at different locations. On the contrary, the
disorder (characterized by ζ ) inhibits such correlations. Once
the model is discretized, the interplay between the disorder
and the long-range interaction yields a distribution of energy
barriers that the system has to cope with to minimize its
energy. Depending on the structure of such a distribution of
energy barriers the low temperature phase is either martensitic
or a strain glass. Thus, by varying the model parameter A3

and in conjunction with the disorder the model predicts a
crossover from a twinned martensite to a strain-glass phase
[13,14]. This is illustrated in Fig. 1 where we plot the bound-
ary separating both phases in the A3-ζ parameter space.
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FIG. 1. Phase diagram of the model presented in Sec. II in the
A3-ζ parameter space. The strain-glass phase is stabilized for large
values of disorder (ζ ) or small values of elastic anisotropy (A ∼ A3).
The insets show examples of the ZFC/FC strain curves that were used
to distinguish the strain-glass phase from the martensite phase.

Such boundary was determined in Ref. [13] from the
behavior of the zero-field-cooled and field-cooled (ZFC/FC)
strain curves.

A large deviation between these curves at low temperature
is commonly associated with glassy behavior [23]. Repre-
sentative examples are shown in the insets of Fig. 1. These
correspond to the simulation of a small system where the
size of the elastic domains is of the order of the size of the
simulation cell, especially in the martensite phase. Thus, as
soon as a stress is applied before heating, a jump in the strain
is obtained in the ZFC curves. We also note that the first-
order martensite-austenite transition becomes smooth because
of the distribution of transition temperatures (disorder). The
strain-glass phase corresponds to those values of the disor-
der and elastic anisotropy that yield a large splitting of the
ZFC/FC curves.

Avalanche behavior is usually related to athermal and rate
independent dynamics to a good approximation [24]. For this
class of dynamics, thermal fluctuations are irrelevant com-
pared to the high energy barriers separating metastable states.
Thus, in order that the dynamics can proceed it is necessary
to drive the system externally with a field that couples to the
order parameter (stress, in our case). Keeping this in mind, we
define the fluctuationless relaxational dynamics,

∂e2(r)

∂t
= −�

δF

δe2(r)
, (8)

where the relationship between the strain components due to
compatibility is taken into account in the functional derivative
of the free energy with respect to the deviatoric strain, which
yields anisotropic and nonlocal elastic forces [see Eq. (6)].

All physical quantities are given in the reduced units de-
fined in Ref. [2].

The size of the simulation cell is L × L = 1000 × 1000
except otherwise stated, and the discretization parameter is
� = 1.9531, so that the simulation cell is discretized onto
a 512 × 512 mesh. The elastic anisotropy, controlled by the
parameter A3, is varied in our simulations while the ratio

A3/A1 and the strength of the disorder are fixed to A3/A1 = 2
and ζ = 0.22. The remaining model parameters are the same
as in Ref. [2].

III. THERMOMECHANICAL TREATMENT
AND INTERMITTENT RESPONSE

In this section we describe the thermomechanical proto-
col applied to the model and study its intermittent response
through avalanches.

First of all, we generate a disordered configuration with
a small amount of strain which is consistent with the high
temperature, high symmetry phase (austenite).

This configuration is thermally quenched to T = 0.2Tc and
fully relaxed [25] in the absence of external stresses using the
relaxational dynamics defined in Eq. (8).

Then, an increasing deviatoric stress is applied at constant
temperature.

We start with a stress σ2 = 10−8 and the strain field is fully
relaxed to the new equilibrium configuration, which ensures
that the dynamics is rate independent (adiabatic limit).

This last step is repeated iteratively; the applied stress is
increased by an amount δσ2 = 10−8 and the strain config-
uration is relaxed. This yields a stress-strain relation where
the average strain eventually responds to the applied stress
through jumps.

That is, infinitesimal increments of the applied stress may
produce finite changes in the average strain. This is what we
denote as avalanches. This behavior is shown in Fig. 2 where
we plot a stress-strain curve corresponding to A3 = 0.1.

Notice in the inset, where a small portion of the stress-
strain relation is enlarged, that periods of elastic response
(shown as thick continuous lines) are separated by jumps in
the average strain (indicated by dashed lines).

This is qualitatively similar to the stress-strain relation
obtained at larger scales. This self-similarity suggests the
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FIG. 2. Stress-strain relation of a strain glass (A3 = 0.1, ζ =
0.22) obtained by thermal quench of a disordered strain configuration
to T = 0.2Tc. The inset shows an enlarged fraction of the curve
where jumps (avalanches) of the equilibrium strain induced by small
increments of the applied stress are clearly visible.
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FIG. 3. Stress-strain relation in the strain-glass phase (a), in the
ferroelastic (martensite) phase (c), and at the crossover between
these phases (b) in the A3-ζ parameter space. In all cases the initial
microstructure is generated by the thermal quench of a disordered
strain configuration to T = 0.2Tc. Snapshots of the strain config-
uration for σ2 = 0, σ2 = 2 × 10−4, σ2 = 4 × 10−4, σ2 = 6 × 10−4,
and σ2 = 8 × 10−4 (from left to right) are also shown.

absence of a characteristic length (or avalanche size) in a given
strain range.

According to the phase diagram shown in Fig. 1, depending
on the model parameter A3 the obtained strain configura-
tions correspond to a martensite phase (low-symmetry low-
temperature phase) or a strain glass. Thus, the stress-strain
curves qualitatively depend on this parameter. In Fig. 3 we
show a typical stress-strain curve in the strain-glass phase
[A3 = 0.2, Fig. 3(a)], in the martensite phase [A3 = 1.0,
Fig. 3(c)], and near the boundary between both phases [A3 =
0.4, Fig. 3(b)].

We find that for quenches into the martensite phase the
system responds with large avalanches at a characteristic
yield stress, whereas for the other values of the applied
stress the avalanche sizes are smaller. This establishes several
stress regimes, namely low-stress, yield-stress, and high-stress
regimes.

In contrast, when the system is quenched into the strain-
glass phase, the distribution of avalanche sizes is less cor-
related with the magnitude of the applied stress. As the
crossover from the martensite phase to the strain-glass phase
is smooth, the correlation between the applied stress and
the size of the avalanches also decreases smoothly from the
martensite phase to the strain glass phase. For illustrational
purposes in Fig. 3 we also depict several snapshots of the
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FIG. 4. Snapshots of the strain field change that occurs in single
avalanches for A3 = 0.4 in the low stress regime. Arrows indicate the
corresponding jump in the stress-strain curve. Red indicates positive
strain variation, white indicates no strain variation, and blue stands
for negative strain variation. As a reference, in the right bottom
corner we show the strain configuration before the avalanches, shown
in the snapshots, occur.

strain configuration corresponding to the applied stresses
(from left to right) σ2 = 0, σ2 = 2 × 10−4, σ2 = 4 × 10−4,
σ2 = 6 × 10−4, and σ2 = 8 × 10−4.

In Figs. 4 and 5 we show snapshots of the deviatoric strain
variation that occurs in single avalanches for A3 = 0.4. This
is computed as the difference between the strain field before
and after a given avalanche has occurred.

The corresponding stress-strain curve is also shown with
arrows indicating the jump in the average strain associated
with each one of the snapshots. We use a color scale, where
red indicates positive strain variation, white indicates no strain
variation, and blue stands for negative strain variation. As a
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FIG. 5. Snapshot of the strain field change that occurs in a single
avalanche for A3 = 0.4 in the yield stress regime. The color scale
is the same as in Fig. 4. As a reference, in the right bottom corner
we show the strain configuration before the avalanche, shown in the
snapshot, occurs.
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reference, in the right bottom corner of each figure we show
the strain configuration before the avalanches, shown in the
snapshots, occur. Figure 4 shows avalanches corresponding
to the small stress regime. We obtain that small avalanches
are associated with local changes in the strain configura-
tion, mainly to the displacement of a single twin boundary.
Larger avalanches, on the contrary, are associated with global
changes of the strain field; many twin boundaries in differ-
ent locations move simultaneously generating a single strain
jump. This cooperative behavior is more evident in Fig. 5
where we depict a single, and much larger, avalanche in the
yield stress regime. In this case we observe the displacement
of twin boundaries occurring simultaneously with the flipping
of entire domains.

IV. STATISTICAL ANALYSIS OF THE AVALANCHES

In this section we analyze the statistical properties of the
avalanches. This study requires a large number of events.
Thus, for each set of model parameters the thermomechanical
protocol described above is repeated n = 64 times. For
each one of the runs we use a different configuration of the
quenched disorder and start from a different initial strain
configuration. This procedure ensures that a large number
of avalanches is available without having to deal with large
systems.

A first insight into the probability distribution of the
avalanche sizes is obtained graphically by plotting the number
of avalanches obtained versus the associated strain variation
using logarithmically binned data. This is shown in Fig. 6
for different values of the elastic anisotropy, controlled by the
parameter A3.

The results are consistent with a power-law probability
distribution in a limited strain variation regime, �e2min <

�e2 < �e2max,

P [�e2 < X < �e2 + d(�e2)] ∝ �e2
−αd(�e2). (9)

The exponent of the power-law distribution, α, can be deter-
mined by a least-squares fit, shown in Fig. 6 as a red line. We
note that because of the logarithmic binning of the data the
slope of the distribution of avalanches in the log-log plot is
one unit smaller than the exponent α.

For �e2 < �e2min the number of avalanches decays when
decreasing the strain variation.

This occurs because there is a minimum size for
the avalanches, which depends on characteristic lengths of
the model such as the width of the domain boundaries or the
correlation length of the disorder. As the strain is computed
as an intensive quantity the larger the size of the simulation
cell the smaller the strain variation that can be detected. Thus,
�e2min depends on the size of the simulation cell, L, as
well. To avoid any ambiguity we denote as avalanche size
the scaled strain variation, L2�e2. With this definition the
minimum avalanche size of the power-law regime, L2�e2min
is independent of the size of the simulation cell, as we will
show below.

The largest strain variation that can occur is a jump from a
single variant with strain −e

eq
2 to a single variant with strain

+e
eq
2 , where e

eq
2 is the equilibrium strain at the corresponding

temperature. If the effect of the applied stress is neglected, the
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FIG. 6. Log-log plot of the number of avalanches versus the
strain variation for A3 = 0.1 (a), A3 = 0.2 (b), A3 = 0.3 (c), A3 =
0.4 (d), A3 = 0.5 (e), A3 = 1.0 (f), and A3 = 5.0 (g). The red line in
each plot is a least-squares fit to a power-law relation.

equilibrium strain can be approximated as

e
eq
2 ≈

√
β +

√
β2 − 4γA2

2γ
. (10)

Thus,

�e2max ≈ 2

√
β +

√
β2 − 4γA2

2γ
. (11)

Using this approximation, the current values of the model
parameters yield �e2max ≈ 0.08. Thus, the largest strain vari-
ations observed, which are of the order of �e2 ∼ 10−2, corre-
spond to the flip of large domains and are only observed once
or twice for each run.

For quenches into the martensite phase we obtain that
�e2max ∼ e

eq
2 , and the distribution of avalanches ends around

this value. However, for quenches into the strain-glass phase
�e2max is substantially smaller, and the deviation from
the power-law distribution expands over a large range of
avalanche sizes (see the distribution for A3 = 0.1). This raises
the question of whether the avalanches may have a non-
power-law distribution in the strain-glass phase or rather this
deviation is due to finite size effects.

To clarify this point, for A3 = 0.1 we have plotted the
distribution of avalanche sizes for three different sizes of
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FIG. 7. Number of stress induced avalanches versus the
avalanche size for three different sizes of the simulation cell (L =
1000, L = 500 and L = 250) and three different values of the elastic
constant A3 [A3 = 0.1 (a), A3 = 0.4 (b), and A3 = 1.0 (c)] using
the same discretization parameter, � = 1.9531, in all cases. The
red lines are least-square fits to a power-law relation. The number
of independent simulations performed is n = 64, n = 128, and n =
256 for L = 1000, L = 500, and L = 250, respectively.

the simulation cell, using the same discretization parameter
in all cases. For completeness this study is also performed
for A3 = 1.0 and A3 = 0.4, which correspond to quenches
into the martensite phase and the boundary between this
phase and the strain-glass phase, respectively. The results
are shown in Fig. 7 where we denote the avalanche size as
the scaled strain variation as defined above. As expected,
we find that L2�e2min and the distribution of avalanches for
�e2 < �e2min is independent of the size of the simulation cell
for all values of A3 considered, as the distribution of small
avalanches should not depend on the size of the system.

On the contrary, in general, L2�e2max depends on the size
of the simulation cell. For quenches into the martensite phase
and the boundary between this phase and the strain-glass
phase (A3 = 1 and A3 = 0.4, respectively) L2�e2max scales
to a good approximation as

L2�e2max ∼ L2. (12)

Thus, the distribution of avalanche sizes is consistent with a
power law with an upper cutoff determined by the size of the
simulation cell. On the contrary, for quenches into the strain-
glass phase (A3 = 0.1) L2�e2max is almost independent of the
size of the simulation cell, and thus the drop of the number
of avalanches for �e2 > �e2max cannot be related to the size
of the system. Therefore, the distribution of avalanches is
supercritical. In this case, the value of �e2max must depend
on other characteristic lengths of the system such as the size

of the domains that are stabilized by the energy barriers that
arise from the disorder.

The distribution of avalanche sizes has also been analyzed
using a maximum likelihood method [26]. We consider the
likelihood function,

L(α) =
N∏

i=1

p(�e2i , α), (13)

where the normalized probability density p(�e2, α) with
�e2min < �e2 < �e2max is assumed to be power law,

p(�e2, α) = 1 − α

�e2
1−α
max − �e2

1−α
min

�e2
−α. (14)

The exponent α is obtained as the value that maximizes the
logarithm of the likelihood function, lnL(α), which is the
solution of the equation,

N∑
i=1

ln �e2i + N

1 − α
− N

�e2
1−α
max − �e2

1−α
min

× (
�e2

1−α
max ln �e2max − �e2

1−α
min ln �e2min

) = 0, (15)

where N is the total number of avalanches obtained in the n

runs with �e2min < �e2 < �e2max and �e2i is the variation
of the deviatoric strain obtained in the ith avalanche.

In Figs. 8(a)–8(g) we plot the exponent of the power-law
distribution obtained with the likelihood method as a function
of �e2max for a fixed value of �e2min, as indicated in the
figure. A clear plateau is obtained for 0.2 � A3 � 0.5 with
an exponent α = 1.50 ± 0.05. For A3 � 1 the number of
avalanches obtained is small, and consequently the uncer-
tainty is too large to conclude unambiguously if a plateau
exists.

For A3 = 0.1 the effective exponent depends on the upper
cutoff and, as concluded above, the distribution is not consis-
tent with a power law.

In Figs. 8(h)–8(n) we plot the exponent of the power-law
distribution obtained with the likelihood method as a function
of �e2min. In this case, the upper cutoff, �e2max, is fixed to
the value obtained from Figs. 8(a)–8(g) and from the log-log
plots of the avalanche size distribution shown in Fig. 6.

Again, a plateau is obtained only for 0.2 � A3 � 0.5. For
A3 � 1 the number of avalanches obtained is not sufficient to
draw conclusions.

For ζ = 0.22, which is the amount of disorder used in
the present work, the splitting between the field-cooled and
the zero-field-cooled curves that was used to distinguish the
strain-glass phase from the martensite phase [13] typically
occurs at temperatures T < 0.5Tc, depending on the value
of A3. Thus, it is insightful to see if above the splitting
temperature the distribution of avalanches in the strain-glass
phase is also different from the distribution in the martensite
phase.

To this end, we study the distribution of stress induced
avalanches when the thermal quench is performed to T =
0.8Tc, near the ferroelastic phase transition. The number of
avalanches obtained versus the associated strain variation is
plotted in Fig. 9 for several values of the elastic anisotropy
using logarithmically binned data.
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FIG. 8. (a–g) Exponent α of the power-law probability distribu-
tion P ∼ �e2

−α versus �e2max for a fixed value of �e2min. (h–n)
Exponent α of the power-law probability distribution P ∼ �e2

−α

versus �e2min for a fixed value of �e2max.

For quenches into the strain-glass phase the result is quali-
tatively similar to the results obtained at the lower temperature
T = 0.2Tc. On the contrary, for quenches into the martensite
phase (A3 � 0.3), at T = 0.8Tc we obtain an excess amount
of large avalanches superimposed to the power-law distribu-
tion that was not obtained at T = 0.2Tc. This excess of large
avalanches can be characterized as a peak in the distribution
of avalanche sizes. We have also studied how these results
depend on the size of the simulation cell.

In Fig. 10 we show the distribution of avalanche sizes for
quenches into the strain-glass phase [A3 = 0.1, Fig. 10(a)]
and the martensite phase [A3 = 1.0, Fig. 10(b)] for L =
1000, L = 500, and L = 250, using the same discretization
parameter in all cases. For quenches into the strain-glass phase
we find that the upper cutoff of the power-law distribution is
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FIG. 9. Log-log plot of the number of avalanches versus the
strain variation obtained after a thermal quench to T = 0.8Tc. The
red line in each plot is a least-squares fit to a power-law relation.

almost independent of the size of the simulation cell. There-
fore, as obtained at the lower temperature T = 0.2Tc, the
distribution of avalanche sizes is supercritical. For quenches
into the martensite phase we analyze the dependence of the
position of the peak in the distribution of avalanche sizes on
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FIG. 10. Number of stress induced avalanches versus the
avalanche size after a quench to T = 0.8Tc for three different sizes
of the simulation cell (L = 1000, L = 500, and L = 250) and two
values of the elastic constant A3 [A3 = 0.1 (a) and A3 = 1.0 (b)]
using the same discretization parameter, � = 1.9531, in all cases.
The red lines are least-square fits to a power-law relation. The
number of independent simulations performed is n = 64, n = 128,
and n = 256 for L = 1000, L = 500, and L = 250, respectively.
The inset shows the scaling relation between the position of the peak
in the distribution of avalanche sizes for A3 = 1.0 and the size of the
simulation cell.
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the size of the simulation cell. This position, indicated with
arrows in the figure, scales approximately as

L2�e2peak ∼ L2. (16)

This is consistent with a subcritical distribution of avalanche
sizes as it indicates that a few avalanches have a characteristic
size that is proportional to the size of the simulation cell. Thus,
we conclude that at T = 0.8Tc criticality is only obtained
at the crossover between the martensite and the strain-glass
phases.

V. DISCUSSION AND CONCLUSIONS

In this work, we have sought to establish a realistic frame-
work based on a phase-field model suitable to describe low-
temperature avalanche dynamics in stress-driven martensitic
and ferroelastic systems.

Although the model is formulated in 2D it corresponds
to a projection of the three-dimensional (3D) models suit-
able for the cubic-to-tetragonal or tetragonal-to-orthorhombic
transitions [22]. It takes into account the effects of long-
range anisotropic interactions arising from elastic compati-
bility constraints, and quenched disorder, which is assumed
to originate from composition fluctuations. In the model,
the microstructure of the low-temperature phase reached by
cooling from high temperature is controlled by the ratio of
the amount of disorder, measured by the standard deviation of
its distribution, and the strength of the long-range interaction,
which is proportional to the elastic anisotropy of the system.
In particular, fixing the amount of disorder, for low anisotropy
the system gets frozen in a strain-glass phase, while for
high anisotropy a twinned martensitic phase forms. We have
numerically investigated the athermal strain response of these
systems when driven by an externally applied stress. We have
found that due to the existence of disorder the system evolves
toward a single variant martensite through strain jumps, which
define avalanches.

In all cases, avalanches distribute in a broad range of sizes.
However, a detailed study demonstrates that the distribution
is supercritical when starting from a deep strain-glass phase
and becomes critical, and thus characterized by a power-
law distribution, only when starting from close enough to
the boundary that separates glassy from twinned martensitic
behavior in the phase diagram. In fact, criticality occurs in
a broad crossover region that seems to have an excursion
rather inside the interior of the twinned martensitic region. In
any case, results suggest that for large enough anisotropy or
very low amount of disorder, subcritical behavior must occur.
Indeed, this is consistent with the analytical solution of the
clean limit.

The main idea behind supercritical and subcritical dynam-
ics is the following. Subcritical dynamics would correspond
to a situation with a low density of energy barriers where
the long-range interaction, which induces long-range strain
correlations, dominates over the disorder. In this case, the
transformation of a small domain induces the transformation
of neighboring domains and this effect propagates to relatively
long distances giving rise to very large avalanches character-
ized by a certain length scale related to the scale of the system.
Supercritical dynamics, in contrast, corresponds to a situation

with a high density of energy barriers where the disorder
dominates over the long-range interaction. Thus, the disorder
is expected to be able to break the correlations and suppress
the possibility of propagation of local transformations. The
dynamics in this case is controlled by small avalanches with a
characteristic length scale.

In general, avalanche dynamics is accepted to be inherent
to any externally driven, athermal disordered system [17]. Be-
yond martensitic transitions, avalanches have been reported to
occur during magnetization processes [27,28], plastic defor-
mation [29], or failure under compression of inhomogeneous
materials [30,31], among many others. Usually, simple lattice
models such as the random field Ising model (RFIM) [32]
or the random bond Ising model (RBIM) [33] with athermal
local relaxation dynamics (which is in fact equivalent to
the dynamics used in the present study) are employed to
simulate the field-driven behavior of these systems. Compared
with such models, our model has the advantage of properly
taking into account symmetry properties of both parent and
martensitic phases, and thanks to incorporating long range
effects due to which our model is able to reproduce the actual
microstructure that grows at the transition. The main result
obtained from lattice models is that criticality occurs for a
given critical amount of disorder. Indeed, this result is also
reproduced by the present model, which has been based on
specific properties of the low-temperature phase.

It is worth reminding that in some cases, avalanches have
also been studied using models less simplified than the sim-
ple lattice models mentioned above. An interesting approach
based on a phase-field model was reported by Ahluwalia and
Ananthakrishna in Ref. [34]. They also took into account
the long-range effects to model a 2D system undergoing a
martensitic transition. The aim of the paper was modeling
acoustic emission (AE) avalanches that occur during ther-
mally induced martensitic transitions. Actually, the AE is
related to the strain avalanches, and the authors assumed that it
can be taken into account from the dissipation associated with
the movement of the parent-product interfaces, which was
modeled by a Rayleigh dissipative functional. The authors
were able to reproduce the power-law behavior of the statisti-
cal distribution of the amplitudes, energy, and duration of the
AE avalanches. Compared to our work, the results reported
in that paper would correspond to avalanches expected in the
high anisotropy and low disorder limit.

To our knowledge, no experiments have been reported so
far of avalanche behavior in stress-driven strain-glass phases.
In systems transforming to twinned martensitic phases, ex-
perimental results based on AE measurements suggest that
the distribution of AE avalanches tends to be power law in
systems with a sufficiently large amount of disorder [20].
The power-law behavior reflects the absence of characteristic
scales and thus corroborates the existence of avalanche criti-
cality. AE experiments suggest that the exponents that identify
the power law show weak universality, depending essentially
on the symmetry change taking place at the transition. More
specifically, they depend on the ratio R of symmetry oper-
ations of the high and low temperature phases [18]. So far,
it is not yet clear to which extent the exponents depend on
dimensionality. The presently studied 2D square-to-rectangle
transition mimics a 3D cubic-to-tetragonal transition. For this
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change of symmetry, an amplitude exponent, α3D = 2.0±
0.3, has been determined experimentally [18,35]. The critical
exponent obtained in our work is smaller than the 3D experi-
mental exponent (α2D ≡ α = 1.50 ± 0.05 � α3D) as expected
since the ratio R is 2 in our case instead of 3 in the real 3D
case (two low temperature martensitic variants exist instead
of three). However, small differences could also arise from
the different dimensionality or from the symmetry breaking
effects of the applied field that effectively reduces the ratio
R. A detailed analysis is certainly needed to clarify this point
further.

In summary, the results presented in this work confirm the
relevance in martensitic and in general ferroelastic systems
of the competition between long-range anisotropic elastic
interaction and quenched disorder, which controls not only
characteristic features of the domain pattern formed at the

transition but also their dynamics under an applied stress field.
We expect that the simulation results reported in the present
paper provide guidance on how to proceed experimentally, to
verify the ideas and predictions presented here, and in par-
ticular corroborate the crossover from supercritical to critical
behavior at the boundary of strain-glass behavior. The study
of avalanches could provide an interesting alternative method
to characterize strain glasses.
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