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___________________________________________________________________________ 

ABSTRACT: The elementary reaction sequence A  I  Products   is the simplest 

mechanism for which the steady-state and quasi-equilibrium kinetic approximations can be 

applied. The exact integrated solutions for this chemical system allow inferring the conditions 

that must fulfil the rate constants for the different approximations to hold. A graphical 

approach showing the behavior of the exact and approximate intermediate concentrations 

might help to clarify the use of these methods in the teaching of chemical kinetics. Finally, the 

previously acquired ideas on the approximate kinetic methods lead to the proposal that 

activated complexes in steady state rather than in quasi-equilibrium with the reactants might 

be a closer to reality alternative in the mathematical development of Transition State Theory 

(TST), leading to an expression for the rate constant of an elementary irreversible reaction 

that differs only in the factor 1   (  being the transmission coefficient) with respect to that 

given by conventional TST, and to an expression for the equilibrium constant of an 

elementary reversible reaction more compatible with that predicted by chemical 

thermodynamics.  

 

___________________________________________________________________________ 

KEYWORDS: Audience: Graduate Education/Research; Domain: Physical Chemistry; 

Pedagogy: Misconceptions; Topics: Kinetics, Reactive Intermediates 
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■  A LITTLE HISTORY 

 
 

When deriving the rate law corresponding to the mechanism of a complex chemical reaction 

in order to compare it with the one found in the laboratory, it is often mandatory to eliminate 

the concentrations of the reaction intermediates, expressing them as a function of the 

concentrations of other chemical species experimentally accessible (reactants, products, and 

potential catalysts or inhibitors). To do so, we have two main alternatives: the steady-state and 

quasi-equilibrium approximations.  

 The steady-state approximation was first proposed by Chapman and Underhill in 1913 

for the photochemically induced reaction between chlorine and hydrogen in the gas phase.
1
 

Afterwards, the potential value of this method was progressively accepted: it was soon 

realized that in many kinetic studies the rate law experimentally found in the laboratory 

matched the one obtained from a chemically-acceptable proposed mechanism provided that 

the concentrations of the chemical species involved as very reactive intermediates (I) were 

eliminated by equalling their rate of formation to their rate of disappearance. This would 

mean that d[I]/dt 0.
2-4

 Several physical chemistry
5-8

  and chemical kinetics
9
  textbooks deal 

with this topic in some depth. 

 In this contribution it will be defended that a graphical approach might be the best 

solution to explain to students at the advanced undergraduate level not only the steady-state 

approximation but also that of the quasi-equilibrium. Finally, the ideas developed in the 

former sections will be applied in order to discuss whether the steady state or the quasi-

equilibrium is the best choice of approximate method for the activated complex of an 

elementary reaction involved in Transition State Theory (TST).  
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■  A SIMPLE MECHANISM WITH EXACT KINETIC INTEGRATED SOLUTIONS 

 

The Exact Solutions 

 

Let us start considering the following simple mechanism: 

 

 

1 2

1
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k k

k
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 (1) 

 

Since the three reactions involved in that mechanism are unimolecular, the differential laws 

corresponding to the reactant and intermediate concentrations are, respectively: 
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The advantage of illustrating the conditions required for the steady-state and quasi-

equilibrium approximations to hold with a sequence of unimolecular (instead of bimolecular) 

reactions is that we know in this case the exact analytical solutions for the concentrations of 

the reactant and intermediate at different instants during the course of the reaction: 
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where parameters 
1  and 2  are algebraic combinations of the three rate constants involved: 
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The integrated laws (eqs 4 and 5) have been obtained by integration of the corresponding 

differential laws (eqs 2 and 3) using a matrix-based method.
10

 The validity of these exact 

solutions can be verified by consulting different sources,
11,12

 and they have been 

experimentally confirmed for the oxidation of thiols by Cr(VI).
13-16

 Otherwise, the integrated 

laws can be checked straightforwardly by differentiation, leading to the differential laws 

derived from the mechanism considered (eq 1). 

 An interesting parameter to discuss later the application of the steady-state and quasi-

equilibrium approximations is the time elapsed when the intermediate reaches its maximum 

concentration. By obtaining d[I]/dt from eq 5 and equating the result to zero, it can be inferred 

that: 
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First Approximation 

 

According to eqs 6 and 7, both parameters 
 1  and 

 2  are positive, but with 
 1  > 

 2 . This 

means that the exponential function whose exponent is  

 1 t  approaches the zero value much 
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faster than the function whose exponent is  

 2 t  (Figure 1). Thus, there exists an instant that 

we may call 2t  so that for 2  t t  the only exponential function still different enough from 

zero will be the second, and then eqs 4 and 5 can be approximated to: 
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Figure 1.  Dependence of the exponential functions  
 1 te 
(green plot) and  

 2 te 
(purple plot) 

for the mechanistic scheme formed by two unimolecular consecutive reactions, the first 

reversible and the second irreversible, with k1 =  k-1 =  k2 = 1.00 10-4 s-1. 

 

  Since the approximations that will be developed in the following sections (steady 

state and quasi-equilibrium) will assume the fulfilment of eqs 9 and 10, it is important to 

notice that these new approximations can be applied only after a certain  instant  of  the  

reaction  course ( 2  t t ) and never from the beginning itself. As we will see later, this happens 

after the instant at which the intermediate attains its maximum concentration ( max2   t t ). 
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■   STEADY-STATE APPROXIMATION 

 

Mathematical Approach to the Steady-State Method 

 

 Let us consider firstly the particular case corresponding to the mechanism for which the first, 

reversible step is slow in the forward direction and fast in the backward direction, whereas the 

second, irreversible step is also fast, that is k-1 >> k1 and k2 >> k1. Under these conditions, we 

can approximate: 
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Replacing this result into eqs 6 and 7: 

 

 
 1 -1 2       +  k k   (12) 
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1
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and the new results into eqs 9 and 10 (remember that k1 is negligible against both k-1 and k2): 
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From eqs 14 and 15: 
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 1
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Finally, from eq 16: 

 

 1 -1 2 [A]  (  +  ) [I]      0k k k   (17) 

 

and from eq 3: 

 

 
 d[I] 

      0
dt

  (18) 

 

which is precisely the equation serving as definition for the steady-state approximation. We 

can thus conclude that application of this approximate method to a particular intermediate 

requires that it disappear in steps much faster than the one corresponding to its formation (for 

the particular case considered here, k-1 >> k1 and k2 >> k1). Thus, an intermediate in steady 

state always is present in the reacting system in minute concentrations, since its tendency to 

disappear (reactivity) is much higher than its tendency to be formed. Small free radicals 

would be an excellent example of steady-state intermediates indeed. 

 

 

Graphical Approach to the Steady-State Method 

 

Now, we can represent the exact solution of [I] at different instants during the course of the 

reaction (eq 5) and compare it with the approximate solution provided by the steady-state 

condition (eq 16): 
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Since both [I] (exact solution) and ss[I]  (steady-state approximate solution) are directly 

proportional to o[A] , it will be enough to compare the exact ratio (from eq 5): 
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with the steady-state approximate ratio (from eqs 4 and 19): 
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involving the function of time: 
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Figure 2.  Comparison between the kinetic plots showing the [Intermediate]/[Reactant]o ratio 

as obtained using either the steady-state approximation (green plots) or the exact rate law 

(purple plots) for the mechanistic scheme formed by two unimolecular consecutive reactions, 

the first reversible and the second irreversible, with k1 = 1.00 10-4 s-1, and k-1 =  k2  = 5.00 

10-5 s-1 (A), 1.00 10-4 s-1 (B), 2.00 10-4 s-1 (C) and 4.00 10-4 s-1 (D). 

 

 In order to reach conclusions about the relative values that must take the rate constants 

of the elementary reactions ( 1k , -1k , and 2k ) for the steady state approximation to hold, k1 has 

been kept constant, whereas the other two rate constants have been progressively increased 

keeping k-1 = k2. In Figure 2, the four bell-shaped curves showing a maximum (in purple) 
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correspond to the exact concentration ratio (eq 20), whereas the four continuously-decreasing 

curves (in green) correspond to the steady-state approximate concentration ratio (eqs 21 and 

22). We can see that, for each set of rate constants, the exact and approximate curves cross 

exactly at the maximum of the intermediate concentration, given that eq 18 (the steady-state 

condition) is only exact at that maximum (the only point with a horizontal tangent). We can 

also see that each time rate constants -1k  and 2k  are multiplied by a factor of 2 (keeping 1k  

constant), the approximate curve gets closer and closer to the exact curve after its maximum.  

For the case  k-1 =  k2 =  4 k1 (Figure 2, D) the steady-state approximate curve is almost 

coincidental with the exact curve once the maximum is reached, meaning that the steady-state 

condition qualifies as an excellent approximation for this set of rate constants. Thus, we can 

consider that the time necessary for the steady-state condition to be fulfilled is coincident with 

the time elapsed when the intermediate concentration reaches its maximum value    max2 )( t t  

 The ratio between the exact and approximate intermediate concentrations increases with 

time, reaching a plateau when  t   (Figure 3). The asymptotic value of the ratio is (from 

eqs 9, 10 and 19):  
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Figure 3.  Ratio between the exact intermediate concentration ([I]) and that obtained using the 

steady-state approximation ([I]ss) for the mechanistic scheme formed by two unimolecular 

consecutive reactions, the first reversible and the second irreversible, with k1 = 1.00 10-4 s-1, 

and k-1 =  k2  = 5.00 10-5 s-1 (red), 1.00 10-4 s-1 (orange), 2.00 10-4 s-1 (green) and 4.00 

10-4 s-1 (blue). The dashed line shows the limit corresponding to a perfect fulfilment of the 

steady-state approximation ([I] = [I]ss). 

 

 In other words, when k1 is kept constant and both k-1 and  k2 are gradually increased, the 

limit of the asymptotic value of the ratio [I]/[I]ss decreases approaching unity (Figure 4, 

bottom), corresponding to a perfect fulfilment of the steady-state-approximation. 

Simultaneously, the time elapsed when the intermediate reaches its maximum concentration 

(coincident with the time interval required for the steady-state approximation to hold) also 

decreases approaching zero (Figure 4, top). We can, therefore, define an intermediate in 

steady state as a very reactive intermediary chemical species that has already reached its 

maximum concentration. 
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Figure 4.  Dependencies of the time elapsed when the intermediate reaches its maximum 

concentration (top) and the limit at infinite time of the ratio between the exact intermediate 

concentration ([I]) and that obtained using the steady-state approximation ([I]ss) (bottom) on 

the fast/slow ratio of rate constants (keeping k-1 = k2) for the mechanistic scheme formed by 

two unimolecular consecutive reactions, the first reversible and the second irreversible. The 

dashed line shows the limit corresponding to a perfect fulfilment of the steady-state 

approximation ([I] = [I]ss).  
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■   QUASI-EQUILIBRIUM APPROXIMATION 

 

Mathematical Approach to the Quasi-Equilibrium Method 

 

Let us consider as a second particular case the one corresponding to the mechanism (eq 1) for 

which the first, reversible step is fast in both directions whereas the second, irreversible step is 

slow, that is 1k >> k2 and k-1 >> k2. Under these conditions, we can approximate: 
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and replacing this result into eqs 6 and 7: 
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and the new results into eqs 9 and 10 (remember that this time k2 is negligible against both k1 

and k-1): 
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From eqs 28 and 29: 
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 1
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k
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 Since the equilibrium constant (referred to concentrations instead of to activities) 

associated to the first, reversible step of the mechanism considered (eq 1) can be expressed as 

the ratio of the rate constants corresponding to the forward and backward elementary 

reactions: 

 

 1
c
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k
K
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eq 30 can also be written as: 

 

 c

 [I] 
      

 [A] 
K   (32) 

 

which is precisely the equation obtained when the quasi-equilibrium approximation is applied 

to the first, reversible step of the mechanism considered. We can thus conclude that this 

approximate method requires that the reversible step to which is applied be fast in both 

directions with respect to the rate-determining step of the mechanism (for the particular case 

considered here, 1k  >>    k2 and k-1 >>   k2). In other words, this method is useful for intermediates 

formed in very fast, reversible reactions only. Those formed in acid-base reactions (both 

reversible and fast) would be an excellent example of quasi-equilibrium intermediates indeed. 
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Graphical Approach to the Quasi-Equilibrium Method 

 

We can represent the exact solution for [I] at different instants during the course of the 

reaction (eq 5) and compare it with the approximate solution provided by the quasi-

equilibrium condition (eq 30): 
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Figure 5.  Comparison between the kinetic plots showing the [Intermediate]/[Reactant]o ratio 

as obtained using either the quasi-equilibrium approximation (green plots) or the exact rate 
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law (purple plots) for the mechanistic scheme formed by two unimolecular consecutive 

reactions, the first reversible and the second irreversible, with k1 =  k-1 = 2.00 10-4 s-1 (A), 

4.00 10-4 s-1 (B), 8.00 10-4 s-1 (C) and 1.60 10-3 s-1 (D) , and k2  = 1.00 10-4 s-1. 

 

 Since both [I] (exact solution) and qe[I]  (quasi-equilibrium approximate solution) are 

directly proportional to o[A] , it will be enough to compare the exact ratio (eq 20) with the 

quasi-equilibrium approximate ratio (from eqs 4 and 33): 
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f t
k
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 (34) 

 

where f(t) has the same meaning than in eq 22. 

 In order to reach conclusions about the relative values that must have the rate constants 

of the elementary reactions ( 1k , -1k and 2k ) for the quasi-equilibrium approximation to hold, k2 

has been kept constant, whereas the other two rate constants have been progressively 

increased keeping k1 = k-1. In Figure 5, the four bell-shaped curves showing a maximum (in 

purple) correspond to the exact concentration ratio (eq 20), whereas the four continuously-

decreasing curves (in green) correspond to the quasi-equilibrium approximate concentration 

ratio (eq 34). We can see that each time rate constants k1 and -1k  are multiplied by a factor of 

2 (keeping k2 constant), the approximate curve gets closer and closer to the exact curve after 

its maximum. For the case k1 = k-1 = 16 k2 (Figure 5, D) the quasi-equilibrium approximate 

curve is almost coincidental with the exact curve once the maximum is reached, meaning that 

the quasi-equilibrium condition qualifies as an excellent approximation for this set of rate 

constants. Thus, we can consider again (as happened with the steady-state condition) that the 
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time necessary for the quasi-equilibrium condition to be fulfilled is coincident with the time 

elapsed when the intermediate concentration reaches its maximum value    max2 )( t t . 

Incidentally, we can infer from these plots that the quasi-equilibrium approximation does not 

require (as the steady-state approximation does) that the intermediate be present in minute 

concentration, provided that it is formed in a fast, reversible step. 
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Figure 6.  Ratio between the exact intermediate concentration ([I]) and that obtained using the 

quasi-equilibrium approximation ([I]qe) for the mechanistic scheme formed by two 

unimolecular consecutive reactions, the first reversible and the second irreversible, with k1 =  

k-1 = 2.00 10-4 s-1 (red), 4.00 10-4 s-1 (orange), 8.00 10-4 s-1 (green) and 1.60 10-3 s-1 

(blue), and k2  = 1.00 10-4 s-1. The dashed line shows the limit corresponding to a perfect 

fulfilment of the quasi-equilibrium approximation ([I] = [I]qe).  

 

 The ratio between the exact and approximate intermediate concentrations increases with 

time, reaching a plateau when  t   (Figure 6). The asymptotic value of the ratio is (from 

eqs 9, 10 and 33):  
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and, from eq 26, it can be inferred that: 
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In other words, when k2 is kept constant and both k1 and  k-1 are gradually increased, the limit 

of the asymptotic value of the ratio [I]/[I]qe increases approaching unity (Figure 7, bottom), 

corresponding to a perfect fulfilment of the quasi-equilibrium approximation. Simultaneously, 

the time elapsed when the intermediate reaches its maximum concentration (coincident with 

the time interval required for the quasi-equilibrium approximation to hold) decreases 

approaching zero (Figure 7, top). We can, therefore, define an intermediate in quasi-

equilibrium with the reactants as an intermediary chemical species formed in a fast, reversible 

step and that has already reached its maximum concentration. 
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Figure 7.  Dependencies of the time elapsed when the intermediate reaches its maximum 

concentration (top) and the limit at infinite time of the ratio between the exact intermediate 

concentration ([I]) and that obtained using the quasi-equilibrium approximation ([I]qe) 

(bottom) on the fast/slow ratio of rate constants (keeping k1 = k-1) for the mechanistic scheme 

formed by two unimolecular consecutive reactions, the first reversible and the second 

irreversible. The dashed line shows the limit corresponding to a perfect fulfilment of the 

quasi-equilibrium approximation ([I] = [I]qe).  
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 ■   TRANSITION STATE THEORY 

 

Activated Complexes: in Quasi-Equilibrium or in Steady State? 

 

The thermodynamic formulation of TST assumes as a basic hypothesis that the activated 

complex of an elementary reaction is in quasi-equilibrium with the reactants. However, we 

have seen that, in the simple mechanism considered (eq 1), the combination of rate constants 

k1 << k-1, k2 leads to the steady-state approximation, whereas the combination k1, k-1 >> k2 

leads to the quasi-equilibrium approximation. This situation is illustrated in Scheme 1. 

 

___________________________________________________________________________ 

Scheme 1. Combinations of Slow/Fast Steps Leading to Each Approximation 

 

slow fast

fast

fast slow

fast

      X         X in steady state

  X         X in quasi-equilibrium

  

  

 

___________________________________________________________________________ 

 

 Since, in the case of TST, the energy barrier is associated with the forward direction of 

the reversible step leading to the formation of the activated complex, whereas decomposition 

of the latter either in the direction of the reactants or in that of the products does not imply any 

energetic requirement, we may wonder whether the activated complex is actually in quasi-

equilibrium or in steady state instead. At first view, and taking into account the information 

given in Scheme 1, it seems that the steady-state alternative might be more reasonable: 

formation of the activated complex is expected to be the slow step, whereas its 

decompositions in both the reactant and product directions are expected to be rather fast.  
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 The mathematical expression obtained from TST (thermodynamic formulation) for the 

rate constant of an elementary reaction is the well-known Eyring equation: 

 

 
 

o
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 ( )   
  

   =     
 


 S H

n R RTc
k T

k e e
h

 (37) 

 

where   is the transmission coefficient, n  is the kinetic order of the elementary reaction 

(molecularity), c
o
 is the standard-state concentration (arbitrarily taken as 1 mol dm

-3
), oH  

and oS  are the standard activation enthalpy and entropy, whereas Bk , h and R are the 

Boltzmann, Planck and ideal gas universal constants, respectively. The factor (c
o
)1 n  did not 

appear in the original Eyring equation, but more recently it has been incorporated in order to 

assure its dimensional homogeneity.
17 

 Let us now consider the case of an elementary reaction, for instance (although not 

necessarily) that of a bimolecular process involving two different reactants, written as: 

 

 
 

 

1 2

1

* *

*
-

A  +  B          [A B]           P  +  Q
  

k k

k
 (38) 

 

where A and B are the reactants, [A B] ≠ the activated complex, and P and Q the reaction 

products. The symbols above and below the arrows carry an asterisk in order to emphasize 

that they are not true rate constants, although there units are the ones corresponding to either 

second-order ( *

1k , in M
-1

 s
-1

 ) or first-order ( *
-1k  and *

2k , in s
-1

) rate constants. We may 

designate these new parameters ( *

1k , *
-1k , and *

2k ) as microscopic rate constants to 

differentiate them from the macroscopic rate constant for the elementary reaction ( k ).  


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 If we consider now that the activated complex of the elementary reaction is in steady 

state rather than in quasi-equilibrium (what would be more consistent with the situation 

reflected in Scheme 1), we can write that the derivative d[(A B)≠]/dt equals zero: 

 

 * * *
1 -1 2  [(A B) ]  [(A B) ]      0  [A] [B]  k kk       (39) 

 

allowing to isolate the activated complex concentration as: 

 

 
 

*
1

* *
-1 2

[(A B) ]
  [A] [B] 

   =  
 +  

k

k k
  (40) 

 

 The equilibrium constant of formation of the activated complex from the reactants 

(referred to concentrations, in M
-1

) can be expressed as: 

 

 
*
1
*
-1

   =   
  

  
K

k

k
  (41) 

 

and from eqs 40 and 41: 

 

 
 

*
-1

* *
-1 2

 
[(A B) ]

  [A] [B] 
   =  

 +  

k K

k k


  (42) 

 

  

 On the other hand, we can consider three alternative fates the activated complex may 

suffer in a particular vibration of the normal mode of frequency   : (i) the activated complex 


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breaks down into the reaction products (forward direction, probability f ), (ii) the activated 

complex breaks down into the reactants (backward direction, probability b ), (iii) the 

oscillation is not energetic enough for the breakdown to take place (probability o ). The three 

probabilities are interrelated by: 

 

 f b o       =   1         (43) 

 

According to TST parameters *
-1k , and *

2k  can be calculated as:  

 

 b f

*
o-1  =     =  (1 ) k         (44) 

 f

*
2    =  k    (45) 

 

and from eqs 42, 44 and 45: 

 

 of

o

 (1 ) [A] [B
[(A B) ]   =  

1

 ] 

  

K 
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



 



 (46) 

 

 The rate of formation of products can be expressed in two alternative ways, the first 

being a phenomenological law from chemical kinetics and the second a theoretical law from 

TST: 

 

 
 d[P] 

   =     [A] [B]
d

k
t

 (47) 

 
*
2

 d[P] 
   =     [(A B) ]

d
k

t   (48) 
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Using eqs 45-48: 
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Finally, TST allows us to write: 
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 (50) 

 

and replacing into eq 49: 
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 (51) 

 

 

TST for Reversible Elementary Reactions: Activated Complex in Quasi-Equilibrium 

 

Consider now the following elementary reversible reaction (not involving any intermediate 

species): 

 

 
  1 2

1 2

* *

* *
- -

A  +  B          [A B]           P  +  Q
  

k k

k k
 (52) 
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TST can be applied to the forward and backward reactions, assuming that the activated 

complex is in quasi-equilibrium with the reactants and products, respectively, and the 

following expressions for the corresponding rate constants are derived: 
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 From eqs 53 and 54, we obtain for the equilibrium constant of the reversible reaction 

(referred to concentrations): 
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the standard reaction enthalpy and entropy being related to the activation parameters 

corresponding to the forward and backward reactions by: 

 

  
o o o

,f ,b  =   H H H      (56) 

  
o o o

,f ,b  =   S S S      (57) 

 

 In addition, the equilibrium constant referred to activities is related to that referred to 

concentrations by the equation: 
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where i,e are the activity coefficients of reactants and products at equilibrium, and i the 

corresponding stoichiometric coefficients (i < 0 for reactants and i > 0 for products). 

Assuming that the reacting mixture is dilute enough (i,e ≈ 1), eqs 43, 55, and 58 lead to: 
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 (59) 

 

The latter equation is not consistent with the well-known thermodynamic expression for the 

equilibrium constant unless we assume that 
f

  = 
b

 . This assumption might be too far- 

reaching because the chemical bonds that must break down for the reaction products to be 

generated from the activated complex are different from those involved for the generation of 

the reactants.  

 Moreover, if the activated complex is in quasi-equilibrium with both reactants and 

products of the reversible reaction, we can write: 
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[A B]    =    [A] [B]   =   [A] [B]
 

k
K

k   (60) 

  

 

 

*
-2

,2 *
2

  
 

[A B]    =    [P] [Q]   =   [P] [Q]
 

k
K

k   (61) 

 

where ,1K  and ,2K  are the equilibrium constants (referred to concentrations) for the 

formation of the activated complex from the reactants and from the products, respectively. 
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Since, according to eq 60, the concentration of the activated complex should decrease as the 

reaction advances (due to the decrease in the reactant concentrations), whereas, according to 

eq 61, it should increase (due to the increase in the product concentrations), these two 

equations are mutually incompatible unless we contemplate the existence of two activated 

complexes, one in quasi-equilibrium with the reactants (crossing the activation barrier from 

reactants to products) and the other in quasi-equilibrium with the products (crossing the 

activation barrier from products to reactants). However, this interpretation might be in conflict 

with the principle of microscopic reversibility.  

  

 

TST for Reversible Elementary Reactions: Activated Complex in Steady State 

 

If we consider now that the activated complex of the elementary reversible reaction (eq 52) is 

in steady state rather than in quasi-equilibrium (what would be certainly more consistent with 

the situation reflected in Scheme 1), application of eqs 43 and 51 yields for the rate constants 

of the forward and backward reactions: 
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and for the equilibrium constants of the reversible reaction referred to concentrations (from 

eqs 62 and 63): 
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and to activities (from eqs 58 and 64, assuming again that i,e ≈ 1): 
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S H
R RTK e e
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 (65) 

 

the latter equation being identical to the one predicted by chemical thermodynamics (unlike 

eq 59). 

 We can see that the notable symmetry of eqs 62 and 63 with respect to the probability 

coefficients corresponding to the breakdown of the activated complex in the product or 

reactant directions (
f

k  is directly proportional to  

b f
   and 

b
k  to  

f b
  ) makes that the 

equilibrium constant be independent of them. Thus, application of the steady state instead of 

the quasi-equilibrium as approximate method in TST leads to a higher degree of compatibility 

between chemical kinetics and chemical thermodynamics (total if activity coefficients are 

excluded). 

 Moreover, by application of the steady-state condition to the activated complex 

involved in the elementary reversible reaction considered (eq 52), we can write that the 

derivative d[(A B)≠]/dt equals zero: 

 

 * * * *
1 -2 -1 2   [(A B) ]  [(A B) ]      0  [A] [B]  +  [P] [Q]  k kk k       (66) 
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
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We can see that eq 67 does not raise any compatibility problem as eqs 60 and 61 do. 

Assuming that the activated complex is present in steady state rather than in quasi-

equilibrium, there is no need to invoke the existence of two activated complexes: one crossing 

the energy barrier in the forward direction and the other in the backward direction. The latter 

hypothesis seems to be incompatible with the very nucleus of TST itself: this theory admits 

that the activated complex can go in the two directions since, even in the case of an 

elementary irreversible reaction, the formation of the activated complex from the reactants is 

assumed to be a reversible process (see eq 38). 

 

 

Simplification of the Modified Eyring Equation 

 

Given that the vibrational energy required to break the activated complex is rather low (only 

weak chemical bonds must be broken to go forward to the reaction products or backward to 

the reactants), eq 51 can be simplified by assuming that  o 0  : 
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where, according to the definition of transmission coefficient, it has been taken into account 

that 
f

 =  . Thus, the equation obtained assuming that the activated complex is in steady 

state (eq 68) is identical to the one given by conventional TST (eq 37) except for the factor

1  . Therefore, the value of the rate constant now obtained shows the same temperature 

dependence than that obtained from conventional TST but it is numerically lower (since 1   

< 1). This is indeed an expected result because the quasi-equilibrium approximation can be 
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inferred from eq 42 simply by assuming that *

-1k  >> *

2k . This situation would correspond to an 

activated complex being simultaneously in steady state and in quasi-equilibrium with the 

reactants. Thus, conventional TST tends to ignore the decrease in the concentration of the 

activated complex caused by its decomposition into the reaction products (contribution of 

parameter *

2k ), considering only the one caused by its decomposition into the reactants 

(contribution of parameter *

-1k ). The value of parameter *

2k  might not be negligible after all 

against that of *

-1k  as required by conventional TST. In other words, although the new factor 

1   would be unimportant provided that  1   (   

* *

-1 2 >> k k  in eq 42), this condition might 

be difficult to reach in most cases. 

 

 

Boltzmann Distribution Approach 

 

Some textbooks
18

 avoid the application of the quasi-equilibrium condition by assuming that 

the energies of the activated complex quasi-molecules and of the reactant molecules follow a 

Boltzmann distribution. However, this solution might be misleading. In fact, the final 

equations obtained from the quasi-equilibrium approach and from the Boltzmann distribution 

approach are identical (both converge into eq 37). Thus, the Boltzmann approach would also 

lead to eq 59 for the equilibrium constant of an elementary reversible reaction, in clear 

incompatibility with the prediction made by chemical thermodynamics. The apparent reason 

is the fact that the Boltzmann distribution of energies would require that the system composed 

by the reactant molecules and activated complexes be, not only in thermal equilibrium, but 

also of fixed composition. The latter condition requires a chemical equilibrium between the 

reactant molecules and activated complex quasi-molecules. The existence of a process 
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converting the activated complex into the reaction products (contribution of *

2k  in eq 42) 

renders this condition impossible to reach in the case of elementary irreversible reactions. 

 

 

Convergence of the Three Different Approaches 

  

Only for an elementary reversible reaction and only once the chemical equilibrium state is 

reached, application of both the quasi-equilibrium hypothesis and the Boltzmann distribution 

law to the activated complex would give completely satisfactory results. Effectively, 

application in this case of eq 67 at t = ∞ leads to: 
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and, since the equilibrium constant referred to concentrations associated to the elementary 

reversible reaction considered (eq 52) can be expressed as: 
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by combining eqs 69 and 70: 
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 From eqs 60, 61 and 71 it follows that both the quasi-equilibrium and steady-state 

treatments lead to the same prediction for the concentration of the activated complex of an 

elementary reversible reaction at equilibrium (t = ∞). This situation can be considered as the 

only state for which the three different approaches potentially applicable in TST (quasi-

equilibrium, Boltzmann distribution, and steady state) converge. 

 

 

Concluding Remark 

 

We have seen that the steady-state approximate method is a good choice for the activated 

complexes involved in elementary reactions (both irreversible and reversible), since the only 

condition required by this approximation is that the intermediary species to which it is applied 

be in minute concentration (provided that the reaction time t  be such that t  ≥ tmax, where tmax 

is the time at which the highly reactive intermediate attains its maximum concentration). 

Certainly, if we are looking for examples of chemical species in steady state, the activated 

complex should be regarded as the perfect candidate. 
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