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In this work we analyse the data obtained from the Sherpa 2017 Everest project. We
focus the study on two problems. First, we study the cause of altitude sickness by
analysing the factors that influence the most in the prediction of the Lake Louse
Score. Second we study the affection of damage by hypoxia in ophthalmic data. In
order to help with this studies, we propose the Iterative Backward Relaxed SVM
selection method. This method sorts the factors that are related to the prediction
result. With the obtained ordered factors list, we perform the feature selection to
remove the uncorrelated factors. The prediction of both Lake Louise Score prediction
and the ophthalmic data studies got positive results.
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Chapter 1

Introduction

1.1 Project’s motivation and introduction

1.1.1 Project’s motivation

Hypoxia is a condition in which there is oxygen deficiency in a habitat or a body part,
usually due to an insufficient concentration of oxygen in the blood. Generalized hy-
poxia occurs in healthy people when they ascend to high altitude, where it causes
altitude sickness leading to potentially fatal complications: high altitude pulmonary
edema (HAPE) and high altitude cerebral edema (HACE). Hypoxia not just occurs
in healthy people at high altitude, but also in patient of Chronic Obstructive Pul-
monary Disease (COPD) at normal altitude. Hypoxia in COPD results in a relatively
focused pattern of impairment in measures of memory function and tasks requir-
ing attention allocation. In this project, we aim to study the cause of generalized
hypoxia(Altitude sickness) by understanding what are the most related factors that
cause altitude sickness. In order to better understand altitude sickness and model
the problem, a high altitude environment is required. Thus, the Sherpa Everest 2017
project was launched.

1.1.2 Sherpa-Everest’2017 project

In 2017, the scientific team of the Sherpa-Everest’2017(SE2017) project arrived to the
base camp of Everest to carry out a pioneering study that analyse the genetic, bi-
ological and clinical impact of the lack of oxygen (hypoxia) in trekkers, European
climbers and Sherpas people during the Everest ascent (8,848 m).

The participants are exactly 11 trekkers, 17 climbers and 28 Sherpas. The 17
climbers are led by Ferran Latorre i Torres, a famous Spanish traveller and moun-
taineer( The project description in Ferran Latorre’s blog). Sherpa are one of major eth-
nic group native to the most mountainous regions of Nepal, the Himalaya. The 11
trekkers are actually 11 well-trained scientist which including geneticists, neurolo-
gists, cardiologists, physiologists, biochemists and other doctors from Nepal. Fur-
thermore, as we mentioned before, hypoxia also occurs in COPD. Hence, there were
50 COPD patients who also participate the Sherpa Everest 2017 project by contribut-
ing their medical data. However, we don’t use any COPD patients data in this study.

1.2 Objectives

As we mentioned previously, we aim to understand and find the most related factors
that cause altitude sickness. Thus, we build the project by doing two different analy-
sis: Lake Louise Score(LLS) analysis and Ophthalmic analysis. We started with only
LLS analysis. However, the SE2017’s scientific team provided us the ophthalmic
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data of trekkers afterwards. They consider that ophthalmic study in altitude moun-
tain sickness(AMS) is completely new and we would reach discovering new useful
information. For this reason, we added the second analysis and expect to be able to
explain the cause of hypoxia in an ophthalmic manner.

1.3 Contributions

Based on the two analysis we mentioned previously, we can summarize the project’s
contributions as follows:

• We are able to predict the LLS value with an certainly accuracy by given in-
dividually physiological data and stage-wise information such as the accumu-
lated distance reached.

• We reach to create an measurement to evaluate how people suffer from high
altitude hypoxia by the given ophthalmologic data.

• We propose the Iterative backward relaxed SVM selection method for the fea-
ture subset selection process.

With regard to the above three points, we expect the result of this project could
help medical researchers to better understand hypoxia, and improve the diagnosis
or develop treatments that improves the symptoms and consequences of this illness.

1.4 Report layout

In order to clearly show the pipeline, we organize this report as follows:

• Chapter 2 explains the background information, which are the existing method-
ologies that we use for this project.

• Chapter 3 points out why the existing methods are not appropriate for the
project’s analysis, and then proposes a new one.

• Chapter 4 discusses the data we used for the first analysis which is Lake Louise
Score analysis, and its implementations. Moreover, the results are also shown
in this chapter.

• Chapter 5 shows the ophthalmic data analysis and its corresponding results.

• Chapter 6 ends the report with conclusion and propose other possible future
research lines.
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Chapter 2

Background information

In this chapter, we aim to provide the background information such as the concept
of the used methods for the project in order to easily understand the later imple-
mentation chapter. Moreover, we also introduce the small dataset problem that we
had to overcome in this project and the methods we used to deal with this kind of
problems.

2.1 Linear models

Let Ein be in-sample error and Eout out of sample error, where in-sample error is
the error rate we get on the same dataset we used to build our predictor, whilst out
of Sample Error is the error rate we get on a new dataset. The learning process in
a Machine Learning algorithm consists of finding the model such that Eout → 0.
However, we can not directly measure the Eout. But, we can measure the Ein. Thus,
we can try to obtain Eout → 0 by doing the following two steps: 1) Ein → 0 and 2)
Ein ≈ Eout. So, it can be summarized to the below formula:

Ein → 0, Ein ≤ Eout ≤ Ein + O(

√
C
N
),

where C is a notation for complexity, the more complex the model is, the higher the
value C. N is the amount of data samples. Obviously, we aim to have a small number

of
√

C
N in order to reach the second condition Ein ≈ Eout. Hence, an appropriate C

along with the given amount of samples N is required.
Since our dataset is relatively a small dataset, a small value of C is needed to keep

overfitting in check. That means, a fairly low-complexity model would be suitable
for a small size dataset. For this reason, a linear model is suggested, which is a low
complexity model that finds the relation between variables Xi ∈ {X1, ..., XN} and
the observation Y by the following formulation Y = ∑N

i=1 wiXi + b, where wi, b are
constants. Thus, Support Vector Machine is introduced in this section.

2.1.1 Support Vector Machine

Support vector machine (known as SVM) is a particularly powerful and flexible class
of supervised algorithms for both classification and regression tasks. However, we
will develop the project by using SVM in classification problems.

In this algorithm, a hyperplane in a high dimensional space splitting the space
into two half-spaces by classifying them as 2 different classes is created. Elements in
one of the half-space are positive values and the ones in the other half-space are neg-
ative values. Here, we call such hyperplane as classification boundary. Intuitively, a
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FIGURE 2.1: A SVM classification example

good separation is achieved by the classification boundary that has the largest dis-
tance to the nearest training data points of any class (so-called functional margin),
since in general the larger is the margin, the lower is the generalization error of the
classifier. The margin is calculated as the perpendicular distance from the boundary
to only the closest points. So called Support Vectors are the vectors generated by a
critical subset of data points, which are the nearest points to the boundary(see figure
2.1). If any of those points disappear the boundary changes, thus we can conclude
that boundary only depends on the support vectors.

In fact, there are different types of hyperplanes which are Maximum Margin Hy-
perplane and Soft-margin Hyperplane. Maximum Margin Hyperplane is introduced
by Bernhard E. Boser, 1992 and Soft-margin Hyperplane is given by Corinna Cortes,
1995. Maximum margin works only when data is completely linearly separable
without any errors (noise or outliers). On the other hand Soft-margin was proposed
to extend the idea of Maximum Margin in order to deal with non-linearly separable
data. This is solved by introducing slack variables which penalize misclassifications.
Since the given project data are non-separable, we will use Soft-margin Hyperplane.
Hence, we give the mathematical formulation of linear Soft-margin below in order
to effectively introduced its concepts.

Given a binary classification problem with a training dataset D = {(xi, yi)}, i =
1, ..., N, yi ∈ {−1, 1}, where xi are input variables and yi are their corresponding
class that has label either −1 or 1. N represents the number of total input data. The
Soft-margin Hyperplane is formed by

minimize
||w||22

2
+ C

N

∑
i=1

ζi

subject to yi(wT · xi + b) ≥ 1− ζi, i = 1, ..., N
ζi ≥ 0

where b is a constant, w is the coefficients vector, C is the trade-off parameter
that roughly balances margin and misclassification rate. The higher the C is, the
more influence of the misclassification error.

Furthermore, we present the advantages of SVM (1.4. Support Vector Machines) as
follows:

• Effective in high dimensional spaces.
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• Still effective in cases where number of dimensions is greater than the number
of samples.

• Uses a subset of training points in the decision function (called support vec-
tors), so it is also memory efficient.

• Versatile: can be extended to non-lineal models by means of kernel functions.
Different Kernel functions can be specified for the decision function. Common
kernels are provided, but it is also possible to specify custom kernels.

2.2 Feature subset selection

Irrelevant features in the dataset do not contribute to the predictive accuracy. More-
over, redundant features do not help to getting a better predictor for that they pro-
vide mostly information which is already present in other features. Irrelevant fea-
tures along with redundant features, severely affect the accuracy of the learning ma-
chines. Feature subset selection(FSS) can be viewed as an important process that
identifies and removes as many irrelevant and redundant features as possible in
order to reduce dimensionality and improve accuracy results, also to get an infor-
mative features subset (Evangeline et al., 2013).

As we mentioned on the previous section, we aim to identify the most relevant
factors that are indicators of the predictions result. Thus, we expose a list of FSS
methods that we used as a baseline method for the project’s implementation.

2.2.1 Best Subset Selection methods

Best Subset Selection finds a feature subset of size S in which a classifier based on
these S features has a lowest probability of error. The goal is to choose a subset XS
of the complete set of M input features X = {x1, x2, ..., xM} so that the subset XS can
predict the output y with accuracy comparable to the performance of the complete
input set X, and with great reduction of the computational cost. The performance
of a set of input features can be evaluated by Leave-One-Out cross validation (see
Cross-validation (statistics)).

Using the same evaluation method, we give a brief explanation of the three dif-
ferent Best Subset Selection algorithms below.

Brute-force Feature Selection

The idea of Brute-force Feature Selection method is to exhaustively evaluate all pos-
sible combinations of the input features, and then find the best subset. Obviously,
the computational cost of exhaustive search is extremely high, (2M − 1). Hence,
people resort to greedy methods, such as Forward Selection. (Feature selection).

Forward Feature Selection

Forward Feature Selection begins by evaluating all single feature subsets, that is
{{x1}, {x2}, ..., {xM}}, where M is the input dimensionality. It can use LOOCV to
measure the error of one-component feature subset one by one,{x1}, {x2}, ..., {xM},
so that we can reach to find the best individual feature, for instance X1.

Then, it finds the best pair features that consists of X1 and the another individual
feature in {x2}, ..., {xM}. After that, it finds the best three features, four and so on
until the best subset feature XS is found.
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Backward Feature Selection

We have seen that Forward Feature Selection begins with one-component and then
adds one by one until find the best subset Xs. Backward feature selection also known
as Backward Elimination, it conversely builds a model with full features set, then it
iteratively removes the least useful predictor, one-at-a-time till the best subset XS is
obtained. Here, the least useful predictor is the one that with which the model has
the worst performance.

2.2.2 LASSO

Least Absolute Shrinkage and Selection Operator is known as LASSO, it was first
formulated by Robert Tibshirani in 1996 (Tibshirani, 1996). LASSO mainly performs
two main tasks for estimation in linear models, which are regularization and feature
selection. The definition of LASSO is as follows.

Suppose the given data is (X, y) = {(xi, yi)}, i = 1, ..., N where xi = {(xi1, xi2, ..., xiM)}
are predictor variables and yi are responses, M is the amount of features. We assume
that the observations are independent, and the xij are standardized which means

∑i
xij
N = 0, ∑i

x2
ij

N = 1. Letting β̂ = {β̂1, ..., β̂M}, the LASSO estimate is defined as,

(α̂, β̂) =argmin
N

∑
i=1

(yi − α−∑
j

β jxij)
2

subject to ∑
j
|β j| ≤ t

where t ≥ 0 is a tuning parameter which controls the amount of shrinkage that
is applied to the estimate. Furthermore, for all t, the solution for α is α̂ = y. Recall
y is the notation of the mean of y, which we can assume without loss of generality
that y = 0 and hence omit α.

Subsequently, the LASSO is solved in Lagrange form which has the below for-
mulation,

minimizeβ

N

∑
i=1

(yi − α−∑
j

β jxij)
2 + λ||β||1

where λ ≥ 0 is the parameter that controls the strength of the penalty, the larger
the value of λ, the greater the amount of shrinkage. The exact relationship between
t and λ is data dependent.

We can summarize the LASSO method as follows. It minimizes the residual
sum of squares and sets a constraint on the sum of the absolute values of the model
parameters to be less than a constant(t or in Lagrange form λ, which is an upper
bound). In order to do so, the method applies a shrinking(regularization) process
with which penalizes the coefficients of the regression variables shrinking some of
them and sets others to zero. During feature selection process the variables that still
have a non-zero coefficient after the shrinking process are selected to be part of the
model. Thus, it retain the good features of both subset selection and ridge regression.

2.2.3 Relaxed-LASSO

Relaxed lasso is originally proposed by Meinshausen, 2006 with the aim to over-
come the slow convergence of the LASSO in some sparse high dimensional data.
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Moreover, it tries to reduce selecting noise variables in case the estimator is chosen
by cross-validation. The idea is that Relaxed lasso use the LASSO to select the set of
non-zero predictors, and then apply the LASSO again, but using only the selected
predictors from the first step. The idea is to use cross-validation to estimate the ini-
tial penalty parameter for the LASSO. However it probably includes noise variable.
For this reason, performing the LASSO again for a second penalty parameter ap-
plied to the selected set of predictors. Since the variables in the second step have
less “competition” from noise features, cross-validation will tend to pick a smaller
value for the penalization parameter λ, and hence their coefficients will be shrunken
less than those in the initial estimate(Trevor Hastie, 2001).

2.3 Brief intro to statistic in classification problems

In this section, we briefly intro a Bayesian approach and a Frequentist inference with
which we used to validate and support the project results.

2.3.1 Bayesian approach: Beta-binomial distribution

Bayesian methods solve the following problem, given a prior distribution p(x) and
a set of evidences E, compute a posterior distribution on x namely p(x|E). Beta-
binomial distribution is one of the conjugate families of distributions. The main
property of conjugate families is that the posterior distribution follows the same
parametric form as the prior distribution. Also, it is useful because of its closed-
form solution for prediction. In other words, the family is closed under evidence-
regardless of what we observe, we will continuously believe that the posterior lives
in this family. Further, it facilities a huge simplicity in the computation of the poste-
rior.

The density function of the prior Beta distribution θ ∼ Beta(α, β) is defined as,

f (x; α, β) =
tα−1 · (1− t)

B(α, β)
, where B(α, β) =

1
(r + s− 1) · ((r+s−2

r−1 ))
, α, β > 0, r, s integer

In particular Beta(1, 1) = Uni f (0, 1) uniform distribution.
Binomial distribution is the probability distribution of n independent experiment

that answer a yes-no question with an binary question results, and a probability p of
success. X ∼ Bin(n, θ) with n parameters and p ∈ [0, 1]. The probability of getting k
successes in n experiments has a density function like,

f (k, n, p) =
(

n
k

)
pk(1− p)n−k

As we mentioned before, the conjugate posterior will be again a Beta distribution.
The posterior distribution contains all the knowledge about the unknown quan-

tity X. Therefore, we can use the posterior distribution to find point or interval
estimates of X. One way to obtain a point estimate is to choose the value of x that
maximizes the posterior probability density function. This is called the maximum
a posteriori (MAP) estimation (Introduction to probability, statistics, and random pro-
cesses).
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In order to reflect the uncertainty of statistical results generated through the use
of Bayesian statistical methods, the Credibility intervals (CI) can be used. Credi-
bility intervals are used in Bayesian analysis to provide predictive indicators of the
distribution of a given outcome (Credibility Interval [online]).

2.3.2 Frequentist statistic: Permutation test

Permutation test also called randomization test, is a type of significance tests which
is a common statistical tool for constructing sampling distribution by resampling the
observed data, that is to shuffle the observed data.It can be sorted as the following
three steps(Permutation and Randomization Tests):

1. Compute some test statistic using the set of original observation.

2. Rearrange the observations in all possible orders, computing the test statistic
each time. Recall that a test statistic is a statistic used in statistical hypothesis
testing

3. Calculate the permutation test p-value, which is the proportion of test statis-
tic values from the rearranged data that equal or exceed the value of the test
statistic from the original data.

In spite of the fact that the computational cost of Permutation test is intense, but
it would not be a problem with the current computers computational capabilities.
Moreover, a big advantage of Permutation test is that it is independent to the model
compared to many other statistical test methods.
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Chapter 3

Proposal: "Iterative backward
relaxed SVM selection"

In this chapter, we discuss the problems of the existing feature selection methods
that we have already seen in the former chapter. Furthermore, we aim to give a
proposal that is able to overcome those problems.

3.1 Problem of Relaxed-Lasso and Best Subset Selection

We aim to obtain the best subset features XS with the size of S. That is, with a model
built by XS+1 has roughly the same performance, and the model built by XS−1 has a
significantly worse performance.

Remind that Relaxed-Lasso method simply applies LASSO twice which in the
first time it initializes the penalization term, and the second time eliminates noises
variables. Thus, we need to fix the two parameters at each step. That means, we
have to tune the λ1 which is the parameter that controls the strength of the penalty in
the first time applying LASSO method, and λ2 in the second LASSO as well. Thus,
we would like to propose an method that can reduce it to only tune the penalty
parameter once.

Now, we recall the three Best Subset Selection (BSS) methods, which are Brute-
force, Forward and Backward Feature Selection. One of the problem of the BSS
methods is that they are greedy methods with respect to performance. Moreover,
Brute-force Feature Selection (BFS) consists of building models by using all combi-
nation of features which has a unacceptable high computational cost. Even though
the Forward and Backward Feature Selection have a computation cost lower than
BFS, but they are still computationally expensive. An example of Backward Fea-
ture Selection is given in the following, if we want to get the best features sub-
set XS of size S from the complete features set of size M. Then, it has to build
M + (M− 1) + (M− 2) + ... + (S + 1) + S = ∑M

i=S i = (M+S)·(M−S+1)
2 different mod-

els. Note that these models have M− k features in the step k.
Based on the review of the problem of the above methods, we aim to propose a

hybrid method of the Relaxed-Lasso and BSS methods that solves the above men-
tioned problems. The already existent method Improved Variable Selection With
Forward-LASSO Adaptive Shrinkage is also a hybrid method of LASSO and For-
ward Selection (Peter Radchenko, 2011). However, the Relaxed-Lasso method shrinks
variable so that we can remove features. Hence, a Backward-LASSO method that
shrinks variable and backwardly removes feature one-at-time can be logically con-
sidered. Thus, we introduce the Iterative backward relaxed SVM selection method
in the next section.
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3.2 Iterative backward relaxed SVM selection

In this section, we propose a method that share the same idea as Backward Feature
Selection and Relaxed-LASSO method, however it tries to improve them by reduc-
ing computational cost and also getting a more relevant feature subset. In order to
achieve the above goal, we need to firstly introduce L1-norm SVM on below.

3.2.1 L1-norm SVM

We have already seen in the former chapter about the standard formulation of Sup-
port Vector Machine (SVM) which uses L2-norm in the regularization term and
hinge loss in the loss function term. We recall the formulation of SVM below:

minimize
||w||22

2
+ C

N

∑
i=1

ζi

subject to yi(wT · xi + b) ≥ 1− ζi, i = 1, ..., N
ζi ≥ 0

where ||w||22 is the L2-norm penalty (also called ridge penalty) which corresponds
to the regularization term that imposes a penalty on the complexity of lineal model
f (x) = wT · x + b. The loss function is the hinge loss which is ∑N

i=1 ζi such that
ζi ≥ 1− yi(wT · xi + b) ≥ 0.

The L1-norm is also known as LASSO penalty which was firstly proposed by
P. S. Bradley, 1998 to use L1-norm SVM for feature selection as consequence of the
resulting sparse solutions (Hai Thanh Nguyen, 2011):

minimize λ||w||1 +
N

∑
i=1

ζi

subject to yi(wT · xi + b) ≥ 1− ζi, i = 1, ..., N
ζi ≥ 0

where λ = 1
2C , ||w||1 = ∑M

j=1 |wj| is the L1-norm of w and M is the total number
of features. An important property of L1-norm penalty is that making the λ suffi-
ciently large will shrink some of the fitted coefficients toward zero. Thus, the L1-
norm penalty performs a kind of continuous variable selection as long as λ varies,
which is not the case of L2-norm penalty (Li Wang and Zou, 2006).

3.2.2 Iterative backward relaxed SVM selection

As we mentioned before, Backward Feature Selection needs to select the best sub-
set by comparing d = (M+S)·(M−S+1)

2 models. Recall that M is the amount of the
complete feature set XM and we aim to reduce it until the best subset XS of size S is
obtained. Furthermore, d is getting bigger as long as M increases. The idea of the
proposal method is to use a Relaxed-LASSO-like methodology along with an itera-
tive backward elimination approach to reach to obtain the best features subset with
at most M− S + 1 of computational cost, which has a huge enhancement compared
to Backward Features Selection in case of high dimensionality. The detail process are
as follows.
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Input: a list of ordered C’s (C = 1
2λ ) with a size of p: [C_1,C_2,...,C_p], where

C_1<C_2<...<C_p
1 . Output: A subset of the best selected features: X_s
2 while the best features subset X_s is not found do
3 1) Do grid search over the C list, that is to build p different L1-norm SVM

models which each model is created by a different C in the list of C.
4 2) In each model, show its indicator features which is the features that

help the prediction.
5 3) Remove the least important feature which is the one that contributes

the last over all models. If there are more than one feature that appears
the last, then we do a refined grid search of C, which is to define a list of
sorted C’s with reduced range. For example [C_1,C_11,C_12,...,C_5]
where C_1< C_ij< C_5. Then we remove the least important feature
based on the result of refined grid search.

6 4) Check whether the remaining features has size S which is the best
subset X_s that we aim to find. If the answer is affirmative, the program
ends here. Otherwise, we go to next step, so run again from the process
1) to 4).

7 end
Algorithm 1: Iterative backward relaxed SVM selection

The pseucode as shown in the Algorithm 1 shows the full process in 1 step of
backward elimination. In each step, it eliminates the least helpful feature, and re-
peats the steps until the Xs is obtained. To make it clear, in the process step 1), the
grid search of C is simply to fit a list of different values of C to the model. However,
in this process we aim to do feature selection that identify the most relevant feature.
Hence, we remove the feature that the least less participates the prediction process
over the models of different C’s. Since we iteratively remove one feature in one step,
thus the earliest removed feature is considered as the least helpful feature, and the
most recent removed one should be a more helpful feature than the earlier removed
ones. With this, we have the best subset features XS along with an importance-sorted
list of the rest features in XC

S , and its computational cost is (M− S). Note that XC
S is

a complementary set of XS in the complete feature set XM.
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Chapter 4

Lake Louise Score analysis

In this chapter, we describe the first analysis of altitude sickness which is to pre-
dict Lake Louise Score by the given physiological data and stage-wise information.
Firstly, the definition of Lake Louise Score System will be given. After that, the de-
tail of data will be explained. Then, we will discuss the implementation. Next, the
obtained results will be shown. Lastly, we will validate results in order to supports
their certainty.

4.1 Lake Louise Score System

Acute mountain sickness (AMS) is the acute altitude illness that typically occurs in
unacclimatized persons ascending to altitudes over 2500 m. However, it can also de-
velop at lower altitudes in highly susceptible individuals. The Lake Louise Scoring
System (LLSS) uses an assessment questionnaire and a scorecard to evaluate adults
for symptoms of AMS. The questions include asking the involved person whether
they have the following 5 symptoms: headache, gastrointestinal symptoms, fatigue
and/or weakness, dizziness and/or lightheadedness, difficulty sleeping. Moreover,
they need to give a punctuation between 0 to 3 that significantly explains how they
are affected by AMS. Regarding the punctuation:

• 0: Non affected

• 1: Mild affected

• 2: Moderate affected

• 3: Severe affected

The sum of 5 scores is total score. A total score under 3 represents not affected by
AMS, a total score from 3 to 5 indicates mild AMS and a score of 6 or more signifies
severe AMS.

4.2 Data description

In this analysis, the data are stored in an Excel file named TFM_Sherpa.xlsx with 3 dif-
ferent sheets: Sheet1, Sheet2 and Sheet3. Sheet1 contains all variables(physiological
data, stage-wise information, etc) with their corresponding values. Sheet2 stores the
personal information of each individual, however we anonymized them by remov-
ing their name and surname in order to protect their privacy. Sheet3 provides the
meta-data that describe each feature one-by-one. The given data contains 56 differ-
ent individuals information with 106 variables. The individuals are classified in 3
different groups: 11 trekkers, 17 climbers, 28 sherpas. While trekkers are those who



14 Chapter 4. Lake Louise Score analysis

only participated from Luckla(2860 meters of altitude) to Base camp(5164 meters),
climbers ascended till the highest point of Everest(8848 m) with companions of sher-
pas. However, the Lake Louise Score data is collected from Luckla to Base Camp due
to the undertraining of the scientific team, who were not prepared to ascent to 8848
m. Thus, we only do this analysis by using trekkers data. Nevertheless, there are
8 of climbers who began from Luckla with trekkers so they share 2 different roles:
trekkers and climbers. Hence, their LLS data are also collected so that we can in-
clude to the analysis dataset. In addition, the data of 4 climbers were only measured
in few stages. For the reason of too much missing data, we decided to remove them
from the dataset. Therefore, we have originally 11 trekkers data including 4 climbers
data afterwards, now the analysis dataset contains 15 different individual stage-wise
information.

Beside the individual information, we are also given an Excel file about stage-
wise information named Stage-wise_information.xlsx. Basically, it provides us the fol-
lowing 6 useful information of each stage: the place of the beginning of the stage, the
place where the stage ends, used time (unit: day), the total distance(kilometre), the
accumulated ascending meters, the accumulated descending meters. Along with the
previously described individual information, now we have in total 112 variables.

In this study, physicians are concerned with the impact of cardiovascular mea-
surements as well as the importance of the stage profile in the assessment of the LLS
value. This reduces the considered variables to the following eighteen features:

1. ID: an personal ID for each individual with no repetition.

2. altitude: altitude of the place where the sample was collected, we can also
consider them as a stage information. For instance, Barcelona with 20m of
altitude can be considered as a stage, because they collected the individual
data there. In total, they collected samples in 10 different places with differ-
ent altitude, which began from Barcelona and ended Barcelona as well. Or-
derly, they are Barcelona(20m, before going), Luckla(2860m), Monjo(2835m),
Namche(3450m), Tengboche(3867m), Pangboche(3965m), Dingboche(4380m),
Lobuche(4930m), Gorakshep-EBC(5164m), Barcelona( 20, return).

3. Gender: individual’s gender. The value are M and F which respectively repre-
sent masculine and feminine.

4. up: total amount of meters ascended in one stage.

5. down: total amount of meters descended in one stage.

6. distance(km): total accumulated distance(kilometres) completed until the cur-
rent stage.

7. Age: individual’s age. The participants have age between 22 to 58.

8. Weight: individual’s weight with kilogram(kg) as unit. This variable has val-
ues between 47.0kg to 87.0kg.

9. Height: individual’s height with centimetre(cm) as unit. The values range
from 155cm to 186cm.

10. TAS: systolic Blood Pressure, it is a part of arterial blood pressure. Normal
blood pressure is systolic of less than 120 mm Hg. Moreover, blood pressure
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is one of the vital signs, along with respiratory rate, heart rate, oxygen satura-
tion, and body temperature (Vital Signs (Body Temperature, Pulse Rate, Respira-
tion Rate, Blood Pressure)).

11. TAD: diastolic blood Pressure. Normal blood pressure is diastolic of less than
80 mm Hg.

12. FC: heart rate. The normal pulse for healthy adults ranges from 60 to 100 beats
per minute.

13. SO: resting pulse oximetry, it is commonly known as oxygen saturation (SpO2).
Normal pulse oximeter readings usually range from 95 to 100 percent. Values
under 90 percent are considered low (Symptoms Hypoxemia).

14. HD: headache. It is one of the LLS assessment that has an integer value from 0
to 3. Which 0 represents non affected, 3 means severe affected.

15. GS: gastrointestinal symptoms. The LLS assessment.

16. FN: Fatigue and/or weakness. The LLS assessment.

17. DZ: Dizziness and/or lightheadedness. The LLS assessment.

18. DSL: Difficulty sleeping. The LLS assessment.

In addition, we give an example of only one individual with its data measured
along with 10 sorted stages. The exampled individual is the one that has ID SH01.

FIGURE 4.1: An explanatory data description of the individual with
ID: SH01

Note that the NaN values represent missing data.

4.3 Problem modelling and implementation

In this section, we discuss how did we model the problem and what is the exact
implementation. We follow the general routine which is to begin with cleaning data.
Then, based on the feedback of the scientist team, we did the feature engineering
process. Afterwards, we started feature selection in order to sort the importance of
features. The last step, we iterative add the more important feature to build a model
and use it to make prediction. Then, the model that gets the best result is taken, so it
is considered as the definitive model that we use to predict LLS.
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4.3.1 Data cleaning

As the title says, this subsection we describe the necessary processes that we did
in order to obtain a clean dataset. Before we begin with the cleaning process, we
merged together the two Excel files that contain data. Thus, the merged dataset
contains both individual information and the stage-wise information. Recall that we
just do analysis of the 15 trekkers data.

The first problem we have to deal with is that the given data contain lots of miss-
ing data. We consider each feature as a vector of size N, where N is the number of
samples. Now, we remove all those features that have missing data in whole vector
or the most content in the vector are missing (NaN values). For example, the feature
Forced Vital Capacity teorica written as FVC.t, it has a vector of the individual with ID
SH01 as (4.32, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN). It happens the
same with other individuals. Since it does not provide any significant information,
thus we remove all the feature like this.

After removing the features that contain missing data such as the above example,
we have 18 remained features as the former section shown. However, for those
feature vectors that also contain missing data but a few, we do not remove them.
What we did in this case is to fill up the missing data with either 0 or the mean
value group by the individual with the same ID. We carefully fill up the missing
data based on its context. For instance, in Figure 4.1 the 5 LLS parameters collected
in the place with altitude of 20m are NaN values, we know that the place with 20m
of altitude must be Barcelona which it is not considered as high altitude. Thus,
we intuitively think the well-trained healthy individual in Barcelona should report
0 as non affected for all 5 LLS questions. Hence, in this context we fill up them
with the value 0. However, the 5 LLS parameters in the altitude of 4930m are also
missing. Since 4930m is a relatively high altitude, hence we separately fill up the
mean value group by the same ID for each LLS parameter. Despite the parameter
Weight also contains a lot of NaNs, but the human weight does not really vary too
much in few days. Furthermore, the individual with ID SH01 has the same weight
in the altitude of 20m and 4930m. For this reason, we also fill the missing data of the
Weight parameter with mean value of the same individual. Based on the same idea
as the above example shown, we filled up the mean value group by individuals in
all of the following parameters: Weight, TAS, TAD, FC, SO, HD, GS, FN, DZ, DSL.

So far, we have explained how did we deal with missing data in a feature vector,
which is vertically shown in the table(see Figure 4.1). Now, we describe how to deal
with missing entities. An entity is a row in the data table, so here it is horizontally
shown. Also, in this project, an entity can also be understand as a row that contain
one determined stage of one individual. Hence, as we mentioned previously, there
are totally 15 trekkers and 10 stages, it should contain 150 entities. However, there a
few individuals were not measured in some stages. For example, the individual with
ID SH11 is a female who had 69% of SO in the stage of altitude 3985m which was
in a very dangerous situation, so she was evacuated by helicopter. Thus, we remove
her last few stages entities due to she did not participate these stages. Furthermore,
considering that healthy people in Barcelona do not have any altitude sickness, also
Barcelona is not considered as a high altitude. For this reason, we also remove the
entities where they were in Barcelona. The remaining entities are 116.

Then, we convert the values of the parameter Gender to a binary value, 1 for male
and 0 for female. We do this due to the classifiers can only recognize numerical input
rather than letters. Furthermore, we think that is obvious altitude sickness depends
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on altitude. So, we subsequently remove the altitude feature. With this, we end the
data cleaning process.

4.3.2 Feature engineering

Feature engineering is the process of using domain knowledge of the data to create
features in order to make machine learning algorithms work.

In this firstly LLS analysis, we have parameters such as ID, Weight, Height that
all of them represent information about the same individual. In addition, ID is just
an virtual parameter that we randomly created in order to distinguish individuals,
but it cannot provide any useful information for LLS prediction. Hence, we aim to
create a feature that can distinguishably represent an unique individual with his/her
own value. That occurs the Body Mass Index appear. Body Mass Index (BMI) is a
measurement of a person’s weight with respect to his/her height. It is more of an
indicator than a direct measurement of a person’s total body fat (What is Body Mass
Index (BMI)?). BMI is calculate by the following formula:

BMI =
Weight(kg)
Height2(m2)

The normal weight status should have BMI in the range from 18.5 to 24.9. The
BMI of the 15 trekkers in the dataset range from 19.01 to 27.44.

Once we created the BMI feature, in order to not duplicate the individual infor-
mation, we remove the features ID, Weight, Height.

Another parameter we created is lls, which is the sum of all of 5 LLS parameter’s
values. Rather than call it as a feature, we call it label which is the parameter that we
aim to predict. Recall that the sum of 5 LLS parameters, under 3 means non affected,
between 3 to 5 represents mild affected and over 6 indicates severe affected. Due to
the fact that we have very small dataset, and few entities have a lls over 6. Thus,
we decide to transform the lls values into a binary value. That is, the sum of 5 LLS
parameters under 3 goes to 0, which means non affected, and the sum over 3 will be
1 which indicates the individual was somehow affected by high altitude. After this,
we remove the features HD, GS, FN, DZ, DSL.

After cleaning the dataset and do feature engineering, we still have 10 features
remained which are: BMI, Gender, up, down, distance(km), Age, TAS, TAD, FC, SO. In
addition, the label parameter is lls.

4.3.3 Feture selection

As we mentioned before, our goal is not only be able to predict LLS, but also to find
the factors that are indicators of the LLS prediction in order to better understand
the cause of altitude sickness. Hence, in this section, we aim to select a subset of
features which are the most relevant features so that we can use them to build a
more powerful predictive model.

Before selecting a subset of features, we want to know the importance of each
feature and its order of importance with respect to the other features. Thus, we use
the previously mentioned Iterative backward relaxed SVM selection method to sort
the full feature set X10. That is, we apply L1-norm SVM in each step so that it shrinks
the least important feature’s coefficient toward 0. The idea is, from the full feature
set X10 to iteratively remove one feature at each step until the 1-featured subset X1 is
obtained. Hence, we consider that the earliest removed feature is the least relevant to
the LLS prediction, and the later removed features are more relevant than the earlier
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removed ones. With this, we can obtain an importance-ordered list of features sorted
by the order that it was eliminated during the feature selection process.

However, we also need to discuss the problem we encountered during the pro-
cess. Recall the pipeline, build a list of models based on the list of different C’s (the
penalty parameter in SVM). Then we aim to remove the feature that appears the
least in the prediction over all models. However, at some step, there were more than
1 feature that are the least appeared at the same time (see Figure 4.2).

FIGURE 4.2: An example of the problem in feature selection.

The values in X-axis are the recall score of the prediction results obtained by the
50 different SVM models fitted with 50 different C’s. Y-axis shows the feature name.
The black colour cell reports that the feature was not used for the prediction of the
respective model in the X-axis. In the same sense, white colour cell means that the
feature is one of the indicator of the corresponding model with the C in the X-axis.
For example, the first column cells at the figure 4.2 are black, which its X-axis is
0.05 : 0.13. That means, in the L1-norm SVM model with C = 0.05 only have 13%
of prediction recall, and all of the 8 features in the Y-axis did not participate the
prediction in this model. That is, the coefficients of those 8 features are 0, and so it
is black colour. Now the problem is, the rest 4 features begin the prediction from the
second C in the X-axis, but down, TAS, TAD, FC remain. In this case, what we did is
to do a refined grid search of C. That is, to do a grid search of a smaller range of C.
Then, the refined grid search result shows that TAS is the least helpful feature. Thus,
we will remove TAS at this step. (see Figure 4.3).

FIGURE 4.3: Refined grid search of a smaller range of C.
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The above process results an importance-ordered list of features that are sorted
from the most important to the least important for the LLS prediction, which is
shown as follows:

1)SO 2)BMI 3)distance(km) 4)Gender 5)FC 6)down 7)TAD 8)TAS
9)Age 10)up

We have sorted the importance of features so far. However, we have not chosen
the subset of feature that we will use to build the predictive model yet. Since we
only have 116 entities with 10 features, we can also consider it as a matrix of 116x10
which is small so we would not have computational cost problem. Furthermore,
due to the tiny dataset, we should more carefully select features to ensure that the
chosen subset is the most helpful one. Thus, after getting the importance-ordered
list of features, we forwardly build predictive model by adding one feature at time
beyond its importance order. So, we will have 10 different models. That is, we first
build a simple 1-feature L1-SVM predictive model, which the used feature is the
most relevant one that we had obtained before: SO. Then we use the built predictive
model to predict LLS and we record its recall score. After this step, we create a 2-
features model that contains the most important 2 features: SO, BMI. We also record
its performance. Repeat the same process until we have all 10 models built. Their
performance is shown in Figure 4.4 and 4.5.

FIGURE 4.4: The 10 models performance details

FIGURE 4.5: Plot of the 10 models performance.
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In Figure 4.4, it shows the 10 differents model with their performance repre-
sented by recall score. Each row represents 1 exact model. The first column shows
the number of features used for building model, the second column is the best macro
recall scores obtained, the third columns shows the micro recall and the last columns
is the average of the previous two recall scores. Figure 4.5 uses the first columns of
the previous figure as its X-axis, and the last column for its Y-axis. That is to plot the
10 different model with its corresponding mean recall scores.

Based on the plots of the 10 different models performance. We choose the one
that uses the first 5 most important features. Because it has the highest mean of
2 recall scores. Remember that recall is also called sensitivity, which measures the
proportion of actual positives that are correctly identified. In other word, it measures
that the data in the class −1 are indeed be classified as −1 and the same to the
class 1. Now, the difference between micro recall and macro recall is that macro
measures the average of the accuracy of recall between 2 classes, whilst the micro is
weighted measurement. An example of micro is, we have in total 116 entities which
101 of them belong to the class −1 and 15 belong to 1. Thus, 100% of probability
that correctly classifies the entities of class −1 which is 101

116 = 87% of accuracy with
respect to the entire dataset. This is completely different compared to the class 1
( 15

116 = 13% ). Thus, as micro is a weighted measurement that takes account into
the number of sample, it values more to the group with a major number of sample.
However, the small group of 15 entities is the class 1 which is the class that people
reported they were affected by high altitude (lls >= 3). For this reason, we aim to
be sensitive to this small group. So, only looking at micro recall is not enough, that
is why we consider that we should focus on macro recall, but without ignoring the
micro recall. Thus, we compute the average of macro and micro recall, and take the
model with the highest mean recall scores.

4.3.4 Train a classifier for LLS prediction

In this last process, we aim to build models with the chosen subset of feature to make
prediction about LLS. The chosen feature subset is (SO, BMI, distance(km), Gender,
FC). As we commented in the Chapter 2, it is appropriate to use models with low
complexity due to the small size of dataset. In addition, one of the simple model
is SVM that we have used so far. Here, instead of only build SVM model we also
create a Random Forest model. A brief description of Random Forest is that it is a
supervised learning algorithm that can be used for both classification and regression
problem. It creates a forest and make it random. The forest is actually a ensemble
of Decision Trees. To summarize, Random forest builds multiple Decision Trees and
merges them together to get a more accurate and stable prediction. It is one of the
most used algorithm due to its simplicity.

The programming language we use for this project is Python. Here, we create the
predictive models by using scikit− learn, which is a powerful library of Python for
Machine Learning uses. It has both SVM and Random Forest algorithm created. We
just need to fit the feature set, label and other parameter to train a desired classifier.
The pipeline of this prediction process is below:

1. Given a list of class weights and a list of C’s. We build the SVM models with
a grid search of class weights and C’s in order to find the best performance
model, the highest mean recall. Class weight is a parameter that we can fit
into the SVM algorithm, it is actually a weight of misclassification rate. We use
the same example as the previous subsection, the small size class 1 has only 15
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entities, hence one misclassification in this class should weight more than the
another class. Thus, we set the class weight of the class 1 as 1, and do a grid
search of a list that ranges from 0.01 to 1 for the class −1 in order to somehow
balance the misclassification rate.

2. Given a list of class weights and a list of max_depth. max_depth is a parameter
of Random Forest classifier which means the maximum depth of the tree. If its
value is None, then nodes are expanded until all leaves are pure. Now, we also
do a grid search of Random Forest classifiers that are fitted with the given lists
so that we can find the best performed one.

3. We compare between the found best SVM model and Random Forest model.
Then, we will choose the one that has highest average between macro and
micro recall scores. The chosen model is a definitive model that we will store
it and use it for the LLS prediction of new data.

4.4 Results

As we described in the previously implementation section, we have done grid search
for finding the best performed SVM model and Random Forest model. The found
parameters of those 2 different models are the following.

• SVM: the class weight of the class −1 (the stage where people did not suffered
from high altitude) is 0.14655172413793105, the class weight of the class 1 is 1,
the C penalty value is 1.3879310344827587.

• Random Forest: the class weight of the class−1 is 0.01, the another class weight
is 1, the maximum depth is 3.

Also, we show the performance of both model in Figure 4.6 and 4.7

FIGURE 4.6: SVM per-
formance

FIGURE 4.7: Random
Forest performance

In Figure 4.6 and 4.7, what they show at the first row is the obtained macro recall
score. Then, the second one is the accuracy score. Below, the confusion matrix is
shown, it tells us what is the precision, recall, f1-score and support of each class.
Also, it shows on below the micro total, which is the weighted average values of all
the above 4 measurements.

Now, the SVM model has a 0.738 of its macro recall and 0.74 of micro recall,
whereas the Random Forest has 0.691 of macro recall and 0.56 of micro recall. Obvi-
ously, SVM seems to have higher recall score. Nevertheless, we compute the mean
recall of the SVM model which is round of 0.739, and the mean recall of the Random
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Forest model is 0.626. We compare these 2 mean recall, the SVM model beats the
Random Forest one again. We can also see that the area under the ROC-curve of the
SVM model is 0.74 which is also bigger the Random Forest one: 0.69. (Figure 4.8).
The plot closer to the left-upper corner, the bigger is the area, thus the better is the
result.

FIGURE 4.8: ROC curves and area under the curve

Thus, we keep the SVM model with the mentioned parameters setting for the
LLS prediction, with which we can ensure that it more likely has around 0.74 of
recall score.

4.5 Statistical validation of the results

4.5.1 Permutation test

In this last section, we would like to give support to the found results in the previous
section. Thus, we did a permutation test of 500 samples. This is, we randomly
shuffle the values of label lls repeating 500 times. Then we use the same setting
model as the we used for prediction, but with the shuffled label to train the classifier.
Then we test its performance. Thus, we considered that the prediction result by
shuffled label are randomly generated and it should have bad result. For this reason,
we give the support of the found result along with Figure 4.9 and 4.10. We have seen
in the previous section that the area under the ROC curve is 0.74 which is shown as
the red line in Figure 4.9, we can also observe that mostly of the randomly generated
sample has an area around 0.50 and other range. Thus, it is validated that random
generated models just have a 0.044 of probability that get a better area than our
model. With the same reasoning, the mean of macro and micro recall has a 0.21 of
p-value, which is reasonable.
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FIGURE 4.9: Permuta-
tion test: area under

the ROC-curve

FIGURE 4.10: Permu-
tation test: mean of
macro and micro recall

4.5.2 Beta-binomial distribution support

The last validation of result we did is to follow the Bayesian approach. We vali-
date the certainty of the recall for each of the class −1 and 1 by plotting their Beta-
binomial distribution. The results are shown below (Figure 4.11 and 4.12). The peak
closer to the right side of X-axis, the better is the results.

FIGURE 4.11: Beta-
binomial: the class −1

FIGURE 4.12: Beta-
binomial: the class 1

The red line shows the mode of the corresponding distribution. Figure 4.11 is
the recall distribution of the class −1, which has a mode 0.73737374 and the another
figure is the distribution of the class 1 with a mode of 0.74747475. However, the
peak of the class 1 seems more narrow than the one of the class −1. Thus, the class
1 has a wider range of confidence interval(CI) than the class −1, which is shown
as the green colour marker in the the Figure 4.11 and 4.12. The CI of the class 1 is
[0.495, 0.899], whereas the CI of the class −1 is [0.657, 0.818].
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Chapter 5

Ophthalmic analysis

In this chapter, we aim to study the high altitude sickness by analysing ophthalmic
data. Due to the study from ophthalmic data is an uncommon and quite new method,
instead of using the existing measurements such as LLS that we used in the previ-
ous analysis, here we carefully and innovatively define measurements that could
somehow explain how people were suffered from high altitude by their ophthalmic
data.

5.1 Data description

One of the given data files is the same as the one that we had already seen in the pre-
vious analysis, which is TFM_Sherpa.xlsx. However, due to the other given data files
just contain 12 trekkers ophthalmic data, thus we will just analyse these 12 trekkers
data.

One of the given Excel files named visual_acuity.xls, stores the visual acuity pa-
rameter of the trekkers collected before the expedition (in Barcelona) and the return
(Barcelona), also 1 month after the return (Barcelona) in order to check their recov-
eries. To simply notation, the data collected period are written as V1, V2 and V3
where V1 represents before the expedition, V2 for the return and V3 for 1 month
after the return. This file contains visual acuity of both right and left eyers, which
are integer numbers that ranges from 60 to 99.

There are also another data file named macula_cfnr.xlsx which its first sheet con-
tains choroidal macula measurements of both eyes in 3 different stages (V1, V2
and V3), the second sheet stores the information of layer of nerve fibers of the
retina(CFNR) which measures the thickness in microns of the optical disk. In order
to understand well, we show two explicative scheme about the choroidal macula
and CFNR in the figure 5.1 and 5.2 respectively.

The parameters in the above file are central, average, volume which indicates the
position where the data were collected for choroidal macula measurements (see Fig-
ure 5.1). Moreover, it also contains total, superior, inferior, temporal and nasal that
represent the position where the data were collected for CFNR. Now, superior is the
superior part that consists of temporal superior and nasal superior in the figure 5.2. The
same sense can explain the inferior, temporal and nasal. However, total is the total
CFNR that it is composed of all of the other four position.

In addition, we had a meeting with the ophthalmologists of the scientist team.
They suggested us to separately analyse 4 quadrants in the figure 5.2, one of reason
is because of duplicate data. Also, it is better to know which of these 4 quadrants
is the indicator of prediction. Thus, an another file that contains the separate mea-
surements of 4 quadrants for CFNR study is given, and the 4 parameters are named:
Temporal Superior, Temporal Inferior, Nasal Superior, Nasal Inferior.
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FIGURE 5.1:
Choroidal macula FIGURE 5.2: CFNR

We merge all of those file together to summarize the new obtained data. Note
that the individual information are the same as the previous analysis.

1. ID: personal ID

2. eyes: it has values either left or right, which indicates that the entity data belong
to left eye or right eye.

3. Vi_visual_accuity, where i ∈ {1, 2, 3}: that is, we have 3 different parame-
ters V1_visual_accuity, V2_visual_accuity, V3_visual_accuity which indicate
the visual accuity value collected in the 3 different stages V1, V2, and V3 re-
spectively.

4. Vi_central (µm), i ∈ {1, 2, 3}: the data collected on the central position for
choroidal macula measurement in the stages V1, V2 and V3. It has micrometre
(µm) as unit, which is 10−6m.

5. Vi_average (µm), i ∈ {1, 2, 3}: the data collected on the position average (see
Figure 5.1) for choroidal macula measurement in the stages V1, V2 and V3. It
has µm as unit.

6. Vi_volume (mm3), i ∈ {1, 2, 3}: the data collected inside the cube volume (see
Figure 5.1) for choroidal macula measurement in the stages V1, V2 and V3. It
has cubic millimetre (mm3) as unit.

7. Vi_total (µm)_CFNR, i ∈ {1, 2, 3}: the data collected over whole CFNR (see
Figure 5.2) in the stages V1, V2 and V3. It has µm as unit.

8. Vi_superior (µm)_CFNR, i ∈ {1, 2, 3}: the data collected at the superior of
CFNR (see Figure 5.2) in the stages V1, V2 and V3. Recall that it share infor-
mation of Temporal Superior and Nasal Superior. It has µm as unit.

9. Vi_temporal (µm)_CFNR, i ∈ {1, 2, 3}: the data collected at the temporal of
CFNR (see Figure 5.2) in the stages V1, V2 and V3. Recall that it share infor-
mation of Temporal Superior and Temporal Inferior. It has µm as unit.
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10. Vi_inferior (µm)_CFNR, i ∈ {1, 2, 3}: the data collected at the inferior of CFNR
(see Figure 5.2) in the stages V1, V2 and V3. Recall that it share information of
Nasal Inferior and Temporal Inferior. It has µm as unit.

11. Vi_nasal (µm)_CFNR, i ∈ {1, 2, 3}: the data collected at the nasal of CFNR (see
Figure 5.2) in the stages V1, V2 and V3. Recall that it share information of Nasal
Superior and Nasal Inferior. It has µm as unit.

12. Vi_Temporal Superior, i ∈ {1, 2, 3}: the data collected at the Temporal Superior
quadrant of CFNR (see Figure 5.2)in the stages V1, V2 and V3.

13. Vi_Temporal Inferior, i ∈ {1, 2, 3}: the data collected at the Temporal Inferior
quadrant of CFNR (see Figure 5.2)in the stages V1, V2 and V3.

14. Vi_Nasal Superior, i ∈ {1, 2, 3}: the data collected at the Nasal Superior quad-
rant of CFNR (see Figure 5.2)in the stages V1, V2 and V3.

15. Vi_Nasal Inferior, i ∈ {1, 2, 3}: the data collected at the Nasal Inferior quadrant
of CFNR (see Figure 5.2)in the stages V1, V2 and V3.

5.2 Problem modelling and implementation

5.2.1 Data cleaning

We repeat the same process to clean the physiological data like what we did the LLS
analysis. However, we will not merge all of the physiological information with the
ophthalmic data. We will only use the following parameters of physiological data:
ID, Weight, Height, Age.

Furthermore, since we the given ophthalmologic data of 12 trekkers only contain
missing data in the stage V3 (1 month after the return), and we will only analysis the
data of the stage V1 and V2. Thus, we do not really face the missing data problem in
this sense.

Recall that, based on the feedback of ophthalmologists. We will only use the
4 quadrants of CFNR data. Thus, we remove Vi_total (µm)_CFNR, Vi_superior
(µm)_CFNR, Vi_temporal (µm)_CFNR, Vi_inferior (µm)_CFNR, Vi_nasal (µm)_CFNR,
i ∈ {1, 2, 3}. Furthermore, they also commented that Vi_average ( µm) share the
same information with Vi_central ( µm) (see Figure 5.1). So, we also remove the
Vi_average ( µm) parameter.

5.2.2 Feature engineering

In this analysis, we also convert the individual’s weight and height to BMI. However,
since the ophthalmologic data were collected in Barcelona due to the big size of
ophthalmological apparatus which were impossible to bring it to Nepal. Also, we
just collected the physiological information until the return, we do not have any
physiological information after 1 month of return. Thus, we just remain the BMI of
the 2 stages in Barcelona, and remove all the rest stage’s BMI.

Moreover, in order to correlate the variation of both eyes before the expedition
and the return, we create new feature by calculating the difference between all oph-
thalmologic parameters in V2 and V1. Then, we remove all the single stage data(V1,
V2 and V3). The new ophthalmologic features are as follows:

1. visual_accuity_V2_V1: the value of visual accuity collected in V2 minus the
value collected in V1.
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2. central_V2_V1( µm): V2_central ( µm) - V1_central ( µm)

3. volume_V2_V1( mm3): V2_volume ( mm3) - V1_volume ( mm3)

4. temporal_superior_V2_V1: V2_Temporal Superior - V1_Temporal Superior

5. temporal_inferior_V2_V1: V2_Temporal Inferior - V1_Temporal Inferior

6. nasal_superior_V2_V1: V2_Nasal Superior - V1_Nasal Superior

7. nasal_inferior_V2_V1: V2_Nasal Inferior - V1_Nasal Inferior

5.2.3 Modelling hypoxia suffering grades

So far, we have not discussed the label that we want to predict to. The question we
are trying to answer is, How hypoxia influences the deterioration of human eyes?
We rearrange the question as, what is hypoxia? To be able to answer this question,
we may need to measure the damage by hypoxia. That is, to measure the suffering
level by hypoxia from time series. In this sense, as we have already seen in the
previous LLS analysis, SO is the most relevant factor to the LLS prediction, which is
one of the assessment of high altitude sickness. Thus, we now define the "suffering
level" (the damage by high altitude) based on the parameter SO. Then, we try to
predict the suffering level by the given variation of ophthalmologic data.

Originally, we defined 3 suffering grades as follows:

1. Maximum in general suffering (MGS), it is computed by subtracting the max-
imum SO measured during the 10 stages in the expedition to the measured
minimum SO.

MGS = max(SO)−min(SO)

2. Maximum in local suffering(MLS). This measurement give us a stage-wise suf-
fering information. That is, in which of the 10 stages the individual were suf-
fering the most.

MLS = max{∆SOi>0} ∆SOi, where ∆SOi = SOi+1 − SOi, i ∈ {1, 2, ..., 10}
SOi is the SO value measured at the stagei.

Recall that, people are more dangerous as long as the SO decays. Thus, we
consider that people only suffered by altitude when their SO value in the cur-
rent stage is lower than the former stage. Also, we are interested in knowing
how deeply people were suffering in only one stage, that is the reason we only
take the maximum value of the positive ∆SOi.

3. Suffering average (SA). It sums the suffering grade of all of the stages that peo-
ple suffered by altitude ({∆SOi > 0}), then it divides to the number of stages
where people suffered which is written as |∆SOi > 0|. With this, we obtain the
average suffering grade along with the number of stages of suffering.

SA =
∑∆SOi>0 ∆SOi

|∆SOi > 0| , i ∈ {1, 2, ..., 10}

where |∆SO >i 0| is the number of stages that people were suffered (∆SO > 0).

Below, we show the first 10 entities with all the created features and labels (Fig-
ure 5.3 and 5.4):
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FIGURE 5.3: The first 5 features

FIGURE 5.4: The remain features and labels

5.2.4 Feature selection

We select the subset of features XMGS, XMLS and XSA for the prediction of the suffer-
ing measurements, MGS, MLS and SA respectively. The selection process follows
the same approach that we used in the previous analysis, which is to iteratively
eliminate 1 feature at time in order to get an importance-ordered features list, then
we forwardly create linear model by adding the more important one feature. In the
end, we check the model that has the best performance, then the used features at
that model will be the selected subset of features.

1. MGS

The importance-ordered features list that helps the prediction of MGS is below:

1)visual_accuity_V2_V1 2)BMI 3)temporal_superior_V2_V1
4)volume_V2_V1(mm3) 5)temporal_in f erior_V2_V1 6)Age
7)nasal_superior_V2_V1 8)central_V2_V1(µm) 9)nasal_in f erior_V2_V1

The list is sorted from the most important feature to least important one. Thus,
we can conclude that visual_accuity_V2_V1 is the factor that correlates the most
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with the decrease of SO during the whole expedition.

Then, we follow the above list’s order and add one feature at time. The subset
of the 5 most important features is selected, which are: visual_accuity_V2_V1,
BMI, temporal_superior_V2_V1, volume_V2_V1(mm3), temporal_inferior_V2_V1
(see Figure 5.5).

FIGURE 5.5: Feature selection of the MGS prediction

2. MLS

The importance-ordered features list of the MLS prediction.

1)volume_V2_V1(mm3) 2)nasal_in f erior_V2_V1 3)BMI
4)temporal_superior_V2_V1 5)Age 6)temporal_in f erior_V2_V1
7)nasal_superior_V2_V1 8)visual_accuity_V2_V1 9)central_V2_V1(µm)

The selected subset of features has a size of 4, which are volume_V2_V1(mm3),
nasal_inferior_V2_V1, BMI, temporal_superior_V2_V1 (Figure 5.6).

FIGURE 5.6: Feature selection of the MLS prediction

3. SA
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The importance-ordered features of the SA prediction.

1)visual_accuity_V2_V1 2)BMI 3)volume_V2_V1(mm3)
4)temporal_superior_V2_V1 5)Age 6)nasal_in f erior_V2_V1
7)nasal_superior_V2_V1 8)temporal_in f erior_V2_V1 9)central_V2_V1(µm)

The selected subset of features has a size of 4, which are visual_accuity_V2_V1,
BMI, volume_V2_V1(mm3), temporal_superior_V2_V1 (Figure 5.7).

FIGURE 5.7: Feature selection of the SA prediction

5.2.5 Prediction

Again, we follow the same pipeline as we saw in the previous chapter. Firstly, we use
the chosen subset features to build models for the prediction of MGS, MLS and SA
respectively. Then, we convert the problem into a binary classification problem that
splits the values MGS, MLS and SA into 2 classes. The class −1 has a low suffering
grade which indicates the individual was not suffered or few suffered. Otherwise,
the class −1 is the group that people were suffered by high altitude.

1. MGS prediction

The distribution of MGS is shown in Figure 5.8, which are integers that range
from 5 to 19. Since we aim to convert it into a binary problem, but we do
not know how deeply the individuals were suffering with what value of MGS.
Thus, we simplify the problem based on the balance of the distribution, we
split the MGS into a group of label −1 and another of label 1, as shown in
Figure 5.9.

Then, we follow the same routine. We train a Random Forest model and a SVM
model. After that, we compare the performance between them, and choose the
best performed one.

2. MLS prediction

We also show the distribution of MLS in Figure 5.10, the values are integers
that range from 3 to 10. Use the same reasoning as before, we split them as
shown in Figure 5.11.

3. SA prediction

The values of SA are real numbers that range from 2.0 to 6.67 (Figure 5.12). We
rearrange them as Figure 5.13 shows.
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FIGURE 5.8: The
distribution of MGS

ranges from 5 to 19.

FIGURE 5.9: The rear-
ranged distribution of

MGS.

FIGURE 5.10: The dis-
tribution of MLS.

FIGURE 5.11: The re-
arranged distribution

of MLS.

FIGURE 5.12: The dis-
tribution of SA.

FIGURE 5.13: The re-
arranged distribution

of SA.

5.3 Results

The prediction results of each of the MGS, MLS and SA grade are shown as follows.
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1. MGS
SVM model generates a 0.825 of macro recall and 0.82 of micro (Figure 5.14),
whereas Random Forest has 0.867 of macro recall and 0.86 (Figure 5.15). More-
over, the Random Forest model also has an area under the ROC curve bigger
than the SVM one (Figure 5.20). Thus, the Random Forest model with the cho-
sen 5 most important features will be used for MGS prediction, which has a
mean of 0.865 of recall scores.

FIGURE 5.14: MGS-
SVM performance

FIGURE 5.15: MGS-
Random Forest

2. MLS
The Random Forest model gets an mean recall around 0.869 (0.875 of macro
and 0.86 of micro, see Figure 5.17) and its area under the ROC curve is 0.83
(Figure 5.21). However, the SVM model predicts MLS with a lower mean recall
which is 0.818, but its area under the ROC curve is higher (0.86). In this sense,
we respect the same criterion as we used for feature selection, we choose the
Random Forest model because of its higher mean recall score.

FIGURE 5.16: MLS-
SVM performance

FIGURE 5.17: MLS-
Random Forest

3. SA
In the SA prediction, the macro, micro recall and the area under the ROC
curve of the SVM model are 0.675, 0.68 and 0.62 respectively (Figure 5.18 and
5.22). Likewise, the scores of Random Forest are 0.85, 0.86, and 0.72 respec-
tively (5.19). With no doubt, we choose Random Forest with the selected 4
features setting.
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FIGURE 5.18: SA-SVM
performance

FIGURE 5.19: SA-
Random Forest

FIGURE 5.20: MGS-
ROC and area under

the curve

FIGURE 5.21: MLS -
ROC and area under

the curve

FIGURE 5.22: SA - area
under the curve

5.4 Statistical validation of the results

We also do the permutation test and Bayesian approach to support the above results.
Overall, both validations give positive supports to the prediction results.

1. MGS
The chosen model for MGS prediction has really good performance, which
it has a high significant p-value in the permutation test of the area under the
ROC curve and the mean recall scores (see Figure 5.23 and 5.24). Also, the Beta-
Binomial distributions of the class−1 and 1 are plotted with the corresponding
credibility interval to validate the prediction results (Figure 5.25 and 5.26).
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FIGURE 5.23: Permu-
tation test (MGS): Area
under the ROC curve

FIGURE 5.24: Per-
mutation test (MGS):

mean recall scores

FIGURE 5.25: Cred.
intervals(MGS) of
class−1:[0.576, 0.960]

FIGURE 5.26: Cred.
intervals(MGS) of

class 1:[0.636, 1.0]

2. MLS
The permutation test of MLS is shown in the Figure 5.27 and 5.28 which has the
corresponding p-values 0.002 and 0.004 of the area under the ROC curve and
the mean recall scores. The Bayesian validation is shown in Figure 5.29,5.30.

FIGURE 5.27: Permu-
tation test (MLS): Area
under the ROC curve

FIGURE 5.28: Per-
mutation test (MLS):

mean recall scores
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FIGURE 5.29: Cred.
intervals(MLS) of

class−1: [0.768, 1.0]

FIGURE 5.30: Cred.
intervals(MLS) of

class1: [0.485, 0.920]

3. SA
The obtained p-value of the area under the ROC curve and the mean recall
score in the permutation test of SA are 0.012 and 0.048, respectively (Figure 5.31
and 5.32). See Figure 5.33 and 5.34 for Beta-Binomial distribution validation.

FIGURE 5.31: Permu-
tation test (SA): Area
under the ROC curve

FIGURE 5.32: Permu-
tation test (SA): mean

recall scores

FIGURE 5.33:
Cred.intervals(SA)
of class−1: [0.798, 1.0]

FIGURE 5.34: Cred.
intervals(SA) of class1:

[0.414, 0.899]
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Chapter 6

Conclusion and future works

In this last chapter, we detail the project’s conclusion and propose the possible future
works.

6.1 Conclusion

Based on the results obtained at the previous two chapters, we can conclude the
project as the following aspects.

First of all, we recall that our objective of the project is to study the cause of
generalized hypoxia which is altitude sickness. Thus, we split the study into two
different analysis: Lake Louise Score (LLS) analysis and Ophthalmic data analysis.
However, to understand well the root of hypoxia, it is not enough only find the
factors that cause altitude sickness, but also which factor is more relevant than the
others. Hence, an importance-ordered list of the factors that cause altitude sickness
is also required.

Now, in the first LLS analysis. We are able to predict the LLS by the given phys-
iological data and stage-wise information. Moreover, the importance-ordered list is
also found, which is below: SO, BMI, distance(km), Gender, FC, down, TAD, TAS,
Age, up. However, with only the 5 most important factors, we are able to predict
LLS with a mean of 0.74 of the recall scores.

Regarding the Ophthalmic data analysis, we define 3 different measurements
which can somehow explain how people were damaged by hypoxia in a global sense
(MGS), a stage-wise sense(MLS) and an average suffering sense(SA) during the Ever-
est expedition. Then, we use the given physiological data merged with stage-wise
information and ophthalmic data to predict MGS, MLS and SA. The obtain results
are positive, which all of them are over 70% of certainty in their recall scores. Also,
the results are supported by doing two different validation tests which are Permu-
tation test and Bayesian approach. Thus, we consider that the obtained results are
trustworthy.

Because of the obtained positive results on both of the analysis, and also the
results are given support from validation tests. Thus, we can conclude that our goal
is fulfilled.

6.2 Future works

Due to the complex structure of human body, in this project we predict LLS in order
to explain what are the factors that affect most to human in a high altitude. However,
we hope this can be somehow correlated to other Hypoxia studies in future, such as
COPD. Furthermore, we defined 3 measurements that grade the suffering level in
a global, stage-wise and average sense. Despite they were separately worked well,
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which we gain a high accuracy of the predictions. But, we consider that a merged
sense can be also helpful, that means we can merge the 3 grades together such as
sum or other mathematical operations.

In the end, we matter any required and necessary improvements on this project
that can help the medical researchers to improve the diagnosis and treatment of
hypoxia.
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