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We analyze both the attractive and repulsive Casimir-Lifshitz forces recently reported in experimental
investigations. By using a kinetic approach, we obtain the Casimir forces from the power absorbed by the
materials. We consider collective material excitations through a set of relaxation times distributed in
frequency according to a log-normal function. A generalized expression for these forces for arbitrary values
of temperature is obtained. We compare our results with experimental measurements and conclude that the
model goes beyond the proximity-force approximation.

DOI: 10.1103/PhysRevLett.116.110601

Introduction.—The existence of attractive forces
between two closely separated perfectly conducting plates
due to quantum vacuum electromagnetic fluctuations was
predicted by Casimir [1] and extended by Lifshitz [2],
taking into account dielectric media. The first accurate
experimental confirmation of the Casimir effect was
reported in Refs. [3,4] and compared with the prediction
by the proximity-force approximation (PFA) [5,6], which is
supposedly valid when the characteristic curvature radii of
the objects are large in relation to their intersurface
separation [7]. Recent advances in nanotechnology making
experimental measurements more accessible and accurate
[8] have promoted a renewed interest in the Casimir effect
and its dependence on the geometry of the device and the
properties of the constituent material. The Casimir-Lifshitz
forces have become a classical topic in quantum field
theory, condensed matter physics, nano-optics, and atomic
physics, also acting upon the correct functioning of micro-
electromechanical systems [9]. At small separations, repul-
sive Casimir-Lifshitz forces have been discussed and
measurements have been reported [10–12].
Much of the theoretical analysis of Casimir forces is

based on the PFA. Some discrepancies between theoretical
and experimental results have been reported and attributed
to various origins [13,14], including temperature and
dissipation effects [15] providing corrections beyond the
PFA. Obtaining accurate expressions for the Casimir-
Lifshitz force could be relevant in the design of devices
at the nano- or microscale.
In this Letter, we present an analysis based on a kinetic

model that paves the way to explain the Casimir-Lifshitz
forces measurements beyond the PFA. We address the
problem of deviations from the PFA in the study of
complex relaxation processes, thus avoiding the approxi-
mation in terms of the curvature of materials. In addition,
Casimir forces are calculated without referring to zero-
point energies, relativistic van der Waals forces, and
coupled ground-state energy; a comprehensive review

can be found in Ref. [16]. We verify our theory using
recent experimental results reported in Refs. [10,13].
Proximity-force approximation.—Since the seminal

work of Derjaguin [5], the PFA has been widely used to
describe forces between perfectly conducting oppositely
curved bodies in terms of the interaction between two
parallel plates. According to the PFA, the Casimir-Lifshitz
forces between a sphere of radius R and a plate separated by
a distance d ≪ R can be written as

FPFA ¼ 2πRεp−p; ð1Þ

where εp−p is the separation-dependent interaction energy
per unit area between two parallel plates composed of the
same materials as the sphere-plate system. For perfectly
conducting smooth parallel plates, εp−p¼−π2ℏc=ð720d3Þ,
where ℏ is the reduced Planck constant and c is the speed of
light. Since the main deviations from the PFA arise from
curvature, depending only on the geometrical ratio d=R,
one can expand the curvature effects of the exact Casimir-
Lifshitz force in powers of d=R as [7,13,17]

FPFA ¼ α
2π3Rℏc
720d3

�
1þ β

d
R
þO

�
d2

R2

��
; ð2Þ

where α and β are the correction coefficients to the PFA;
e.g., α ¼ 1 for real scalar-field fluctuation, α ¼ 2 for an
electromagnetic field, and β ¼ −0.564 for perfect reflectors
at T ¼ 0 as well as at room temperature for short separation
[14,18]. In this approach, higher order corrections to the
PFA are neglected.
Kinetic model.—In the model we propose, the power

absorbed by the hot material, _Q1ðωÞ, maintained at
temperature T1, must be proportional to the energy current
J2→1ðω; T2Þ radiated by the cold material at temperature
T2,

_Q1ðωÞ ¼ a1ðω; T1; T2ÞJ2→1ðω; T2Þ; ð3Þ
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where a1ðω; T1; T2Þ is the absorption coefficient, which
may, in general, depend on the temperature of both
surfaces. Likewise, the energy flow radiated by a particular
material must be proportional to the rate of change of the
energy of the corresponding radiation field,

J2→1ðω; T2Þ ¼ e2ðω; T2Þ _uðω; T2Þ; ð4Þ

where e2ðω; T2Þ is the emission coefficient. Here, the
crucial point is the rate of change of the energy _u of the
radiation field. Prior to the calculation of _u, some consid-
erations must be given. To begin with, we can think that the
dynamics of the system, constituted by photon gas and
materials, arise upon adding collective excitations or modes
of vibration of very diverse origin. Consequently, in the
stationary state the energy of the system results from the
superposition of the energies of these modes. Each of these
modes reaches a stationary state in its own time scale.
According to the Matthiessen rule, an overall relaxation
time τ can be defined through τ−1 ¼ τ−11 þ � � � þ τ−1n ,
where all the τi correspond to independent scattering events
[19]. In addition, let us assume that the decay of collective
excitations takes place by a concatenation of cascade
processes such that τ−1l ¼ τ−1l−1 þ ξlτ

−1
l−1, where ξl repre-

sents a small random elementary input. Thus, one can
derive τ−1l ¼ τ−10 ð1þPl

i¼1 ξiÞ, valid up to the first order.
For large l,

P
ξi is asymptotically normally distributed,

leading to [20]

τ−1ðωÞ ¼ 1ffiffiffiffiffiffi
2π

p
στ0

exp

�
−
ln2ðω=ω0Þ

2σ2

�
; ð5Þ

where τ0 is a material-dependent parameter, ω0 (¼kBT0=ℏ)
is the thermal frequency, and σ is the standard deviation that
describes the deviations from ω0. Here, we consider a
general approach in which the relaxation times are written
in a frequency-dependent form such that lnðτ−1l =τ−10 Þ ∝
lnðωl=ω0Þ [19]. The normalization of Eq. (5) is given
through

R
τ−1ðωÞdω ¼ ω0 expðσ4Þ=τ0.

In the frame of an adiabatic approximation, we can write
that _uðω; T2Þ ¼ uðω; T2Þ=τðωÞ, where

uðω; T2Þ ¼
ℏω
2

coth

�
ℏω

2kBT2

�
ð6Þ

is the energy of a harmonic oscillator. Since the tails of the
log-normal, when ðω=ωoÞ → 0 or ∞, are negligible, the
extreme modes possess such an excessively large relaxation
time that they do not contribute to the rate of energy
change. Rather, the main influence over the general
dynamics, represented by the temporal behavior of the
total energy, comes from the shorter time scales of the
hierarchy τðωÞ, that is, for modes around the maximum of
the log-normal (0 < ω=ω0 ≲ 1). The log-normal distribu-
tion is systematically used to describe the relaxation of

processes consisting of many different elementary subpro-
cesses, as occurs in many cases [21–24].
The hierarchy of relaxation times given through Eq. (5)

accounts for dissipation in the system. In fact, τ−1ðωÞ
represents the asymptotic of the diffusion coefficient. This
circumstance points out the close relation between the inter-
action forces and dissipation via the fluctuation-dissipation
theorem [25]. In addition, the introduction of τ−1ðωÞ leads to a
new model for the dielectric permittivity [26],

ϵðωÞ ¼ ϵ∞ þ ϵs − ϵ∞
1þ iωτðωÞ ; ð7Þ

where ϵ∞ is the permittivity at the infinite frequency and ϵs is
the static dielectric constant. Equation (7) corresponds to a
generalized Drude relation that accurately incorporates the
dissipative effects, in contrast to the plasmamodel, which does
not include dissipation.
Therefore, the power absorbed by the hot material can be

written as

_Q1ðωÞ ¼ a1ðω; T1; T2Þe2ðω; T2Þ _uðω; T2Þ; ð8Þ

and, similarly,

_Q2ðωÞ ¼ a2ðω; T1; T2Þe1ðω; T1Þ _uðω; T1Þ; ð9Þ

giving the power absorbed by the cold material. Since the
temperatures of the objects are different, _Q1ðωÞ ≠ _Q2ðωÞ
and, consequently, the Kirchhoff law establishing the
balance between emitted and absorbed power is not
applicable.
It was shown in Ref. [7] that the PFA is not consistent

with Heisenberg’s uncertainty principle. On the contrary, in
order to establish a relation between angular frequency and
intersurface separation, we assume that Heisenberg’s prin-
ciple applies for position x and momentum p of a photon.
Therefore, ΔxΔp ≥ ℏ=2, and given that the maximum
value of Δx is d, one obtains Δp ≥ ℏ=ð2dÞ. In addition,
provided the energy E ¼ pνc, with ν < 1 (ν being the
inverse of the refraction index) and where p is implicitly
identified with the Minkowski momentum, one gets
ΔE ≥ ℏνc=ð2dÞ, leading to Δω ≥ 2πνc=d≡ ωm, which
establishes a phononlike cutoff frequency [26]. Hence, the
total power is given by

Pi→j ¼
Z

∞

ωm

_QjðωÞgjðωÞdω; ð10Þ

where gjðωÞ ¼ Vjω
2=π2c3 is the density of modes in the

material j with volume Vj.
In order to compare our theory with some of the

experimental results at hand, hereafter we will consider
equal temperatures, T1 ¼ T2 ¼ T. Inasmuch as power is
force times velocity, one is led to infer that the interaction
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forces per unit area are given through Fi→j ¼ Pi→j=c.
Here, we can make progress in the analytical calculations
by introducing the change of variable ω ¼ 1=s in such a
way that

Fi→j ¼
1

c

Z
ω−1
m

0

_Qj(ωðsÞ)gj(ωðsÞ)
ds
s2

: ð11Þ

According to the mean value theorem, for very short d (ωm
large) we can approximate the previous integral by the
value of the integrand in an intermediate value ~s ¼ χω−1

m

(χ < 1) times the width of the integration interval ω−1
m ,

resulting in

Fi→j ≈
ω02

m

cωm

_Qjðω0
mÞgjðω0

mÞ; ð12Þ

with ω0
m ≡ ωð~sÞ. Hence, ω0

m ¼ χ−1ωm ¼ 2πεc=d, where
we have introduced the new parameter ε ¼ ν=χ. Since one
assumes an incident homogeneous plane wave on the
material, which induces a coupling between waves result-
ing in a multiple of the characteristic frequency 2π=d, it is
expected that ε > 1.
For simplicity, let us consider ajðω; TÞ ¼ eiðω; TÞ ¼ 1.

Thus, from Eqs. (12) and (5), one obtains

Fi→j ≈
25=2π3=2

d4
ℏε5Vj

στ00
exp

�
−
ln2ð2πεc=ω0dÞ

2σ2

�

× coth

�
hεc

2kBTd

�
; ð13Þ

with τ00 ¼ ντ0. Unlike Eq. (2), one can notice that Eq. (13)
does not diverge as d goes to zero. Additionally, at the limit
of large separations, one can perform a Laurent series
expansion of cothð·Þ. By retaining the dominant term, the
prefactor in front of the exponential becomes proportional
to kBT=d3. Note that according to our previous discussion
on the range of frequencies, the main contribution to the
interaction force comes from those modes for which
0 < 2πεc=ω0 ≲ d < ∞.
Results and discussions.—In order to verify our theory,

we compare Eq. (13) with two experimental results. The
first of them proves the validity of our approach for both the
attractive and the repulsive Casimir forces observed by
Munday et al. [10]. Regarding the second, we compare
Eq. (13) normalized by Eq. (1) to measurements performed
by Krause et al [13], extending the limits beyond the PFA.
Atomic force microscopy measurements of Casimir-

Lifshitz forces were performed by Munday et al. [10]
and conducted between a 39.0 μm diameter gold sphere
with a large plate of silica (repulsive effect) or gold
(attractive effect). The gold sphere corresponds to a
polystyrene (PS) core coated with a 100 nm thick gold
shell and the gold plate corresponds to a silica substrate

coated with 200 nm of gold (for details, see Ref. [10]). The
gold nanoshell on the PS sphere can tune the peak of
the surface plasmon absorbance band from the visible to the
infrared [27], which can be associated with collective
effects, e.g., oscillations of the conduction electrons con-
fined in the nanoparticle [28]. The repulsive effects for
force measurements were obtained when the sphere-plate
setup was enclosed within a bromobenzene-filled cell. As
seen in Fig. 1(a), a good agreement is obtained comparing
Eq. (13) (black solid lines) with experimental results. For

(a)

(b)

FIG. 1. Casimir-Lifshitz force comparison. (a) Attractive and
repulsive Casimir-Lifshitz force between a gold sphere and silica
plate versus gap distances using an atomic force microscopy
technique. Yellow squares (repulsive) and green circles (attrac-
tive) represent data from Munday et al. [10] for measurement
conducted between a large plate and a 39.8 μm diameter sphere.
The black solid lines are comparisons with our model, Eq. (13).
The red dotted lines are comparisons with the redefined equation
from the proximity-force theory with nonstandard values for α
and β, Eq. (2). (b) Normalized Casimir-Lifshitz force between a
gold sphere and gold plate versus gap distances. The red
diamonds represent data from Krause et al. [13] using a micro-
electromechanical torsion oscillator for measurement conducted
between a large plate and a 148.2 μm radius sphere. The black
solid line is the comparison with our approach, Eq. (13) divided
by Casimir force assuming that the PFA is valid.

PRL 116, 110601 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

18 MARCH 2016

110601-3



the repulsive (attractive) force fitting we have used ε ¼
2.57ð8.21Þ and σ ¼ 3.22ð2.37Þ. The corrected PFA (red
dotted lines), Eq. (2), fits experiments with fitting values
different from those predicted in the literature (see refer-
ences contained in Ref. [13]). The repulsive (attractive)
behavior displayed in Fig. 1(a) is obtained with α¼
2.82× 10−2� 0.06× 10−2ð4.44× 10−2� 0.05× 10−2Þ and
β¼−2.3×102�0.1×102ð6.3×102�0.1×102Þ. Notice
that α and β strongly deviate from expected values from
the PFA [13].
In Fig. 1(b), we also compare Eq. (13) normalized by

Eq. (1) with the measurements of Krause et al. [13], taking
into account a 148.2 μm sphere radius. Their experiments
were conducted by using a micromachined torsional
oscillator measuring the (normalized) Casimir-Lifshtz force
for a gold sphere-plate geometry. For the sphere, a thin
layer (∼5 nm) of Cr was deposited and encapsulated by a
gold shell of thickness of about 200 nm (for details, see
Ref. [13] and references therein). As in the original work of
Krause et al., we were not able to adjust the corrected PFA,
Eq. (2), to the data. However, the model we propose here
does indeed adequately adjust. For this, we have used
ε ¼ 10.23 and σ ¼ 2.46.
From the thermal diffusivity, we are able to estimate the

thermal relaxation time. Since a particle of radius R and
thermal diffusivity Dt requires a characteristic time τ00 ¼
R2=Dt for the heat to diffuse throughout its volume [29],
one obtains τ00 ¼ 3.12 × 10−6 s for data fromMunday et al.
[10] and τ00 ¼ 1.72 × 10−4 s for data from Krause et al.
[13]. In addition, we assume that these systems are
supposed to be maintained at room temperature and the
thermal frequency ω0 ≈ 3.836 × 1013 rad s−1.
In such circumstances, we have used the nonlinear least-

squares Marquardt-Levenberg algorithm to obtain σ and ε
as functions of τ00, as depicted in Figs. 2(a) and 2(b),
respectively. The best fitting for each τ00 value exhibits a

logarithmic behavior for σ, at 94% confidence level, and
power law behavior for ε, at 97% confidence level. As
expected, notice that ε > 1, demonstrating the effects of
plane waves on surface plasmon excitation and their
relation with the thermal relaxation process.
In summary, we have presented a model that properly

describes both the attractive and the repulsive experiments
on the measurement of the Casimir-Lifshitz forces [10,13].
Equation (13) forms an important link between thermoki-
netics and relaxation dynamics of the vibrational modes,
going beyond the PFA. Our analysis has accurately
captured the Casimir-Lifshitz force behavior for a
sphere-plate geometry. Here, it must be stressed that the
geometric approximation inherent to the PFA is not
supplanted by the kinetic description, but rather the values
assigned to the parameters of the hierarchy of relaxation
times correspond to the sphere-plate geometry. Further
study of other geometrical configurations would be of
interest. In addition, as pointed out previously, at the limit
of large separation the force given by Eq. (13) behaves as
kBT=d3, while at zero temperature we obtain (1=d4), which
in both cases agrees with the conventional Casimir-Lifshitz
theory. Moreover, our results have revealed that a distinc-
tive characteristic frequency ∝ 1=d can be associated with
the surface plasmon resonance. Our model sheds light on
the possibility to describe Casimir-Lifshitz forces between
a sphere and a large plate, avoiding underestimation of α
and β [14].
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