Improved measurement of $C P$ observables in $B^{ \pm} \rightarrow D_{C P}^{0} K^{ \pm}$decays

B. Aubert, ${ }^{1}$ M. Bona, ${ }^{1}$ Y. Karyotakis, ${ }^{1}$ J. P. Lees, ${ }^{1}$ V. Poireau, ${ }^{1}$ E. Prencipe, ${ }^{1}$ X. Prudent, ${ }^{1}$ V. Tisserand, ${ }^{1}$ J. Garra Tico, ${ }^{2}$ E. Grauges, ${ }^{2}$ L. Lopez, ${ }^{3}$ A. Palano, ${ }^{3}$ M. Pappagallo, ${ }^{3}$ G. Eigen, ${ }^{4}$ B. Stugu, ${ }^{4}$ L. Sun, ${ }^{4}$ G. S. Abrams, ${ }^{5}$ M. Battaglia, ${ }^{5}$ D. N. Brown, ${ }^{5}$ J. Button-Shafer, ${ }^{5}$ R. N. Cahn, ${ }^{5}$ R. G. Jacobsen, ${ }^{5}$ J. A. Kadyk, ${ }^{5}$ L. T. Kerth, ${ }^{5}$ Yu. G. Kolomensky, ${ }^{5}$ G. Kukartsev, ${ }^{5}$ G. Lynch, ${ }^{5}$ I. L. Osipenkov, ${ }^{5}$ M. T. Ronan, ${ }^{5, *}$ K. Tackmann, ${ }^{5}$ T. Tanabe, ${ }^{5}$ W. A. Wenzel, ${ }^{5}$ C. M. Hawkes, ${ }^{6}$ N. Soni, ${ }^{6}$ A. T. Watson, ${ }^{6}$ H. Koch, ${ }^{7}$ T. Schroeder, ${ }^{7}$ D. Walker, ${ }^{8}$ D. J. Asgeirsson, ${ }^{9}$ T. Cuhadar-Donszelmann, ${ }^{9}$ B. G. Fulsom, ${ }^{9}$ C. Hearty, ${ }^{9}$ T. S. Mattison, ${ }^{9}$ J. A. McKenna, ${ }^{9}$ M. Barrett, ${ }^{10}$ A. Khan, ${ }^{10}$ M. Saleem,,${ }^{10}$ L. Teodorescu, ${ }^{10}$ V.E. Blinov, ${ }^{11}$ A. D. Bukin, ${ }^{11}$ A. R. Buzykaev, ${ }^{11}$ V. P. Druzhinin, ${ }^{11}$ V. B. Golubev, ${ }^{11}$ A. P. Onuchin, ${ }^{11}$ S. I. Serednyakov, ${ }^{11}$ Yu. I. Skovpen, ${ }^{11}$ E. P. Solodov, ${ }^{11}$ K. Yu. Todyshev, ${ }^{11}$ M. Bondioli, ${ }^{12}$ S. Curry, ${ }^{12}$ I. Eschrich, ${ }^{12}$ D. Kirkby, ${ }^{12}$ A. J. Lankford, ${ }^{12}$ P. Lund, ${ }^{12}$ M. Mandelkern, ${ }^{12}$ E. C. Martin, ${ }^{12}$ D. P. Stoker, ${ }^{12}$ S. Abachi, ${ }^{13}$ C. Buchanan, ${ }^{13}$ J. W. Gary, ${ }^{14}$ F. Liu, ${ }^{14}$ O. Long, ${ }^{14}$ B. C. Shen, ${ }^{14, *}$ G. M. Vitug, ${ }^{14}$ Z. Yasin, ${ }^{14}$ L. Zhang, ${ }^{14}$ V. Sharma, ${ }^{15}$ C. Campagnari, ${ }^{16}$ T. M. Hong, ${ }^{16}$ D. Kovalskyi, ${ }^{16}$ M. A. Mazur, ${ }^{16}$ J. D. Richman, ${ }^{16}$ T. W. Beck, ${ }^{17}$ A. M. Eisner, ${ }^{17}$ C. J. Flacco, ${ }^{17}$ C. A. Heusch, ${ }^{17}$
J. Kroseberg, ${ }^{17}$ W. S. Lockman, ${ }^{17}$ T. Schalk, ${ }^{17}$ B. A. Schumm, ${ }^{17}$ A. Seiden, ${ }^{17}$ L. Wang, ${ }^{17}$ M. G. Wilson, ${ }^{17}$ L. O. Winstrom, ${ }^{17}$ C. H. Cheng, ${ }^{18}$ D. A. Doll, ${ }^{18}$ B. Echenard, ${ }^{18}$ F. Fang, ${ }^{18}$ D. G. Hitlin, ${ }^{18}$ I. Narsky, ${ }^{18}$ T. Piatenko, ${ }^{18}$ F. C. Porter, ${ }^{18}$ R. Andreassen, ${ }^{19}$ G. Mancinelli, ${ }^{19}$ B. T. Meadows, ${ }^{19}$ K. Mishra, ${ }^{19}$ M. D. Sokoloff, ${ }^{19}$ F. Blanc, ${ }^{20}$ P. C. Bloom, ${ }^{20}$ W. T. Ford, ${ }^{20}$ A. Gaz, ${ }^{20}$ J.F. Hirschauer, ${ }^{20}$ A. Kreisel, ${ }^{20}$ M. Nagel, ${ }^{20}$ U. Nauenberg, ${ }^{20}$ A. Olivas, ${ }^{20}$ J. G. Smith, ${ }^{20}$ K. A. Ulmer, ${ }^{20}$ S. R. Wagner, ${ }^{20}$ R. Ayad, ${ }^{21,+}$ A. M. Gabareen, ${ }^{21}$ A. Soffer, ${ }^{21, \ddagger}$ W. H. Toki, ${ }^{21}$ R. J. Wilson, ${ }^{21}$ D. D. Altenburg, ${ }^{22}$ E. Feltresi, ${ }^{22}$ A. Hauke, ${ }^{22}$ H. Jasper, ${ }^{22}$ M. Karbach, ${ }^{22}$ J. Merkel, ${ }^{22}$ A. Petzold, ${ }^{22}$ B. Spaan, ${ }^{22}$ K. Wacker, ${ }^{22}$ V. Klose, ${ }^{23}$ M. J. Kobel, ${ }^{23}$ H. M. Lacker, ${ }^{23}$ W. F. Mader, ${ }^{23}$ R. Nogowski, ${ }^{23}$ K. R. Schubert, ${ }^{23}$ R. Schwierz, ${ }^{23}$ J. E. Sundermann, ${ }^{23}$ A. Volk, ${ }^{23}$ D. Bernard, ${ }^{24}$ G. R. Bonneaud, ${ }^{24}$ E. Latour, ${ }^{24}$ Ch. Thiebaux, ${ }^{24}$ M. Verderi, ${ }^{24}$ P. J. Clark, ${ }^{25}$ W. Gradl, ${ }^{25}$ S. Playfer, ${ }^{25}$ J. E. Watson, ${ }^{25}$ M. Andreotti, ${ }^{26}$ D. Bettoni, ${ }^{26}$ C. Bozzi, ${ }^{26}$ R. Calabrese, ${ }^{26}$ A. Cecchi, ${ }^{26}$ G. Cibinetto, ${ }^{26}$ P. Franchini, ${ }^{26}$ E. Luppi, ${ }^{26}$ M. Negrini, ${ }^{26}$ A. Petrella, ${ }^{26}$ L. Piemontese, ${ }^{26}$ V. Santoro, ${ }^{26}$ F. Anulli, ${ }^{27}$ R. Baldini-Ferroli, ${ }^{27}$ A. Calcaterra, ${ }^{27}$ R. de Sangro, ${ }^{27}$ G. Finocchiaro, ${ }^{27}$ S. Pacetti, ${ }^{27}$ P. Patteri, ${ }^{27}$ I. M. Peruzzi, ${ }^{27, \S}$ M. Piccolo, ${ }^{27}$ M. Rama, ${ }^{27}$ A. Zallo, ${ }^{27}$ A. Buzzo, ${ }^{28}$ R. Contri, ${ }^{28}$ M. Lo Vetere, ${ }^{28}$ M. M. Macri, ${ }^{28}$ M. R. Monge, ${ }^{28}$ S. Passaggio, ${ }^{28}$ C. Patrignani, ${ }^{28}$ E. Robutti, ${ }^{28}$ A. Santroni, ${ }^{28}$ S. Tosi, ${ }^{28}$ K. S. Chaisanguanthum, ${ }^{29}$ M. Morii, ${ }^{29}$ R. S. Dubitzky, ${ }^{30}$ J. Marks, ${ }^{30}$ S. Schenk, ${ }^{30}$ U. Uwer, ${ }^{30}$ D. J. Bard, ${ }^{31}$ P. D. Dauncey, ${ }^{31}$ J. A. Nash, ${ }^{31}$ W. Panduro Vazquez, ${ }^{31}$ M. Tibbetts, ${ }^{31}$ P. K. Behera, ${ }^{32}$ X. Chai, ${ }^{32}$ M. J. Charles, ${ }^{32}$ U. Mallik, ${ }^{32}$ J. Cochran, ${ }^{33}$ H. B. Crawley, ${ }^{33}$ L. Dong, ${ }^{33}$ W. T. Meyer, ${ }^{33}$ S. Prell, ${ }^{33}$ E. I. Rosenberg, ${ }^{33}$ A. E. Rubin, ${ }^{33}$ Y. Y. Gao, ${ }^{34}$ A. V. Gritsan, ${ }^{34}$ Z. J. Guo, ${ }^{34}$ C. K. Lae, ${ }^{34}$ A. G. Denig, ${ }^{35}$ M. Fritsch, ${ }^{35}$ G. Schott,,${ }^{35}$ N. Arnaud, ${ }^{36}$ J. Béquilleux, ${ }^{36}$ A. D'Orazio, ${ }^{36}$ M. Davier, ${ }^{36}$ J. Firmino da Costa, ${ }^{36}$ G. Grosdidier, ${ }^{36}$ A. Höcker, ${ }^{36}$ V. Lepeltier, ${ }^{36}$ F. Le Diberder, ${ }^{36}$ A. M. Lutz, ${ }^{36}$ S. Pruvot, ${ }^{36}$ P. Roudeau, ${ }^{36}$ M. H. Schune, ${ }^{36}$
J. Serrano, ${ }^{36}$ V. Sordini, ${ }^{36}$ A. Stocchi, ${ }^{36}$ W.F. Wang, ${ }^{36}$ G. Wormser, ${ }^{36}$ D. J. Lange, ${ }^{37}$ D. M. Wright, ${ }^{37}$ I. Bingham, ${ }^{38}$ J. P. Burke, ${ }^{38}$ C. A. Chavez, ${ }^{38}$ J. R. Fry, ${ }^{38}$ E. Gabathuler, ${ }^{38}$ R. Gamet, ${ }^{38}$ D. E. Hutchcroft, ${ }^{38}$ D. J. Payne, ${ }^{38}$ C. Touramanis, ${ }^{38}$ A. J. Bevan, ${ }^{39}$ K. A. George, ${ }^{39}$ F. Di Lodovico, ${ }^{39}$ R. Sacco, ${ }^{39}$ M. Sigamani, ${ }^{39}$ G. Cowan, ${ }^{40}$ H. U. Flaecher, ${ }^{40}$ D. A. Hopkins, ${ }^{40}$ S. Paramesvaran, ${ }^{40}$ F. Salvatore, ${ }^{40}$ A. C. Wren, ${ }^{40}$ D. N. Brown, ${ }^{41}$ C. L. Davis, ${ }^{41}$ K. E. Alwyn, ${ }^{42}$ N. R. Barlow, ${ }^{42}$ R. J. Barlow, ${ }^{42}$ Y. M. Chia, ${ }^{42}$ C. L. Edgar, ${ }^{42}$ G. D. Lafferty, ${ }^{42}$ T. J. West, ${ }^{42}$ J. I. Yi, ${ }^{42}$ J. Anderson, ${ }^{43}$ C. Chen, ${ }^{43}$ A. Jawahery, ${ }^{43}$ D. A. Roberts, ${ }^{43}$ G. Simi, ${ }^{43}$ J. M. Tuggle, ${ }^{43}$ C. Dallapiccola, ${ }^{44}$ S. S. Hertzbach, ${ }^{44}$ X. Li, ${ }^{44}$ E. Salvati, ${ }^{44}$ S. Saremi, ${ }^{44}$ R. Cowan, ${ }^{45}$ D. Dujmic, ${ }^{45}$ P. H. Fisher, ${ }^{45}$ K. Koeneke, ${ }^{45}$ G. Sciolla, ${ }^{45}$ M. Spitznagel, ${ }^{45}$ F. Taylor, ${ }^{45}$ R. K. Yamamoto, ${ }^{45}$ M. Zhao, ${ }^{45}$ S. E. Mclachlin, ${ }^{46 *}$ P. M. Patel, ${ }^{46}$ S. H. Robertson, ${ }^{46}$ A. Lazzaro, ${ }^{47}$ V. Lombardo, ${ }^{47}$
F. Palombo, ${ }^{47}$ J. M. Bauer, ${ }^{48}$ L. Cremaldi, ${ }^{48}$ V. Eschenburg, ${ }^{48}$ R. Godang, ${ }^{48}$ R. Kroeger, ${ }^{48}$ D. A. Sanders, ${ }^{48}$ D. J. Summers, ${ }^{48}$ H. W. Zhao, ${ }^{48}$ S. Brunet, ${ }^{49}$ D. Côté, ${ }^{49}$ M. Simard, ${ }^{49}$ P. Taras, ${ }^{49}$ F. B. Viaud, ${ }^{49}$ H. Nicholson, ${ }^{50}$ G. De Nardo, ${ }^{51}$ L. Lista, ${ }^{51}$ D. Monorchio, ${ }^{51}$ C. Sciacca, ${ }^{51}$ M. A. Baak, ${ }^{52}$ G. Raven, ${ }^{52}$ H. L. Snoek, ${ }^{52}$ C. P. Jessop, ${ }^{53}$ K. J. Knoepfel, ${ }^{53}$ J. M. LoSecco, ${ }^{53}$ G. Benelli, ${ }^{54}$ L. A. Corwin, ${ }^{54}$ K. Honscheid, ${ }^{54}$ H. Kagan, ${ }^{54}$ R. Kass, ${ }^{54}$ J. P. Morris, ${ }^{54}$ A. M. Rahimi, ${ }^{54}$ J. J. Regensburger, ${ }^{54}$ S. J. Sekula, ${ }^{54}$ Q. K. Wong, ${ }^{54}$ N. L. Blount, ${ }^{55}$ J. Brau, ${ }^{55}$ R. Frey, ${ }^{55}$ O. Igonkina, ${ }^{55}$ J. A. Kolb, ${ }^{55}$ M. Lu, ${ }^{55}$ R. Rahmat, ${ }^{55}$ N. B. Sinev, ${ }^{55}$ D. Strom, ${ }^{55}$ J. Strube, ${ }^{55}$ E. Torrence, ${ }^{55}$ G. Castelli, ${ }^{56}$ N. Gagliardi, ${ }^{56}$ M. Margoni, ${ }^{56}$ M. Morandin,,${ }^{56}$ M. Posocco, ${ }^{56}$ M. Rotondo, ${ }^{56}$ F. Simonetto, ${ }^{56}$ R. Stroili, ${ }^{56}$ C. Voci, ${ }^{56}$ P. del Amo Sanchez, ${ }^{57}$ E. Ben-Haim, ${ }^{57}$ H. Briand, ${ }^{57}$ G. Calderini, ${ }^{57}$ J. Chauveau, ${ }^{57}$ P. David, ${ }^{57}$ L. Del Buono, ${ }^{57}$ O. Hamon, ${ }^{57}$ Ph. Leruste, ${ }^{57}$
J. Ocariz, ${ }^{57}$ A. Perez, ${ }^{57}$ J. Prendki, ${ }^{57}$ L. Gladney, ${ }^{58}$ M. Biasini, ${ }^{59}$ R. Covarelli, ${ }^{59}$ E. Manoni, ${ }^{59}$ C. Angelini, ${ }^{60}$ G. Batignani, ${ }^{60}$ S. Bettarini, ${ }^{60}$ M. Carpinelli, ${ }^{60, \|}$ A. Cervelli, ${ }^{60}$ F. Forti, ${ }^{60}$ M. A. Giorgi, ${ }^{60}$ A. Lusiani, ${ }^{60}$ G. Marchiori, ${ }^{60}$ M. Morganti, ${ }^{60}$ N. Neri, ${ }^{60}$ E. Paoloni, ${ }^{60}$ G. Rizzo, ${ }^{60}$ J. J. Walsh,,60 J. Biesiada, ${ }^{61}$ D. Lopes Pegna, ${ }^{61}$ C. Lu, ${ }^{61}$ J. Olsen, ${ }^{61}$ A. J. S. Smith, ${ }^{61}$ A. V. Telnov, ${ }^{61}$ E. Baracchini, ${ }^{62}$ G. Cavoto, ${ }^{62}$ D. del Re, ${ }^{62}$ E. Di Marco, ${ }^{62}$ R. Faccini, ${ }^{62}$ F. Ferrarotto, ${ }^{62}$
F. Ferroni,,62 M. Gaspero, ${ }^{62}$ P. D. Jackson, ${ }^{62}$ L. Li Gioi, ${ }^{62}$ M. A. Mazzoni, ${ }^{62}$ S. Morganti, ${ }^{62}$ G. Piredda, ${ }^{62}$ F. Polci, ${ }^{62}$ F. Renga, ${ }^{62}$ C. Voena, ${ }^{62}$ M. Ebert, ${ }^{63}$ T. Hartmann, ${ }^{63}$ H. Schröder, ${ }^{63}$ R. Waldi, ${ }^{63}$ T. Adye, ${ }^{64}$ B. Franek, ${ }^{64}$ E. O. Olaiya, ${ }^{64}$ W. Roethel, ${ }^{64}$ F.F. Wilson, ${ }^{64}$ S. Emery, ${ }^{65}$ M. Escalier, ${ }^{65}$ L. Esteve, ${ }^{65}$ A. Gaidot ${ }^{65}$ S. F. Ganzhur, ${ }^{65}$ G. Hamel de Monchenault, ${ }^{65}$ W. Kozanecki, ${ }^{65}$ G. Vasseur, ${ }^{65}$ Ch. Yèche, ${ }^{65}$ M. Zito, ${ }^{65}$ X. R. Chen, ${ }^{66}$ H. Liu, ${ }^{66}$ W. Park, ${ }^{66}$ M. V. Purohit, ${ }^{66}$ R. M. White, ${ }^{66}$ J. R. Wilson, ${ }^{66}$ M. T. Allen, ${ }^{67}$ D. Aston, ${ }^{67}$ R. Bartoldus, ${ }^{67}$ P. Bechtle, ${ }^{67}$ J. F. Benitez, ${ }^{67}$ R. Cenci, ${ }^{67}$ J. P. Coleman, ${ }^{67}$ M. R. Convery, ${ }^{67}$ J. C. Dingfelder, ${ }^{67}$ J. Dorfan, ${ }^{67}$ G. P. Dubois-Felsmann, ${ }^{67}$ W. Dunwoodie, ${ }^{67}$ R. C. Field, ${ }^{67}$ S. J. Gowdy, ${ }^{67}$ M. T. Graham, ${ }^{67}$ P. Grenier, ${ }^{67}$ C. Hast, ${ }^{67}$ W. R. Innes, ${ }^{67}$ J. Kaminski, ${ }^{67}$ M. H. Kelsey, ${ }^{67}$ H. Kim, ${ }^{67}$ P. Kim, ${ }^{67}$ M. L. Kocian, ${ }^{67}$ D. W. G. S. Leith, ${ }^{67}$ S. Li, ${ }^{67}$ B. Lindquist, ${ }^{67}$ S. Luitz, ${ }^{67}$ V. Luth, ${ }^{67}$ H. L. Lynch, ${ }^{67}$ D. B. MacFarlane, ${ }^{67}$ H. Marsiske, ${ }^{67}$ R. Messner, ${ }^{67}$ D. R. Muller, ${ }^{67}$ H. Neal, ${ }^{67}$ S. Nelson, ${ }^{67}$ C. P. O’ Grady, ${ }^{67}$ I. Ofte, ${ }^{67}$ A. Perazzo, ${ }^{67}$ M. Perl, ${ }^{67}$ B. N. Ratcliff, ${ }^{67}$ A. Roodman, ${ }^{67}$ A. A. Salnikov, ${ }^{67}$ R. H. Schindler, ${ }^{67}$ J. Schwiening, ${ }^{67}$ A. Snyder, ${ }^{67}$ D. Su, ${ }^{67}$ M. K. Sullivan, ${ }^{67}$ K. Suzuki, ${ }^{67}$ S. K. Swain, ${ }^{67}$ J. M. Thompson, ${ }^{67}$ J. Va'vra, ${ }^{67}$ A. P. Wagner, ${ }^{67}$ M. Weaver, ${ }^{67}$ C. A. West, ${ }^{67}$ W. J. Wisniewski, ${ }^{67}$ M. Wittgen, ${ }^{67}$ D. H. Wright, ${ }^{67}$ H. W. Wulsin, ${ }^{67}$ A. K. Yarritu, ${ }^{67}$ K. Yi, ${ }^{67}$ C. C. Young, ${ }^{67}$ V. Ziegler, ${ }^{67}$ P. R. Burchat, ${ }^{68}$ A. J. Edwards, ${ }^{68}$ S. A. Majewski, ${ }^{68}$ T. S. Miyashita, ${ }^{68}$ B. A. Petersen, ${ }^{68}$ L. Wilden, ${ }^{68}$ S. Ahmed, ${ }^{69}$ M. S. Alam, ${ }^{69}$ R. Bula, ${ }^{69}$ J. A. Ernst, ${ }^{69}$ B. Pan, ${ }^{69}$ M. A. Saeed, ${ }^{69}$ S. B. Zain, ${ }^{69}$ S. M. Spanier, ${ }^{70}$ B. J. Wogsland, ${ }^{70}$ R. Eckmann,,71 J. L. Ritchie, ${ }^{71}$ A. M. Ruland, ${ }^{71}$ C. J. Schilling, ${ }^{71}$ R. F. Schwitters, ${ }^{71}$ B. W. Drummond, ${ }^{72}$ J. M. Izen, ${ }^{72}$ X. C. Lou, ${ }^{72}$ S. Ye, ${ }^{72}$ F. Bianchi, ${ }^{73}$ D. Gamba, ${ }^{73}$ M. Pelliccioni, ${ }^{73}$ M. Bomben, ${ }^{74}$ L. Bosisio, ${ }^{74}$ C. Cartaro, ${ }^{74}$ G. Della Ricca, ${ }^{74}$ L. Lanceri, ${ }^{74}$ L. Vitale, ${ }^{74}$ V. Azzolini, ${ }^{75}$ N. Lopez-March, ${ }^{75}$ F. Martinez-Vidal, ${ }^{75}$ D. A. Milanes, ${ }^{75}$ A. Oyanguren, ${ }^{75}$ J. Albert, ${ }^{76}$ Sw. Banerjee, ${ }^{76}$ B. Bhuyan, ${ }^{76}$ H. H. F. Choi, ${ }^{76}$ K. Hamano, ${ }^{76}$ R. Kowalewski, ${ }^{76}$
M. J. Lewczuk, ${ }^{76}$ I. M. Nugent, ${ }^{76}$ J. M. Roney, ${ }^{76}$ R. J. Sobie, ${ }^{76}$ T. J. Gershon, ${ }^{77}$ P. F. Harrison, ${ }^{77}$ J. Ilic, ${ }^{77}$ T. E. Latham, ${ }^{77}$ G. B. Mohanty, ${ }^{77}$ H. R. Band, ${ }^{78}$ X. Chen, ${ }^{78}$ S. Dasu, ${ }^{78}$ K. T. Flood, ${ }^{78}$ Y. Pan, ${ }^{78}$ M. Pierini, ${ }^{78}$ R. Prepost, ${ }^{78}$ C. O. Vuosalo, ${ }^{78}$ and S. L. Wu ${ }^{78}$

(BABAR Collaboration)

${ }^{1}$ Laboratoire de Physique des Particules, IN2P3/CNRS et Université de Savoie, F-74941 Annecy-Le-Vieux, France
${ }^{2}$ Universitat de Barcelona, Facultat de Fisica, Departament ECM, E-08028 Barcelona, Spain
${ }^{3}$ Università di Bari, Dipartimento di Fisica and INFN, I-70126 Bari, Italy
${ }^{4}$ University of Bergen, Institute of Physics, N-5007 Bergen, Norway
${ }^{5}$ Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720, USA
${ }^{6}$ University of Birmingham, Birmingham, B15 2TT, United Kingdom
${ }^{7}$ Ruhr Universität Bochum, Institut für Experimentalphysik 1, D-44780 Bochum, Germany
${ }^{8}$ University of Bristol, Bristol BS8 1TL, United Kingdom
${ }^{9}$ University of British Columbia, Vancouver, British Columbia, Canada V6T $1 Z 1$
${ }^{10}$ Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom
${ }^{11}$ Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia
${ }^{12}$ University of California at Irvine, Irvine, California 92697, USA
${ }^{13}$ University of California at Los Angeles, Los Angeles, California 90024, USA
${ }^{14}$ University of California at Riverside, Riverside, California 92521, USA
${ }^{15}$ University of California at San Diego, La Jolla, California 92093, USA
${ }^{16}$ University of California at Santa Barbara, Santa Barbara, California 93106, USA
${ }^{17}$ University of California at Santa Cruz, Institute for Particle Physics, Santa Cruz, California 95064, USA
${ }^{18}$ California Institute of Technology, Pasadena, California 91125, USA
${ }^{19}$ University of Cincinnati, Cincinnati, Ohio 45221, USA
${ }^{20}$ University of Colorado, Boulder, Colorado 80309, USA
${ }^{21}$ Colorado State University, Fort Collins, Colorado 80523, USA
${ }^{22}$ Technische Universität Dortmund, Fakultät Physik, D-44221 Dortmund, Germany
${ }^{23}$ Technische Universität Dresden, Institut für Kern- und Teilchenphysik, D-01062 Dresden, Germany
${ }^{24}$ Laboratoire Leprince-Ringuet, CNRS/IN2P3, Ecole Polytechnique, F-91128 Palaiseau, France
${ }^{25}$ University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
${ }^{26}$ Università di Ferrara, Dipartimento di Fisica and INFN, I-44100 Ferrara, Italy
${ }^{27}$ Laboratori Nazionali di Frascati dell'INFN, I-00044 Frascati, Italy
${ }^{28}$ Università di Genova, Dipartimento di Fisica and INFN, I-16146 Genova, Italy
${ }^{29}$ Harvard University, Cambridge, Massachusetts 02138, USA
${ }^{30}$ Universität Heidelberg, Physikalisches Institut, Philosophenweg 12, D-69120 Heidelberg, Germany
${ }^{31}$ Imperial College London, London, SW7 2AZ, United Kingdom
${ }^{32}$ University of Iowa, Iowa City, Iowa 52242, USA

```
                    \({ }^{33}\) Iowa State University, Ames, Iowa 50011-3160, USA
                            \({ }^{34}\) Johns Hopkins University, Baltimore, Maryland 21218, USA
                            \({ }^{35}\) Universität Karlsruhe, Institut für Experimentelle Kernphysik, D-76021 Karlsruhe, Germany
        \({ }^{36}\) Laboratoire de l'Accélérateur Linéaire, IN2P3/CNRS et Université Paris-Sud 11, Centre Scientifique d'Orsay,
                        B. P. 34, F-91898 ORSAY Cedex, France
                            \({ }^{37}\) Lawrence Livermore National Laboratory, Livermore, California 94550, USA
                            \({ }^{38}\) University of Liverpool, Liverpool L69 7ZE, United Kingdom
                            \({ }^{39}\) Queen Mary, University of London, E1 4NS, United Kingdom
    \({ }^{40}\) University of London, Royal Holloway and Bedford New College, Egham, Surrey TW20 0EX, United Kingdom
                            \({ }^{41}\) University of Louisville, Louisville, Kentucky 40292, USA
                            \({ }^{42}\) University of Manchester, Manchester M13 9PL, United Kingdom
                            \({ }^{43}\) University of Maryland, College Park, Maryland 20742, USA
                            \({ }^{44}\) University of Massachusetts, Amherst, Massachusetts 01003, USA
    \({ }^{45}\) Massachusetts Institute of Technology, Laboratory for Nuclear Science, Cambridge, Massachusetts 02139, USA
                            \({ }^{46}\) McGill University, Montréal, Québec, Canada H3A \(2 T 8\)
                            \({ }^{47}\) Università di Milano, Dipartimento di Fisica and INFN, I-20133 Milano, Italy
                            \({ }^{48}\) University of Mississippi, University, Mississippi 38677, USA
        \({ }^{49}\) Université de Montréal, Physique des Particules, Montréal, Québec, Canada H3C 3J7
                            \({ }^{50}\) Mount Holyoke College, South Hadley, Massachusetts 01075, USA
    \({ }^{51}\) Università di Napoli Federico II, Dipartimento di Scienze Fisiche and INFN, I-80126, Napoli, Italy
\({ }^{52}\) NIKHEF, National Institute for Nuclear Physics and High Energy Physics, NL-1009 DB Amsterdam, The Netherlands
            \({ }^{53}\) University of Notre Dame, Notre Dame, Indiana 46556, USA
                            \({ }^{54}\) Ohio State University, Columbus, Ohio 43210, USA
                            \({ }^{55}\) University of Oregon, Eugene, Oregon 97403, USA
                            \({ }^{56}\) Università di Padova, Dipartimento di Fisica and INFN, I-35131 Padova, Italy
\({ }^{57}\) Laboratoire de Physique Nucléaire et de Hautes Energies, IN2P3/CNRS, Université Pierre et Marie Curie-Paris6,
                    Université Denis Diderot-Paris7, F-75252 Paris, France
                            \({ }^{58}\) University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
                            \({ }^{59}\) Università di Perugia, Dipartimento di Fisica and INFN, I-06100 Perugia, Italy
        \({ }^{60}\) Università di Pisa, Dipartimento di Fisica, Scuola Normale Superiore and INFN, I-56127 Pisa, Italy
\({ }^{61}\) Princeton University, Princeton, New Jersey 08544, USA
        \({ }^{62}\) Università di Roma La Sapienza, Dipartimento di Fisica and INFN, I-00185 Roma, Italy
                            \({ }^{63}\) Universität Rostock, D-18051 Rostock, Germany
            \({ }^{64}\) Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX1 1 0QX, United Kingdom
                            \({ }^{65}\) DSM/Dapnia, CEA/Saclay, F-91191 Gif-sur-Yvette, France
            \({ }^{66}\) University of South Carolina, Columbia, South Carolina 29208, USA
            \({ }^{67}\) Stanford Linear Accelerator Center, Stanford, California 94309, USA
                            \({ }^{68}\) Stanford University, Stanford, California 94305-4060, USA
                            \({ }^{69}\) State University of New York, Albany, New York 12222, USA
                            \({ }^{70}\) University of Tennessee, Knoxville, Tennessee 37996, USA
                            \({ }^{71}\) University of Texas at Austin, Austin, Texas 78712, USA
                            \({ }^{72}\) University of Texas at Dallas, Richardson, Texas 75083, USA
    \({ }^{73}\) Università di Torino, Dipartimento di Fisica Sperimentale and INFN, I-10125 Torino, Italy
            \({ }^{74}\) Università di Trieste, Dipartimento di Fisica and INFN, I-34127 Trieste, Italy
                    \({ }^{75}\) IFIC, Universitat de Valencia-CSIC, E-46071 Valencia, Spain
            \({ }^{76}\) University of Victoria, Victoria, British Columbia, Canada V8W 3P6
        \({ }^{77}\) Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
                            \({ }^{78}\) University of Wisconsin, Madison, Wisconsin 53706, USA
                            (Received 28 February 2008; published 26 June 2008)
```

We present a study of the decay $B^{-} \rightarrow D_{(C P)}^{0} K^{-}$and its charge conjugate, where $D_{(C P)}^{0}$ is reconstructed in both a non- $C P$ flavor eigenstate and in $C P(C P$-even and $C P$-odd) eigenstates, based on a sample of 382 million $\mathrm{Y}(4 S) \rightarrow B \bar{B}$ decays collected with the BABAR detector at the PEP-II $e^{+} e^{-}$storage ring. We measure the direct $C P$ asymmetries $A_{C P \pm}$ and the ratios of the branching fractions $R_{C P \pm}: A_{C P+}=$

[^0]
Abstract

0.27 ± 0.09 (stat) ± 0.04 (syst),$\quad A_{C P-}=-0.09 \pm 0.09$ (stat) ± 0.02 (syst), $\quad R_{C P+}=1.06 \pm 0.10$ (stat) \pm 0.05 (syst), $R_{C P-}=1.03 \pm 0.10$ (stat) ± 0.05 (syst). We also express the results in terms of the so-called Cartesian coordinates x_{+}, x_{-}, and $r^{2}: x_{+}=-0.09 \pm 0.05$ (stat) ± 0.02 (syst), $x_{-}=0.10 \pm 0.05$ (stat) \pm 0.03 (syst), $r^{2}=0.05 \pm 0.07$ (stat) ± 0.03 (syst). These results will help to better constrain the phase parameter $\gamma=\arg \left(-V_{u d} V_{u b}^{*} / V_{c d} V_{c b}^{*}\right)$ of the Cabibbo-Kobayashi-Maskawa quark mixing matrix.

DOI: 10.1103/PhysRevD.77.111102
PACS numbers: 11.30.Er, $13.25 . \mathrm{Hw}, 14.40 . \mathrm{Nd}$

The angle $\gamma=\arg \left(-V_{u d} V_{u b}^{*} / V_{c d} V_{c b}^{*}\right)$ is one of the least precisely known parameters of the corresponding unitarity triangle of the Cabibbo-Kobayashi-Maskawa matrix [1]. There are many proposals on how to measure γ involving charged B decays. The $B^{-} \rightarrow D^{(*) 0} K^{(*)-}$ decay mode [2], which exploits the interference between $b \rightarrow c \bar{u} s$ and $b \rightarrow$ $u \bar{c} s$ decay amplitudes, is one of the most important of these [3,4$]$. In this paper we use a theoretically clean measurement technique suggested by Gronau, London, and Wyler. It exploits the interference between $B^{-} \rightarrow D^{0} K^{-}$and $B^{-} \rightarrow \bar{D}^{0} K^{-}$decay amplitudes, where the D^{0} and \bar{D}^{0} mesons decay to the same $C P$ eigenstate [3]. We express the results in terms of the commonly used ratios $R_{C P \pm}$ of charge-averaged partial rates and of the partial-rate charge asymmetries $A_{C P \pm}$,

$$
\begin{align*}
& R_{C P \pm}=\frac{\Gamma\left(B^{-} \rightarrow D_{C P \pm}^{0} K^{-}\right)+\Gamma\left(B^{+} \rightarrow D_{C P \pm}^{0} K^{+}\right)}{\left[\Gamma\left(B^{-} \rightarrow D^{0} K^{-}\right)+\Gamma\left(B^{+} \rightarrow \bar{D}^{0} K^{+}\right)\right] / 2}, \tag{1}\\
& A_{C P \pm}=\frac{\Gamma\left(B^{-} \rightarrow D_{C P \pm}^{0} K^{-}\right)-\Gamma\left(B^{+} \rightarrow D_{C P \pm}^{0} K^{+}\right)}{\Gamma\left(B^{-} \rightarrow D_{C P \pm}^{0} K^{-}\right)+\Gamma\left(B^{+} \rightarrow D_{C P \pm}^{0} K^{+}\right)} .
\end{align*}
$$

Here, $D_{C P \pm}^{0}=\left(D^{0} \pm \bar{D}^{0}\right) / \sqrt{2}$ are the $C P$ eigenstates of the neutral D meson system, following the notation in Ref. [5]. Neglecting $D^{0}-\bar{D}^{0}$ mixing [6], the observables $R_{C P \pm}$ and $A_{C P \pm}$ are related to the angle γ, the magnitude ratio r of the amplitudes for the processes $B^{-} \rightarrow \bar{D}^{0} K^{-}$ and $B^{-} \rightarrow D^{0} K^{-}$, and the relative strong phase δ of these amplitudes through the relations $R_{C P \pm}=1+r^{2} \pm$ $2 r \cos \delta \cos \gamma \quad$ and $\quad A_{C P \pm}= \pm 2 r \sin \delta \sin \gamma / R_{C P \pm} \quad$ [3]. Theoretical predictions for r are on the order of 0.1 [3], in agreement with recent results by $\operatorname{BABAR}(r=0.091 \pm$ 0.059 [7]) and Belle ($r=0.159 \pm 0.074$ [8]), obtained through the study of $B^{-} \rightarrow D^{0} K^{-}, D^{0} \rightarrow K^{+} \pi^{-} \pi^{0}$ and $D^{0} \rightarrow K_{S}^{0} \pi^{+} \pi^{-}$decays.

This analysis, based on $348 \mathrm{fb}^{-1}$ of data collected at the $\Upsilon(4 S)$ resonance, updates a previous BABAR study based on $211 \mathrm{fb}^{-1}$ of data [9]. Belle recently presented a similar measurement of $R_{C P \pm}$ and $A_{C P \pm}$ based on $251 \mathrm{fb}^{-1}$ of data [10].

The ratios $R_{C P \pm}$ are computed under the assumption $R_{C P \pm}=R_{ \pm} / R$, which holds neglecting a factor of $r_{\pi} \lesssim$ 0.012 as discussed later. The quantities R_{+}, R_{-}, and R are defined as:

$$
\begin{equation*}
R_{(\pm)}=\frac{\mathcal{B}\left(B^{-} \rightarrow D_{(C P \pm)}^{0} K^{-}\right)+\mathcal{B}\left(B^{+} \rightarrow \bar{D}_{(C P \pm)}^{0} K^{+}\right)}{\mathcal{B}\left(B^{-} \rightarrow D_{(C P \pm)}^{0} \pi^{-}\right)+\mathcal{B}\left(B^{+} \rightarrow \bar{D}_{(C P \pm)}^{0} \pi^{+}\right)} . \tag{3}
\end{equation*}
$$

Several systematic uncertainties affect the $D^{0} K$ and $D^{0} \pi$ final states in the same way and therefore cancel in the double ratios $R_{C P+}$ and $R_{C P-}$, for instance the uncertainties on charged-particle reconstruction efficiencies, and the uncertainties on the secondary branching ratios of the D^{0} decays. We express the $C P$-sensitive observables in terms of three independent quantities x_{+}, x_{-}, and r

$$
\begin{gather*}
x_{ \pm}=\frac{R_{C P+}\left(1 \mp A_{C P+}\right)-R_{C P-}\left(1 \mp A_{C P-}\right)}{4} \tag{4}\\
r^{2}=x_{ \pm}^{2}+y_{ \pm}^{2}=\frac{R_{C P+}+R_{C P-}-2}{2} \tag{5}
\end{gather*}
$$

where $x_{ \pm}=r \cos (\delta \pm \gamma)$ and $y_{ \pm}=r \sin (\delta \pm \gamma)$ are the so-called Cartesian coordinates related to the $C P$ parameters that are measured using a Dalitz analysis of $B^{-} \rightarrow$ $D^{0} K^{-}, D^{0} \rightarrow K_{S}^{0} \pi^{-} \pi^{+}$decays [8,11]. This choice allows the results of the two measurements to be expressed in a consistent manner.

The measurements use a sample of 382 million $\mathrm{Y}(4 S)$ decays into $B \bar{B}$ pairs collected with the $B A B A R$ detector [12] at the PEP-II asymmetric-energy B factory. Chargedparticle tracking is provided by a five-layer double-sided silicon vertex tracker and a 40 -layer drift chamber. A ringimaging Cherenkov detector provides additional particle identification (PID). Photons are identified by the electromagnetic calorimeter, which is comprised of 6580 thallium-doped CsI crystals. These systems are mounted inside a 1.5 T solenoidal superconducting magnet. We use the GEANT [13] software to simulate interactions of particles traversing the detector, taking into account the varying accelerator and detector conditions.

We reconstruct $B^{-} \rightarrow D^{0} h^{-}$decays, where the prompt track h^{-}is either a kaon or a pion. The D^{0} candidates are reconstructed in the $C P$-even eigenstates $\pi^{-} \pi^{+}$and $K^{-} K^{+}\left(D_{C P+}^{0}\right)$, in the $C P$-odd eigenstates $K_{S}^{0} \pi^{0}$ and $K_{S}^{0} \omega\left(D_{C P-}^{0}\right)$, and in the (non-CP) flavor eigenstate $K^{-} \pi^{+}$. The ω candidates are reconstructed in the $\pi^{-} \pi^{+} \pi^{0}$ channel, and K_{S}^{0} candidates in the $\pi^{+} \pi^{-}$channel. Compared to the previous analysis [9], the current study does not include the decay mode $D^{0} \rightarrow K_{S}^{0} \phi$, since it is going to be explored by a $B A B A R$ Dalitz analysis of
$B^{-} \rightarrow D^{0} K^{-}, D^{0} \rightarrow K_{S}^{0} K^{+} K^{-}$decays. Excluding the $K_{S}^{0} \phi$ channel from the present analysis will allow the results of both studies to be more easily combined in the future.

We optimize our event selection to minimize the statistical error on the $B^{-} \rightarrow D^{0} K^{-}$signal yield, determined for each D^{0} decay channel using simulated signal and background events. We reject a candidate track if its Cherenkov angle does not agree within 4 standard deviations (σ) with either the pion or kaon hypothesis [14], or if it is identified as an electron by the drift chamber and the electromagnetic calorimeter. Neutral pions are reconstructed by combining pairs of photon candidates with energy deposits larger than 30 MeV that are not matched to charged tracks. The photon pair invariant mass is required to be in the range $115-150 \mathrm{MeV} / c^{2}$ and the total π^{0} energy must be greater than 200 MeV in the laboratory frame. To improve momentum resolution, the invariant mass of the two photons from candidate π^{0} 's is constrained to the nominal π^{0} mass [14]. Neutral kaons are reconstructed from pairs of oppositely charged tracks with invariant mass within $7.8 \mathrm{MeV} / c^{2}(\sim 3 \sigma)$ of the nominal K_{S}^{0} mass. The ratio between the candidate K_{S}^{0} flight length and its uncertainty must be greater than 2 . The ω mesons are reconstructed from $\pi^{+} \pi^{-} \pi^{0}$ combinations with invariant mass in the range $0.763<M\left(\pi^{+} \pi^{-} \pi^{0}\right)<0.799 \mathrm{GeV} / c^{2}$. We define θ_{N} as the angle between the normal to the ω decay plane and the D^{0} momentum in the ω rest frame, and $\theta_{\pi \pi}$ as the angle between the flight direction of one of the three pions in the ω rest frame and the flight direction of one of the other two pions in the two-pion rest frame. The quantities $\cos \theta_{N}$ and $\cos \theta_{\pi \pi}$ follow $\cos ^{2} \theta_{N}$ and $\sin ^{2} \theta_{\pi \pi}$ distributions for the signal and are almost flat for wrongly reconstructed or false ω candidates. We require the product $\cos ^{2} \theta_{N} \sin ^{2} \theta_{\pi \pi}>0.08$. The invariant mass of a D^{0} candidate $M\left(D^{0}\right)$ must be within 2.5σ of the mean fitted mass, with σ ranging from 4 to $20 \mathrm{MeV} / c^{2}$ depending on the D^{0} decay mode. To improve the D^{0} momentum resolution, the candidate invariant mass is then constrained to the nominal D^{0} mass [14] for all D^{0} decay channels. For $D^{0} \rightarrow \pi^{-} \pi^{+}$, the invariant mass of the ($h^{-} \pi^{+}$) system, where π^{+}is the pion from the D^{0} and h^{-}is the prompt track from B^{-}taken with the kaon mass hypothesis [14], must be greater than $1.9 \mathrm{GeV} / c^{2}$ to reject background from $B^{-} \rightarrow D^{0} \pi^{-}$, $D^{0} \rightarrow K^{-} \pi^{+}$and $B^{-} \rightarrow K^{* 0} \pi^{-}, K^{* 0} \rightarrow K^{-} \pi^{+}$decays. We reconstruct B meson candidates by combining a D^{0} candidate with a track h. For the $D^{0} \rightarrow K^{-} \pi^{+}$mode, the charge of the track h must match that of the kaon from the D^{0} meson decay, selecting $b \rightarrow c$ mediated B decays.

We select B meson candidates using the energy difference $\Delta E=E_{B}^{*}-E_{e e}^{*} / 2$ and the beam-energy-substituted (ES) mass $m_{\mathrm{ES}}=\sqrt{\left(E_{e e}^{* 2} / 2+\mathbf{p}_{e e} \cdot \mathbf{p}_{B}\right)^{2} / E_{e e}^{2}-p_{B}^{2}}$, where the subscripts $e e$ and B refer to the initial $e^{+} e^{-}$system and the B candidate, respectively, and the asterisk denotes the $e^{+} e^{-}$center-of-mass (CM) frame. The m_{ES} distributions for $B^{-} \rightarrow D^{0} h^{-}$signals are Gaussian functions centered at
the B mass with a resolution of $2.6 \mathrm{MeV} / c^{2}$, and do not depend on the D^{0} decay mode or on the nature of the prompt track. In contrast, the ΔE distributions depend on the mass assigned to the prompt track. We evaluate ΔE with the kaon mass hypothesis so that the peaks of the distributions are centered near zero for $B^{-} \rightarrow D^{0} K^{-}$ events and shifted by approximately 50 MeV for $B^{-} \rightarrow$ $D^{0} \pi^{-}$events. The ΔE resolution depends on the momentum resolutions of the D^{0} meson and the prompt track h^{-}, and is typically 16 MeV for all D^{0} decay modes under study. All B candidates are selected with m_{ES} within 2.5σ of the mean value and with ΔE in the range $-0.15<$ $\Delta E<0.20 \mathrm{GeV}$.

To reduce background from $e^{+} e^{-} \rightarrow q \bar{q}$ events (with $q=u, d, s, c$), denoted $q \bar{q}$ in the following, we construct a linear Fisher discriminant [15] based on the four eventshape quantities $L_{2}^{\mathrm{ROE}},\left|\cos \theta_{T}^{*}\right|,\left|\cos \theta_{B}^{*}\right|$, and R_{2}^{ROE}. The ratio L_{2}^{ROE} between $L_{2}=\sum_{i} p_{i} \cos ^{2} \theta_{i}$ and $L_{0}=\sum_{i} p_{i}$ is evaluated in the CM frame, where the \mathbf{p}_{i} are the momenta of charged tracks and neutral clusters not used to reconstruct the B (i.e., the rest of the event, ROE), and the θ_{i} are their angles with respect to the thrust axis of the B candidate's decay products. The angle θ_{T}^{*} is measured between the thrust axis of the B candidate's decay products and the beam axis, and is evaluated in the CM frame. The angle θ_{B}^{*} is measured between the B candidate momentum and the beam axis, again evaluated in the CM frame. The ratio R_{2}^{ROE} of the Fox-Wolfram moments H_{2} and H_{0}, is computed using tracks and photons in the ROE [16]. The efficiency of the requirement on the value of the Fisher discriminant ranges from 74% to 78% for $B^{-} \rightarrow D^{0} K^{-}$ signal events and from 17% to 23% for $q \bar{q}$ background events. For the $K \pi$ channel, the values are 87% for signal and 42% for background events.

For events with multiple $B^{-} \rightarrow D^{0} h^{-}$candidates ($0.4 \%-7.7 \%$ of the selected events, depending on the D^{0} decay mode), we choose the B candidate with the smallest $\chi^{2}=\sum_{c}\left(M_{c}-\left\langle M_{c}\right\rangle\right)^{2} /\left(\sigma_{M_{c}}^{2}+\Gamma_{c}^{2}\right)$ formed from the measured and true masses of the composite candidates c, M_{c}, and $\left\langle M_{c}\right\rangle$, scaled by the resolution $\sigma_{M_{c}}$ and width Γ_{c} of the reconstructed mass distributions. Composite candidates considered are the B candidate itself $\left(m_{\mathrm{ES}}\right), D^{0}, \pi^{0}$, and ω candidates. Also Γ_{ω} is the only non-negligible width.

The total reconstruction efficiencies, based on simulated $B \rightarrow D^{0} K$ events, are $36 \%\left(K^{-} \pi^{+}\right), 29 \%\left(K^{-} K^{+}\right), 29 \%$ $\left(\pi^{-} \pi^{+}\right), 15 \%\left(K_{S}^{0} \pi^{0}\right)$, and $6 \%\left(K_{S}^{0} \omega\right)$.

The main contributions to the background from $B \bar{B}$ events come from the processes $B^{-} \rightarrow D^{*} h^{-}, B^{-} \rightarrow$ $D^{0} \rho^{-}$, misreconstructed $B^{-} \rightarrow D^{0} h^{-}$, and from charmless B decays to the same final state as the signal: for instance, the process $B^{-} \rightarrow K^{-} K^{+} K^{-}$is a background for $B^{-} \rightarrow$ $D^{0} K^{-}, D^{0} \rightarrow K^{-} K^{+}$. These charmless backgrounds have similar ΔE and m_{ES} distributions as the $D^{0} K^{-}$signal and are referred to in the following as peaking $B \bar{B}$ backgrounds ($B^{-} \rightarrow X_{1} X_{2} K^{-}$).

We determine the signal and background yields for each D^{0} decay mode independently from a two-dimensional extended unbinned maximum-likelihood fit to the selected data events. The fit is performed simultaneously on the B^{+} and B^{-}subsamples. The input variables to the fit are ΔE and the Cherenkov angle θ_{C} of the prompt track. The extended likelihood \mathcal{L} for N candidates is given by the product of the probabilities for each individual candidate i and a Poisson factor

$$
\begin{equation*}
\mathcal{L}=\frac{e^{-N^{\prime}}\left(N^{\prime}\right)^{N}}{N!} \prod_{i=1}^{N} \mathcal{P}_{i}\left(\Delta E, \theta_{C}\right) . \tag{6}
\end{equation*}
$$

The probability \mathcal{P}_{i} is the sum of the signal and background terms,

$$
\begin{equation*}
\mathcal{P}_{i}\left(\Delta E, \theta_{C}\right)=\sum_{J} \frac{N_{J}}{N^{\prime}} \mathcal{P}_{\Delta E, i}^{J} \mathcal{P}_{\theta_{C}, i}^{J}, \tag{7}
\end{equation*}
$$

where J denotes the seven signal and background hypotheses $D^{0} h, q \bar{q}(h), B \bar{B}(h)$, and $X_{1} X_{2} K . N^{\prime}$ is the total event yield estimated by the fit, and N_{J} is the event yield in each category. We fit directly for the ratios $R^{\prime} \equiv R_{(\pm)}$and asymmetries $A_{C P \pm}$, as appropriate to the decay mode; they enter Eq. (7) through

$$
\begin{gather*}
N_{D^{0} \pi^{ \pm}}=\frac{1}{2}\left(1 \mp A_{C P}^{D^{0} \pi}\right) N_{D^{0} \pi}, \tag{8}\\
N_{D^{0} K^{ \pm}}=\frac{1}{2}\left(1 \mp A_{C P}\right) N_{D^{0} \pi} R^{\prime} \tag{9}
\end{gather*}
$$

where $N_{D^{0} \pi}=N_{D^{0} \pi^{+}}+N_{D^{0} \pi^{-}}$and $A_{C P \pm}^{D^{0} \pi}$ is defined analogously to Eq. (2).

The ΔE distribution for $B^{ \pm} \rightarrow D^{0} K^{ \pm}$signal is parametrized with a double Gaussian function. The fraction of the wide component of the signal shape, its offset from the narrow component and the ratio between the widths of the two components are fixed to values obtained from simulation. The ΔE probability density function (PDF) for $B^{ \pm} \rightarrow$ $D^{0} \pi^{ \pm}$is the same as the $B^{ \pm} \rightarrow D^{0} K^{ \pm}$one, but with an additional shift, $\Delta E_{\text {shift }}$, which arises from the wrong mass assignment to the prompt track. The shift is computed event by event as a function of the prompt track momentum p and a Lorentz factor $\gamma_{\mathrm{PEP}-\mathrm{II}}=E_{e e} / E_{e e}^{*}$ characterizing the boost to the $e^{+} e^{-} \mathrm{CM}$ frame

$$
\begin{equation*}
\Delta E_{\text {shift }}=\gamma_{\mathrm{PEP}-\mathrm{II}}\left(\sqrt{m_{K}^{2}+p^{2}}-\sqrt{m_{\pi}^{2}+p^{2}}\right) \tag{10}
\end{equation*}
$$

The ΔE distributions for the continuum background are parametrized with a straight line. The ΔE distribution for the $B \bar{B}$ background is empirically parametrized with a Gaussian peak with an exponential tail [17]. The parameters of the background shapes are determined from simulated events $(B \bar{B})$ and off-resonance data $(q \bar{q})$ and are fixed in the fit. The number of peaking background events $N_{X_{1} X_{2} K}$ is fixed to values obtained from a study of the D^{0} mass sidebands. The particle identification PDF is a double Gaussian as a function of $\theta_{C}^{\text {pull }}$, which is the difference between the measured Cherenkov angle θ_{C} and its expected value for a given mass hypothesis, divided by the estimated error. The PID shape parameters are obtained from simulation. To summarize, the floating parameters in each of the five fits are the $D^{0} K$ and $D^{0} \pi$ signal yield asymmetries, the total number of signal events in $D^{0} \pi$, the appropriate ratios R and $R_{ \pm}$, eight background yields (one for each charge), and two parameters of the ΔE signal shape (common for positive and negative samples).

The results of the fits, expressed in terms of signal yields, are summarized in Table I. Figure 1 shows the distributions of ΔE for the $K^{-} \pi^{+}, C P+$, and $C P-$ modes after enhancing the $B^{-} \rightarrow D^{0} K^{-}$purity by requiring that the prompt track be consistent with the kaon hypothesis. This requirement is 88% (1%) efficient for $h^{-}=K^{-}\left(h^{-}=\pi^{-}\right)$.

The ratios $R_{(\pm)}$, as measured by each fit, are corrected to take into account small differences in the selection efficiency between $B \rightarrow D K$ and $B \rightarrow D \pi$. The efficiency ratios range from 1.013 ± 0.006 to 1.037 ± 0.010. Their uncertainties are due to the statistics of the simulated samples and are considered in the study of systematic uncertainties. In the case of $D^{0} \rightarrow K_{S}^{0} \omega, \omega \rightarrow \pi^{+} \pi^{-} \pi^{0}$, the values of $R_{C P-}^{K_{s}^{0} \omega}$ and $A_{C P-}^{K_{s}^{0} \omega}$ need to be corrected to take into account a possible dilution from a nonresonant $C P$-even background arising from $B^{-} \rightarrow D^{0} h^{-}, D^{0} \rightarrow$ $K_{S}^{0}\left(\pi^{-} \pi^{+} \pi^{0}\right)_{\text {non }-\omega}$ decays. There is little information on this background. We estimate the corrections using a fit to the ω helicity angle in the selected data events and find the correction factors to be 1.12 ± 0.14 for $A_{C P-}^{K_{S}^{0} \omega}$ and $1.00 \pm$ 0.01 for $R_{C P-}^{K_{s}^{0} \omega}$. The uncertainties in the correction factors are included in the systematic errors. After applying all corrections, the quantities $R_{ \pm} / R$ and $A_{C P \pm}$ are computed

TABLE I. Uncorrected yields as obtained from the maximum-likelihood fit. The quoted uncertainties are statistical.

D^{0}	$C P$	$N\left(D \pi^{+}\right)$	$N\left(D \pi^{-}\right)$	$N\left(D K^{+}\right)$	$N\left(D K^{-}\right)$
$K^{-} \pi^{+}$		12745 ± 120	12338 ± 120	954 ± 36	918 ± 36
$K^{-} K^{+}$	+	1109 ± 36	1051 ± 35	51 ± 10	113 ± 13
$\pi^{-} \pi^{+}$	+	390 ± 24	378 ± 24	39 ± 9	36 ± 9
$K_{S}^{0} \pi^{0}$	-	1102 ± 37	1134 ± 38	100 ± 13	88 ± 12
$K_{S}^{0} \omega$	-	422 ± 24	403 ± 26	29 ± 8	18 ± 8

FIG. 1 (color online). Distributions of ΔE for events enhanced in $B^{ \pm} \rightarrow D_{C P+}^{0} K^{ \pm}$signal: (a) $B^{-} \rightarrow D_{C P-}^{0} K^{-}$; (b) $B^{+} \rightarrow$ $D_{C P+}^{0} K^{+}$; (c) $B^{-} \rightarrow D_{C P-}^{0} K^{-}$; (d) $B^{+} \rightarrow D_{C P-}^{0} K^{+} ; B^{ \pm} \rightarrow D^{0} K^{ \pm}, D^{0} \rightarrow K^{ \pm} \pi^{\mp}$ with (e) and without (f) signal enhancement. Blue (continuous) curve: projection of the full PDF of the maximum-likelihood fit. Red (long-dashed) line: $B^{ \pm} \rightarrow D^{0} K^{ \pm}$signal on all backgrounds. Brown (short-dashed) line: peaking component on $q \bar{q}$ and $B \bar{B}$ background. Green (dash-dotted) line: $q \bar{q}$ and $B \bar{B}$ background.
by means of a weighted average over the $C P+$ and $C P-$ modes. The results for the $C P$-even and $C P$-odd combinations are reported in Table II.

Systematic uncertainties in $R_{C P \pm}$ and $A_{C P \pm}$ are listed in Table III. The uncertainties on the fitted signal yields are due to the imperfect knowledge of the ΔE and PID PDFs and of the peaking background yields, and are evaluated in test fits by varying the parameters of the PDFs and the peaking background yields by $\pm 1 \sigma$ and taking the difference in the fit results. A possible $\pm 20 \% C P$ asymmetry in the peaking background is considered in the same way. In the $K_{S}^{0} \omega$ channel we also take into account the uncertainties in the correction factors due to the $C P$-even backgrounds from $D^{0} \rightarrow K_{S}^{0}\left(\pi^{-} \pi^{+} \pi^{0}\right)_{\text {non }-\omega}$ decays. A possible bias in the measured $A_{C P \pm}$ comes from an intrinsic detector charge asymmetry due to asymmetries in acceptance or tracking and particle identification efficiencies. An upper limit on this bias is obtained from the

TABLE II. Measured ratios $R_{C P \pm}$ and $A_{C P \pm}$ for $C P$-even $(C P+)$ and $C P$-odd $(C P-) D$ decay modes. The first error is statistical; the second is systematic.

D^{0} mode	$R_{C P}$	$A_{C P}$
$C P+$	$1.06 \pm 0.10 \pm 0.05$	$0.27 \pm 0.09 \pm 0.04$
$C P-$	$1.03 \pm 0.10 \pm 0.05$	$-0.09 \pm 0.09 \pm 0.02$

measured asymmetries in the processes $B^{-} \rightarrow D^{0} h^{-}$, $D^{0} \rightarrow K^{-} \pi^{+}$, and $B^{-} \rightarrow D_{C P \pm}^{0} \pi^{-}$, where $C P$ violation is expected to be negligible. From the average asymmetry, $-(1.6 \pm 0.6) \%$, we obtain the limit $\pm 2.2 \%$ for the bias. For the branching fraction ratios $R_{C P \pm}$, an additional source of uncertainty is associated with the assumption that $R_{C P \pm}=R_{ \pm} / R$. This assumption holds only if the magnitude of the ratio r_{π} between the amplitudes of the $B^{-} \rightarrow \bar{D}^{0} \pi^{-}$and $B^{-} \rightarrow D^{0} \pi^{-}$processes is neglected [18]. r_{π} is expected to be small: $r_{\pi} \sim r \frac{\lambda^{2}}{1-\lambda^{2}} \leq 0.012$, where $\lambda \approx 0.22$ [14] is the sine of the Cabibbo angle. This introduces a relative uncertainty $\pm 2 r_{\pi} \cos \delta_{\pi} \cos \gamma$ on $R_{C P \pm}$, where δ_{π} is the relative strong phase between

TABLE III. Systematic uncertainties on the observables $R_{C P \pm}$ and $A_{C P \pm}$ in absolute terms.

Source	$\Delta R_{C P+}$	$\Delta R_{C P-}$	$\Delta A_{C P+}$	$\Delta A_{C P-}$
Fixed fit parameters	0.036	0.019	0.010	0.002
Peaking background	0.029	0.037	0.031	0.003
Detector charge asym.	\ldots	\ldots	0.022	0.022
Opp. $C P$ bkg. in $K_{S}^{0} \omega$	\ldots	0.002	\ldots	0.007
$R_{C P \pm}$ vs $R_{ \pm} / R$	0.026	0.025	\ldots	\ldots
K / π efficiency	0.002	0.007	\ldots	\ldots
Total	0.053	0.049	0.039	0.023

the amplitudes $\mathcal{A}\left(B^{-} \rightarrow \bar{D}^{0} \pi^{-}\right)$and $\mathcal{A}\left(B^{-} \rightarrow D^{0} \pi^{-}\right)$. Since $\left|\cos \delta_{\pi} \cos \gamma\right| \leq 1$ and $r_{\pi} \leqslant 0.012$, we assign a relative uncertainty $\pm 2.4 \%$ to $R_{C P \pm}$, which is completely anticorrelated between $R_{C P+}$ and $R_{C P-}$. We quote the measurements in terms of $x_{ \pm}$and r^{2},

$$
\begin{align*}
& x_{+}=-0.09 \pm 0.05(\text { stat }) \pm 0.02(\text { syst }) \tag{11}\\
& x_{-}=+0.10 \pm 0.05(\text { stat }) \pm 0.03(\text { syst }) \tag{12}\\
& r^{2}=+0.05 \pm 0.07(\text { stat }) \pm 0.03(\text { syst }) \tag{13}
\end{align*}
$$

The correlations between the different sources of systematic errors, when non-negligible, are considered when calculating $x_{ \pm}$and r^{2}. The measured values of $x_{ \pm}$are consistent with those found from $B^{-} \rightarrow D^{0} K^{-}, D^{0} \rightarrow$ $K_{S}^{0} \pi^{-} \pi^{+}$decays, and the precision is comparable [11].

In conclusion, we have reconstructed $B^{-} \rightarrow D^{0} K^{-}$decays with D^{0} mesons decaying to non- $C P, C P$-even, and $C P$-odd eigenstates. The combined uncertainties we find for $A_{C P \pm}\left(R_{C P \pm}\right)$ are smaller by a factor of $0.7(0.9)$ and 0.6
(0.6) than the previous BABAR [9] and Belle [10] measurements, respectively. We find $A_{C P+}$ to deviate by 2.8 standard deviations from zero. We express the results in terms of the Cartesian coordinates $x_{ \pm}$and r^{2} [Eqs. (4) and (5)]. These measurements, combined with the existing measurements from $B^{-} \rightarrow D^{0} K^{-}$decays, will improve our knowledge of the angle γ and the parameter r.

We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support $B A B A R$. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by the DOE and NSF (USA), NSERC (Canada), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MES (Russia), MEC (Spain), and STFC (United Kingdom). Individuals have received support from the Marie Curie EIF (European Union) and the A. P. Sloan Foundation.
[1] M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652 (1973); N. Cabibbo, Phys. Rev. Lett. 10, 531 (1963).
[2] Reference to the charge-conjugate state is implied here and throughout the text unless otherwise stated.
[3] M. Gronau and D. Wyler, Phys. Lett. B 265, 172 (1991); M. Gronau and D. London, Phys. Lett. B 253, 483 (1991).
[4] D. Atwood, I. Dunietz, and A. Soni, Phys. Rev. Lett. 78, 3257 (1997); A. Giri, Y. Grossman, A. Soffer, and J. Zupan, Phys. Rev. D 68, 054018 (2003).
[5] M. Gronau, Phys. Rev. D 58, 037301 (1998).
[6] Y. Grossman, A. Soffer, and J. Zupan, Phys. Rev. D 72, 031501(R) (2005).
[7] B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 76, 111101(R) (2007).
[8] A. Poluektov et al. (Belle Collaboration), Phys. Rev. D 73, 112009 (2006).
[9] B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 73, 051105(R) (2006).
[10] K. Abe et al. (Belle Collaboration), Phys. Rev. D 73, 051106(R) (2006).
[11] B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett. 95, 121802 (2005).
[12] B. Aubert et al. (BABAR Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 479, 1 (2002).
[13] S. Agostinelli et al. (GEANT4 Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250 (2003).
[14] W. M. Yao et al. (Particle Data Group), J. Phys. G 33, 1 (2006).
[15] R. A. Fisher, Annals of Eugenics 7, 179 (1936).
[16] G.C. Fox and S. Wolfram, Phys. Rev. Lett. 41, 1581 (1978).
[17] $\frac{n^{n}}{|\alpha|^{n}} \exp \left(-|\alpha|^{2} / 2\right) /\left(\frac{n}{|\alpha|}-|\alpha|-\bar{x}\right)^{n} \quad$ for $\quad \bar{x}<-|\alpha|$, $\exp \left(-\frac{1}{2} \bar{x}^{2}\right)$ for $\bar{x} \geq-|\alpha| ; \bar{x}=\frac{x-\mu}{\sigma}, \bar{x} \rightarrow-\bar{x}$ for $\alpha<0$.
[18] M. Gronau, Phys. Lett. B 557, 198 (2003).

[^0]: *Deceased
 ${ }^{+}$Now at Temple University, Philadelphia, Pennsylvania 19122, USA
 ${ }^{\ddagger}$ Now at Tel Aviv University, Tel Aviv, 69978, Israel
 ${ }^{\text {§ }}$ Also with Università di Perugia, Dipartimento di Fisica, Perugia, Italy
 "Also with Università di Sassari, Sassari, Italy

