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Abstract: Rotaviruses are the main cause of acute diarrhea among young children worldwide with
an increased frequency of reinfection. Several life style factors, such as dietary components, may
influence such processes by affecting the outcome of the first rotavirus infection and therefore
having a beneficial impact on the anti-rotavirus immune responses during any subsequent
reinfections. The aim of this research was to develop a double-infection model in rat that mimics
real-life clinical scenarios and would be useful in testing whether nutritional compounds can
modulate the rotavirus-associated disease and immune response. Three experimental designs and a
preventive dietary-like intervention were conducted in order to achieve a differential response in
the double-infected animals compared to the single-infected ones and to study the potential action
of a modulatory agent in early life. Diarrhea was only observed after the first infection, with a
reduction of fecal pH and fever. After the second infection an increase in body temperature was
also found. The immune response against the second infection was regulated by the preventive
effect of the dietary-like intervention during the first infection in terms of specific antibodies and
DTH. A rotavirus-double-infection rat model has been developed and is suitable for use in future
preventive dietary intervention studies.
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1. Introduction

Diarrhea is the fourth highest cause of mortality among children under the age of five
worldwide [1], and rotavirus is the aetiological agent responsible for 37% of these deaths [2]. Almost
every child in the world will be infected with rotavirus at some time in their first 3 years of life [3],
however, it can also infect adults [4], and the presence of rotavirus particles in extra-intestinal tissues
has also been reported [5–8]. Rotavirus belongs to the family Reoviridae, which are non-enveloped,
icosahedral, double-stranded RNA viruses covered by triple-layer capsids. The viral genome encodes
for six structural proteins and six non-structural proteins [6,9–11]. Group A rotavirus are the main
human pathogens and they are transmitted via the fecal—oral route, with a higher prevalence in
winter. They infect the mature absorptive enterocytes of the small intestine, although the exact entry
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mechanism is still unknown [12]. In children the main symptoms are fever, vomiting, abdominal
cramps and diarrhea, lasting for 3 to 8 days [6,13], and the virus can be spread from 2 days before and
up to 8 days after the onset of diarrhea. Oral rehydration is the most usual treatment [14,15].

Immunity after a rotavirus infection is incomplete and several reinfections usually occur, which
tend to be less severe than the first [13]. Innate and adaptive immune responses are induced by
rotavirus infections, including cytokine and specific antibody (Ab) production [16,17]. The initial
immune response is the presentation of antigen to T and B lymphocytes through macrophages and
dendritic cells (DC). DC seem to be crucial for cellular response activation and represent a link between
innate and adaptive immunity [18]. Natural killer (NK) lymphocytes constitute the first line of defense
against the virus and destroy infected cells. T cells also lyse infected cells and produce cytokines.
Finally, B cells produce Ab both locally and systemically, and are required for long-term protection [19].
Protection against rotavirus seems to be positively correlated with immunoglobulin (Ig) A [20,21],
although IgG and IgM also confer some protection [22].

The introduction of two oral vaccines against rotavirus into routine vaccination programs
(RotaTeq, Merck & Co, White House Station, NJ, USA) and Rotarix, GSK Biologicals (Rixensart,
Belgium) has shown a reduction in the health burden of severe childhood diarrhea [2,9], but their
implementation is still not as widespread as had been expected, due among other reasons, mainly their
cost and the need for refrigerated storage [3,15]. Thus, it is necessary to develop alternative approaches
to control the rotavirus disease.

Interventional nutrition studies in humans, and particularly in infants, present certain difficulties.
For this reason, several animal models have been used to better understand rotavirus pathology and
infection, and also to study the vaccine efficacy or the amelioration of the disease course through
dietary intervention in early life with bioactive compounds (such as whey proteins, prebiotics and
probiotics) [23–26]. Most of the existing studies in this subject have focused on the evaluation of clinical
markers, such as the incidence and severity of diarrhea, while others have also studied the presence
of the virus in serum, tissues and/or feces, and evaluated the immune function through evaluating
Ab titers, among others [25]. In the rotavirus model context, all models add valuable information,
but large animals (such as cows, pigs and sheep) have been used as experimental subjects; however,
these studies involve high costs and sometimes also require long periods of study. In contrast, mice
models of rotavirus infection also exist and have been very helpful in the context of the mechanisms of
viral adhesion, replication and diarrhea induction because severe diarrhea can usually be obtained
after rotavirus inoculation of suckling mice. However, this success in diarrhea induction makes the
observation of the benefits of certain nutritional interventions difficult, because the intervention with
dietary components at physiological doses is not strong enough to ameliorate the process. This fact is
described as a current limitation in immunonutrition studies [27]. However, the neonatal rat model,
with a moderate severity of disease [28,29] and susceptible to heterologous rotavirus infection, has
been demonstrated as being suitable for immunonutrition studies, providing substantial scientific
evidence as well as having a cost-effective ratio [24].

Most rotavirus animal models include just one rotavirus infection (i.e., single-infection models),
but due to the frequency of reinfection in human infants, a double-infection model would provide
additional information. At present, rotavirus double-infection models already exist for some
species [30–34], but there is no rat model. In the double-infection models, it would be interesting to
evaluate the effect of two different rotavirus because humans are usually infected by different strains
of rotavirus during their lifetime. In addition, it would be interesting to fully evaluate the differential
response of both infections together compared to a single infection response, and how protection by
nutritional agents against the first infection, i.e., by a preventive intervention, will affect the second
infection, mainly in terms of immune response. Therefore, the aim of the present study was to develop
and characterize a neonatal rat double rotavirus infection model that would be suitable for use in
future dietary interventional studies.
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2. Materials and Methods

2.1. Animals

G14 pregnant Lewis rats were obtained from Harlan (Barcelona, Spain) and Janvier Labs (La Plaine
Saint Denis Cedex, France). They were housed in individual cages, monitored daily and allowed
to deliver at term. The day of birth was registered as day 1 of life. The pups had free access to the
nipples and rat diet. The animals were housed under controlled temperature and humidity conditions,
in a 12:12 h light/dark cycle. They were located in a special safe isolated room at the Animal Service
of the Faculty of Pharmacy, University of Barcelona (UB), designed and authorized for working
under biosecurity level 2 conditions. Dams were fed with a commercial diet corresponding to the
American Institute of Nutrition 93M formulation and given water ad libitum. The rotavirus were
intragastrically inoculated as previously described [29], 1 h after the pups’ separation from their
dams to avoid interference between the rotavirus and milk components in the stomach. The studies
were approved and conducted in accordance with the institutional guidelines for the care and use of
laboratory animals as established by the Ethical Committee for Animal Experimentation of the UB
and the Catalonia Government (CEEA-UB Ref.493/12, DAAM: 6905 for studies in rats and CEEA-UB
Ref.494/12, DAAM: 6875 for the studies in mice for virus in vivo production).

2.2. Viruses

Two different type-A viruses have been used for the experiments: the simian agent 11 (SA11)
and the epizootic-diarrhea infant-mouse virus (EDIM). The virus selected for the first infection in
the model was the SA11, a rotavirus strain produced by the UB’s “Enteric Virus Group”, as in
previous studies [23,26,29]. The virus selected for the second infection in the model was the EDIM
strain, which is not able to grow in cell culture. Therefore, in order to obtain sufficient quantity of
EDIM, an in vivo obtainment design was developed using an initial inoculum, which was a kind
gift from Karen Knipping, Nutricia Research, Utrecht, The Netherlands. Neonatal BALB/c mice
from 6 litters (n = 31) (Janvier) were inoculated at the age of 3 days with 5 µL of EDIM 0.9 × 108

viral particles/mL. Stool samples were collected from day 4 to day 15 (corresponding to the days
that the inoculated mice had diarrhea), pooled and homogenized using the Polytron® (Kinematica,
Luzern, Switzerland). EDIM was extracted with Genetron® (1,1,2-trichloro-1,2,2-trifluoroethane,
Sigma-Aldrich, Madrid, Spain) [34]. The quantification of EDIM particles was performed by ELISA
(1.3 × 108 viral particles/mL), as described in previous studies [34]. Its infectivity was later confirmed
in mice: 5 µL of the new EDIM stock were inoculated to 3-day-old BALB/c mice from 3 litters (n = 15),
causing diarrhea in all the animals (100% of incidence), between day 4 and 14 of life. Moreover, at the
age of 21 days, splenocytes were isolated from some animals to test their specific proliferative response,
which was significantly increased against RV particles.

2.3. Experimental Designs

Several experimental designs were utilized to identify the optimal conditions for the double
rotavirus infection (DRI) model (Figure 1). SA11 was selected as a first infective virus because previous
studies had shown that a rat model of mild diarrhea could be obtained using this strain of rotavirus in
early life. EDIM was used as the second infective virus, and as no previous literature on the infectivity
of EDIM in rats was found, a preliminary study was designed to confirm its infectivity in early-life
rats (Table S1 and Figure S1). Moreover, the cross-reactivity against both types of viruses was also
confirmed by means of ELISA and ELISPOT for anti- rotavirus Ab levels and secreting cells (SC)
quantification in infected rats, respectively (Figure S2).
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Figure 1. Experimental Design. Rotavirus inoculation days are marked in blue: SA11 inoculation was 
performed on day 7 and EDIM inoculation on days 16, 17 or 18. Weaning day is highlighted in a 
purple square (days 16, 17 or 21). These variables define the three experimental designs: normal 
weaning (NoW), same day weaning (SDW) and day before weaning (DBW). In addition, an anti-
rotavirus hyperimmune bovine colostrum (HBC) was used as preventive agent in the SDW group. 

We established three critical points in the organization of these designs. Key criteria to consider 
were: the first infection was always performed in the first week of life (between day 6 and day 7), as 
our previous studies had demonstrated that no clinical signs are obtained later in life [29]; the second 
infection was induced early in the third week of life (between days 16 and 18) in order to try to induce 
infection before the intestinal immune system reached maturity [35]. Finally, conscious of the 
importance of the bioactive factors present in breast milk in protecting the pups from infection, the 
weaning day was either physiologically performed on day 21 or, in order to model a decreased 
immune function in neonates, was carried out on the same or the previous day of inoculation with 
the second infection. The designs’ nomenclature indicates the pattern of weaning with respect to the 
day of the second infection in the DRI groups of each design: normal weaning (NoW), same day 
weaning (SDW) and day before weaning (DBW).  

In all of them, the DRI groups of rats were inoculated with SA11 (~1.8×108 TCID50 RV/rat in 100 
μL of phosphate-buffered solution [PBS]) at day 6–7 of life. The second inoculation was induced with 
100 μL of EDIM (~1.3×108 rotavirus/mL) at days 16–18 of life in still suckling rats or early weaned 
(same or previous day) rats in order to obtain differential second-infection patterns.  

Each one of the experimental designs was composed of four different experimental groups: a 
non-inoculated reference (REF) group; a single-infection group infected with SA11 (SA11); a single-
infection group infected with EDIM (EDIM); and a double-rotavirus infection (DRI) group infected 
with both SA11 first and later with EDIM (n = 2–4 dams/group with 6–9 pups each dam) (Figure 1).  

In addition to these experimental designs, an extra group as a dietary-like intervention was 
added to be used as a control group of protection during first infection. This group was constituted 
by DRI animals, which received “anti-rotavirus hyperimmune bovine colostrum” (HBC, kindly 
provided by Dr Viviana Parreño, Institute of Virology, CICV and A-INTA, Castelar, Argentina) in a 
concentration of 50 mg/animal/day in a 100 μL volume prior to and during first infection (from day 
5 to day 13). This HBC was titrated to be effective in blocking the virus in vitro in concentrations 
higher than 10 μg/mL. This intervention would mimic a nutritional intervention with activity against 
viral infections such as breast milk components or some oligosaccharides [25,26]. 

Clinical evaluation was performed daily from the day before the first inoculation until the end 
of the study. Fecal samples were collected daily during the study and blood samples on day 28, when 

Figure 1. Experimental Design. Rotavirus inoculation days are marked in blue: SA11 inoculation was
performed on day 7 and EDIM inoculation on days 16, 17 or 18. Weaning day is highlighted in a purple
square (days 16, 17 or 21). These variables define the three experimental designs: normal weaning
(NoW), same day weaning (SDW) and day before weaning (DBW). In addition, an anti-rotavirus
hyperimmune bovine colostrum (HBC) was used as preventive agent in the SDW group.

We established three critical points in the organization of these designs. Key criteria to consider
were: the first infection was always performed in the first week of life (between day 6 and day 7),
as our previous studies had demonstrated that no clinical signs are obtained later in life [29]; the
second infection was induced early in the third week of life (between days 16 and 18) in order to try
to induce infection before the intestinal immune system reached maturity [35]. Finally, conscious of
the importance of the bioactive factors present in breast milk in protecting the pups from infection,
the weaning day was either physiologically performed on day 21 or, in order to model a decreased
immune function in neonates, was carried out on the same or the previous day of inoculation with the
second infection. The designs’ nomenclature indicates the pattern of weaning with respect to the day
of the second infection in the DRI groups of each design: normal weaning (NoW), same day weaning
(SDW) and day before weaning (DBW).

In all of them, the DRI groups of rats were inoculated with SA11 (~1.8 × 108 TCID50 RV/rat in
100 µL of phosphate-buffered solution [PBS]) at day 6–7 of life. The second inoculation was induced
with 100 µL of EDIM (~1.3 × 108 rotavirus/mL) at days 16–18 of life in still suckling rats or early
weaned (same or previous day) rats in order to obtain differential second-infection patterns.

Each one of the experimental designs was composed of four different experimental groups:
a non-inoculated reference (REF) group; a single-infection group infected with SA11 (SA11);
a single-infection group infected with EDIM (EDIM); and a double-rotavirus infection (DRI) group
infected with both SA11 first and later with EDIM (n = 2–4 dams/group with 6–9 pups each dam)
(Figure 1).

In addition to these experimental designs, an extra group as a dietary-like intervention was added
to be used as a control group of protection during first infection. This group was constituted by DRI
animals, which received “anti-rotavirus hyperimmune bovine colostrum” (HBC, kindly provided by
Dr Viviana Parreño, Institute of Virology, CICV and A-INTA, Castelar, Argentina) in a concentration of
50 mg/animal/day in a 100 µL volume prior to and during first infection (from day 5 to day 13). This
HBC was titrated to be effective in blocking the virus in vitro in concentrations higher than 10 µg/mL.
This intervention would mimic a nutritional intervention with activity against viral infections such as
breast milk components or some oligosaccharides [25,26].



Nutrients 2019, 11, 131 5 of 15

Clinical evaluation was performed daily from the day before the first inoculation until the end of
the study. Fecal samples were collected daily during the study and blood samples on day 28, when
animals were euthanized (by cardiac puncture and exsanguination after ketamine/xylazine injection
(Imalgene 100 mg/mL, Merial Laboratorios, Barcelona, Spain/Rompun® 20 mg/mL, Bayer Hispania,
Sant Joan Despí, Spain). Fecal pH and body temperature were measured after the infections. The
delayed-type hypersensitivity (DTH) response and specific anti-rotavirus Ab in sera were determined
at the end of the study.

2.4. Clinical Indexes and Faecal Specimen Collection

SA11 and EDIM infections were evaluated at 1 to 10 days post-inoculation (DPI) by the growth rate
and clinical indexes that require daily fecal sampling, as previously described [29]. Fecal sampling was
performed once a day by gently pressing and massaging the abdomen. Specimens were immediately
scored in a blinded manner by 2–3 investigators for severity from 1 to 4 (diarrhea index (DI)), weighed
and frozen at 20 ◦C for further analysis. The DI is based on colour, texture and amount as described:
normal (1); loose yellow-green (2); totally loose yellow-green (3); high amount of watery (4) feces.
Diarrhea scores >2 indicate diarrheic feces, whereas scores of DI <2 indicate the absence of diarrhea.
Incidence of diarrhea was expressed by the percentage of diarrheic animals (%DA, consisting of the
percentage of animals with diarrheic feces, taking into consideration the number of animals in each
group) and by the percentage of diarrheic feces (%DF, consisting of the percentage of diarrheic samples,
taking into consideration the number of total samples collected every day in each group).

2.5. Faecal pH and Body Temperature Determination

The pH from fecal diluted samples (up to 200 mg/mL in distilled water) from the peri-inoculation
period was measured with a pH electrode for surfaces 5207 and a pH-meter micropH 2001 (Crison
Instruments, Barcelona, Spain). Body temperature was measured with the TEMP JKT thermometer
(Oakton, Vernon Hills, IL, USA) and the RET-3-ISO rectal probe for neonatal rats (Physitemp, Clifton,
NJ, USA). This measure was taken during the peri-inoculation period of the virus. Results were
expressed as the relative increase of temperature compared to the temperature the day before the
inoculation taken as baseline.

2.6. ELISA for Specific Anti-Rotavirus Total Antibody Quantification in Serum and Viral Shedding

Ninety-six-well plates were coated with UV-inactivated SA11 particles at 105/mL, and after
blocking and incubating the sample (dilution 1/20), a rabbit peroxidase-conjugated anti-rat Ig (Dako,
Barcelona, Spain) was used for detection, as in previous studies [29]. In the DBW design, sera
anti-rotavirus IgM and intestinal anti-rotavirus Ig levels were also quantified as described [29]. Pooled
sera from dams of inoculated litters were used as standard in each plate.

Fecal samples from 1–3 days after SA11 or EDIM inoculations were diluted in PBS (10 mg/mL) and
homogenized using a FastPrep (MP Biomedicals, Santa Ana, CA, USA). Homogenates were centrifuged
(13,000× g, 3 min), and supernatants were frozen at −20 ◦C until use. Rotavirus particles in fecal
samples were quantified by ELISA, as previously described [29]. Titrated dilutions of inactivated
SA-11 virus particles, ranging from 4 × 105 to 2.5 × 104/mL, were used as standard in each plate.

2.7. Delayed-Type Hypersensitivity

One day before sacrifice, the thickness of both the right and left ears of every animal were
measured to constitute the basal values, using a pocket thickness gauge 7309 (Mituyoto, Hampshire,
UK). For virus priming, animals were anaesthetized with isofluorane (Abbott Laboratories, Berkshire,
UK) and a volume of 20 µL of UV-inactivated virus (~0.5 × 106 rotavirus particles/mL) was injected
into the right ear (RE) and the same volume of PBS was injected into the left ear (LE). After 24 h and
prior to sacrifice, an evaluation of the ear thickness was performed again. Results are expressed as the
increase of thickness (in mm) of the RE subtracting the increase of the thickness of the LE (in mm).
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2.8. Statistical Analysis

The PASW Statistics 22 software package (SPSS Inc, Chicago, IL, USA) was used for the statistical
analysis. The Komolgorov-Smirnov test was applied to assess normal distribution, followed by
Levene’s test in order to determine variance equality. Conventional one-way ANOVA test was
performed considering the experimental group as the independent variable. The results from different
groups were sometimes pooled for a unique variable (e.g., SA11-infected rats from different groups
vs. non-infected rats). When virus inoculation had a significant effect on the dependent variable,
Scheffé’s post hoc test was applied. Kruskal-Wallis and Mann-Whitney U tests were used when
non-normal distribution or different variances were found. Finally, the chi-square test was used to
compare frequencies. Differences were considered significant at p values of <0.05. All the results are
expressed as mean ± SEM of n animals.

2.9. Compliance with Ethical Standards

The studies were approved and conducted in accordance with the institutional guidelines for the
care and use of laboratory animals as established by the Ethical Committee for Animal Experimentation
of the UB and the Catalonia Government (CEEA-UB Ref.493/12, DAAM: 6905 for studies in rats and
CEEA-UB Ref.494/12, DAAM: 6875 for the studies in mice for virus in vivo production).

3. Results

3.1. Clinical Variables and Body Weight during First Rotavirus Infection

First infection with SA11 during the first week of life induced diarrhea in all the inoculated groups
in the three experimental designs conducted here, as can be observed from the incidence (%DA and
%DF) and severity (DI) of diarrhea data. In Figure 2, only data from the DRI group of each design
are represented, but results from the single-infected group (SA11 group) of each design followed
a similar pattern to that in the DRI group. The %DA in the DRI group appeared from 1–3 DPI in
all designs, reaching up to 50–100% between 1 and 4 DPI, and none of the animals in these designs
still had diarrhea after 8 DPI. All designs showed a biphasic disease with two peaks of infection
(Figure 2a–c) with and 70–100% of the SA11-infected animals developed diarrhea at some point. The
results corresponding to the %DF followed a similar pattern as the %DA, achieving in all experimental
designs a %DF of 100% at some point. None of the REF animals in any experimental design displayed
diarrhea along the study, thus %DA or %DF was 0 and DI was 1 in all cases. Thus, in all designs the
values of incidence and severity were statistically higher than those from the REF animals during the
peaks of diarrhea: 3–4 DPI for NoW design, 2–4 DPI for SDW design and 1–2 and 4–5 DPI for DBW
design (p < 0.05 vs. REF).

With regard to the severity of the diarrhea, the SA11-inoculated groups in all designs developed
mild diarrhea (Figure 2d–f). The maximum diarrhea index ranged from 2.25–3 in all cases and was
achieved around 2–4 DPI.

In all designs the diarrhea was also characterized by a fecal weight increase during the 4 days
after infection when compared to REF animals, which showed no differences in any of the designs.
The average weight of the fecal output during this period was 12.05 ± 1.71 g (mean ± SEM) in the
SA11-infected groups from all designs, whereas in the REF group it was 4.05 ± 0.94 (p < 0.05). Finally,
the viral infection and the consequent diarrhea did not significantly affect the growth curve of the
animals in any of the three experimental designs, the overall body weight increase between day 4 and
day 14 being about 190.44 ± 7.67 % in the REF groups and 177.82 ± 3.35 % in the SA11-infected groups.
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Figure 2. Evaluation of the incidence (2a–2c) and severity of diarrhea (2d–2f) of the DRI groups of the
different experimental designs. Incidence is expressed as % of diarrheic animals (%DA) and severity
as mean ± SEM of the diarrhea index (DI) (n = 6–12 animals/group). Arrows in each graph indicate
the rotavirus inoculation day, first with SA11 and second with EDIM. Vertical dotted lines indicate the
weaning day in each of the experimental designs. Horizontal dotted lines indicate the ID = 2, where
higher values are indicative of diarrhea and lower values are indicative of no diarrhea.

3.2. HBC Protection during First Infection

The intervention with the nutrional-like agent HBC when the pups were aged 5 to day 13 days
old significantly reduced the incidence and severity of diarrhea. For instance, a maximum of 11% DA
and 17% DF on days 4–5 DPI in the HBC group was achieved, whereas in SA11-infected animals, the
values were of about 80% and 100%, respectively (Figure 3a). Moreover, the severity of the diarrhea of
the few animals that developed it was also controlled, with a maximum diarrhea index of 1.75 ± 0.00
on 3 DPI (Figure 3b), a value that was lower than that of the SA11-infected rats (3.00 ± 0.36, p < 0.05).
The onset of diarrhea was delayed by about two days (from 7 to 9 days old) and the duration of the
disease was greatly shortened (the diarrhea period of the SA11 group was 1.67 ± 0.30 days and that of
the HBC group was 0.22 ± 0.15 days). Fecal weight during the diarrhea period (day 7–10) was also
significantly reduced in comparison with the SA11-infected animals, achieving values of 4.64 ± 0.99 g
(p < 0.05 vs. SA11). Body weight was not affected as a result of the HBC intervention.
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Figure 3. Evaluation of the incidence (3a) and severity of diarrhea (3b) of DRI animals (black circles)
and DRI animals that received an “anti-rotavirus hyperimmune bovine colostrum” (HBC) supplement
(white circles). Incidence is expressed as % of diarrheic animals (%DA) and severity as mean ± SEM of
the diarrhea index (DI) (n = 9 animals/group). Arrows in each graph indicate the rotavirus inoculation
day, first with SA11 and second with EDIM.

3.3. Clinical Variables and Body Weight after Second Rotavirus Infection

The second infection with EDIM during the third week of life failed to induce diarrhea in any of
the inoculated groups—i.e., the single-(EDIM group) and the double-infection (DRI group) groups—in
the three designs conducted here, as can be observed from the incidence and severity data (Figure 2).

Moreover, there were no differences in fecal weight among groups after the second infection.
The absence of diarrhea after the EDIM inoculation, both in the single and in the double context, is
paralleled with the absence of changes in the body weight gain during this period, being similar to
those animals that did not receive any virus in this period (the body weight increase between day 6 and
day 27 was 367.58 ± 6.54 % in the REF groups and 353.66 ± 9.18 % in the SA11 groups). Conversely,
no physiological weight increase was evident for animals in the SDW and DBW groups during the
2–3 days after separation from their dams. As expected, due to the age-dependent insusceptibility to
rotavirus, no clinical data evidenced the second infection with EDIM and therefore new variables were
included in the study.

3.4. Faecal pH after Rotavirus Infections

The pH of fecal samples, as a possible marker of gastrointestinal alteration, was measured from
0–5 DPI after the onset of both rotavirus infections. Samples from SA11-infected animals (pooled
results of SA11 and DRI groups of each design) showed a significantly lower fecal pH in two of the
three designs during the acute diarrhea period compared to the REF group (Table 1). The fecal pH
change due to the rotavirus infection was counteracted by the HBC-supplementation (5.26 ± 0.21,
p > 0.05 vs. SA11 group). The fecal pH in the peri-infection period of the second infection with EDIM
was also measured and, as expected due to the lack of changes in the fecal score, no differences were
found between the infected groups and the REF group.

Table 1. Fecal pH in the peri-inoculation period (first infection). Results are expressed as mean ± SEM
(n = 4–8 samples/group).

1st Infection

REF SA11

NoW 4.83 ± 0.05 4.56 ± 0.03 *
SDW 5.07 ± 0.16 4.48 ± 0.07 *
DBW 4.36 ± 0.05 4.76 ± 0.21

* p < 0.05 vs. REF group.

3.5. Body Temperature after Rotavirus Infections

Rats’ body temperature in both SA11 and EDIM infections was monitored from 0–5 DPI as a
possible marker of disease. The relative increase in temperature for the maximum value obtained after
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infection with respect to the 0 DPI value was calculated for each individual only in the weaned animal
designs (SDW and DBW), because the temperature of suckling pups still with their mother (NoW)
cannot be obtained (Table 2). After the first infection with SA11, an increase in rectal temperature
was observed among the infected animals when compared to the REF group, but was only significant
in the case of ED SDW (p < 0.05). Even though diarrhea was not observed in the second infection,
an increase in body temperature was found in both the EDIM and the DRI groups (p < 0.05 vs. REF
group in SDW and DBW designs), suggesting the presence of infection. On the other hand, the HBC
oral supplementation in the SDW design did not have any positive effect on the temperature, either
after the first infection (4.1 ± 0.2) or later in the second infection (4.4 ± 0.7).

Table 2. Rectal temperature of the animals in the peri-inoculation period (first and second infection).
Results are expressed as mean ± SEM (n = 6–12 animals/group) of the relative increase of temperature
with respect to the temperature the day before virus inoculation (basal value).

1st Infection (2 DPI) 2nd Infection (1 DPI)

REF SA11 REF EDIM DRI

SDW 0.47 ± 0.32 4.35 ± 1.22 * 0.12 ± 0.12 4.40 ± 0.77 * 3.60 ± 0.42 *
DBW 0.40 ± 0.32 0.83 ± 0.46 3.24 ± 0.81 5.53 ± 0.38 * 7.50 ± 0.72 *

* p < 0.05 vs. REF group.

3.6. Viral Shedding after SA11 and EDIM Infections

In the DBW design, viral elimination was also studied, and in all rotavirus-inoculated animals,
maximum viral shedding was observed on the first day after inoculation (1 DPI) with the SA11
infection. At that point no differential pattern as a result of HBC administration was observed, and the
viral shedding of HBC group was 101.36 % of that of the DRI group.

On day 18 (1 DPI for EDIM), the DRI group had lower viral shedding than those animals only
infected with EDIM at day 17 (171.46% with respect to the DRI group’s viral shedding), but the
difference was not statistically significant. However, in this case, the HBC-supplemented group
showed 10 times higher viral clearance than the DRI group.

3.7. Anti-Rotavirus Antibodies Generated after SA11 and EDIM Infections

In all three designs the total serum anti-rotavirus specific Ab were studied in 28-day-old rats
when their immune response was more mature (Figure 4).

The anti-rotavirus Ab concentrations in SA11-infected groups were significantly increased by up
to two-fold from those in the REF groups in all designs. The different conditions tested for the EDIM
inoculation (i.e., continuing breastfeeding or early weaning the same day of infection) failed to induce
a significant Ab response against the virus, with the exception of the DBW design (early weaning the
day before infection), in which the anti-RV Ab concentrations increased more than eight times with
respect to the REF group (p < 0.05).

When the immune response, after the combination of both viruses, was studied in the three
different designs, two different patterns were found for the DRI with respect to a unique infection
(either SA11 alone or EDIM alone): no effect (NoW) or a down-regulatory effect (SDW and DBW).
Apart from the lack of effect in the NoW group (Ab response in the DRI group was similar to that
in the SA11 group), the other two conditions generated an Ab response in animals from the DRI
group, infected with both SA11 and EDIM, that was significantly lower than that when only SA11was
inoculated (SDW) or EDIM (DBW), suggesting a down-regulatory effect of the second infective agent:
a decrease of 29–36% in Ab levels was produced in these cases.

Anti-rotavirus IgM levels were also studied in sera obtained in the DBW design. Similarly,
to the total anti-rotavirus Ig, there were higher titers of anti-rotavirus IgM in the EDIM group
(905.03 ± 87.80 AU/mL) than in the REF (575.59 ± 28.71 AU/mL) and SA11 (859.30 ± 304.37 AU/mL)
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groups (p < 0.05). Moreover, the pattern in the DRI was different to those of the single infection groups
(711.26 ± 95.59 AU/mL).

In addition, in the DBW model, a similar pattern was found for intestinal anti-rotavirus Ig in
small intestinal gut washes: higher levels were found in the SA11 and EDIM single infections but
not in the DRI group compared to the REF group. Regarding the nutritional intervention, there was
no evidence that the HBC protection during the first infection decreased the serum anti-rotavirus Ig
and anti-rotavirus IgM titers in the DRI group with respect to the single infections, but it was able to
increase 1.5 times the anti-rotavirus Ig levels in the intestinal compartment with respect to the DRI
group (p < 0.05).
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Figure 4. Specific anti-rotavirus total antibodies (Ab) in serum from 28-day-old rats from the different
experimental designs (ED). Results are expressed as mean ± SEM (n = 6–12 animals/group) in AU/mL.
Arrows indicate the percentage of reduction. Statistical differences: * p < 0.05 vs. REF group; α p < 0.05
vs. SA11 group; β p < 0.05 vs. EDIM group.

3.8. Delayed Type Hypersensitivity

The DTH response at 24 h was studied in all three designs, showing a clear up-regulatory effect
of double infection in the early weaned animals (Figure 5). The groups infected with SA11 and EDIM
alone did not show an increase in this response when compared to the REF group, but the DTH
response increased in the DRI group in the design involving early weaning, either on the same day of
infection (SDW) or the day before (DBW) (p < 0.05). The nutritional intervention with HBC was able to
significantly reduce such an increase in the SDW design, drastically reducing the ear thickness of the
ear to REF levels.
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Figure 5. Delayed-type hypersensitivity (DTH) response in some of the experimental designs
(ED) in 28-day-old animals. Results are expressed as mean ± SEM of the 24 h-increase of
thickness of the rotavirus-injected ear subtracting the increase of thickness of the PBS-injected ear
(n = 6–12 animals/group). Statistical differences: * p < 0.05 vs. REF group; α p < 0.05 vs. SA11 group;
β p < 0.05 vs. EDIM group.
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4. Discussion

Group A rotavrius is the most common cause of acute diarrhea among children under the age of
five worldwide [36,37]. Due to its impact on the health system and society, it is of interest to explore
the rotavirus infection and its pathology, along with the clinical and immune response, and to test
its possible modulation by nutritional compounds. Several rotavirus-infection animal models are
already available, but most of them are single-infection models, which do not reflect the multiple
reinfections that humans have during early life. Hence, the purpose of this study was to develop a
double-infection model in rat, which is more similar to clinical reality than a single-infection model
and to study the preventive scenario, such as a dietary intervention, for providing immunity already
during first infection.

First, rats from the Lewis strain were selected, as these have a high susceptibility to infection
by rotavirus whereas the Wistar strain has mechanisms to avoid virus replication [29]. Age is also
an important factor, because rodents can be infected at any age, but they do not always develop the
disease. In particular, rats only present clinical signs when they are infected before 21–27 days of life,
and the occurrence of diarrhea is inversely age-dependent [28,29,37].

Two rotavirus inoculations were performed in the different experimental designs tested in the
present study. The first one, with SA11, was at the end of the first week of life, in line with previous
studies [26,29]. A 5-day mild diarrhea was achieved, without body weight loss, but with fecal weight
increase in the acute diarrhea period, as in previous studies [26,29]. In other animal models with
a more severe diarrhea disease, such as in mice, body weight loss has been described [38]. For the
second infection, mimicking reinfections that often occur in infants, the rotavirus EDIM was chosen
and inoculated at day 17 of life, as previously established in mice [34], confirming its infectivity on
rats. In this case, diarrhea was not observed due to the older age of the animals, as in the other
models of rotavirus double-infection in other species [30–34]. To enhance the rotavirus infection,
the inoculation was performed on day ~17 of life in the different experimental designs, but with early
weaning introduced on the same day, or even one day before, which imposes a physiological stress on
the animal. This change in the weaning day still did not provoke the apparition of clinical features,
and therefore other markers needed to be assessed.

The fecal pH seems to decrease with a rotavirus infection in two of the three designs studied,
but only when diarrhea is obtained (first infection). This may be because of the body’s electrolyte
imbalances caused by the diarrhea [13]. However, Li et al. [39] observed an increase in pH in the
colonic content of rotavirus-infected piglets. In our case, measuring pH did not aid in the assessment of
the second infection. We confirmed a temperature rise after both the first infection—but only in one of
the two designs in which this variable was studied—and the second infection, even though no clinical
signs were observed in the latter. However, no different pattern was observed between the single
and the double infection. Few studies have evaluated the body temperature. For example, although
Parreño et al. [33] measured temperature after rotavirus infection in a calf model and observed fever,
they only measured it after the first infection, not after the second. Overall, and regardless of the fact
that the results in our study were not conclusive in all the designs, pH and temperature measures
might be useful as disease indicators in these types of models, although the results are more evident in
the first infection. A current limitation of this study that must be taken into consideration in the future
is that we did not have a technique with enough sensitivity to be able to evaluate the viral shedding in
all the experimental designs; a tool used in previous studies [23,26] and by others could have allowed
us to observe the impact of the first infection on the prevention of the second one.

Finally, changes in immune response were assessed in order to obtain differential patterns in the
double infection in terms of specific Ab and DTH response. These variables were determined at the
end of the study, when the immune system of the animals was more developed. The selection of these
variables was performed according to the guidelines published by Albers et al., in 2013 [27].

The DTH response after second infection was found to be up-regulated by a first infection in
the early weaned designs. No DTH response was found in the first design (NoW), probably due
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to the breast milk components that participate in the protection against RV during both infections
but especially in the second one and therefore highlighting the importance of infant’s nutrition and
breastfeeding in this context. On the contrary, in the SDW and the DBW designs, the single infections
did not induce DTH response but a clear effect was observed in the DRI animals. These results are
contrary to what has been observed in other studies, where the DTH response was detected after an
infection at day 17 in mice, but was suppressed after a reinfection in mice who had previously received
a primary infection [34,40]. Our results may suggest that animals that have already been in contact
with the virus (first infection), are able to respond more strongly to the DTH stimuli after the second
infection. This result is supported by the fact that it is known that rotavirus-specific CD8+ T cells
developed after a first infection mediate the resolution of the second infection [19,41].

In the SA11 groups of all the designs, increased levels of Ab compared to the REF groups were
already found, similarly to previous studies [29,30,32]. With regard to the second infection, the results
from the NoW (physiological weaning) design suggest that the second infection was not strong enough
to modify the Ab levels (those from the DRI group were similar to those from the SA11 group), but
when an early weaning was performed, the second infection regulated this variable (SDW design) and
did so more significantly if the animals had been weaned one day before the EDIM inoculation (DBW
design). Thus, a down-regulatory action was found on the humoral response in the second infection
after the first one. This has also been shown by Sheridan et al., in a model of reinfection in adult
mice [40]. In contrast with these results, Knipping et al., did not find a differential Ab pattern between
single and double infections [34]. Overall, the low titers of anti-rotavirus Ab in the DRI animals may
be linked to the higher cell response achieved after first infection, which could protect against the virus
without needing to highly activate the humoral immune response. However, it has to be highlighted
that levels of Ab in the breast milk are variable and can confer protection to the pups, presumably due
to the previous contact of the dams with rotavirus in their respective animal facilities. Even though
we agree that despite the importance of evaluating anti-rotavirus Ab titers in pups’ sera, it is also
important to determine those of the dams before starting an interventional study with this type of
model and, if possible, stratifying the groups by high vs. low dam maternal rotavirus antibody titers.

Moreover, the HBC is an effective protection in the control of diarrhea in this and other rotavirus
models. In other studies, the administration of Gastrogard-R® (colostrum containing rotavirus specific
Ab) also protected suckling mice against the first rotavirus infection, but the fecal viral load after the
second infection was as high as the first one would be, although it allowed the development of B and
T cell responses [34]. Parreño et al., described full protection by HBC after a first and second virus
exposure in calves [33]. A combination of HBC and the probiotic strain Lactobacillus rhamnosus GG
also protected mice successfully from rotavirus diarrhea [42]. Other authors have also found diarrhea
protection or a reduction of rotaviral disease in mice with the administration of bovine colostrum
from healthy cows [43,44] or whey protein concentrates [23,25,45], sometimes with diminished Ab
titers [23] and sometimes with no differences among groups [45]. In the case of multiple infections,
HBC intervention may help in understanding the influence of regulatory interventions by nutrients
during these processes. In our case, the protection from the first infection by HBC leads to the induction
of a lower immune response after the second infection (in terms of Ab and DTH response), suggesting
that HBC, in the first rotavirus infection, is able to effectively block the virus, promote its elimination
and therefore diminish its infectivity and disease but also the priming of immunity in this sense. Future
studies should be directed to defining an intermediate dose or to finding protective agents that may
control disease but also allow the development of own immunity against the pathogen.

5. Conclusions

In summary, the early weaning and an early age are important features for the model to achieve a
valid design candidate for both infections. The model includes clinical signs during first infection, but
as expected, not in the second, and regulation of immune response due to the first rotavirus contact.
The diarrhea index and the fecal pH are suitable tools for assessing the first infection, body temperature
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is an appropriate clinical variable for both infections, and specific Ab in serum at day 28 and the
DTH response are useful variables for evaluating the second rotavirus infection. We can conclude
that the rotavirus double-infection rat model is suitable for studying the influence of interventions
performed to regulate first infections (e.g., by vaccination, therapeutic agents and especially nutritional
supplementation) on the onset of a future reinfection, which so often occurs in humans.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6643/11/1/131/s1,
Table S1: Evaluation of the incidence and severity of diarrhea when EDIM was inoculated at day 3 or day 6 of
life, Figure S1: Proliferative response against RV on 21-day-old rats that were infected with EDIM at day 3 of life,
Figure S2: SA11 and EDIM cross-reactivity.
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