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SUMMARY 

High-energy (hyperlipidic) cafeteria diets induce insulin resistance limiting glucose oxidation, and 

lower amino acid catabolism. Despite high amino-N intake, amino acids are preserved, lowering urea 

excretion. We analysed how energy partition induced by cafeteria diet affects liver ammonium handling and 

urea cycle. Female and male rats were fed control or cafeteria diets for 30 days. There was a remarkable 

constancy on enzyme activities and expressions of urea cycle and ammonium metabolism. The key 

enzymes controlling urea cycle: carbamoyl-P synthase 1, arginino-succinate synthase and arginase 

expressions were decreased by diet (albeit more markedly in males), and their activities were correlated 

with the gene expressions. The effects observed, in ammonium handling enzyme activities and expressions 

behaved in a way similar to that of the urea cycle, showing a generalized downregulation of liver amino 

acid catabolism. This process was affected by sex. The different strategies of amino-N handling by females 

and males further modulated the preservation of 2-amino N under sufficient available energy. The effects 

of sex were more marked than those of diet were, since different metabolism survival strategies changed 

substrate partition and fate. The data presented suggest a lower than expected N flow to the liver, which 

overall importance for amino acid metabolism tends to decrease with both cafeteria diet and female sex. 

Under standard conditions, liver availability of ammonium was low and controlled. The situation was 

unchanged (or even lowered) in cafeteria-fed rats, ultimately depending on intestinal amino acid catabolism  
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INTRODUCTION 

 There is a considerable body of knowledge on the effect of diet on the substrate energy utilization 

under different physiological conditions. A growing consensus attributes the wide extension of metabolic 

syndrome (MS) to sustained excess energy (mainly lipid) diets on the ponderostat system 1. The most 

apparent consequence of excess energy being the development of obesity 2 and their MS-related co-

morbidities, especially insulin resistance 3 and the alteration of blood lipid transport 4. 

 High-energy diets show markedly different effects depending on the sex (and age) of the subjects 
5. In general, females are more resistant to the development of MS 6, in part because of the protective 

effects of oestrogen 7, which hampers the obesogenic effects of inflammation and insulin resistance 8, 

limiting the full development of obesity 9. There is a limited antagonism between glucocorticoids and 

oestrogens 10, which tend to counteract the increase in fat stores elicited by glucocorticoids 11. In males, 

however, the progressive decrease in androgens with age 12 is compounded by the increase in 

glucocorticoids parallel to the development of MS 13. Androgen secretion is largely blocked by 

glucocorticoids, resulting in increased fat storage (obesity, liver steatosis) and a marked alteration of 

glucose and lipid metabolism, especially in adipose tissue, muscle and liver 14. 
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 Our knowledge of how sex influences the deleterious effects of excess energy (lipid) intake with 

respect to energy expenditure, and inflammation is, however, rather sketchy, since sex-related differences 

have been observed, but most mechanisms remain to be fully clarified 15, 16. 

 The liver plays a key role in nutrient partition and in the maintenance of body energy homeostasis. 

It receives, via porta vein, most of the nutrients extracted from the diet. However, a large part of the sifting 

has been done, already, by other splanchnic bed organs, especially the intestine 17, and, probably, 

mesenteric/ omental adipose tissue 18. In any case, the liver controls the flow of glucose into the systemic 

blood, and retains (or metabolizes) many amino acids and short-chain fatty acids. A sustained excess of 

nutrients and a critical failure of the insulin system may lead to a generalized loss of effectivity of the liver, 

often provoking hepatic steatosis 19, associated to insulin resistance 20. Loss of insulin function resulting 

also in lower amino acid utilization 21. The liver condition may even develop in a failure to detoxify the portal-

carried ammonium, which may result lethal 22. Of all these critical functions, the liver –in fact the coordinate 

work of intestine and liver— plays an essential role in the disposal of excess amino N and ammonia. The 

main pathway for excess N elimination is the urea cycle 23, 24, which has been assumed to be fully operative 

only in liver 25. However, both intestine and kidney have functional (albeit complementary) urea cycles 26, 

27. We have found, recently, a robust presence of urea cycle in white adipose tissue 28, which is unaffected 

by sex and anatomical site 29_ENREF_28.  

 High-fat diets, such as the cafeteria diets 30, have been known, to decrease the operation of the 

urea cycle in liver 31, with lower overall urinary excretion of N 32. This decreased excretion, in spite of 

maintained or increased protein intake, is not paralleled by an increased deposition of protein (or faecal 

excretion) 32. In fact, nitrogen balances show that a significant portion of the N excreted is not accounted 

for 33. It has been speculated that it may be justified (at least partly) by respiratory loss of nitric oxide 34 or, 

even, release of nitrogen gas 35. 

 The control role of the liver on the disposal of ammonium-N and excess amino-N, is a critical 

process for the maintenance of N homeostasis. Thus, alteration of liver metabolic function induced by diet 

necessarily influences N homeostasis, albeit in ways so far not known. We assume that this dramatic 

change may contribute to the pathogenesis of MS. In the present study, we analysed the effects of a 

relatively short (one-month) exposure of adult rats (female and male) to a cafeteria diet. The objective was 

to check how the initial phase of development of MS affects, differentially (in adults), both sexes in the 

critical function of liver as main site for disposal of ammonium through the urea cycle. 

 

EXPERIMENTAL 

Ethics statement 

 All animal handling procedures and the experimental setup were in accordance with the animal 

handling guidelines of the corresponding European and Catalan Authorities. The Committee on Animal 

Experimentation of the University of Barcelona approved the present study. 

Experimental design and animal handling 

 Nine week old female and male Wistar rats (Harlan Laboratory Models, Sant Feliu de Codines, 

Spain) were used. The rats (N=6) were kept in same-sex two-rat cages with wood shards for bedding. The 
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animals were maintained in a controlled animal room (lights on from 08:00 to 20:00; 21.5-22.5 ºC; 50-60% 

humidity). Two groups for each sex were randomly selected and were fed ad libitum, for 30 days, with either 

normal rat chow (Harlan #2014) or a simplified cafeteria diet 36 made of chow pellets, plain cookies, with 

liver pâté, bacon, whole milk containing 300 g/L sucrose and a mineral and vitamin supplement. Food/ 

nutrient consumption was measured as previously described 30. Diet intake composition (expressed as 

energy content) was: carbohydrate 67%, protein 20%, and lipid 13% for controls: that of rats fed the 

cafeteria diet (i.e. after computing the food ingested) was (mean values, expressed as energy content): 

carbohydrate 47%, protein 12% and lipid 41%. The simplified cafeteria diet induced a significant increase 

in body fat, in line with previous studies on metabolic syndrome 32, 36. The rats were killed, under isoflurane 

anaesthesia, by exsanguination (aortic puncture using a large dry-heparinized syringe) at the beginning of 

a light cycle. Then, they were rapidly dissected, and two lobes of the liver were excised, blotted, and frozen 

in liquid nitrogen. These samples were weighed and ground under liquid nitrogen. The coarse powder was 

aliquoted and stored at -80 ºC until processed. Later, the liver remains were dissected to measure its full 

weight. Blood was centrifuged to obtain plasma, which was frozen and stored as well. 

Blood plasma parameters 

 Plasma samples were used to measure glucose (kit #11504, Biosystems, Barcelona Spain), lactate 

(kit #1001330, Spinreac, Sant Esteve de Bas, Spain), triacylglycerols and total cholesterol (Biosystems kits 

#11828, and #11505, respectively). Urea was measured with a chemical method (kit # 11537; Biosystems). 

Amino acids were analysed individually with an amino acid analyser (LKB-Alpha-plus, Uppsala, Sweden) 

using plasma samples deproteinized with chilled acetone 37. Since the method used did not provide reliable 

data for several amino acids (i.e. Gln, Trp, Cys, Asn), we decided to present only the partial sum of the 

other amino acids as a single indicative value. 

Enzyme activity analyses 

 Homogenate preparation. Frozen liver samples were further homogenized, using a tissue 

disruptor (Ultraturrax IKA-T10, Ika Werke, Staufen, Germany). Homogenates for arginino-succinate 

synthase and ornithine carbamoyl-transferase activity measurement were prepared using 10 volumes of  

chilled 70 mM hepes buffer pH 7.4 containing 1 mM dithiothreitol (Sigma, St Louis MO USA), 50 mM KCl, 

1 g/L Triton X-100 (Sigma), and 1 g/L lipid-free bovine serum albumin (Sigma). Homogenates for 

carbamoyl-P synthase analysis were prepared with 10 volumes of chilled 50 mM triethanolamine buffer pH 

8.0 containing 1 mM dithiothreitol, 0.5 g/L Triton X-100, 1 g/L lipid-free bovine serum albumin and 10 mM 

magnesium acetate. Homogenates for the analyses of the other enzymes were prepared with 10 volumes 

of chilled Krebs-Ringer bicarbonate buffer pH 7.4 containing 1 g/L Triton X-100, 1 mM dithiothreitol and 1 

g/L lipid-free bovine serum albumin. The homogenates were coarsely filtered through nylon-hose to 

eliminate large debris. They were kept on ice and used for enzyme activity analyses within 2 h. Tissue 

protein content was estimated with the Lowry method 38, using the corresponding homogenization buffer 

(containing albumin) as blank. Enzyme activities were expressed per unit of protein weight. The methods 

used were largely based in our parallel development of methods for analysis on white adipose tissue, 

extensively described in a previous publication 28. 

 Carbamoyl-P synthase 1 activity was estimated from the incorporation of 14C-bicarbonate (Perkin 

Elmer, Bad Neuheim, Germany) into carbamoyl-P using a method previously described by us 39. Succinctly, 

we measured the incorporation of label into carbamoyl-P by the activity of the enzyme on ammonium 
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carbonate in the presence of N-acetyl-glutamate (Sigma) and flushing out all remaining bicarbonate label 

with a stream of unlabelled CO2.  

 Ornithine carbamoyl transferase activity was measured from the reaction of condensation of 

carbamoyl-P and 14C-ornithine to yield 14C-citrulline. Aliquots of 25 μL of homogenates were mixed with 50 

μL of 70 mM hepes buffer pH 7.4 containing carbamoyl-P, ornithine (all from Sigma), and 14C-ornithine 

(Perkin-Elmer); final concentrations were 9 mM, 13 mM and 1 kBq/mL, respectively. The reaction was 

started with the homogenate, and was carried out at 37ºC during 0, 0.5,1 and 2 min. The reaction was 

stopped by introducing 75 μL aliquots in tubes, kept on ice, containing 100 μL of chilled acetone. After 

centrifugation, the clear supernatants were dried in a vacuum-centrifuge (Thermo Scientific, Waltham, MA 

USA). The residues were dissolved in 25 μL of water; they were run on TLC silicagel plates (200 µm; 

Macherey-Nagel, Düren, Germany). Standards of ornithine and citrulline were included in one of the lanes 

of each plate. The plates were developed with trichloromethane: methanol: acetic acid (1:2:2 by volume). 

Standards were revealed with a ninhydrin spray. The lanes were cut in 1 cm pieces and counted. The label 

in the citrulline spot was expressed as a percentage of the total label counted in each TLC lane. These data 

allowed the calculation of newly formed citrulline at each incubation time. The V0 value for each sample 

was plotted, and was considered to represent the value of Vmax under the conditions tested.  

 Arginino-succinate synthase activity was measured from the reaction of condensation of 

aspartate with citrulline in the presence of ATP to yield arginino-succinate. Homogenates (55 μL) were 

mixed with 30 μL of 70 mM hepes buffer pH 7.4, containing ATP-Na2, MgCl2, citrulline and aspartate 

(Sigma); final concentrations were 10 mM, 5 mM, 3 mM, and 2.5 mM, respectively. The reaction was started 

with aspartate, and was carried out at 37 ºC. The reaction was stopped with 40 μL of 30 g/L perchloric acid. 

The tubes were vortexed and neutralized (pH 7-8) with 10 μL of 100 g/L KOH containing 62 g/L KHCO3. 

The tubes were vortexed again and centrifuged in the cold 15 min at 8,000xg. The aspartate remaining in 

the supernatants was measured by transamination to oxaloacetate, which was reduced by malate 

dehydrogenase and NADH. Briefly, 20 μL of the supernatants were brought up to 300 μL in 96-well plates, 

with 66 mM phosphate buffer pH 7.4 containing NADH, 2-oxoglurarate, aspartate transaminase (pig heart) 

and malic acid dehydrogenase (pig heart) (all from Sigma); final concentrations were, respectively, 0.25 

mM, 0.2 mM, 20 µkat/L and 17 µkat/L. The plates were read at 340 nM in a plate reader (Biotek, Winoosky, 

VT USA) at intervals of 30 s during 20 min. The fall in NADH was used to determine the levels of aspartate 

at each incubation time. Its disappearance (versus time zero levels) was used to calculate the aspartate 

incorporated into arginino-succinate by the enzyme.  

 Arginino-succinate lyase activity was measured from the breakup of arginino-succinate to yield 

fumarate and arginine. This amino acid was analysed in a second reaction, using arginase to form ornithine 

and urea, which was measured using a sensitive chemical method. Aliquots of 38 μL of homogenates were 

mixed with 38 μL of 66 mM hepes buffer pH 7.4, containing arginino-succinate (Sigma), at a final 

concentration 2 mM. Incubations were carried out at 37 ºC for 0, 2.5, 5 and 10 min. The reaction was 

stopped by the addition of 40 μL of 30 g/L perchloric acid. The tubes were vortexed and brought to pH 8-9 

with 10 μL of 100 g/L KOH, 80 g/L HKCO3. The tubes were centrifuged for 15 min in the cold at 8,000xg. 

Aliquots of 100 μL of the supernatants were mixed with 50 μL of the reacting mixture, containing 66 mM 

hepes buffer pH 7.5 (to achieve a final pH 8.5), MnCl2 and arginase (rat liver, Lee Biosolutions, St Louis, 

MO USA). The final concentrations were 7 mM and 17 µkat/L, respectively. Arginase already in the buffer 
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containing Mn2+, was previously activated for 5 min at 55 ºC. The reaction developed for 30 min at 37 ºC, 

and was stopped by the addition of 35 μL of 160 g/L perchloric acid. The tubes were centrifuged in the cold 

for 15 min at 8,000xg. The acidic supernatants (175 μL) were used for the estimation of urea. They were 

mixed with 600 μL of 90 g/L H2SO4 containing 270 g/L H3PO4; then 10 μL of 30 g/L of 1-phenyl-2-oxime-1, 

2-propanodione (Sigma) in absolute ethanol were added. The reaction was developed at 100 ºC for 30 min 

in a dry block heater. The absorbance of the tubes (including standards and blanks) was measured at 540 

nm with a plate reader. Arginase effectivity (using the method explained in 2.3.6) was tested in all batches. 

In all cases, conversion of arginine to urea was 100 % (i.e. there was a full coincidence of the standard 

curves for both urea and arginine).  

 Arginase activity was measured through the estimation of the urea produced by the activity of the 

enzyme on arginine in the presence of Mn2+ ions 40, 41. Aliquots of 20 μL of homogenates were mixed with 

5 μL of MnCl2 in water; final concentration 10 mM. The tubes were heated for 5 min at 55 ºC to activate 

arginase 41, 42 After the temperature was brought down to 37 ºC, the reaction began with the addition of 75 

μL of arginine (Sigma); final concentration 78 mM. Incubations were carried out for 0, 8 and 16 min at 37 

ºC. The reaction was stopped by the addition of 35 μL 160 g/L perchloric acid. The tubes were centrifuged 

15 min in the cold at 8,000xg. Urea was measured as described above. 

 Glutamine synthetase, activity was estimated using a method we had used previously 43, based 

on the reaction of glutamine and hydroxylamine in the presence of ADP, Mn2+ and arsenate to yield γ-

glutamyl-hydroxamate. The addition of Fe(NO3)3 in trichloroacetic acid results in the development of colour, 

read at 500 nm using a plate reader. 

 Serine dehydratase activity was analysed, by measuring the pyruvate freed by the enzyme in the 

presence of pyridoxal-P 44. This reaction was coupled with the reduction of pyruvate to lactate with lactate 

dehydrogenase, measuring the decrease in NADH 45, by UV spectrometry using a plate reader. 

 AMP deaminase activity was estimated by the determination of the ammonium released by the 

action of the enzyme on AMP, in the presence of KCl, yielding IMP 46. The ammonium evolved was 

estimated with the classical Berthelot indophenol reaction 47, in which indophenol was formed by reaction 

of ammonium with phenol in the presence of an oxidative agent (hypochlorite) and nitroprusside as 

catalyser. 

Gene expression analysis 

 Total tissue RNA was extracted from frozen samples (about 30 mg) using the GenEluteTM (Sigma-

Aldrich, St Louis MO USA) procedure, and was quantified in a ND-100 spectrophotometer (Nanodrop 

Technologies, Wilmington DE USA). RNA samples were reverse transcribed using the MMLV reverse 

transcriptase (Promega, Madison, WI USA) system and oligo-dT primers. The data were also used to 

determine the total RNA content of the tissue in order to establish quantitative comparisons between 

different gene expressions. 

Real-time PCR (RT-PCR) amplification was carried out using 10 μL amplification mixtures 

containing Power SYBR Green PCR Master Mix (Applied Biosystems, Foster City, CA USA), 10 ng of 

reverse-transcribed RNA and primers (300 nM). Reactions were run on an ABI PRISM 7900 HT detection 

system (Applied Biosystems) using a fluorescent threshold manually set to 0.15 for all runs.  
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 A semi-quantitative approach for the estimation of the concentration of specific gene mRNAs per 

unit of tissue or protein weight was used 48. Cyclophyllin A (Ppia) was used as charge control gene 49. The 

data were expressed as the number of transcript copies per gram of protein in order to obtain comparable 

data between the groups. The genes analysed, and a list of primers used, are presented in Table 1. 

The possible contamination of RNA with DNA was checked, before PCR cycling, by charging a 

number of samples of each batch with known internal standards of RNA. No spurious signals were 

observed. All the primers used for measurement of the enzyme gene expressions were checked, with 

Northern blots of the PCR-synthesized cDNAs. In all cases, the cDNAs obtained had the expected 

molecular weights. 

Total DNA was estimated with a fluorimetric method 50. Approximate cellularity was calculated, 

assuming that the mean mammalian cell DNA content was 6 pg 51. Mean cell volume was estimated from 

liver weight, liver density: 1.1 g/mL, and the estimated number of cells. 

Statistics 

 Two-way ANOVA comparisons between groups, correlations and curve fitting (including Vi 

estimations) were carried out with the Prism 5 program (GraphPad Software, San Diego CA USA). 

 

RESULTS 

General parameters 

 Table 2 presents the rat weights, and liver size and composition of the four groups of rats. As 

expected, body and liver weight were affected by sex and diet. However, liver weight was maintained at 

about 3.1-3.3% of body weight in all groups. Whole-liver cellularity was (mean values for groups, in 109 

cells): 4.0 and 4.9 for control and cafeteria males, as well as 2.4 and 2.7 for control and cafeteria females. 

Estimated cell size was higher in females: 3.3 and 3.2 ng/cell in control and cafeteria rats, respectively, 

versus 2.9 and 2.8 ng/cell in males (P<0.05 for both diets). However, no overall significant effects of diet 

and sex were observed for DNA content in mg/g tissue. 

 Concentrations of protein and RNA in liver were affected by sex; males had higher protein and 

females had higher RNA concentrations; but no significant effects of diet were observed. RNA/DNA ratios 

were, again, not affected by diet, but sex resulted in higher values (P<0.05) for females (3.2 controls and 

3.0 cafeteria) than males (2.4 for both dietary groups). 

 Table 3 shows the main plasma energy parameters of the rats. Glucose levels were increased, and 

those of lactate decreased, significantly by feeding the cafeteria diet. Cholesterol was unaffected by either 

sex or diet. Triacylglycerols, however, were affected by sex (but not by diet), with female values being 

higher than those of males, especially in control rats. The sum of plasma amino acids was also affected by 

sex (with females showing higher combined levels). Finally, urea concentrations were decreased by 

cafeteria diet, but were overall higher in female rats. 

Urea cycle 

 Figure 1 depicts a scheme of the urea cycle in liver, showing the enzyme activities (and their 

corresponding gene expressions) for ornithine carbamoyl-transferase, arginino-succinate synthase, 

arginino-succinate lyase and arginase 1. The Figure shows also the expressions of the genes coding for 
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endothelial nitric oxide synthase and N-acetyl-glutamate synthase (acetyl-transferase). Arginase activity 

was about three orders of magnitude higher than those of the arginino-succinate enzymes; ornithine 

carbamoyl-transferase activity was also high, but only one order of magnitude higher than those of the 

arginino-succinate enzymes. These extreme differences in activity were less marked when comparing the 

expressions of the four enzymes, since all were in the same range except arginino-succinate synthase, one 

order of magnitude higher. These differences resulted in disparate activity/expression ratios. 

 The patterns of activity were similar for all four enzymes, but there were significant effects of sex 

only in arginino-succinate synthase and arginase, and of diet in these same enzymes plus arginino-

succinate lyase. The patterns for gene expression of the urea cycle enzymes were also similar and followed 

the same profile than their corresponding enzyme activities. Sex affected only (i.e. significantly) the 

expression of arginino-succinate synthase. The expression of their corresponding genes was affected by 

diet in the same enzyme plus arginino-succinate lyase and arginine. In all enzymes of Figure 1, except 

ornithine carbamoyl-transferase, both activities and expressions were decreased in cafeteria diet-fed rats 

vs. controls.  

 The possible direct relationship between gene expression and enzyme activity (unaffected by post-

translational modification) was checked analysing the correlation between the data for both parameters of 

all animals studied, irrespective of sex and diet (i.e. N=24). There were significant correlations between 

enzyme activity and expression for arginino-succinate synthase (R2=0.283; P=0.023), arginase 1 

(R2=0.184; P=0.037), carbamoyl-P synthase (R2=0.440; P=0.0008) and serine dehydratase (R2=0.635; 

P=0.0002). No significant correlations were found for any of the other enzymes studied. 

 Acetylation of glutamate was also affected by diet, following the same pattern described above. 

The expression of endothelial nitric oxide synthase showed a clear effect of sex, with higher values in 

females but the effects of diet were not significant. 

Ammonium metabolism 

 Figure 2 shows a general outline of liver ammonium metabolism, including the activities of 

carbamoyl-P synthase 1, serine dehydratase, AMP deaminase and glutamine synthetase, as well as the 

expressions of their corresponding genes. The Figure includes, also the expressions of glutaminase, the 

cytoplasmic (NADPH-dependent) glutamate dehydrogenase and a component of the glycine cleavage 

system (H protein).  

Carbamoyl-P synthetase 1 showed higher enzyme activities in females; these effects were not 

observed in its gene expression, which presented considerable variability. AMP deaminase showed no 

significant effects of sex or diet on activity or gene expression. The activity of serine dehydratase was 

markedly affected by sex, with lower female values, an effect that was parallel to the changes in gene 

expression. Diet also affected the gene expression of serine dehydratase, with values even lower for 

cafeteria-fed rats. 

 Glutamine synthetase activity in females was higher than in males, a difference also observed in 

the expression of its gene. Glutaminase expression did not show effects of sex, but cafeteria diet decreased 

the expression of the enzyme. This pattern was paralleled by glutamate dehydrogenase, which also showed 

an effect of sex (higher values in females). The expression of the glycine cleavage system (in fact that of 

representative H protein) was strongly influenced by sex, with –again— higher values in female rats 
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DISCUSSION 

 We have shown evidence that both sex and diet, rather independently, affected the activities and 

gene expressions of the urea cycle enzymes in rat liver. However, this apparent similarity of effect shifts 

towards more extensive effects of sex on the management of ammonium in the liver, thus affecting, albeit 

indirectly, the overall operation of the urea cycle and the final excretion of N as urea. The model used 

behaved as expected both in increased WAT fat deposition 52, 53 and relative normalcy of plasma 

parameters, including insulin 54 as repeatedly found under these same conditions in previous studies 32, 36. 

 We used a cafeteria diet model well studied by us previously, which shows a discrete increase in 

body weight due to the accumulation of fat, but the metabolic alterations induced by inflammation in the 

context of MS are essentially incipient 52, 55. The effects are strongly influenced by sex 56; a question that 

we also found applies to amino acid metabolism 29. The obesogenic effects of cafeteria diets are maximal 

during early postnatal development 57, preventing the weaning shift from a high fat to a high carbohydrate 

diet 58. The timing and extent of exposure are critical to enhance the ability of this type of diets to induce 

MS 56, 59._ENREF_52 We used young adult rats, and subjected them to a moderate exposure time to the 

hyperlipidic diet in order to obtain not a frankly pathological state but a pre-MS situation in which the 

immediate effects of the high-energy diet are not confounded by the additional disorders elicited by a severe 

inflammation 60, 61.   

The so far scarcely studied effect of sex on amino acid catabolism may have deeper roots than 

usually assumed. The lack of direct studies on the mechanisms has driven our attention to the overall 

picture of effects of sex on amino-N economy. In males, the main trend is accumulation of body protein, 

largely muscle, an effect facilitated by insulin 62, GH and androgens 63, and hampered by glucocorticoids 
64. In females, however, the main drive seems to be somewhat different: to enhance N sparing probably to 

fulfil the burden of reproduction, first the foetuses, and then the energy economy ordeal of lactation. In both 

sexes, in addition, the overall trend to preserve amino-N is a primeval drive that prevents its wasting 65, 66 

even under (rare in Nature) conditions of dietary excess of protein 67. We can speculate that androgen 

predominance (i.e. in males), acting as counterbalance to glucocorticoids, may diminish the hepatic 

conversion of amino acid N to urea; oestrogen (i.e. in females) showing a less marked influence on this 

aspect. 

Enzyme activities are not direct estimations of the enzyme function within the cell, but are a widely 

accepted correlate of the overall enzyme ability to carry out its function. Thus, the Vi values presented are 

a correlate of Vmax and of functional protein enzyme levels. These values, consequently; reflect potential 

ability of the tissue to catalyse the reaction, albeit being estimated under result-maximizing non-

physiological conditions. The closeness of gene expression patterns and enzyme activities mutually support 

the data presented. However, the large differences in activity observed between enzymes (i.e. arginase vs. 

arginino-succinate synthase) but also between expression and activity may be a consequence of different 

turnover number or enzyme (as protein) turnover 68, but place the control of the cycle, precisely on these 

key enzymes. In arginino-succinate synthase as rate limiting step 69; and arginase as final factor in the 

release of urea 70, but also as the main site for arginine break-up and maintenance of body arginine-citrulline 

equilibrium 71. In the urea cycle, N disposal and guanido-amino acid maintenance for their multiple 

regulatory tasks intermix to a considerable extent, as can be deduced from the model presented here. The 
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different needs for arginine possibly modulate the sex differences in expression, but the enzyme activities 

follow more closely the regulation mechanisms for N handling.  

 It has been known for long, that urea production is decreased by diets rich both in energy and in 

protein 31, assumedly because of lower urea cycle enzyme activities in the liver. Our results are consistent 

with this observation, but, at the same time, we provide evidence that these differences, largely 

downregulation of enzyme activities, were described, essentially, in males. No sufficient data for 

comparison is available for females. This is best observed in the halving of three key enzyme activities in 

males by feeding a cafeteria diet: arginino-succinate synthase, arginino-succinate lyase and arginase. Of 

these, female rats maintained only the effect on arginino-succinate lyase; thus, males' downregulation may 

be traced to more control points than females, which may help explain the sex-related differences in 

regulation described above. The consequences on overall function of the cycle are consistent with the lower 

urea production observed in rats fed a cafeteria diet, in studies using mainly males 31, 32, 72. 

 The relatively low and largely unchanged expression of endothelial nitric oxide synthase suggests 

a relatively low activity, compared with arginase, in their competence for arginine, an effect best seen in 

peripheral tissues 73. In the present study, the expression of the enzyme did not change significantly at all, 

which seems to disconnect this enzyme from the main hepatic degradative pathway represented by the 

urea cycle. The fate of the "unaccounted for" dietary nitrogen i.e. that portion of dietary N not excreted in 

urine (mainly urea) or faeces, and neither accumulated in body protein does not seem, thus, to be related 

to changes in the capacity of liver for higher nitric oxide synthesis. Limiting its contribution to the excess 

nitric oxide production caused by metabolic syndrome and/or cafeteria diet feeding 33, 74. 

 Liver ability to synthesize citrulline was not decreased by diet, which suggests that liver may also 

contribute to the overall production of citrulline 75, as that observed in adipose tissue 29. The relative inability 

of the liver to retain and process citrulline 75 hints at this amino acid not being, in the liver, a critical factor 

in the regulation of the cycle, in addition to its overall importance for arginine metabolism regulation 76. 

 It has been generally assumed that ammonia arriving to the liver (and that produced in its own 

catabolism of amino acids) is a main factor for the control of its disposal through the urea cycle 77, 78. It is 

obvious that the liver is a formidable barrier that prevents ammonium from entering the systemic circulation 

and thus possibly damaging the nervous system 79. The liver counts not only with the urea cycle (essentially 

carbamoyl-P synthase 1) to incorporate it into urea with amino-N taken from aspartate, but also with two 

additional and powerful ammonium-handling systems (and nitrogen salvage 80): glutamine synthetase 81, 

and glutamate dehydrogenases 82 within the mitochondrion and in the cytoplasm. Compartmentation of 

ammonium/ ammonia in the cell is also an important 83 aspect that has not been sufficiently studied. 

 Carbamoyl-P synthases convert ammonium (or glutamine amido N) into carbamoyl-P in liver, were 

practically only the isozyme 1 has significant activity 84. The reaction provides carbon and nitrogen to start 

the formation of the guanido group on ornithine, via ornithine carbamoyl-transferase. Following the trend 

described for the urea cycle enzymes, no differences were observed in gene expressions but cafeteria diet 

slightly decreased the enzyme activity in both sexes. These differences support the overall function of the 

cycle described above, since this enzyme incorporation of ammonia is a key control point in the synthesis 

of urea 78. 

 The existence of significant correlations between activity and expression for carbamoyl-P synthase 

and the key regulatory urea cycle enzymes arginino-succinate synthase and arginase, attest to a direct 
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translational control of the urea cycle in liver. As indicated above, these three enzymes have been 

postulated as main control points for urea cycle operation. It is worth noting that only these enzymes, and 

serine dehydratase, which gene expression is controlled only by serine availability 85, showed a direct 

(statistically significant) relationship between expression and measured enzyme activity. Since the analyses 

have been done under different dietary and sex conditions, the maintenance of this basic process shows 

that regulation of gene translation is a key mechanism of control of the cycle. 

 The liver is a main site for amino acid partition and N disposal. This is a consequence of its peculiar 

placement, at the end of the portal system, which carries the N debris of intestinal and microbiota 

catabolism, modulated by intestinal function 86. In addition, liver has the advantage of using the ammonia 

evolved from catabolic reactions directly in its cells. Glutamine synthetase is placed essentially in the peri-

venous cells 87, acting as last defence barrier against release of ammonium into the systemic circulation; 

this enzyme shows a marked sex difference. NADP+-glutamate dehydrogenase showed a similar pattern 

with respect to sex, but cafeteria diet tended to decrease its expression. Since glutamate dehydrogenase 

is assumed to act (in the liver) mainly in the direction of glutamate synthesis 82, 88, its increase in females 

agrees with the hypothesis of their enhanced focussing on amino-N sparing. 

 The significant (from a quantitative point of view) functional urea cycle in white adipose tissue 

introduces a critical question on the primacy of liver in overall 2-amino N disposal 28, 29. Probably, the main 

role of adipose tissue urea cycle is complementary to that of liver, providing arginine and citrulline to the 

rest of the body 28 and, perhaps acting as backup system for the liver amino-N elimination. The limited 

effect of diet on the urea cycle of adipose tissue 28, 29 contrasts with the marked effects observed here in 

liver, and help support the hypothesis that the function of the cycle is not subjected to the same parameters 

of control, nor, probably, shares the same metabolic function in both organs. 

 The main liver ammonium producing mechanisms are the purine nucleotide cycle 89, i.e. AMP 

deaminase 90, glutaminase 91, serine (and threonine) dehydratase 92 and the glycine cleavage system 93. 

There are other sources, such as amino- and amino acid oxidases and a number of enzymes acting on the 

catabolism of essential amino acids, but the nature of the N donors suggest a conjointly limited contribution 

to the liver ammonium pool. However, a main source is the ammonia/ ammonium carried from the intestine 

(and microbiota) by the portal blood 94.  

 The role of AMP deaminase in liver is more complex than its simple participation in the purine 

nucleotide cycle 95, since it is part of the purine salvage pathway 96. In addition, the enzyme breaks up the 

AMP generated by adenylate kinase under conditions of scarcity of ATP or nutrients 97, as a way to control 

glycolysis, often in conjunction with ammonium production 98. Breakup of AMP to IMP also affects AMP-

kinases and their control of energy partition 99. The varied functions of AMP-deaminase in liver, do not seem 

to include a significant role in the in situ production of ammonium 100, a condition largely different from that 

of the muscle enzyme, which places the purine nucleotide cycle as a main mechanism for mineralization of 

amino-N 101 

The analysis of diet/sex effects on serine dehydratase are consistent with a sex-related 

preservation of amino-N in females, enhanced by the additional protective effects of cafeteria diet. Serine 

dehydratase is a classic example of substrate-controlled expression/ activity 85, and thus, both are 

correlated. The expression of protein H of the glycine cleavage system showed, again an effect of sex. 

Glycine is also a by-product of serine, thus its probable increase in cleavage may not only represent a way 
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of amino-N disposal, but a much needed source of 1C fragments for synthesis 102, especially under 

conditions of excess energy and amino acids. 

 It may be assumed that, under conditions of sufficient glucose and energy availability (controls) or 

in their excess (compounded by the presence of large amounts of lipid in cafeteria diet), amino acid 

metabolism must be hampered in intestine (and liver) by the ultimate need to preserve amino-N 103. In 

consequence, it is probable that the porta vein ammonia would not be increased by cafeteria diet. The final 

picture, then, could be summarized in a controlled, relatively low, availability of ammonium in the liver under 

standard conditions, which may be unchanged or even lowered in cafeteria-fed rats, depending on intestinal 

amino acid catabolism 94.  

 

CONCLUSIONS 

The effects observed, both in enzyme activities and expressions contributing to remove ammonium 

and those producing it tend to run in a way similar to that described for the urea cycle: a generalized 

downregulation of amino acid metabolism 72. This conclusion is in agreement with a decreased urea 

production, and markedly contrasts with the actually higher availability of 2-amino N in the rats fed a 

cafeteria diet 104.  

This complex intertwining of mechanisms is affected by sex, in a way that the different strategies 

of amino-N handling by females and males further modulate the preservation of 2-amino-N when sufficient 

energy is available. The sex-related differences are important both in direction and in extension, and open 

new avenues for understanding how amino acids are used for energy, but also how survival and/or sex-

related metabolism strategies modify substrate partition and fate.  

The confrontation between amino-N preservation and the need to dispose of its excess seem to 

show a winning hand for preservation as all the data presented above suggest. However, elimination of 

excess N is necessary and cannot be easily carried out through the metabolic pathways we know. However, 

the experimental data show that excess N is removed. The problem is that we have not yet identified which 

(necessarily major) pathway is used for that elimination, so far, we can only add that it is not urea, and also 

that the main agent does not seem to be the liver. In any case, the critical question of the fate of the 2-

amino N ingested but not excreted (faeces, urine) or accrued in the body of rats fed a high-energy protein-

rich self-selected (cafeteria) diet, remains open. 
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Figure 1  Gene expressions and enzyme activities of the urea cycle in the liver of male and female 

rats fed control or cafeteria diet for 30 days. 

The data correspond to the mean ± sem of 6 different animals, and are all expressed per gram of tissue 

protein (gP). Statistical analysis of the differences between groups was done using a two-way anova 

program and the variables "sex" and "diet".  

Only significant (P<0.05) values have been represented. Purple data, marked with a "S" correspond to 

the overall effect of "sex", and red data marked with a "D" correspond to the overall effect of "diet". 

MC = male fed the control diet; MK = male fed the cafeteria diet; FC = female fed the control diet; FK = 

female fed the cafeteria diet. 

Males: dashed columns; females: no-pattern columns. 

Enzyme gene expressions: orange: control diet; yellow: cafeteria diet 

Enzyme activities: blue: control diet; green: cafeteria diet 

 

Figure 2  Gene expressions and enzyme activities of enzymes related to ammonia/ammonium 

metabolism in the liver of female and male rats fed control or cafeteria diet for 30 days.  

The data correspond to the mean ± sem of 6 different animals, and are expressed per gram of tissue 

protein (gP). Statistical analysis, abbreviations and colour conventions are the same described for Figure 

1. 
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Table 1 

Primer sequences used in the analysis of liver gene expressions 

 

protein gene EC number  primer sequence bp 

carbamoyl-phosphate 
synthase [ammonia], 
mitochondrial.type 1 

Cps1 6.3.4.16 
5'>3' ACCCATCATCCCCTCTGACT 

118 3'>5 ACACGCCACCTCTCCAGTAG 

ornithine carbamoyl-
transferase 

Otc 2.1.3.3 
5'>3' CTTGGGCGTGAATGAAAGTC 

126 
3'>5 ATTGGGATGGTTGCTTCCT 

arginino-succinate synthase 
1 

Ass1 6.3.4.5 
5'>3' CAAAGATGGCACTACCCACA 

100 
3'>5 GTTCTCCACGATGTCAATGC 

arginino-succinate lyase Asl 4.3.2.1 
5'>3' CCGACCTTGCCTACTACCTG 

104 
3'>5 GAGAGCCACCCCTTTCATCT 

arginase, liver (type 1) Arg1 3.5.3.1 
5'>3' GCAGAGACCCAGAAGAATGG 

126 
3'>5 GTGAGCATCCACCCAAATG 

N-acetyl-glutamate synthase Nags 2.3.1.1 
5'>3' GCAGCCCACCAAAATCAT 

82 
3'>5 CAGGTTCACATTGCTCAGGA 

nitric oxide synthase 3, 
endothelial cell type 

Nos3 1.14.13.39 
5'>3' CAAGTCCTCACCGCCTTTT 

138 
3'>5 GACATCACCGCAGACAAACA 

glutamate-ammonia ligase 
[glutamine synthetase] 

Glul 6.3.1.2 
5'>3' AACCCTCACGCCAGCATA 

148 
3'>5 CTGCGATGTTTTCCTCTCG 

glutaminase kidney isoform, 
mitochondrial 

Gls 3.5.1.2 
5'>3' CCGAAGGTTTGCTCTGTCA 

63 
3'>5 AGGGCTGTTCTGGAGTCGTA 

glutamate dehydrogenase 1, 
mitochondrial 

Glud1 1.4.1.3 
5'>3' GGACAGAATATCGGGTGCAT 

122 
3'>5 TCAGGTCCAATCCCAGGTTA 

glycine cleavage system H 
protein, mitochondrial 

Gcsh -- 
5'>3' AAGCACGAATGGGTAACAGC 

146 
3'>5 TCCAAAGCACCAAACTCCTC 

adenosine monophosphate 
deaminase 2 

Ampd2 3.5.4.6 
5'>3' CGGCTTCTCTCACAAGGTG 

78 
3'>5 CGGATGTCGTTACCCTCAG 

peptidyl-prolyl-cis-trans 
isomerase A * 

Ppia -- 
5'>3' CTGAGCACTGGGGAGAAAGGA 

87 
3'>5 GAAGTCACCACCCTGGACA 

 

* housekeeping gene 
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Table 2 

Body and liver weight and composition of male and female rats fed control or cafeteria diets for 30 days 

 

parameter units male female P 

control cafeteria control cafeteria sex diet 

body weight g 373 ± 6 420 ± 20 232 ± 8 267 ± 16 <0.0001 0.0074 

liver weight g 11.6 ± 0.5 13.8 ± 1.1 7.72 ± 0.31 8.36 ± 0.50 <0.0001 0.0473 

DNA mg/g 2.07 ± 0.17 2.13 ± 0.32 1.83± 0.22 1.91 ± 0.22 NS NS 

RNA mg/g 4.96 ± 0.31 5.21 ± 0.18 5.95 ± 0.30 5.75± 0.15 0.0065 NS 

protein mg/g 191 ± 7 185 ± 5 160 ± 5 157 ± 9 0.0003 NS 

 

The data correspond to the mean ± sem of 6 different animals. Statistical significance of the differences 

between groups was established with a 2-way anova program. 
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Table 3 

Main plasma metabolites of male and female rats fed control or cafeteria diets for 30 days 

 

plasma 

parameters (mM) 
 male female P 

control cafeteria control cafeteria sex diet 

glucose 1  10.2 ± 0.4 10.8 ± 0.4 8.64 ± 0.34 11.5 ± 0.3 NS 0.0001 

lactate  3.10 ± 0.29 2.64 ± 0.21 3.78 ± 0.24 2.57 ± 0.21 NS 0.0023 

cholesterol  1.97 ± 0.07 2.28 ± 0.21 1.98 ± 0.16 2.07 ± 0.19 NS NS 

triacylglycerols  1.50 ± 0.06 1.50 ± 0.01 1.69 ± 0.06 1.51 ± 0.03 0.0390 NS 

urea  3.90 ± 0.17 3.82 ± 0.20 5.13 ± 0.25 3.78 ± 0.20 0.0094 0.0025 

amino acids 2  3.34 ± 0.08 3.68 ± 0.10 3.96 ± 0.18 4.07 ± 0.12 0.0007 NS 

 

The data correspond to the mean ± sem of 6 different animals. Statistical significance of the differences 

between groups was established with a two-way anova program. 

1 The glucose values were higher than expected because of the necessary exposure of the animals to 

isoflurane anaesthesia during the process of killing and sampling. 

2 These values do not include Gln, Asn, Trp and Cys.  

 


