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Nonlinear waves of Bose-Einstein condensates in rotating ring-lattice potentials
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We analyze the dynamics of Bose-Einstein condensates loaded in rotating ring lattices made of a few sites,
and show how rotation maps the states found in this finite system onto those belonging to a static infinite lattice.
Ring currents and soliton states in the absence of a lattice find their continuation in the presence of the lattice
as nonlinear Bloch waves and soliton-like states connecting them. Both bright gap solitons and dark-soliton
trains are shown to connect continuously to linear solutions. The existence of adiabatic paths upon varying
rotation frequency between states with quantized supercurrents suggests highly controllable methods for the
experimental generation of persistent currents.
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I. INTRODUCTION

The experimental achievement of preparing, manipulating,
and probing ultracold gases in periodic potentials has made it
possible to observe elusive phenomena that typically belong
to the realm of solid state physics. Ultracold atoms can
quantum-simulate strongly interacting many-body systems
[1] as well as dynamical processes in nonlinear media [2].
In the regime of large particle number per lattice site, the
superfluid dynamics exhibited by Bose-Einstein condensates
(BECs) loaded in (approximately) periodic potentials created
by optical interference phenomena (optical lattices) provides
an excellent sample of nonlinear phenomena. These range
from the realization of atomic Bloch waves [3] that mimic
the motion of electrons in metals to the generation of solitonic
structures [4], which are the atomic equivalent of the nonlinear
pulses currently used to carry information through optical
fibers [5].

The early studies of BECs in periodic potentials were
mainly focused on linear lattices, including one- (1D), two-
(2D), and three-dimensional (3D) lattices [3,6–8]. In these
settings, the superfluid flow has been demonstrated to support
many types of nonlinear waves [9–11]. The stability of these
is intimately connected with the possibility for breakdown of
superfluid flow and has been studied extensively [6,12–14].
Nonlinear waves in rotating 2D linear lattices (see, e.g.,
[15] and references therein) have been also studied. In the
last years, with the advent of new experimental techniques
capable of imprinting lattices along a ring [16–18], there
has been an increasing interest in these configurations. They
fulfill the Born–von Kármán boundary conditions that are
presupposed in modeling crystals [19]. Most of the previous
theoretical studies on this subject have started from discrete
lattice models (see Refs. [20–27] and references therein),
while nonlinear waves in continuous models with periodic
potentials has received comparatively less attention [28–32].

The ring geometry introduces interesting features on its
own, mostly because of its suitability for the study of
metastable persistent currents [33,34]. In spite of the fact
that persistent currents can also be found at a microscopic
scale in normal metals [35,36], metastable persistent currents
are one of the hallmarks of superfluidity [37–40] and super-
conductivity [41,42]. Their generation and decay through
phase-slip events in toroidal BECs stirred by optically induced
weak links are currently the object of intensive research, since
these systems have opened up a promising way of advancing
towards the realization of atomtronic devices [43–46].

The present work aims to delve into the analysis of re-
pulsively interacting BECs loaded in continuous ring lattices
made of a small number of sites. By driving the lattice
into angular rotation, the system exhibits the interplay of
the rotating periodic potential and the intrinsic periodicity of
the induced ring currents. In this situation, there also exists
a relevant connection between angular quasimomentum and
mean angular momentum. Previous analyses from nonlinear
optics (e.g., the study of gap solitons in azimuthally mod-
ulated rings of Ref. [47]) have demonstrated that the ring
lattice settings introduce significant changes in the properties
of the associated nonlinear waves. However, such studies have
only considered a particular type of nonlinear wave present
in systems with a relatively large number of lattice sites,
hence sharing many similarities with the limiting case of the
infinite linear lattice. On the contrary, our approach starts by
considering configurations containing a small number of wells
(1, 2, 3, 4, ...) from the perspective of a periodic array. We
study how the superfluid properties change as the number
of wells and the nonlinear interaction strength are increased,
approaching finally the well known limit of an infinite lattice
[13]. This approach allows us to show in a unified and simple
way the emergence of different types of nonlinear waves,
namely Bloch waves, bright gap solitons, and dark solitons.
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Although these types of genuinely nonlinear states have been
extensively studied in infinite lattices, they do not share a
common theoretical framework and have so far been lacking
a proper characterization in the case of finite, short lattices.
Furthermore, we demonstrate the continuation of the nonlin-
ear states into the noninteracting, linear regime, and discuss
adiabatic pathways through parameter space to change the
current and winding number, extending the work of Ref. [48],
where the lattice potential was not considered, Ref. [49],
where the effect of a symmetry-breaking potential (equivalent
to a 1-site lattice) on the nucleation of ring currents was
addressed, and Ref. [50], where nonlinear modes of rotating
double-well rings have been studied. Our results contribute
towards a cohesive picture of the physical phenomena in
optical lattices.

II. SYSTEM: THE RING LATTICE

We consider a Bose-Einstein condensate confined to quasi-
1D by a ring trap of mean radius R at zero temperature and
in the presence of a periodic potential along the azimuthal co-
ordinate θ that rotates with angular frequency �. By assuring
that the number of particles per potential well is large enough
for a mean-field model to be safely applied, the dynamics
of the order parameter ψ (θ, t ) in the corotating frame of
reference follows the 1D Gross-Pitaevskii equation

ih̄ ∂tψ =
{

(−ih̄ ∂θ − m�R2)2

2m R2
+ V (θ ) + g|ψ |2

}
ψ, (1)

where V (θ ) = V0 sin2(πRθ/d ) is the periodic potential intro-
duced by an optical lattice with lattice constant d and well
depth V0. The interparticle contact interaction has strength
g = 2h̄2a/ma2

⊥, determined by the s-wave scattering length a
and the size a⊥ of a tight transverse confinement. The wave
function ψ is normalized to the number of particles in the ring
N = R

∫
dθ |ψ |2.

The ring geometry provides a wave-number quantum kR =
1/R imposed by the finite size of the system, so that the
smallest amount of kinetic energy available in the ring is ER/2,
where ER = h̄2 k2

R/m = h̄ �R. This fact turns out to be crucial
for the comparison with results obtained in the infinite lattice,
where ER = 0. On the other hand, the periodic potential
introduces the characteristic reciprocal lattice vector kL =
2π/d , which defines a maximum quasimomentum h̄kL/2 at
the end of the Brillouin zone and a corresponding lattice
energy, or recoil energy, EL = h̄2π2/2 m d2. Both kR and kL

are related by the commensurable ratio M = kL/kR = 2πR/d ,
which gives the number of lattice sites in the ring.

By writing Eq. (1) in the ring energy units ER, and
searching for the stationary states ψ (θ, t ) = ψ (θ ) e−iμt/h̄,
with chemical potential μ, we obtain a stationary nonlinear
Schrödinger equation in dimensionless form{

1

2
(−i∂θ − �̂)2 + ŝ sin2

(
M

2
θ

)
+ ĝ|ψ̂ |2 − μ̂

}
ψ̂ = 0, (2)

where μ̂ = μ/ER, �̂ = �/�R, ĝ = 2aR/a2
⊥, the rescaled

wave function is ψ̂ = √
R ψ , and the lattice depth V0 is

measured relative to the ring energy ŝ = V0/ER = sM2/8,
with s = V0/EL. It is worth noticing that s, instead of ŝ, is the

usual parameter for identifying the dynamical regimes in the
presence of the lattice, from the shallow lattice regime (s � 1)
up to the tight-binding limit (s � 1) [9–11,14]. For later use,
we also define an average interaction parameter per lattice site
η = ĝN/M.

From Eq. (1), the local conservation of particle number in
the rotating frame, ∂τ |ψ̂ |2 + ∂θ Ĵ = 0 (with τ = t �R), deter-
mines the current density

Ĵ (θ ) = |ψ̂ (θ )|2[ p̂(θ ) − �̂], (3)

where p̂ = ∂θ arg(ψ ) is the local canonical momentum. The
superfluid velocity is given by v̂ = Ĵ/|ψ̂ |2. The mean angular
momentum per particle Lz (along the direction perpendicular
to the ring) follows from

Lz = h̄

N

∮
dθ |ψ̂ (θ )|2 p̂(θ ). (4)

The linear excitation modes [u(x, t ), v(x, t )] with energy
ω̂ = h̄ω/ER around the stationary state ψ̂ fulfill the Bogoli-
ubov equations [51]

(HL + 2 ĝ |ψ̂ |2) u + ĝ ψ̂2v = ω̂ u,
(5)

−(H∗
L + 2 ĝ |ψ̂ |2) v − ĝ (ψ̂∗)2u = ω̂ v,

where HL = (−i∂θ − �̂)2/2 + ŝ sin2(Mθ/2) − μ̂. The solu-
tions to the Bogoliubov equations provide information about
the linear dynamical stability in the ring lattice. In particular
the presence of complex eigenfrequencies Im[ω̂] �= 0 indi-
cates that the stationary state is dynamically unstable and
prone to decay, since the associated unstable modes, if excited,
grow exponentially ∝ exp(Im[ω̂] t ).

It is instructive to start reviewing the eigenstates of the
noninteracting (g = 0) ring lattice. At �̂ = 0, the stationary
states have definite quasimomentum and play an equivalent
role to that of winding number states, with definite angular
momentum in the homogeneous ring. This equivalence still
applies for nonzero �̂, by means of which the stationary states
get their energies shifted inside the energy bands.

A. Noninteracting regime

According to the Bloch theorem, the eigenstates of
the nonrotating system are the Bloch waves ψn,k (Rθ ) =
eikRθ un,k (Rθ ), where h̄k is the linear quasi- (or crystal) mo-
mentum that takes values within the first Brillouin zone
h̄ (−kL/2, kL/2]. The function un,k is periodic, and shares the
period d of the lattice [19], such that un,k (Rθ ) = un,k (Rθ + d ),
where n is the band index, so that the Bloch waves are single
valued in the ring, i.e., ψn,k (Rθ ) = ψn,k (R(θ + 2π )). Due to
the finite size of the system, the quasimomentum takes dis-
crete values k = q kR = q/R, with q = 0,±1, . . . , M/2 being
an integer number, and so the ring lattice bands exhibit a
discrete structure.

From now on we will denote the Bloch waves by the two
quantum numbers |n, q〉 ≡ ψn,q(θ ) = eiqθ un,q(θ ), or simply
|q〉 if the band is implicitly assumed. There are just M Bloch
waves within the first Brillouin zone. In particular, when the
lattice contains an even number of sites the crystal angular
momentum reaches the edge of the Brillouin zone at q =
M/2, while this limit is not reachable when the number of
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FIG. 1. Energy of the linear Bloch states (symbols) in the three
lowest energy bands n = 1, 2, 3 of nonrotating ring lattices with site
numbers M = 3 (left panel) and M = 4 (right panel), sharing depth
s = V0/EL = 2 and radius R. The energy difference between the two
systems is due to the different lattice spacing d . The continuous
bands of the infinite lattices, with equal corresponding d , are rep-
resented by dashed lines.

sites is odd, and the maximum |q| are ±qM , where {qM =

M/2�} < M/2 is the maximum integer less than M/2. For
instance, let us consider two ring lattices, sharing radius R
and depth V0 = 2EL, with 3 and 4 sites. The energy eigen-
values E versus quasimomentum q are represented in Fig. 1
(note that E = μ in this regime). There are three (q = 0,±1)
and four (q = 0,±1, 2) Bloch states per band, respectively.
While for M = 4 there is a single maximum-quasimomentum
eigenstate (q = 2) at the band edge, for M = 3 there are two
(energy-degenerate) maximum-quasimomentum eigenstates
q = ±q3 = ±1 that belong to each band interior.

B. Energy degeneracies

As shown in Fig. 1, all the eigenstates in each energy band
except those lying at the center q = 0 and edge q = M/2
of the Brillouin zone are doubly degenerate. As a conse-
quence of this degeneracy, new eigenstates of nondefinite
quasimomentum can be obtained by linear superposition of
definite-quasimomentum Bloch waves; that is, ψ = α|n, q〉 +
β|n,−q〉, where α and β are complex coefficients satisfying
|α|2 + |β|2 = 1. Figure 2 highlights a representative case at
�̂ = 0 inside the first energy band of a 4-site lattice (open
symbols). The two panels collect data from the numerical
solution of Eq. (2) with ĝ = 0. Whereas the degeneracy of
states with quasimomenta q = 1 and q = −1 is indicated by
a single symbol in the energy graph (lower panel of Fig. 2),
it corresponds to a continuum of states α|1〉 + β| − 1〉 with
mean angular momentum Lz ∼ h̄(|α|2 − |β|2) in the interval
h̄[−1, 1] (represented by three connected symbols in the upper
panel of Fig. 2). As we will see, all the states in the mentioned
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FIG. 2. Energy (lower panel) and mean angular momentum (up-
per panel) of linear Bloch states in the first energy band of a ring
lattice rotating at rate �̂ = mR2�/h̄ and with the same parameters as
in the right panel of Fig. 1. The symbols, overlapped in the energy
graph and connected by thin vertical lines in the angular momentum
graph, indicate three particular cases of degenerate states.

interval find continuation in the nonlinear regime. The states
with definite quasimomentum q become the nonlinear Bloch
waves, whereas those without definite q transform into soli-
tonic states.

The linear superpositions of degenerate Bloch waves give
rise to new symmetries that do not share the usual periodic
features of the Bloch states. As an example, taken from the
ring lattice with M = 3 of Fig. 1, the linear combinations of
the degenerate eigenstates ψ1,1 ≡ |1, 1〉 and ψ1,−1 ≡ |1,−1〉
give rise to states with one or two density peaks, for the
symmetric |1, 1〉 + |1,−1〉 and the antisymmetric |1, 1〉 −
|1,−1〉 cases, respectively (see Fig. 6 for the continuation
of these states in the nonlinear regime). As we will show
below, these two different symmetries, having zero mean
angular momentum, are manifested in two separated families
of nonlinear, soliton-like states. Furthermore, for other linear
combinations of Bloch waves (other than the symmetric and
the antisymmetric in this case) with nonzero mean angular
momentum, it is not possible to find an equivalent nonlinear
continuation by keeping �̂ = 0. Such nonlinear continuation
does still exist for nonzero rotation rate �̂ �= 0.

C. Rotation

Additional energy degeneracies are induced by rotation. To
see this, we first notice that the few-site rotating lattice maps
onto the infinite lattice due to the fact that the Gross-Pitaevskii
equation for the Bloch-wave amplitude ûn,q(θ ) in the rotating
frame,

{
1
2 (−i∂θ + q − �̂)2 + V̂ (θ ) + ĝ|ûn,q|2 − μ̂

}
ûn,q = 0, (6)
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is also the equation of motion of a Bloch state with quasimo-
mentum q′ = q − �̂ in the static infinite lattice. In particular,
in the noninteracting linear regime (ĝ → 0) the energy Eq(�̂)
(in units of ER) of a Bloch wave of (discrete) quasimomentum
q in the rotating ring lattice coincides with the energy E∞(q −
�̂) of a Bloch wave of quasimomentum q′ = q − �̂ in the
static infinite lattice. Therefore, for fixed q, by varying conve-
niently the parameter �̂ one can expand the eigenstates of the
infinite lattice in the whole Brillouin zone q′ ∈ (−π/d, π/d].
Since the group velocity in the infinite lattice is given by
v̂ = ∂q′E∞(q′) [19], the above equivalence enables us to infer
the superfluid velocity in the rotating ring lattice as a function
of the angular velocity:

v̂(�̂) = −∂�̂Eq(�̂). (7)

As �̂ varies, the Bloch states |q〉 (labeled by their quasi-
momentum q at �̂ = 0) shift their positions in the energy
graph (see lower panel of Fig. 2) according to the periodicity
introduced by both the ring, ��̂ = M, and the lattice, ��̂ =
1. Then, in the Brillouin zone Eq(�̂) = Eq(�̂ + l M ), with
l integer. Besides, consecutive Bloch waves |q〉 and |q + 1〉
swap their energies after a ��̂ = 1 interval in the angular
rotation, such that Eq(�̂ = q + 1) = Eq+1(�̂ = q). In gen-
eral, for each pair of Bloch waves with (q1, q2), these sym-
metries imply energy degeneracies at �̂ = (q1 + q2)/2 and
�̂ = (q1 + q2 + M )/2, that is, at either integer or half-integer
�̂. The total number of degeneracies per energy band is the
number of combinations

(M
2

)
. Two examples are explicitly

indicated in Fig. 2. Symbols at �̂ = −0.5 mark the superposi-
tions α| − 1〉 + β|0〉 and α|1〉 + β|2〉. Again, the degenerate
states expand continuum intervals in the graph of the mean
angular momentum per particle (upper panel of Fig. 2), with
Lz ∼ h̄[−1, 0] and Lz ∼ h̄[−1.5, 0.5], respectively.

Taking into account Eq. (3), the quantization of the circu-
lation around the ring lattice in units of the “flux quantum”
φ0 = 2π h̄/m takes the form

�̂ = 1

2π

∮
dθ p̂(θ ) = 1

2π

∮
dθ (v̂ + �̂) = l, (8)

with l = 0, 1, 2 . . . . This expression is clearly equivalent to
the well known fluxoid quantization in superconductivity [52].
It amounts to encircling l vortices inside the ring, for the
phase jumps in 2π l when encircling the system. To better
understand the reference to vortices in this context, it is useful
to consider an equivalent 3D toroidal system provided with
an effective 1D geometry by means of a tight transverse
confinement. Then, quantized persistent currents in the 1D
ring (as a zero-width limit of the 3D torus) correspond to 3D
flows generated by vortices located at the center of the real
toroidal system. Singular situations arise if a vortex is located
exactly on the ring, producing a node in the corresponding
wave function. This occurs at a particular value of the rotation
rate in the transit of a vortex from the outer to the inner regions
of the ring or vice versa. Since each vortex (i.e., each node)
on the ring imposes a sudden π -phase jump at its location, the
phase winding around the ring now leads to

1

2π
P

∮
dθ p̂(θ ) = 1

2π
P

∮
dθ

(
v̂ + �̂

) = ν

2
, (9)

where ν is the number of nodes and P denotes the Cauchy
principal value. Thus the presence of nodes in the wave
function extends the quantization of circulation Eq. (8) to half
integers of h/m.

From Eq. (3), when the superfluid velocity vanishes, then
p̂(θ ) ≡ ∂θ arg(ψ ) = �̂ and hence, according to the quantiza-
tion of circulation, the phase has to be linear, arg(ψ ) = j θ ,
with j being an integer or half integer. For a Bloch wave |q〉,
from Eq. (7), the superfluid velocity vanishes at the minima
and maxima of the dispersion relation Eq(�̂) in the rotating
frame. The minimum corresponds to the ground state, at
�̂ = q (see, for example, the lower panel of Fig. 2); it has
no nodes and the linear phase takes the value arg(ψ ) = q θ .
Substituting these results in Eq. (4) and making use of the
normalization condition one finds that at the minimum of the
dispersion relation Eq(�̂) of a Bloch wave |q〉, which occurs
at �̂ = q, the mean angular momentum per particle takes the
value Lz = h̄ q, corresponding to the presence of q vortices
inside the ring lattice.

For a Bloch wave |q〉, the superfluid velocity also vanishes
at the energy maxima, on the edge of the Brillouin zone
�̂ = q + M/2. In this case the phase reads arg(ψ ) = (q +
M/2) θ , indicating the presence of M nodes on the ring. The
mean angular momentum per particle takes correspondingly
half-integer (for M odd) or integer (for M even) values of h̄
(see, e.g., Fig. 2). In the absence of rotation, the single-value
property of the wave functions precludes the fulfillment of
Eq. (9) for odd number of nodes.

The above results lead to the following picture for a rotat-
ing ring lattice with M sites (see, e.g., Fig. 2). Starting from
the ground state of a Bloch wave |q〉 in the first energy band
(which occurs at �̂ = q and has a mean angular momentum
per particle Lz = h̄ q), as �̂ increases adiabatically so does the
condensate energy Eq(�̂) while Lz remains almost unaltered
reflecting the superfluidity of the system. This situation holds
until Eq(�̂) approaches a maximum, which occurs at �̂ =
q + M/2 and corresponds to the presence of M vortices lying
exactly on the ring lattice. At this point Lz, which increases
suddenly in the vicinity of this configuration, takes the value
Lz = q + M/2. Finally, as �̂ increases further the above M
vortices enter the ring and Lz keeps increasing up to Lz =
q + M. This picture essentially remains true in the nonlinear
regime.

III. NONLINEAR WAVES

A simple picture, based on the continuation of states from
the noninteracting regime, allows for the generation of the dif-
ferent families of nonlinear waves in the ring lattice. Figure 3
shows the outcome of this approach for the lattices considered
in Fig. 1. Families of states proceeding from the first (solid
lines) and second (dashed lines) energy bands are shown at
�̂ = 0. Gap solitons have their origin at the mentioned energy
degeneracies of the linear regime. This is the case for the
families originating from the combinations |1, 1〉 ± |1,−1〉
for M = 3 (top panel of Fig. 3). For M = 4 (lower panel)
the linear origin of the gap-soliton family is not apparent. It
bifurcates from the top of the first energy band in the nonlinear
regime. However, it can be tracked back up to the linear
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FIG. 3. Trajectories in the chemical potential versus interaction
(η = ĝN/M) graph of nonlinear states living in the ring lattices
of Fig. 1 at �̂ = 0. The gray-shaded regions represent the linear
energy bands of the infinite lattices. The vertical dotted lines indicate
particular values of the nonlinearity (η ∼ 1) for which the state
density profiles are shown in Fig. 6.

regime at �̂ = 0.5, where it originates from the combinations
|1, 2〉 ± |1, 1〉.

In general, an increasing interaction strength leads the
nonlinear states to resonate with excitation modes associated
with the underlying linear energy spectrum. These resonances
are responsible for the generation of pitchfork bifurcations
that translate into swallowtails at the maxima of the nonlinear
energy bands (shown in Fig. 3, at the second band for M = 3
and at the first band for M = 4), or saddle node bifurcations
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|1〉, Ω^ = 0
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1

|ψ̂
 |2

|0〉, Ω^ = 0

|0〉, Ω^ = 1

|0〉, Ω^ = 1.5

M=3, s=2

FIG. 4. Number density and phase profiles of the nonlinear
Bloch waves |0〉 ≡ |1, 0〉 and |1〉 ≡ |1, 1〉 in the M = 3 ring lattice
of Fig. 1 for different rotation values �̂. The phase winding induced
by rotation causes |0〉 to evolve from a noncurrent state at �̂ = 0,
through a soliton-train-like state at �̂ = 1.5, into a vortex-like (ring-
current) state at �̂ = 3. Several density profiles are equal, having
overlapped curves in the top panel: on the one hand, the three states
|0〉 at �̂ = 0, |0〉 at �̂ = 3, and |1〉 at �̂ = 1; on the other hand, the
two states |0〉 at �̂ = 1 and |1〉 at �̂ = 0.

of gap solitons in higher energy gaps. In what follows, we
provide evidence for these statements.

A. Persistent current switch

The nonlinear families of Bloch waves support supercur-
rents that can be controlled by means of rotation. In Fig. 4,
we have summarized the changing configuration (density and
phase) of two Bloch waves, |0〉 ≡ |1, 0〉 and |1〉 ≡ |1, 1〉, with
varying angular rotation. The system parameters are the same
as in the 3-site lattice of Fig. 1, but now with an interaction
parameter η = 1. The energy and mean angular momentum of
these Bloch waves can be also compared with other stationary
states in Fig. 5. Monitoring the phase of state |0〉 in the transit
from �̂ = 0 to �̂ = 3 (lower panel Fig. 4), one can see that
three nodes make simultaneously their appearance at �̂ = 1.5
(dot-dashed lines), just when the state reaches its maximum
chemical potential as a function of �̂ (see Fig. 5). At this
point the circulation due to the presence of three nodes is �̂ =
3/2. In the transit from �̂ < 1.5 to �̂ > 1.5 the circulation
jumps from �̂ = 0 to �̂ = 3, indicating the entry of three
vortices inside the ring. The mean angular momentum keeps
increasing with �̂ from Lz = 0 at �̂ = 0 up to Lz = 3h̄ at �̂ =
3, where the density profile matches the original configuration
at �̂ = 0.

The Bloch state |1〉 makes an equivalent transit from �̂ = 1
to �̂ = 4. The density profiles are exactly the same as those
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FIG. 5. Mean angular momentum per particle (top panel) and
chemical potential (bottom panel) of stationary states in the first and
second energy bands of a rotating ring lattice with M = 3, s = 2,
and η = 1. Open symbols indicate the nonrotating eigenstates de-
picted in the left panels of Fig. 6. The shaded regions correspond
to the linear energy bands, and the solid lines represent the Bloch
states. The discontinuous lines correspond to nonlinear states without
definite quasimomentum. For instance, states of the families labeled
by a and b, in the first band, and e and f , in the second band, form
intraband swallowtails. The families c and d are made of gap-soliton-
like states, whereas the (encircled) states g in the second energy band
form out-of-band swallowtails whose upper part is associated with
the dotted lines in the angular momentum panel.

of |0〉 at one less unit of �̂. The phase profiles of state |1〉,
instead, reflect one additional unit of circulation. The mean
angular momentum increases from Lz = h̄ to Lz = 4h̄.

This smooth variation of Bloch waves suggests an exper-
imental procedure to switch between persistent currents in
toroidal systems by means of ring lattices. The advantage with
respect to previous methods using Gaussian weak links to drag
a BEC [45] is the absence of sudden, uncontrolled phase slips.
By using an M-site lattice, persistent currents that differ in
M winding numbers can be smoothly switched. Nevertheless,
it is important to add that the Bogoliubov analysis of the
states making such connections reveals dynamical instabilities
for intermediate values of �̂. For instance, in the particular
case shown in Fig. 4, and within the transit of |0〉 in the
range �̂ ∈ [0, 3], the intermediate states in the window �̂ ∈
[0.92, 2.08] are unstable. However, a smooth transit, faster
than the typical growth rate of the unstable modes, through
these intermediate regions could still adiabatically (passing
through all the intermediate states of the Bloch wave) lead the
system into the final stable current states. This transition is
not qualitatively different from the driven transition of a linear
system in the observation of Bloch oscillations.
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FIG. 6. Azimuthal densities of the stationary states of the Gross-
Pitaevskii Eq. (2) with �̂ = 0 in the ring lattices of Fig. 1 and
nonlinearity given by the vertical dotted lines in Fig. 3. The dotted
lines represent the lattice profile.

B. Dark-soliton-like states

The most striking difference in the energy bands with
respect to the linear regime is the generation of swallow-
tails beyond a threshold value of the interaction strength
[28,30,31]. These structures of the energy bands break the
smooth connection described before between stable states
supporting persistent currents. The swallowtails are shaped at
the local maxima of the nonlinear energy bands, as can be
seen (encircled) in the second band of the bottom panel of
Fig. 5, and more clearly in both the first and second energy
bands in Fig. 7. These structures, which will be referred as
out-of-band swallowtails, are developed at the edges of the
Brillouin zone in the lowest energy band when gn̄ > sEL/2,
where n̄ = N/2π R is the average density, or at the center of
the Brillouin zone in the first excited (second) energy band
when gn̄ > 4EL[

√
1 + (s/8)2 − 1] (as it is the case in the

bottom panel of Fig. 5). In the ring units, these thresholds are
η1 = πM s/8 and η2 = πM[

√
1 + (s/8)2 − 1], respectively,

with η2 < η1.
Along with the out-of-band swallowtails, there are also

swallowtails in the energy-band interior, as those shaped by
the curves a, b, e, and f in Fig. 5. These structures, which we
will refer to as intraband swallowtails, are made of periodic
states that have different period λd (λ integer) from the lattice
[53]. They have been interpreted as states made of dark
solitons, due to the presence of nodes in their wave functions
(as can be seen in Fig. 6). As we demonstrate below, these
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families of nonlinear waves proceed from the combinations of
linear degenerate states.

1. Out-of-band swallowtails and sudden phase slips

Let us first investigate the ring rotating “lattice” with just
one site M = 1. For weak periodic potentials, this minimal
system can be seen as a toroidal condensate in the presence
of a wide weak link. As a result the associated physics of
persistent currents in a ring can be recovered [46]. Specif-
ically, the case of a weak sinusoidal potential in a ring has
been addressed from the point of view of the generation and
stability of dark-soliton states [49].

In Fig. 7 we show the chemical potential and the mean
angular velocity of the stationary states with s = 2 and inter-
action η = 2. Since in this case η1 = 0.79 and η2 = 0.1, there
are swallowtails at the first and the second energy bands. As a
consequence, the ground state |1, 0〉 at �̂ = 0, indicated by the
label A in the bottom panel of Fig. 7, cannot smoothly transit
from �̂ = 0, where it has Lz = 0, up to �̂ = 1, where it has
Lz = h̄ (point A′). The energy curve of state |1, 0〉 is broken
into equal pieces with different circulation centered around
the integer values of �̂. Each piece represents a metastable
supercurrent state that effectively stretches beyond the edge
of the Brillouin zone, at half-integer values of �̂, where it
is not the ground state. Eventually the energy path reaches
a maximum at a critical rotation rate �̂c (point T), beyond
which it does not exist. As a result, the adiabatic evolution
through the swallowtail is not possible, and just changing �

beyond the outer edge of the tail structure results in nonadia-
batic dynamics, a sudden phase slip, which will also change
the total circulation by 2π . The path from A to T in Fig. 7 can
be done adiabatically, but increasing � any further will cause
the system to drop to the line connected to A′ (plus phonon-
like excitations). A similar dynamics takes place in the ab-
sence of lattice, as has been demonstrated in toroidal systems
with a weak link [45,46], where an increase of rotation beyond
the swallowtail �̂ > �̂c brings a metastable state through a
sudden phase-slip event, which changes the circulation, into
the corresponding ground state.

The crossing energy paths of two (consecutive) metastable
supercurrents are connected, at their maxima, by a family of
solitonic states. The state B at �̂ = 0.5 (see Fig. 7) represents
a clear example of the latter. The energy curves of these
families trace the out-of-band swallowtails, which reflect the
presence of hysteresis in the system [32,45]. It is interesting
to compare the states living on the swallowtails, e.g., points
B and B1 in Fig. 7, with the corresponding states on the next
energy band for the same rotation rate �̂, i.e., states C and C1,
respectively. They present the same number of nodes. While
state B has one node at the maximum of the periodic potential,
state C has one node at the minimum. Similarly in the second
band, B1 presents two nodes, one of which lays at the potential
maximum, whereas C1 has both nodes within the potential
well. As noted in Ref. [49], this difference is crucial for the
dynamical stability of the states, in such a way that those states
having nodes at the maxima are unstable, but those with nodes
inside the potential well are dynamically stable.

The out-of-band swallowtails are the result of a pitchfork
bifurcation of the family of nonlinear Bloch waves situated at
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FIG. 7. Stationary states of the Gross-Pitaevskii Eq. (2) with
interaction parameter η = 2 for the first energy bands of a rotating
ring lattice with M = 1 and s = V0/EL = 2. Top panels: Density
profiles of labeled states. Lower panels: Chemical potential (bot-
tom) and mean angular momentum per particle (middle) in the
first (continuous thin lines), second (dash-dotted lines), and third
(double-dash-dotted lines) energy bands. Families of soliton-like
states (continuous thick lines) form the out-of-band swallowtails in
the first and second energy bands.

the upper edge of the energy bands. To illustrate this point, we
make use of a system with M = 4, s = 2, �̂ = 0, and varying
interaction η, where swallowtails emerge in the first energy
band at η1 = π . Figure 8 shows the excitation modes (dots) of
the family of states |1, 2〉 (thick continuous and dashed lines),
which originates at the top of the first (linear) energy band.
The excitation modes have also continuation from the linear
regime, where they coincide with the eigenstates of the linear
Hamiltonian. As maxima of the energy band, the states |1, 2〉
have zero angular momentum (see the top panel of Fig. 8).
However, at η = η1 (indicated by arrows in the graphs) two
new, degenerate states with opposite currents bifurcate (thin
continuous and dash-dotted lines) due to the resonance with an
excitation mode that originates from the second energy band
(see the middle panel of Fig. 8).

For higher interaction strength η > η1 the family |1, 2〉
includes new excitation modes with purely imaginary fre-
quencies (bottom panel of Fig. 8), denoting its dynamical
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instability. The bifurcating current-carrying states inherit the
stability properties of the parent state before the bifurcation.
In the present case they are also dynamically unstable due to
resonances that take place at lower interaction strength η < η1

(see lower panels of Fig. 8) with excitation modes proceeding
from the first linear energy band.

2. Intraband swallowtails

For M > 1, additional swallowtails originate from the con-
nection between two crossing paths (in the μ-�̂ graph) of
nonlinear Bloch waves having different quasimomentum. The
system shown in Fig. 5, a ring lattice with M = 3, s = 2, and
η = 1, shows multiple examples of these structures along with
small out-of-band swallowtails in the second energy band.
Contrary to the latter, the intraband swallowtails exist for
arbitrarily small values of the interaction and originate from
the energy degeneracies in the noninteracting regime. They
clearly resemble the solitonic curves between winding number
states found in the absence of a lattice [48]. But unlike such

case, there are two families of solitonic states (and not only
one, although hard to distinguish at the scale of Fig. 5) making
the connection between states with definite quasimomentum
on the upper part of each crossing. The number of these
(double) swallowtails, per energy band, equals the number
of energy degeneracies (or crossings) between pairs of the M
Bloch waves.

This scenario is a generalization of the particular cases that
have been presented in the literature [53]. In order to make
the connection between the two states of different quasimo-
mentum, a number of nodes matching the difference in the
circulation ��̂ are generated on the ring. The nodes appear
in the states situated just at the middle of the swallowtails,
and evolve into density depletions that become shallower as
the solitonic states approach the merging point with the Bloch
states. The presence of the nodes breaks the symmetric pattern
of the lattice and gives rise to new periods.

A remark about the solitonic character of the states living
on the described swallowtails is in order. Although a general
classification of these states as trains of dark solitons can be
done, as regarding the presence of nodes, they can also be con-
sidered trains of bright solitons, as regarding the localization
of the particle density. The next subsection clarifies this point.

C. Bright solitons

The allusion to bright solitons within the few-site lattice
needs additional remarks, since the clear signature of a gap
soliton, the localization, can only be manifested in a long
lattice (compared with the spacing d). Once a bright soliton
candidate has been found in a small lattice with M0 > 1,
we look at equivalent states in longer lattices by keeping
the spacing d constant and increasing the number of sites
M. In doing so the ring radius is increased, and the kinetic-
energy quantum is reduced, so that the interaction parameter
η ∝ R/M does not change. Additionally, to follow the transit
towards the infinite-lattice limit, we have to keep the parity
in the number of sites so that the group velocity v̂ = ∂qE (q),
and then the relative position of the state in the energy band,
does not change. This constrains the lattice series to number
of sites M = (M0) j , j = 1, 2, 3, . . . matching the powers of
the original lattice M0.

With this scheme, let us consider the family of gap soli-
tons (born in the first energy gap) in a series of static ring
lattices with s = 10 and M0 = 2, as shown in Fig. 9, for
M = 2, 4, 8, 16 and M = 64. The gap-soliton trajectories in
the μ-N graph and also their configurations are practically
indistinguishable within the energy gap, a fact that allows
us to study these states in low-M lattices. Only the approach
to the second energy band produces relevant differences. For
increasing M the trajectories bend towards the lowest energy
state in the second band. The bending increases with M
approaching the limit of an infinite lattice, where gap solitons
cannot live inside the energy band. However, the finite size of
the rings releases this constraint. As soon as the gap solitons
enter the bands, long oscillating tails are developed that are
responsible for the observed bending in their trajectories.
Notwithstanding, a clear density peak remains as the gap
soliton signature. In what follows, we elaborate on these
issues.
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node bifurcations (dashed lines) appear in the second energy gap for
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1. Origin at the noninteracting regime

As we have anticipated, the gap solitons bifurcate from the
energy degeneracies of the linear regime. There, depending
on the parity of the number of lattice sites M, the bifurcation
takes place either at �̂ �= 0 when M is even, or at �̂ = 0 when
M is odd.

For even M there is just one (hence nondegenerate) linear
Bloch state having q = M/2 at the edge of the Brillouin zone.
In this case, if one keeps �̂ = 0 the gap-soliton bifurcation
is observed to emerge from the highest energy states of the
nonlinear energy bands (see Figs. 3 and 11 for M = 4), as
usually reported. However, the gap-soliton families originate
before, within the linear regime and at half-integer values of
�̂, from the linear superposition of degenerate Bloch waves.
In particular, the fundamental gap solitons (those localized in
a single site, like states A and B in Fig. 11) arise from the
highest energy degeneracy in the energy bands. The observed
nonlinear bifurcation at �̂ = 0 occurs when the whole family
of gap solitons forms a continuous energy band detached from
the Bloch-wave families that were originally connected.

The described process is summarized in Fig. 10 for a
minimal system with M = 2 and s = 2. The solid (dashed)
lines correspond to a solitonic family originating from the
real (complex) linear combination of degenerate Bloch waves
at �̂ = ±0.5: |1, 1〉r = |1, 1〉 + |1, 0〉 and |1, 1〉i = |1, 1〉 +
i |1, 0〉. These families, represented at different interaction

-1 10

Ω^

0.5

1

μ 
/ (

h_
2 /m

R
2 )

-1

0

1

L z / 
h_

−π 0
θ

0

0.8

|ψ̂ |
2

0 π

η = 0.25
η = 0.55
η = 1.0

M=2, s=2

|1, 1〉
r

|1, 1〉
i

lattice

FIG. 10. Origin and evolution of gap solitons in a two-well
rotating ring lattice with s = 2 for varying interaction strength η.
The two lower panels show the mean angular momentum and the
chemical potential of the soliton families (solid and dashed lines)
originating in the first energy band, where they connect the Bloch-
wave states |1, 0〉 and |1, 1〉 (dotted lines). The top-row panels depict
the gap-soliton density profiles (see text) at �̂ = 0.5 and η = 0.55.

values in the two lower panels of Fig. 10, are made of states
that show one and two density peaks in the ring, respectively
(as can be seen in the top-row panels of Fig. 10). Their
trajectories in the μ-� graph shape swallowtail structures that
are not qualitatively different from the intraband swallowtails
previously associated with dark-soliton-like states.

The μ-� graph in Fig. 10 also shows the detachment
(at η ≈ 0.55) of the families of fundamental gap solitons
(solid curves) connecting two families of Bloch waves (dotted
curves). Importantly, this detachment occurs inside the energy
gap, and it is associated with the gap-soliton bifurcation
observed at �̂ = 0. Equivalent processes take place for gap
solitons emerging in higher energy gaps. This phenomenon
can be put into correspondence with the metastable quantum
phase transition described in Ref. [48] for states with attractive
interaction in a ring without lattice. There, at a given interac-
tion threshold, the bright-soliton families also separate from
the winding number families that they connect, so that the
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solitons have always lower energy than the winding number
states for given �̂. It is worth noticing that in the presence of
the lattice, on the contrary, the bright-soliton-like states have
higher energy than the Bloch states.

The interaction threshold for the detachment of the soli-
tonic curves (or equivalently the gap-soliton bifurcation at
�̂ = 0) varies with the radius of the ring and the depth of
the lattice. Our numerical results show that the bifurcation
point gets closer to the linear limit as the system approaches
the infinite-lattice configuration. This fact can be qualitatively
understood as a result of the changes produced in the energy
bands, featured by a higher number of available states that
are separated by lower energy increments. Under these con-
ditions, the system can transfer such differences in kinetic
energy of the extended states into interaction energy of a
localized state at essentially the same value of the chemical
potential. The same mechanism operates in deeper lattices,
where there also exist a higher density of available states
because of the reduced bandwidths.

When M is odd the scenario is slightly different. There are
two degenerate stationary states with definite quasimomentum
at |qM | < M/2, which is the highest absolute value in the
discrete band. At �̂ = 0, two independent linear combina-
tions can be built from these states in the noninteracting
regime, α|qM〉 + β| − qM〉, that show the typical features
of gap solitons. Figures 3 (top panel) and 5 illustrate the
origin and evolution of these gap solitons in the nonlinear
regime for a lattice with M = 3. The symmetric states, which
are the nonlinear continuation of |1, 1〉s = |1, 1〉 + |1,−1〉,
become more energetic than the antisymmetric ones, which
are a continuation of |1, 1〉a = |1, 1〉 − |1,−1〉. Both families
are made of real stationary states with zero mean angular
momentum, and, unlike the states with definite q, present
nonhomogeneous density profiles that break the symmetry
of the lattice (as seen in the left panels of Fig. 6). For the
interaction value of Fig. 5, both gap-soliton families form
energy bands that are already detached from those of the
Bloch-wave states.

The differences introduced by the parity of M in the few-
site ring lattice are strongly reduced in long (high M) lattices.
In the infinite-lattice limit the gap-soliton family bifurcates
from the linear regime at �̂ = 0, although near the bifurcation
point the states belonging to this branch cannot show a sharp
localization. The longer the lattice the more advance within
the nonlinear regime is needed in order to get a clear-cut
density peak.

2. Resonances with the linear energy bands

We have summarized the configurations and bifurcations of
bright soliton states in Fig. 11, inside a static ring lattice with
M = 4 sites and depth s = 10. Within each energy gap a new
family of bright solitons appears [54]; this is the case of soli-
tons A and B inside the first and the second gap, respectively.
These solitons present n − 1 nodes (n being the lower band
or gap index) inside the lattice site where they are localized.
As we show below, these states can be traced back to the
linear regime, where they originate in the interior of the energy
band immediately below the gap where they first emerge.
The other types of gap solitons (C to I in Fig. 11) bifurcate
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FIG. 11. Gap solitons in a ring lattice with M = 4, s = 10, and
�̂ = 0. The bottom panel shows the trajectories of gap solitons in the
μ-η graph over the underlying linear energy bands (gray-shadowed
stripes). The upper panels labeled A–I depict the number density of
the states (solid lines) marked by open symbols in the bottom panel;
for reference, the lattice is represented by dotted lines.

from resonances with excitation modes proceeding from the
linear Bloch waves. Among the bifurcations, the saddle node
bifurcation is particularly relevant since it is responsible for
the continuation of the soliton trajectories into upper energy
gaps (like soliton C). The resonance of the bright soliton
frequency with those of the linear spectrum is the key for
the nonexistence of localized states inside the energy bands
of infinite lattices [55]. In this regard, plausible arguments
have been given in the realm of discrete systems [56]. Such
resonances produce oscillating tails surrounding the soliton
that have the structure of the resonant linear Bloch waves.
The extended tails eventually dismantle the localized density
peak. Practically the same happens in the ring lattice, with
the peculiarity of the finite system to admit the coexistence of
high-density peaks on the extended density tail.
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the collision of gap solitons of type C and E in Fig. 11, and to a
secondary bifurcation (right arrow) of solitons E to give rise to the
family of states G. Bottom panel: Imaginary part of the frequencies
of Bogoliubov excitations as a function of interaction.

Differently from the case of out-of-band swallowtails, gap
solitons present linear excitations (proceeding from the top
of the energy bands) that diverge from the underlying linear
spectrum, along with excitation energies that keep a roughly
constant value close (the longer the lattice the closer) to the
linear spectrum (see Fig. 12). The collisions between constant
and diverging excitation modes create a complex scenario of
instability regions. Figure 12 illustrates this behavior for gap
solitons in the static lattice with M = 4 and s = 10 of Fig. 11.
Before (but close to) entering the energy band, the gap solitons
in the first gap present instabilities (in small ranges of η)
triggered by the collision at nonzero frequency ω̂ between the
modes proceeding from the first and the third energy bands.
When the gap solitons enter the energy band (like state D in
Fig. 11), the appearance of an imaginary excitation frequency
marks a pitchfork bifurcation of new families of soliton-like
states (made of current-carrying states like G).

Within the second gap, a saddle node bifurcation is pro-
duced by the collision of two types of gap-soliton solutions
with different symmetry (C and E in Fig. 11). For this bifurca-
tion to take place, it is necessary that M > 2, since excitation
modes with intermediate quasimomentum proceeding from
the linear energy bands (other than those proceeding from
the Brillouin zone edge) are needed to provide the specific
density pattern in the neighbor sites of the soliton. Such
modes are also allowing for alternative density patterns in
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top row depict the soliton density at �̂ = 0.5 for increasing η. The
two lower panels show the soliton angular momentum and chemical
potential for varying rotation rate �̂. The dotted lines represent the
nonlinear Bloch waves.

the soliton tail that produce secondary bifurcations (as the
branch containing state H). Furthermore, additional saddle
node bifurcations involving current states (like F and I) take
place at higher interaction. For increasing M, there is also an
increasing number of density configurations available around
the soliton peaks, and therefore longer lattices entail larger
sets of solitonic states.

3. Gap solitons in longer lattices

In order to see the correspondence with longer lattices, we
have chosen a system with M = 8 and equal lattice spacing
as the minimal system of Fig. 10. In Fig. 13, one can see
that the mechanism for the generation of bright solitons is
the same. They emerge from the linear regime and from
the connection between Bloch waves. The separation of the
chemical potential curve takes place within the energy gaps
for interaction energies that are lower than those found in the
shorter lattice. In addition, the soliton energy band becomes
flatter far from the first (linear) energy band, showing particle-
like features, i.e., flat energy in the comoving reference frame,
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and linear increase in momentum. For higher nonlinearity, the
resonance with the second energy band increases the soliton
bandwidth and leads to a bifurcation with the generation of
swallowtails similar to those developed by nonlinear Bloch
waves.

IV. CONCLUSIONS

The small ring lattices are minimal systems that can be
mapped to the infinite lattice by the introduction of angular ro-
tation. In this way, and due to the existence of a small number
of available states, the ring lattices allow for a simpler analysis
of the states of equilibrium. In particular, we have addressed
the origin, range of existence, and stability of solitonic states.
Our results show that they share a general common origin
with the nonlinear Bloch waves that can be tracked up to the
linear regime. While the Bloch waves are states with definite
quasimomentum that follow the symmetry of the underlying
lattice, the solitonic states emerge as a linear combination
of Bloch waves and break this symmetry. The symmetry-
breaking states have both a nodal structure as well as a local
density maximum and could thus be classified as either dark
or bright solitons. Clear-cut features are only shown in the
dark-soliton states of the out-of-band swallowtails, or in the
(fundamental) gap-soliton states that bifurcate from the top of
the energy bands.

The resonances of the nonlinear waves with the underly-
ing linear spectrum produce dynamical instabilities and new
bifurcations. Among them, we have shown how the pitchfork
bifurcation of the highest-energy nonlinear Bloch waves give
rise to out-of-band swallowtails, how the saddle node bifurca-
tion of fundamental gap solitons continues the soliton families
into higher energy gaps, and how the ring lattice provides a
plausible demonstration of the nonexistence of localized states
inside the linear energy bands of the infinite lattice.

The small ring lattices could play an interesting role in
BEC experiments in order to facilitate the materialization of
controlled persistent currents or even solitonic states. Previous
experiments have made use of a Gaussian-shaped barrier
potential to drag a toroidal system into a persistent current

state [45], but this procedure involves sudden phase slips that
produce a transitory unstable stage. The present work shows
that a periodic potential can provide a simpler and adiabatic
way to transit between quantized persistent currents. The
experimental realization of BECs loaded on 1D rotating ring
lattices is currently feasible, for instance, by means of painted
optical-dipole potentials [17]. With this technique, a laser
sheet keeps the atomic cloud confined to a 2D plane, on the
top of which a fast-scanning (typically 4–5 kHz) laser beam
can build a time-averaged atomic-ring trap with periodic, even
rotating, geometry [17]. For example, for 87Rb atomic BECs,
a ring lattice with M = 4 sites could be realized using λ =
1064 nm lasers with axial beams of 2.5 μm waist shining a
perpendicular sheet of 7.5 μm waist. A ring radius of R =
20 μm would give �R = 1.8 Hz, and provide the system with
an effective 1D geometry of large (circumference to transverse
width) aspect ratio. With this arrangement, a transit up to
a rotation rate �̂ = 4 (that is, � = 7.3 Hz, a feasible time-
averaged dynamic potential) could lead the system into a state
with Lz = 4h̄. The realization of solitonic states seems more
challenging, however, because the lattice symmetry has to
be broken by the atomic cloud. This could be achieved by the
combination of a precise rotation rate and a symmetry-broken
initial state in analogy to the experiment of Ref. [4], where
gap solitons were produced in a linear lattice.
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