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Introduction

From ancient times to the present, the need to protect ourselves from the fluctuations of market prices
forced to create ways to minimize the risk and its consequences, thus creating the options.

In 1900, Louis Bachelier first proposed to use the Brownian motion to model the dynamics of stock
price in his dissertation Théorie de la spéculation. He was considered to be a pioneer in the study of
financial mathematics. Also too, Robert Brown, Albert Einstein and Kiyosi Itô made contributions to the
foundations of financial mathematics through the study of Brownian motion and stochastic integration
theory. But it was not until in 1973 when Fisher Black and Myron Scholes published a fundamental paper
on option pricing, where they introduced the Black-Scholes model [5]. In the same year, Robert Merton
published a paper on the same topic independently [18]. The differences between these works are that the
model introduced by Black and Scholes had a major effect on the world of finance since it gave an answer
to the problem of pricing options.

The Black-Scholes model has important assumptions, these are that the underlying asset price process
is continuous and that the volatility is constant. However, as we know, in the world of options, the second
assumption cannot be considered realistic. The implied volatility is an important concept associated
with an option price theory on an underlying asset, it is calculated by inverting an option price via the
Black–Scholes price formula and it is simple to show that the implied volatility of an underlying asset
is not constant but varies with the maturity time and with respect to the strike price. Associated with
this concept we have the volatility smile, which is considered as one of the main problems of quantitative
finance and the main tools involved with it can be, depending on the approach used, stochastic calculus
and mathematical finance, partial differential equations, numerical analysis.

The Black-Scholes model does not fit real market data. To have a more realistic approach to the
problem of option pricing, alternative models have been proposed, popular ones include, Merton’s jump
stochastic model [19] and stochastic volatility models. In the model proposed by Merton, he allowed the
underlying assets to have random jumps to have more realistic behavior. This approach suggested by
Merton gave rise to the development of what is now known as jump-diffusion models.

iii



iv INTRODUCTION

In the stochastic volatility models the volatility is described by a stochastic process. These models are
used in order to price options where volatility varies over time and they are useful because they explain
why options with different strikes and maturities have different Black-Scholes implied volatilities. One of
the most interesting stochastic volatility models is Heston’s model introduced in 1993, this model allows
the spot and the volatility processes to have positive, negative or zero correlation. We have too, the
fractional stochastic volatility models, in which the volatility may exhibit a long-range dependent or a
antipersistent behavior.

In Chapter 1, we will introduce the Black-Scholes model and a brief introduction to quantitative finance
concepts related to this model. In Chapter 2, we will talk about implied volatility and how to calculate
it by numerical methods. In Chapter 3 we will introduce the stochastic volatility models and the jump
volatility models studied by Hull and White in [12], Fouque, Papanicolau and Sircar in [8] and by Merton
in [19]. In Chapter 4, we will introduce the statics and dynamics of implied volatility based on Lee’s
paper [16]. In addition, we will plot the volatility smile and volatility skew based on models introduced
in Chapter 3.

In Chapter 5 we will introduce fractional Brownian motion, which has an important role in many fields,
as meteorology, finance, telecommunications and hydrology, the last is because Hurst observed that Nile
river water had a consistent cyclical behavior, which for seven consecutive years the water level increased
and was greater than in the following seven years, which in turn created a cycle of seven years of abundance
and seven years of scarcity. Until then, it was thought that there was no depending on the behavior of
the increase in water between one year and another. In addition, we will introduce some concepts on
Malliavin calculus to introduce the fractional volatility model studied by Alòs, León and Vives in [2].



Chapter 1

Black-Scholes Model

With Itô’s stochastic calculus as the main tool we obtain the formula that is a solution to the Black-Scholes
model [5], and we will introduce this model to solve problems of valuation and hedge of European options
considering the prices in a continuous market, this model is given by a stochastic differential equation.

This model assesses the price of a European option through the values of five variables: the price of
the underlying asset at the current date, the maturity time, the strike price, the risk free interest rate and
the volatility. Almost all these values can be taken from the prices of the options observed in the market
data, an exception is the volatility, that turns out to be the indicator that gave us an idea of the behavior
that will have the value of the option in the future.

1.1 Black-Scholes model

Let (Ω,F ,P) be a probability space, let (Ft)t≥0 a filtration on (Ω,F ) and let [0, T ] a time interval. We
consider a financial market with two stocks.

First, we consider the asset price or a bank account at time t given by:

S0
t = ert, t ≥ 0, r ≥ 0,

where r is the instantaneous interest rate, and we can note that the process (S0
t )t≥0 can be writing in

differential form dS
0
t = rS0

t dt

S0
0 = 1

since the unique solution to this differential equation is S0
t = ert.

1



2 CHAPTER 1. BLACK-SCHOLES MODEL

Now, we consider a stochastic process, named stock price (St)t≥0 given by the following stochastic
differential equation

dSt = µStdt+ σStdWt, (1.1)

where µ ∈ R is the drift, σ > 0 is the volatility (we assume that σ is constant) and (Wt)t≥0 is a standard
Brownian motion adapted to the filtration (Ft)t≥0. The unique solution to this stochastic differential
equation is given by

St = S0 exp

((
µ− σ2

2

)
t+ σWt

)
, t ≥ 0. (1.2)

In this case we say that (St)t≥0 follows a geometric Brownian motion, as we can see in the Figure 1.1.

Figure 1.1: We plot 10 sample paths of GBM with S0 = 100, µ = 0.2 and σ = 0.3 on interval [0, 5].

We rewrite the equation (1.2) in integral form, and we obtain

St = S0 +

∫ t

0
µSudu+

∫ t

0
µSudBu,

then we can solve it applying Ito’s formula to the Itô’s process (St)t≥0 with vt = µSt and ut = σSt, as
follows.
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First, we consider a function f : [0, T ] × R → R defined by f(t, St) = log(St) with f(t, x) = log(x),
then we have the following derivatives:

∂tf(t, St) = 0

∂xf(t, St) =
1

St

∂2
xxf(t, St) = − 1

S2
t

Now, we apply Ito’s formula to obtain

log(St) = f(0, S0) +

∫ t

0
∂xf(u, Su)uudWu +

∫ t

0
∂xf(u, Su)vudu+

1

2

∫ t

0
∂2
xxf(u, Su)u2

udu

=

∫ t

0

1

Su
σSudWu +

∫ t

0

1

Su
µSudu−

1

2

∫ t

0

1

S2
u

σ2S2
udu

=

∫ t

0
σdWu +

∫ t

0
µdu− 1

2

∫ t

0
σ2du.

Then,

d log(St) = σdWt + µdt− 1

2
σ2dt =

(
µ− 1

2
σ2

)
dt+ σdWt.

Equivalently, we have∫ t

0
d log(St) =

∫ t

0

(
µ− 1

2
σ2

)
du+

∫ t

0
σdWu =

(
µ− 1

2
σ2

)
t+ σ(Wt −W0),

hence
log(St)− log(S0) =

(
µ− 1

2
σ2

)
t+ σWt,

since W0 = 0. Finally, we apply the exponential function in both sides to obtain

St = S0 exp

((
µ− σ2

2

)
t+ σWt

)
, t ≥ 0.

We have the following properties:

Theorem 1.1. Let µ ∈ R, σ > 0 and (St)t≥0 be a stochastic process such that

dSt = St(µdt+ σdWt), S0 = S0
t

then St is a log-normal random variable.

Proof. Since the unique solution to

dSt = St(µdt+ σdWt), S0 = S0
t
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is given by the equation (1.2), then if we if we take logarithm in both sides of this equation, we obtain
that

log(St) = log(S0) +

(
µ− σ2

2

)
t+ σWt,

where Wt ∼ N (0, t). Then, we can say that

log(St) ∼ N
(

log(S0) +

(
µ− σ2

2

)
t, σ2t

)
.

This means that St has a log-normal distribution with mean log(S0) +

(
µ− σ2

2

)
t and variance σ2t. �

From the properties of log-normal distribution, we have that

E [St] = S0 exp(µt)

and that
Var (St) = (S0)2 exp(2µt)

(
exp(σ2t)− 1

)
.

Proposition 1.2. Let µ ∈ R, σ > 0 and (St)t≥0 a stochastic process such that

dSt = St(µdt+ σdWt) S0 = S0
t

then, log(St) is a Brownian motion, no necessarily standard.

Proof. It is sufficient to prove that (log(St))t≥0 satisfies the following properties:

• Continuity of sample paths:

Since (Wt)t≥0 is continuous with respect t, we have that log(St) = log(S0) +

(
µ− σ2

2

)
t + σWt is

continuous with respect t.

• Independent increments:

We want to prove that, if u ≤ t then log(St)−log(Su) = log

(
St
Su

)
is independent of σ (log(Sv), v ≤ u).

This is equivalent to prove that if u ≤ t, then St
Su

or the relative increments
St − Su
Su

are independent

of σ (Sv, v ≤ u). Since,

St
Su

= exp

((
µ− σ2

2

)
(t− u) + σ(Wt −Wu)

)

and since we know that (Wt − Wu) is independent of σ (Wv, v ≤ u), then
St
Su

is independent of

σ (Sv, v ≤ u).
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• Stationary increments:

We want to prove that for u ≤ t, the law of ln

(
St
Su

)
is the same that the law of ln

(
St−u
S0

)
. Or,

equivalently to prove that the relative increments of (St)t≥0 are stationary, that is, if u ≤ t, then

the distribution of
St − Su
Su

is identically equal to
St−u − S0

S0
. For this, let z ∈ R+, then

P
(
St
Su

< z

)
= P

(
exp

((
µ− σ2

2

)
(t− u) + σ(Wt −Wu)

)
< z

)
= P

(
exp

((
µ− σ2

2

)
(t− u) + σWt−u

)
< z

)
= P

(
St−u
S0

< z

)
.

Therefore, the law of
St
Su

and
St−u
S0

are the same.

�

1.2 Self-financing strategies

Let φ0
t and φ1

t be the quantities invested at time t, respectively in the assets S0
t and St. A strategy is a

stochastic process
φ = (φt)t≥0 =

(
φ0
t , φ

1
t

)
t≥0

whit real values and such that is adapted to the filtration (Ft)t≥0 of Brownian motion.

Definition 1.3. The value of the portfolio at time t for the strategy φ is given by

Vt(φ) = φ0
tS

0
t + φ1

tSt, 0 ≤ t ≤ T. (1.3)

Definition 1.4. A self-financing strategy φ is a pair of adapted processes (φ0
t )t≥0 and (φ1

t )t≥0 such that

1.
∫ T

0
|φ0
t |dt+

∫ T

0
(φ1
t )

2dt <∞ P−a.s.

2. Vt(φ) = V0(φ) +

∫ t

0
φ0
udS

0
u +

∫ t

0
φ1
udSu, 0 ≤ t ≤ T .

The condition 1 guarantee that the integrals in condition 2 are well-defined. That is,∫ T

0
|φ0
u|du <∞ implies that

∫ T

0
φ0
udS

0
u =

∫ T

0
φ0
ure

rudu <∞

and ∫ T

0
(φ1
t )

2dt <∞ implies that
∫ T

0
φ1
udSu =

∫ T

0
φ1
uµSudu+

∫ T

0
φ1
uσSudWu <∞.
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Proposition 1.5. Let φ be a strategy with value of the portfolio given as equation (1.3). The strategy φ
is a self-financing strategy if and only if

Ṽt(φ) = Ṽ0(φ) +

∫ t

0
φ1
udS̃u, t ≥ 0, (1.4)

where Ṽt(φ) = e−rtVt(φ) and S̃t = e−rtSt are the respective discounted values.

Proof. We suppose that φ is a self-financing strategy. We note that in the previous definition, condition
2 can be written in differential form and in the case of the Black-Scholes model, we have

dVt(φ) = φ0
tdS

0
t + φ1

tSt(µdt+ σdWt),

so, if we substitute the value of dS0
t , we obtain

dVt(φ) = φ0
t rS

0
t dt+ µφ1

tStdt+ σφ1
tStdWt

= r(φ0
tS

0
t + φ1

tSt)dt+ (µ− r)φ1
tStdt+ σφ1

tStdWt

= rVtdt+ (µ− r)φ1
tStdt+ σφ1

tStdWt,

now, we multiply by e−rt in both sides

e−rtdVt(φ) = re−rtVtdt+ (µ− r)e−rtφ1
tStdt+ σe−rtφ1

tStdWt

and since dṼt = −re−rtVtdt+ e−rtdVt, then

dṼt = −re−rtVtdt+ re−rtVtdt+ (µ− r)e−rtφ1
tStdt+ σe−rtφ1

tStdWt

= (µ− r)φ1
t S̃tdt+ φ1

tσS̃tdWt

= φ1
t

(
(µ− r)S̃tdt+ σS̃tdWt

)
= φ1

tdS̃t.

Finally, we integrate in both sides to obtain

Ṽt − Ṽ0 =

∫ t

0
φ1
udS̃u, 0 ≤ t ≤ T.
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For the converse, we suppose that dṼt = φ1
tdS̃t, and since Vt = ertṼt, then

dVt(φ) = rertṼtdt+ ertdṼt

= rertṼtdt+ ertφ1
tdS̃t

= rVtdt+ ertφ1
tdS̃t

= rVtdt+ ertφ1
t

(
(µ− r)S̃tdt+ σS̃tdWt

)
= rVtdt+ φ1

t (µ− r)Stdt+ σφ1
tStdWt

= rVtdt− rφ1
tStdt+ φ1

t (µStdt+ σStdWt)

= φ0
tdS

0
t + φ1

tdSt.

If we integrate both sides, we obtain

Vt(φ) = V0(φ) +

∫ t

0
φ0
udS

0
u +

∫ t

0
φ1
udSu, t ≥ 0,

which satisfies the definition of self-financing strategy. �

We note that according to (1.4), the self-financing portfolio price Vt can be written as

Vt = ertV0 + (µ− r)
∫ t

0
er(t−u)φ1

uSudu+ σ

∫ t

0
er(t−u)φ1

uSudWu, t ≥ 0.

1.3 Arbitrage and risk neutral probability measure

If we put additional restrictions on self-financing strategies, we obtain the admissible strategies whose
total value Vt remains nonnegative for all times t ∈ [0, T ].

Definition 1.6. A strategy φ =
(
φ0
t , φ

1
t

)
t≥0

is admissible if it is self-financing and its discounted value

Ṽt(φ) = φ0
t + φ1

tSt ≥ 0,

for all t.

Definition 1.7. An arbitrage is an admissible strategy φ such that satisfies

(i) V0(φ) = 0,

(ii) Vt(φ) ≥ 0 for all 0 ≤ t ≤ T ,

(iii) P(VT (φ) > 0) > 0.

The condition (i) means that the investor starts with zero capital or even with a debt, the condition
(ii) means that he wants no loss and (iii) means that he wishes to sometimes make a strictly positive gain.
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1.3.1 Existence of a risk neutral measure

We want to find a risk neutral probability measure under which the discounted price process

(S̃t)t≥0 = (e−rtSt)t≥0

is a martingale.

For this, we need to introduce the Girsanov theorem and some topics related with it, to try to find
this probability measure.

Change of probability measure and the Girsanov theorem

Let (Ω,F ,P) be a probability space. A probability measure Q on a measure space (Ω,F ) is absolutely
continuous with respect to P if

P(A) = 0 implies Q(A) = 0. (1.5)

for all A ∈ F .

Theorem 1.8. A probability measure Q is absolutely continuous with respect to P if and only if there exits
a non-negative random variable Z on (Ω,F ) with E[Z] = 1 such that

Q(A) =

∫
A
Z(ω)dP(ω),

for all A ∈ F . Z is called the density of Q with respect to P and denoted by dQ/dP.

Now, let (Ω,F , (Ft)t≥0,P) be a filtered probability space and (Wt)t≥0 be a standard Brownian motion
Ft-measurable. The Girsanov theorem describes how we can change a probability measure by an equivalent
probability measure. For the proof of the theorem, see [14].

Theorem 1.9. Let (θt)t≥0 be an adapted process satisfying
∫ T

0
θ2
t dt <∞ almost surely and such that the

process (Lt)t≥0 defined by

Lt = exp

(
−
∫ t

0
θsdWs −

1

2

∫ t

0
θ2
sds

)
is martingale. Then, under the probability PL with density LT with respect to P, the process (Bt)t≥0 defined
by

Bt = Wt +

∫ t

0
θsds

is a standard Brownian motion Ft-measurable.
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Risk neutral probability measure

Proposition 1.10. In the Black-Scholes model there exists a probability measure equivalent to P, under
which (S̃t)t≥0 is a martingale.

Proof. First, from the stochastic differential equation (2.1) satisfied by St, we have

dS̃t = d(e−rtSt)

= −re−rtStdt+ e−rtdSt

= −rS̃tdt+ e−rt (St(µdt+ σdWt))

= −rS̃tdt+ e−rtStµdt+ e−rtStσdWt

= −rS̃tdt+ S̃tµdt+ S̃tσdWt

= S̃t ((µ− r)dt+ σdWt)

= σS̃t

((
µ− r
σ

)
dt+ dWt

)
,

where (Wt)t≥0 is a standard Brownian motion. Let

Bt = Wt +

∫ t

0

(
µ− r
σ

)
ds,

then
dBt = dWt +

(
µ− r
σ

)
dt.

Therefore, we have that dS̃t = σS̃tdBt. By Girsanov’s theorem, we have that under probability measure
P∗, the stochastic process (Bt)t≥0 is a Brownian motion. For this, let θt =

µ− r
σ

, i.e., (θt)t≥0 is a constant

process, then
∫ T

0

(
µ− r
σ

)2

ds <∞, and if we define

Lt = exp

(
−
∫ t

0

(
µ− r
σ

)
dWs −

1

2

∫ t

0

(
µ− r
σ

)2

ds

)

= exp

(
−
(
µ− r
σ

)
Wt −

1

2

(
µ− r
σ

)2

t

)
.

Then, Lt is a martingale under P. By Girsanov’s theorem , we have that under P(LT ) the process (Bt)t≥0

is a Brownian motion.
Then, the stochastic differential equation dS̃t = σS̃tdBt has a unique solution given by

S̃t = S0 exp

(
−σ

2

2
t+ σBt

)
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which is a martingale under PLT .
Finally, we need to prove that P is equivalent to PLT , i.e., we need to prove the following:

• PLT � P: Let A ∈ F such that P(A) = 0, then

PLt(A) =

∫
A
LTdP = 0.

• P� PLT : Let A ∈ F such that PLT (A) = 0, then

P(A) =

∫
A
dP =

∫
A

LT
LT

dP =

∫
A

1

LT
LTdP =

∫
A

1

LT
dPLT = 0.

�

In the following, we will denote by P∗ the probability measure equivalent to P. Then, under P∗ we can
write

St = S0 exp

((
r − σ2

2

)
t+ σWt

)
,

where (Wt)t≥0 is a P∗ Brownian motion.

1.3.2 Absence of arbitrage and completeness

For the notion of absence of arbitrage, it is sufficient the existence of a risk neutral probability measure
P∗ to have a model without arbitrage and complete. Then, we have the following result.

Theorem 1.11. The Black-Scholes model is free of arbitrage.

Proof. We know that under P∗, (S̃t) is a martingale. If we consider an admissible strategy φ with zero
initial value, we have

Ṽ (φ) =

∫ t

0
φ1
udS̃u

=

∫ t

0
φ1
uσS̃udWt > 0.

So, Ṽ (φ) is a local martingale, that is, there exists an increasing sequence of stopping times (τn)n≥0 with
respect to (Ft)t≥0 with τn ↑ ∞ such that for n fixed, (Ṽt∧τn)t≥0 is a P∗ martingale for all n ≥ 0. Then we
have

EP∗
[
Ṽt∧τn(φ)

]
= 0.

Since Ṽt∧τn(φ) ≥ 0, we obtain that Ṽt∧τn(φ) = 0 P∗-almost surely for all n ≥ 0. Consequently,

ṼT (φ) = lim
n→∞

Ṽt∧τn(φ) = 0 P∗ − a.s.

Finally, since P∗ is equivalent to P, we obtain that ṼT (φ) = 0 P-a.s. So, no arbitrage is possible. �
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The next result is the second fundamental theorem of asset pricing in continuous time.

Theorem 1.12. A market model free of arbitrage is complete if and only it admits a unique risk neutral
probability measure P∗.

For the proof, see [27].
In Black Scholes model, we proved the existence of a unique risk neutral probability measure, hence

the model is complete.





Chapter 2

Option Pricing and Implied Volatility

In Black-Scholes model we assume that the stock price (St)t≥0 follows a geometric Brownian motion, which
has constant volatility. But, this model ignores possible behaviors, one interesting case is when we have
changes in volatility. However the financial market still uses the Black-Scholes formula in order to price
an option.

This leads us to ask the following question: which value of volatility we should include in Black-Scholes
formula in order to obtain the right option price?. To try to answer this, we will introduce the concept of
implied volatility, since volatility is the most important parameter in the Black-Scholes model. The implied
volatility of options of different maturities has an interesting characteristic. There is a pattern that implied
volatility is not constant for different strike prices, and this is called volatility smile or volatility skew.

2.1 Option pricing in Black-Scholes model

We can use (St)t≥0 to price an option with maturity time T and initial time t, strike price K, risk free
interest rate r, current stock price S0 and volatility σ. We will focus only on European options.

Definition 2.1. A European option is a contract that gives you the right but not the obligation, to get a
payoff X at maturity T , where X is a non-negative FT -measurable random variable. Then, we say that:

• A call option is an European option that gives the right but not the obligation, to buy one unit of an
underlying asset for a predetermined strike price K and maturity time T . If ST is the price of the

13
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underlying asset at maturity time T , then the value of this contract at maturity is:

h(ST ) = (ST −K)+ =

ST −K if ST > K,

0 if ST ≤ K.

• A put option is a European option that gives the right, but not the obligation, to sell a unit of an
underlying asset for a strike price K at the maturity date T . This payoff is:

h(ST ) = (K − ST )+ =

K − ST if ST < K,

0 if ST ≥ K.

The price of a call option at time t under the risk neutral probability measure P∗ is the discounted
expected value to the initial time,

Ct = EP∗
[
e−r(T−t)(ST −K)+|Ft

]
,

by definition of a call option and properties of expectation, we have

Ct = e−r(T−t)EP∗
[
ST1{ST>K}|Ft

]
−Ke−r(T−t)EP∗

[
1{ST>K}|Ft

]
= e−r(T−t)StEP∗

[
ST
St
1{ST

St
> K
St

}|Ft

]
−Ke−r(T−t)EP∗

[
1{ST

St
> K
St

}|Ft

]
= e−r(T−t)StEP∗

[
ST
St
1{ST

St
>K
x

}]
x=St

−Ke−r(T−t)EP∗

[
1{ST

St
>K
x

}]
x=St

.

First, we know that

St = S0 exp

((
r − σ2

2

)
t+ σWt

)
,

and that
ST
St

= exp

((
r − σ2

2

)
(T − t) + σ(WT −Wt)

)
,

since WT −Wt = WT−t in law, for the first term, we have

e−r(T−t)StEP∗

[
ST
St
1{ST

St
>K
x

}]
x=St

= e−r(T−t)StEP∗

[
exp

((
r − σ2

2

)
(T − t) + σWT−t

)
1{

exp
((
r−σ2

2

)
(T−t)+σWT−t

)
>K
x

}]
= e−r(T−t)StEP∗

[
er(T−t) exp

((
−σ

2

2

)
(T − t) + σWT−t

)
1{ (

r−σ2
2

)
(T−t)+σWT−t>log(Kx )

}]
= StEP∗

[
exp

((
−σ

2

2

)
(T − t) + σWT−t

)
1{

σWT−t>log(Kx )−
(
r−σ2

2

)
(T−t)

}]
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= StEP∗

[
exp

((
−σ

2

2

)
(T − t) + σ

√
T − tY

)
1{

σ
√
T−tY >log(Kx )−

(
r−σ2

2

)
(T−t)

}]

= StEP∗

exp

((
−σ

2

2

)
(T − t) + σ

√
T − tY

)
1Y > log( xK )+

(
r−σ22

)
(T−t)

σ
√
T−t




where Y is a standard Gaussian random variable, and since St follows a standard Gaussian law, we have

e−r(T−t)StEP∗

[
ST
St
1{ST

St
>K
x

}]
x=St

= St
1√
2π

∫ log( xK )+
(
r−σ

2

2

)
(T−t)

σ
√
T−t

−∞
exp

(
−1

2
σ2(T − t) + σ

√
T − ty

)
exp

(
−y

2

2

)
dy

= St
1√
2π

∫ log( xK )+
(
r−σ

2

2

)
(T−t)

σ
√
T−t

−∞
exp

(
−1

2

(
σ
√
T − t+ y

)2
)
dy

= St
1√
2π

∫ log( xK )+
(
r+σ

2

2

)
(T−t)

σ
√
T−t

−∞
exp

(
−u

2

2

)
du

= StN(d1)

For the second summand, we have

EP∗

[
1{ST

St
>K
x

}]
x=St

= P∗
(
ST
St

>
K

x

)
,

and if we take logarithm, we obtain

P∗
(

log
ST
St

> log

(
K

x

))
= P∗

((
r − σ2

2

)
(T − t) + σWT−t > log

(
K

x

))
= P∗

(
σWT−t > log

(
K

x

)
−
(
r − σ2

2

)
(T − t)

)

= P∗
 WT−t√

T − t
>

log
(
K
x

)
−
(
r − σ2

2

)
(T − t)

σ
√
T − t


= N(d2).

Therefore,
Ct = StN(d1)−Ke−r(T−t)N(d2).

In other words, the price of a European call option at time t and for an observed risky asset price S0

is given by the Black-Scholes formula:

CBS(S0,K, r, T, t, σ) = S0N(d1)−Ke−r(T−t)N(d2), (2.1)
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where

d1 =
log(S0/K) +

(
r + σ2

2

)
(T − t)

σ
√
T − t

,

d2 = d1 − σ
√
T − t =

log(S0/K) +
(
r − σ2

2

)
(T − t)

σ
√
T − t

and
N(z) =

1√
2π

∫ z

−∞
e−y

2/2dy

is the standard Gaussian cumulative distribution function.

2.2 Implied Volatility

In Black-Scholes model the unique parameter which cannot be observed in the financial market is the
volatility, since the values of the parameters S0,K, r, T, t used to price an option via the Black-Scholes
formula can be observed. To estimate the volatility coefficient σ can be a more difficult task, and several
estimation methods are considered. Almost always, the inversion of the Black-Scholes formula to get the
implied volatility is done with some sort of solver method, for example, the Newton-Raphson method.

We assume that stock price S follows a geometric Brownian motion and that interest rate is constant,
then given a constant volatility, and put τ = T − t, we know that Black-Scholes formula is given by

CBS(S,K, r, τ, σ) := SN(d1)−Ke−rτN(d2),

where

d1 =
log(S/K) +

(
r + σ2

2

)
τ

σ
√
τ

and d2 =
log(S/K) +

(
r − σ2

2

)
τ

σ
√
τ

.

Since
vega :=

∂ CBS(S,K, r, τ, σ)

∂σ
=
S exp(−d2

1/2)
√
τ√

2π
= S0

√
τN(d1)

is positive, then CBS(S,K, r, τ, σ) is strictly increasing on σ. In addition, we have

lim
σ→0

CBS(S,K, r, τ, σ) = (S −Ke−rτ )+,

lim
σ→∞

CBS(S,K, r, τ, σ) = S.

We want to mention that the vega of an option is the sensitive of the option price to a change in volatility.
From the properties of European option, we have that the price of a call option satisfies

(S −Ke−rτ )+ ≤ C(K, τ, S) ≤ S.
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independent of the model. Therefore, for any price C∗(K, τ, S) observed in the market for a European call
option with maturity time τ and strike price K, there exists a unique solution σimp(K, τ, S) such that

CBS(S,K, r, τ, σimp) = C∗(K, τ, S),

where σimp(K, τ, S) is called the implied volatility.
Knowing S, the implied volatility σimp is a function of τ and K. If Black-Scholes model is true, σimp

must be a constant function, however this is not compatible with the data.
The Black-Scholes model implies that σimp of all options on the same S must be the same. However,

when calculating σimp from prices of different options observed in the market, we find that

• The implied volatility is always higher than the volatility of S.

• The implied volatility depends on the strike and maturity.

To obtain the value of implied volatility σimp we must to find the volatility that equals the theoretical
price of B-S model with the real market price C∗, since the other parameters are given. As this volatility
can not be obtained directly from the Black-Scholes formula we must apply numerical methods to find
roots, the method that we will present below is an iterative method that allows us to approximate the
solution of an equation of type:

f(σ) = CBS(S,K, r, τ, σ)− C∗ = 0.

There exist a lot of methods to approximate the roots of a function. For calculate the volatility, we
can use Newton-Raphson method, Bisection method, Secant method, etc. In our case, we used only the
first to estimate the implied volatility.

2.2.1 Newton-Raphson method

The Newton-Raphson method is a powerful technique for solving numerically equations of the form

f(x) = 0.

That is, this method approximate roots of a function. It is an iterative algorithm, which converges (usually)
rapidly.

In the Newton–Raphson method, we take a tangent line to the curve y = f(x) under the assumption
that f is a differentiable function which derivatives are non zero. It can be derived from the Taylor series
expansion as well.

In the Taylor series approach, at point x the equation for the tangent line to y = f(x) is given by

f(x) ≈ f(xn) + f ′(xn)(x− xn) +
f ′′(xn)

2!
(x− xn)2 + · · ·
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If x in near to xn, we can ignore the terms
f ′′(xn)

2!
(x− xn)2 + · · · to obtain

f(x) ≈ f(xn) + f ′(xn)(x− xn).

Now, we take x = xn+1 and since the function value at xn+1 (at the intersection with the x-axis) has a
root, i.e. f(xn+1) = 0, then we can write the previous equation as

f(xn) + f ′(xn)(xn+1 − xn) = 0

which simplifies as

xn+1 = xn −
f(xn)

f ′(xn)
.

This method is very efficient since we only need to give an initial value, in addition to which it converges
quickly, but it has an inconvenient as it is necessary to know the derivative and if it takes values close to
zero, the method may not converge, also if f ′(xn) = 0 the method cannot be applied.

2.3 Implied volatility in real market

In theory, the implied volatility should be equal for any choice of stock prices S and strike prices K, but in
practice the graph of implied volatility versus moneyness S/K is convex. The most quoted phenomenon
testifying to the limitations of the Black–Scholes model is established by the relationship between volatility
and the exercise price, which should give rise to a form of a smile. So that, we have two types of smile
depending of the type of distribution followed by the stock price, then will talk about implied volatility
smile and implied volatility skew.

There is a conflict between the implied volatility and Black-Scholes model, since according to this
model, we should obtain a horizontal straight line which implied that any options for buying or selling
the same underlying stock with the same expiration date, but with different exercise prices, should have
the same implied volatility, see Figure 2.1 (b). But one of the limitations of Black-Scholes models is the
smile effect, which say that implied volatilities are not constant for options with the same maturity time,
but different strike prices as we can see in Figure 2.1 (a).

2.3.1 Volatility Smile

As described by Emanuel Derman in Laughter in the Dark-The Problem of the Volatility Smile in [7], the
volatility smile is the empirical relationship observed between the implied volatility and the stock price of
an option. The problem is that currently there is no known model that adequately adjusts the complexity
of this relationship.
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Figure 2.1: Figure taken from Derman [7].

What is known as the volatility smile appears by first time in the financial markets after the crisis
stock market in October 1987, but the investors afterwards began to reassess the probabilities of rare
events such as financial disasters, and caused higher evaluations of some options. This reflects the fact
that the standard Black–Scholes assumes log-normal distributions of asset price so that for these options
there has been a very marked and rapid deterioration. Although it was until December 1990 that said
problem attracted the attention of Derman, one of the main researchers of the subject.

A volatility smile is a common graph shape that results from plotting the strike price and implied
volatility of a group of options with the same maturity date, see Figure 2.2 (a).

In Figure 2.2 (b) we can observe that both tails of the implied distribution are heavier than the log-
normal distribution, so this distribution tells us that small and big movements are more probably than with
the log-normal distribution. Therefore, if the implied distribution has heavier tails than the log-normal,
the market prices of the options will be higher than those that would be obtained with the Black-Scholes
formula since there is a greater probability than the one assumed by the Black-Scholes model. That is, as
explained by Hull, if we assume a call option with strike price K2, this option only obtains benefits if at
the time of expiration the price is above K2. The same happens with a put option with strike price K1 to
obtain the benefits of a price lower than K1.

If the correlation between the volatility and the stock price is not allowed, we get a volatility smile,
which is symmetric as shown below, where the implied volatility increases if the strike moves away from
the price of the stock price.
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(a) Volatility smile (b) Distribution of implied volatility

Figure 2.2: Figures taken from Hull [11].

2.3.2 Volatility Skew

The skew is important as it reflects the market’s perception of risk or expected volatility for different
potential share price outcomes. The skew looks at implied volatilities across different strike prices for a
particular maturity time.

An implied volatility skew tells us that the volatility decreases as the strike price increases. There is
a premium charged for out of the-money put options above their Black–Scholes formula computed with
at-the-money implied volatility. The market prices as though the log-normal model fails to capture prob-
abilities of large downward stock price movements and supplements the Black–Scholes prices to account
for this.

In the case of the volatility skew, see Figure 2.3, the implicit distribution is only heavier in the left tail,
since the right tail is lighter than the log-normal distribution. The implicit distribution would indicate that
both the probability of small movements and large falls is greater than the probability of the log-normal
distribution. This implicit distribution means that if we plot the volatility as a function of the strike, it
will be decreasing.

Following the reasoning of Hull, if we assume a call option with an exercise price of K2, this option
only obtains benefits if at the time of expiration the price is above K2. If we observe Figure 2.3 (b) the
probability of this happening is lower in the implicit distribution than in the log-normal, therefore the
price will be lower than that calculated by Black-Scholes and, a lower price implies a lower volatility. Now,
if we assume a put with an exercise price K1, benefits will be obtained if at the expiration the price is
less than K1. It is more likeless that this happens with the implicit distribution than with the log-normal
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(a) Volatility skew (b) Distribution of implied volatility

Figure 2.3: Figures taken from Hull [11].

distribution, that’s why the price of the option will be higher and, consequently, the volatility too.
If the correlation between the volatility and the stock price is allowed, a linear term is added that will

distort the smile, producing asymmetric smiles that can also match the smiles of the real price index.
Why is there a skew? For stock prices the graph of the implied volatility is always changing. There

is generally a skew, however, so that for any fixed maturity T , the implied volatility decreases with the
strike K. It is most pronounced at shorter expirations. Now, we explain one of the principal explanations
for the skew: Risk aversion which can appear in many guises:

(a) Stock prices do not follow a geometric Brownian motion with a fixed volatility. Markets often jump
and jumps to the downside tend to be larger and more frequent than jumps to the upside.

(b) Supply and demand. Investors like to protect their portfolio by purchasing out-of-the-money puts
and so there is more demand for options with lower strikes.





Chapter 3

Alternatives to Black-Scholes Model

Extensions to Black Scholes model for option pricing appeared in finance literature after the publication
of the paper of Black and Scholes [5] in 1973. For example, in 1976 Merton [19] generalized the Black
Scholes formula, incorporating jump diffusion models for the underlying asset, and, in 1987 stochastic
volatility models were first studied by Hull and White in [12], which the underlying price is modeled as a
stochastic process driven by a random volatility that may or may not be independent.

3.1 Stochastic volatility models

In stochastic volatility models, the stock price (St)t≥0 satisfies the stochastic differential equation

dSt = µtStdt+ σtStdWt (3.1)

where (Wt)t≥0 is a standard Brownian motion, (µt)t≥0 is the instantaneous drift of stock price return
process, and (σt)t≥0 is called the volatility process.

Let us consider the volatility as a function of a one-dimensional Itô’s process σt = f(Yt) where f is
some smooth, positive, increasing function and Yt is a one-dimensional processes satisfying the stochastic
differential equation

dYt = α(Yt)dt+ β(Yt)dZt (3.2)

where α : R→ R, β : R→ R+ and (Zt)t≥0 is a standard Brownian motion.
We want to incorporate the concept of correlation with stock price changes by correlating Brownian

motions. The Brownian motions Zt and Wt have constant correlation ρ ∈ [−1, 1], where the correlation
coefficient is defined by

ρdt = d〈Wt, Zt〉t.

23
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3.1.1 Pricing with equivalent martingale measures

We want to derive the pricing partial differential equation assuming the following stochastic volatility
model:

dSt = µ(Yt)Stdt+ σtStdWt,

σt = f(Yt), (3.3)

dYt = α(Yt)dt+ β(Yt)dZt,

where µ only depends of Y . It is also convenient to decompose Zt in terms of Wt and a independent
standard Brownian motion Bt as follows

Zt = ρWt +
√

1− ρ2Bt.

We suppose that there is an equivalent probability measure P∗ under the discounted stock price S̃ is
a martingale, and we know that the price of an option with maturity time T is given by the formula

Ct = EP∗
[
e−r(T−t)h(ST )|Ft

]
, (3.4)

then for each P∗ we can find a reasonable option price Ct. Now, we want to find a family of equivalent

risk neutral probability measures as in Section 1.3. Let θt :=
µ(Ys)− r
f(Ys)

, and we define

W ∗t = Wt +

∫ t

0
θsds,

and for an arbitrary adapted and square integrable process (γt)t≥0,

B∗t = Bt +

∫ t

0
γsds.

By Girsanov’s theorem, W ∗t and B∗t are independent standard Brownian motions under the probability
measure P∗(γ) defined by

dP∗(γ)

dP
= exp

(
−
∫ T

0
θsdWs −

∫ T

0
γsdBs −

1

2

∫ T

0

(
θ2
s + γ2

s

)
ds

)
.

Then, under P∗(γ), the stochastic differential equation (3.3) become

dSt = rStdt+ f(Yt)StdW
∗
t , (3.5)

dYt = (α(Yt)− β(Yt)Λt) dt+ β(Yt)dZ
∗
t , (3.6)

Z∗t = ρW ∗t +
√

1− ρ2B∗t ,
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where

Λt = ρθt + γt
√

1− ρ2

is the total risk premium process. Then, we can price a payoff h(ST ) under P∗(γ) as

Ct = EP∗(γ)
[
e−r(T−t)h(ST )|Ft

]
. (3.7)

The process (γt)t≥0 is called the volatility risk premium or the market price of volatility risk, which
parametrizes the space of risk neutral probabilities measures.

3.1.2 Uncorrelated Stochastic Volatility Models

We consider stochastic volatility models where the stock price satisfies the following stochastic differential
equation:

dSt = rStdt+ σtStdW
∗
t .

We suppose that the volatility process (σt)t≥0 is independent of the Brownian motion W ∗t under the
probability measure P∗. We refer to such models as uncorrelated stochastic volatility models.

In the case of diffusion stochastic volatility models of the form (3.5) and (3.6), this corresponds to the
case ρ = 0 and γt independent of the Brownian motion W ∗t .

Hull-White Formula

The pricing formula given in (3.7) for a European option h(ST ) can be simplified under some assumptions.
If we condition on the path of volatility process (σt)t≥0 and by iterated expectations then

Ct = EP∗(γ)
[
EP∗(γ)

[
e−r(T−t)h(ST )|Ft, σs, t ≤ s ≤ T

] ∣∣∣Ft

]
.

We can note that the inner conditional expectation is the Black-Scholes formula with a time dependent
volatility. Therefore, we can write the previously equation as

Ct = EP∗(γ)
[
CBS(St,K, r, T, , t,

√
σ2)|Ft

]
,

where

σ2 :=
1

T − t

∫ T

t
σ2
sds.

We observe that the call option price is the average over all possible volatility paths.

The previous results appears in Renault and Touzi [23] and in [8].
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3.1.3 Correlated Stochastic Volatility Models

We consider stochastic volatility models where we suppose that the volatility process (σt)t≥0 is correlated
with the Brownian motion Wt. Under an equivalent martingale measure P∗(γ), we can rewrite the model
given by (3.5)-(3.6) as the stock price satisfying the stochastic differential equation:

dSt
St

= rdt+ σt

(√
1− ρ2dŴ ∗t + ρdZ∗t

)
,

dYt = (α(Yt)− β(Yt)Λt) dt+ β(Yt)dZ
∗
t ,

where W ∗t is decomposed in terms of Z∗t and an independent standard Brownian motion Ŵ ∗t . Then, we
can apply Itô’s formula to obtain

d log(St) =

(
r − σ2

t

2

)
dt+ σt

(√
1− ρ2dŴ ∗t + ρdZ∗t

)
.

Since in Chapter 1, we proved that (St)t≥0 is a log-normal random variable, if we take conditional
expectation on the path of the Brownian motion Z∗t , we have that the mean is

EP∗(γ)
[
log(St)|Ft, Z

∗
[t,T ]

]
= log(S0) + ρ

∫ T

t
σsZ

∗
t −

ρ2

2

∫ T

t
σ2
sds+

(
r − (1− ρ2)σ2

2

)
(T − t),

VarP∗(γ)
[
log(St)|Ft, Z

∗
[t,T ]

]
= (1− ρ2)σ2(T − t),

where σ2 =
1

T − t

∫ T

t
σ2
sds. We can reformulate the Hull-White formula for correlated stochastic volatility

models as follows
Ct = EP∗(γ)

[
CBS(Stξt,K, r, T, , t,

√
(1− ρ2)σ2)

∣∣∣Ft

]
, (3.8)

where

ξt = exp

(
ρ

∫ T

t
σsZ

∗
t −

ρ2

2

∫ T

t
σ2
sds

)
.

In this way, the price Ct is a mixture of Black-Scholes formula with different volatilities and different stock
prices.

The correlated Hull-White formula given in equation (3.8) is given by Willard in [28].

3.2 Jump diffusion models

The two basic building blocks of every jump diffusion model are the Brownian motion (the diffusion part)
and the Poisson process (the jump part).

In this section we will introduce the construction of processes with jumps and independent increments,
including the Poisson and compound Poisson processes. The first application of jump processes in option
pricing was introduced by Robert Merton in [19].
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3.2.1 Poisson Process

The most elementary jump process is the Poisson process Nt : Ω→ Z+ which is a counting process. The
process (Nt)t≥0 has jumps of size +1 only, and its paths are constant in between two jumps. In other
words, the value Nt at time t is given by

Nt =
∑
n≥1

1{t≥Tn}(t), t ≥ 0

where, Tn =

n∑
i=1

τi with (τi)i≥1 a sequence of independent exponential random variables with parameter

λ, that is, with distribution P (τi ≥ y) = e−λy.
Then, we can say that Nt counts the number of random times Tn which occur between 0 and t. The

Poisson process has the following properties:

• Independent increments: for all 0 ≤ t0 < t1 < · · · < tn and for all n ≥ 1 the increments

Nt1 −Nt0 , . . . , Ntn −Ntn−1 ,

are independent random variables.

• Stationary increments: Nt+h−Ns+h has the same distribution as Nt−Ns for all h > 0 and 0 ≤ s ≤ t.

The property of stationary increments means that for all n ∈ N, we have

P(Nt+h −Ns+h = n) = P(Nt −Ns = n), h > 0

that is, does not depend on h > 0, for all 0 ≤ s ≤ t fix. With these two properties, we have the following
property:

• Poisson distribution: The Poisson process Nt follows a Poisson distribution with intensity λ > 0.
For all n ∈ N, and for any 0 ≤ s ≤ t we have

P(Nt −Ns = n) = e−λ(t−s) (λ(t− s))n

n!
.

3.2.2 Compound Poisson Process

The Poisson process itself appears to be too limited to develop realistic price models as its jumps are
of constant size. Therefore, for financial applications, it is interesting to consider jump processes that
can have random jump sizes. The compound Poisson process is a generalization where the waiting times
between jumps are exponential, but the jump size can have an arbitrary distribution.
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Let (Yk)k>1 be an independent and identically distributed sequence of square-integrable random vari-
ables distributed as the common random variable Y with probability distribution γ(dx) on R, independent
of the Poisson process (Nt)t≥0. We have

P(Z ∈ [a, b]) = γ([a, b]) =

∫ b

a
γ(dx), −∞ < a ≤ b <∞.

Definition 3.1. The stochastic process (Xt)t≥0 defined by

Xt = Y1 + Y2 + · · ·+ YNt =

Nt∑
k=1

Yk, t ≥ 0,

is called a compound Poisson process with intensity λ > 0.
When Yk = 1 we obtain that Xt is the Poisson process.

We can assume that the jump sizes follows a Gaussian law with mean m and variance δ2, in this case
γ(dx) is given by

γ(dx) =
1√

2πδ2
exp

(
−(x−m)2

2δ2

)
dx.

(a) Poisson Process with jump size +1 (b) compound Poisson process with Gaussian jump sizes

Figure 3.1: Simulation of sample paths of Poisson and compound Poisson process, the images were obtained
from Cont & Tankov [6].
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3.2.3 Merton’s approach

If we combine the Brownian motion with drift and a compound Poisson process, we obtain the simple case
of jump diffusion given by

Xt = µt+ σWt +

Nt∑
k=1

Yk.

Merton consider the jump-diffusion model given by:

St = S0 exp(Xt) = S0 exp

(
µt+ σWt +

Nt∑
k=1

Yk

)
, (3.9)

where Wt is a standard Brownian motion, Nt is a Poisson process with intensity λ independent of Wt and
(Yk)k≥1 are independent and identically distributed Gaussian random variables with mean m and variance
δ2 and independent from Wt and Nt.

The purpose of Merton was change only the drift of Brownian motion in Black-Scholes model, then
under the risk-free probability measure P∗, we have:

St = S0 exp

(
µM t+ σWt +

Nt∑
k=1

Yk

)
, (3.10)

where Wt is a standard Brownian motion, Nt and Yk are independent from Wt and we choose µM such
that S̃t = Ste

−rt are a P∗−martingale:

µM = r − σ2

2
− λE

[
eYt − 1

]
= r − σ2

2
− λ

(
exp

(
m+

δ2

2

)
− 1

)
.

Merton justified the choice (3.10) by assuming that jump risk is diversified, therefore, no risk premium
is attached to it. In particular, the distribution of jump times and jump sizes is unchanged.

A European option with payoff h(ST ) can then be priced according to the following formula:

CMt = e−r(T−t)EP∗ [h(ST )|Ft] .

Since St is a Markov process under P∗, the option price CMt can be expressed as a deterministic function
of t and St, as follows:

CM (t, St) = e−r(T−t)EP∗ [(ST −K)+|Ft]

= e−r(T−t)E

h
x exp

µM (T − t) + σWT−t +

NT−t∑
k=1

Yk




x=St
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By conditioning on the number of jumps Nt, we can express C(t, St) as a weighted sum of Black-Scholes
prices:

CM (t, St) = e−r(T−t)
∑
n≥0

P∗(Nt = n)EP∗

h
x exp

µM (T − t) + σWT−t +

NT−t∑
k=1

Yk


 ,

but we know that
NT−t∑
k=1

Yk ∼ N
(
nm, nδ2

)
, and if we substitute the value of µM , we obtain

CM (t, St) =

= e−r(T−t)
∑
n≥0

P∗(NT−t = n)EP∗

[
h

(
x exp

(
r − σ2

2
− λ

(
exp

(
m+

δ2

2

)
− 1

)
(T − t) + σWT−t + nm+

nδ2

2

))]

= e−r(T−t)
∑
n≥0

e−λ(T−t)(λ(T − t))n

n!
CBS(t, T, Sn, σn),

where σ2
n = σ2 +

nδ2

T − t
,

Sn = x exp

(
nm+

nδ2

2
− λ(T − t) exp

(
m+

δ2

2

)
+ λ(T − t)

)
and

CBS(t, T, x, σ) = e−r(T−t)E
[
h

(
x exp

((
r − σ2

2

)
(T − t) + σWT−t

))]
is the value of a European option wit maturity time T − t and payoff h(ST ) in Black-Scholes model with
volatility σ.



Chapter 4

Implied Volatility: Statics and Dynamics

In [16], Roger Lee intends to apart from the Black-Scholes model and look for volatility values that come
from alternative methods, such as stochastic volatility models. First, he begins with the basic analysis of
implied volatility, for which the following assumptions are made:

• The price of the underlying asset St is strictly positive.

• We take a call option with maturity time T and strike price K.

• We have a self-financing portfolio for the maturity time, i.e, its value is (ST −K)+ at time T .

• The option price is a function C(K,T ) for St with t the actual date.

• The risk free interest rate will be a constant r.

• We write the log-moneyness of an option at time t as:

x := log

(
K

Ster(T−t)

)
We assume a frictionless market, the Black-Scholes model suppose that St follows a geometric Brownian
motion:

dSt = µStdt+ σStdWt.

then the no-arbitrage call price satisfies
C = CBS(σ),

where the Black-Scholes formula is defined by

CBS(σ) := CBS(St,K, r, t, T, σ) := StN(d1)−Ke−r(T−t)N(d2),

31



32 CHAPTER 4. IMPLIED VOLATILITY: STATICS AND DYNAMICS

with

d1,2 =
log(Ste

r(T−t)/K)

σ
√
T − t

± σ
√
T − t
2

,

where N is the cumulative Gaussian distribution function.
On the other hand, given market prices C∗(K,T ), the implied volatility of the strike price K and

maturity time T is defined as the I(K,T ) that solves

C∗(K,T ) = CBS(K,T, I(K,T )).

In Chapter 2 we say that the solution is unique since CBS is strictly increasing in σ, and since σ → 0

(resp. σ →∞) the function CBS(σ) approaches the lower (resp. upper) bounds on a call.
We can write the implied volatility as a function Ĩ of log-moneyness and time, so

Ĩ(x, T ) := I(Ste
x+r(T−t), T ).

In the subsequent we write I to refer us I as a function of K or x.
The derivation of Black-Scholes formula can proceed by a hedging argument that yields a PDE for

C(S, t):
∂C

∂t
+

1

2
σ2S2∂

2C

∂S2
+ rS

∂C

∂S
− rC = 0

with condition C(S, T ) = (S −K)+.

4.1 Statics

The term static refers to the analysis of I(x, T ) or I(K,T ) for t fixed. As we saw in Chapter 2, the plot
of I is not constant with respect to K (or x), it can take the shape of a smile, in which I(K) is greater
for K out-of-money than it is for K near-the-money, however, is a skew in which at-the-money I slopes
downward, and the smile is far more pronounced for small K than for large K. Empirically smile or skew
flattens as T increases.

4.1.1 Statics under absence of arbitrage

Assuming only the absence of arbitrage, one obtains bounds on the slope of the implied volatility surface,
as well as a characterization of how fast I grows at extreme strikes.

Slope bounds

Hodges [10] gives bounds on implied volatility based on the non-negativity of call spreads and put spreads.
If the strike prices satisfies K1 < K2 then

C(K1) ≥ C(K2) and P (K1) ≤ P (K2). (4.1)
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Jim Gatheral [9] observed that

C(K1) ≥ C(K2) and
P (K1)

K1
≤ P (K2)

K2
(4.2)

which is evident from a comparison of the respective payoff functions. Assuming the differentiability of
option prices in K, we have

∂C

∂K
≤ 0 and

∂

∂K

(
P

K

)
≥ 0.

Substituting C = CBS(I) and P = PBS(I) and simplifying, we have

− N(−d1)√
TN ′(d1)

≤ ∂I

∂x
≤ N(d2)√

TN ′(d2)
,

where the upper and lower bounds come from the call and put constraints, respectively. Now, using the
Mill’s Ratio R(d) := (1−N(d))/N ′(d), we rewrite the last inequality as

−R(d1)√
T
≤ ∂I

∂x
≤ R(−d2)√

T
.

From (4.1) without Gatheral’s observation (4.2) yields the significantly weaker lower bound −R(d2)/
√
T .

Of particular interest is the behavior at-the-money, when x = 0. In the short-dated limit, as T → 0,
we assume that I(0, T ) is bounded above. Then

d1,2(x = 0) = ±I(0, T )
√
T/2→ 0.

Since R(0) is a positive constant, the at-the-money skew slope must have the short-dated behavior∣∣∣∂I
∂x

(0, T )
∣∣∣ = O

(
1√
T

)
as T → 0. (4.3)

In the long-dated limit, as T →∞, we assume that I(0, T ) is bounded away from 0. Then

d1,2(x = 0) = ±I(0, T )
√
T/2→ ±∞.

Since R(d) ∼ d−1 as d→∞, the at-the-money skew slope must have the long-dated behavior

∣∣∣∂I
∂x

(0, T )
∣∣∣ = O

(
1

T

)
as T →∞. (4.4)

According to (4.4), the rule of thumb that approximates the skew slope decay rate as T−1/2 cannot
maintain validity into long-dated expiries.
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4.1.2 Statics under stochastic volatility

We assume that the stock prices (St) follows a stochastic differential equation of the form

dSt = rStdt+
√
YtStdWt

dYt = α(Yt) + β(Yt)dZt

where Wt and Zt are Brownian motions with correlation ρ. From here one obtains, via perturbation
methods, approximations to the implied volatility skew I.

Zero Correlation

Renault and Touzi [23] proved that in the case when the correlation is zero, the implied volatility is a
symmetric smile, symmetric in the sense that

I(x, T ) = I(−x, T )

and a smile in the sense that I is increasing in x for x > 0.
According Hull and White in [12], we may illustrate the qualitative difference between Black-Scholes

prices and option prices under stochastic volatility in the following intuitive way. We expand the function

C(v) := CBS(
√
v) where v = E[Y ] and Y is the average variance defined as Y =

1

T

∫ T

0
σ2
sds, we have

C = CBS(I) ≈ CBS(E[Y ]) + (I2 − E[Y ])
∂ CBS

∂Y
,

and using Taylor power series expansion,

C = E[CBS(I)] ≈ CBS(E[Y ]) +
1

2
Var(Y )

∂2 CBS

∂Y 2

yields the approximation

I2 ≈ E[Y ] +
1

4

Var(Y )

E[Y ]2

(
x2

T
− E[Y ]− 1

4
E[Y ]2T

)
,

which is quadratic in x, with minimum at x = 0.
To the extent that implied volatility skews are empirically not symmetric in equity markets, stochastic

volatility models with zero correlation will not be consistent with market data.

Fast mean reversion

In [8] Fouque, Papanicolaou and Sircar model stochastic volatility as a function f of a state variable Yt
that follows a rapidly mean-reverting diffusion process, as we saw in Section 3.1.1.
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The fast-mean-reversion approximation is particularly suited for pricing long-dated options, in that
long time horizon, volatility has time to undergo much activity, so relative to the time scale of the option’s
lifetime, volatility can indeed be considered to mean-revert rapidly.

In the case of Ornstein-Uhlenbeck process Y , this means that for some large α,

dSt = µtStdt+ f(Yt)StdŴt,

dYt = α(θ − Yt)dt+ βdẐt,

where the Brownian motions Ŵt and Ẑt have correlation ρ. Under the pricing probability measure, we
have

dSt = rStdt+ f(Yt)StdWt,

dYt = [α(θ − Yt)− βΛ(Yt)]dt+ βdZt,

where the volatility risk premium Λ is assumed to depend only on Y . Let pY denote the invariant density
of Y , which is normal with mean θ and variance β2/(2α). As in the Chapter 3, we denote the quadratic
average of volatility with respect to pY by σ̄2

∞ := 〈f2〉. By a singular perturbation analysis of the PDE
for call price, the implied volatility has an expansion with leading terms

I(x, T ) = A
x

T
+B +O(1/α),

where

A := − V3

σ̄3
∞

B := σ̄∞ +
3V3/2− V2

σ̄∞
,

and

V2 :=
β

2α
〈(2ρf − Λ)φ〉 ,

V3 :=
β

2α
〈(ρfφ〉 ,

φ(y) :=
2α

β2pY (y)

∫ ∞
−∞

(f2(z)− 〈f2〉)pY (z)dz.

Today’s volatility plays no role in the leading-order coefficients A and B. Intuitively, the assumption
of large mean-reversion rapidly erodes the influence of today’s volatility, leaving the long-run averages to
determine A and B. Furthermore, the slope of the long-dated implied volatility skew satisfies∣∣∣∂I

∂x
(0, T )

∣∣∣ ≈ 1

T
as T →∞.

As a consistency check, note that the long-dated asymptotics are consistent with the no-arbitrage con-
straint (4.4). Specifically, the T → ∞ skew slope decay of these stochastic volatility models achieves the
O(T−1) bound.



36 CHAPTER 4. IMPLIED VOLATILITY: STATICS AND DYNAMICS

Slow mean reversion

The slow-mean-reversion approximation is particularly suited for pricing short-dated options, in that short
time horizon, volatility has little time in which to vary, so relative to the time scale of the option’s lifetime,
volatility can indeed be considered to mean-revert slowly.

Assuming that for a constant parameter ε,

dσt = εα(Vt)dt+
√
εβ(Vt)dWt,

Sircar and Papanicolaou [26] develop, and Lee [17] extends, a regular perturbation analysis of the PDE

∂C

∂t
+

1

2
σ2S2∂

2C

∂S2
+
√
εSσβ

∂2C

∂S∂σ
+

1

2
εβ2∂

2C

∂σ2
+ εα

∂C

∂σ
+ rS

∂C

∂S
= rC.

satisfied by the call price under stochastic volatility. This leads to an expansion for C in powers of ε,
which in turn leads to the implied volatility expansion

I ≈ σ0 +
√
ε

(
ρβ

2σ0
x+

ρσ0β

4
T

)
+ ε

[((
ββ′

6σ2
− 5β2

12σ3

)
ρ2 +

β2

6σ3

)
x2 +

((
σβ2

12
+
σ2ββ′

24

)
ρ2 − σβ2

24

)
T 2

(
β2

24σ
− ββ′

6

)
ρ2Tx+

((
β2

24σ
− ββ′

6

)
ρ2 +

α

2
− β2

12σ

)
T

]
, where β′ =

∂β

∂σ
.

In particular, short-dated implied volatility satisfies

I(x, 0) ≈ σ0 +
√
ε
ρβ

2σ0
x.

In contrast to the case of rapid mean-reversion, the level to which volatility reverts here plays no role
in the leading-order coefficients. With a small rate of mean-reversion, today’s volatility will have the
dominant effect.

For ρ 6= 0, the at-the-money skew exhibits a slope whose sign agrees with ρ. For ρ = 0 the skew has a
parabolic shape.

4.2 Dynamics

Models for the dynamics of implied volatility surfaces treat it as a random process and try to model it
based on option prices quoted in the market. We will present a new class of models to specify directly the
dynamics of one or more implied volatilities.

We assume t the current date that is not fixed at 0, because we are now concerned with the time
evolution of I.
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4.2.1 No-arbitrage approach

One implied volatility

We consider the time evolution of a single implied volatility I at some fixed strike price K and maturity
time T . Schönbucher in [25] presented a market for the implied volatility and the main issues to achieve
the absence of arbitrage in market models. Further, an advantage is that in this model there is no need
to specify the market price of risk process since it is implied in the observed option prices. Schönbucher
proposes the following dynamics in order to model one implied volatility

dIt = utdt+ γtdW
(0)
t + vtdWt,

where Wt and W
(0)
t are independent Brownian motions. The spot price has dynamics

dSt = rStdt+ σtStdW
(0)
t ,

where σt is yet to be specified.
Since the discounted call price e−r(T−t) CBS(t, St, It) must be a martingale under the risk free proba-

bility measure, then we have for all I > 0 the following drift restriction on the call price:

∂ CBS

∂t
+ rS

∂ CBS

∂S
+ u

∂ CBS

∂I
+

1

2
σ2S2∂

2 CBS

∂S2
+ γσS

∂2 CBS

∂I∂S
+

1

2
v2∂

2 CBS

∂I2
= rCBS .

This reduces to a joint restriction on the diffusion coefficients of I, the drift of I, and the instantaneous
volatility σ:

Iu =
I2 − σ2

2(T − t)
− 1

2
d1d2v

2 +
d2√
T − t

σγ (4.5)

Since S, t, and T are observable in the financial market, we have that the volatility of I, together with the
drift of I, determines the spot volatility.

Schönbucher imposes a further constraint to ensure that I does not blow up as t tends to T . He requires
that

(I2 − σ2)− d1d2(T − t)v2 + 2d2

√
T − tσγ = O(T − t) (4.6)

which simplifies to
I2σ2 + 2γxIσ − I4 + x2v2 = 0.

This can be solved to get expiration-date implied volatility in terms of expiration date spot volatility. The
solution is particularly simple in the zero-correlation case, where γ = 0. Then, suppressing subscripts T ,

I2 =
1

2
σ2 +

√
σ2

4
+ x2v2.

Under condition 4.6, therefore, implied volatility behaves as σ + O(x2) for x small, but O(|x|1/2) for x
large.
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4.2.2 Term structure of implied volatility

Schönbucher extends this model for the forward volatility to handle a set of option withM maturity times.
The implied volatilities to be modelled are It(Km, Tm) for m = 1, . . . ,M , where T1 < T2 < · · · < TM . Let

V
(m)
t := I2

t (Km, Tm)

be the implied variance. One specifies the dynamics for the shortest-dated variance V (1), as well as all
forward variances

V (m,m+1) :=
(Tm+1 − t)V (m+1) − (Tm − t)V (m)

Tm+1 − Tm

The spot volatility σt and the drift and diffusion coefficients of V (1)
t are jointly subject to the drift

restriction (4.5) and the no-explosion condition (4.6). Then, given the σt and V
(1)
t dynamics, specifying

each V (m,m+1) diffusion coefficient determines the corresponding drift coefficient, by applying (4.5) to
V (m+1).

4.3 Plots of implied volatility for correlated and uncorrelated cases

In the following, we explain Ornstein–Uhlenbeck process, in order to show the plots of implied volatilities,
in correlated and uncorrelated cases.

An Ornstein–Uhlenbeck process is a stationary Gaussian and Markov process, which means that it
is a Gaussian process, a Markov process, and is temporally homogeneous. Overtime is a mean reverting
process and satisfies the following stochastic differential equation

dXt = −aXtdt+ bdWt, X0 = x

where a and b are constants, X0 is the initial condition and Wt is a Brownian motion.
In Chapter 3, we introduce the stochastic volatility models. In uncorrelated case ρ = 0, we obtain

the smile when we use the Hull-White formula and where the implied volatility is calculated for different
strike prices and the same maturity time T , as we can see un Figure 4.1. For correlated case ρ ∈ [−1, 1],
we extended the Hull-White formula when the stock price is random as we mentioned and if we plot the
implied volatilities for different strikes prices we obtain the skew as we can see un Figure 4.2.
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Uncorrelated case

(a) At maturity time T = 0.5 (b) At maturity time T = 1

(c) At maturity time T = 2

Figure 4.1: We plot the implied volatility for different strikes prices and maturity times
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Correlated case

(a) At maturity time T = 1 and correlation ρ = 0.2 (b) At maturity time T = 2 and correlation ρ = 0.2

(c) At maturity time T = 1 and correlation ρ = −0.2

Figure 4.2: We plot the implied volatility for different strikes prices and maturity times



Chapter 5

Fractional Brownian Motion

Fractional Brownian motion was introduced in 1940 by Andrey Kolmogorov [15]. But was Benoît Man-
delbrot who recognized the importance of this random process, and jointly with John Van Ness [20], gives
the first mathematical definition and the first properties. They established a representation for fractional
Brownian motion as an integral with respect to standard Brownian motion which involves a fractional
parameter H ∈ (0, 1), this parameter is called Hurst parameter from the statical analysis developed by
Harold Edwin Hurst [13], who studied the water level in the Nile River.

5.1 Fractional Brownian motion

Definition 5.1. A Gaussian process BH = (BH
t )t≥0 is called a fractional Brownian motion (fBm) with

Hurst parameter H ∈ (0, 1), if it has zero mean and covariance function given by

RH(s, t) = E
[
BH
t B

H
s

]
=

1

2

(
s2H + t2H − |t− s|2H

)
, s, t ≥ 0.

Usually is assumed that BH
0 = 0.

When H = 1/2, the covariance function of fBm is:

R1/2(s, t) =
1

2
(s+ t− |t− s|) = min(s, t),

which is the covariance function of Brownian motion.
The fractional Brownian motion has the following properties:

• Self-similarity. For all a > 0, the process
(
a−HBH

at

)
t≥0

is a fractional Brownian motion with Hurst
parameter H;

41
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• Stationary increments. For all 0 ≤ s < t, the increments of the process
(
BH
t −BH

s

)
t≥0

has a
Gaussian distribution with zero mean and variance

E[
(
BH
t −BH

s

)2
] = |t− s|2H .

• No independent increments. Unlike to Brownian motion, we want to mention that fractional Brow-
nian motion has not independent increments.

Hence, for any integer n ≥ 1, we have

E[
(
BH
t −BH

s

)2n
] =

(2n)!

n!2n
|t− s|2Hn

and we can apply Kolmogorov’s continuity criterion to affirm the following property:

• α−Hölder continuous sample paths. Fractional Brownian motion (BH
t )t≥0 has continuous trajecto-

ries, i.e., there exists C > 0 such that

sup
s≤t
|BH

t (ω)−BH
s (ω)| ≤ C|t− s|α,

for all α ∈ (0, H). But fBm does not have α−Hölder continuous sample paths for α ≥ H.

By a result given by Mandelbrot and Van Ness [20] we have that the sample paths of fBm are almost
surely nowhere differentiable at any point.

• No differentiable sample paths. The sample paths of (BH
t )t≥0 are not differentiable. In fact, at any

point t0 ∈ [0,∞) it satisfies

P
(

lim sup
t→t0

∣∣∣∣Bt −Bt0t− t0

∣∣∣∣ =∞
)

= 1.

5.1.1 Fractional Brownian motion is not a semimartingale

We will introduce another notion of regularity of the sample paths, called p−variation. The definition of
Itô’s integral is a direct consequence of the martingale property of the Brownian motion. But fBm does
not exhibit this property, in fact, it is not even a semimartingale, except when H = 1/2, which is an
impediment to defining the stochastic integral in the Itô sense, reason why other techniques are required
to define an integral with respect to fBm.

First, we want to study the asymptotic behavior of the p−variation of fBm, in order to find what is it
p−variation.

We consider T > 0 and we fix an interval [0, T ]. Let X = (Xt)t≥0 be a stochastic process and we
consider a sequence of partitions (πn)n∈N given by π = {0 = t0 < t1 < · · · < tn = T} such that

lim sup
n→∞,k≤n

(tk − tk−1) = 0.
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Definition 5.2. We define the p-variation of a stochastic process X as

Vp(X, [0, T ]) = sup
π

n∑
k=1

|Xtk −Xtk−1
|p,

for 1 ≤ p <∞. If Vp(X, [0, T ]) <∞, then (Xt)t≥0 has bounded p-variation.

Then, we have the following result: let BH be a fBm with Hurst parameter H ∈ (0, 1), p ∈ [1,∞) and
N ∼ N (0, 1). Then, when n→∞, we have the following limit in L2(Ω)

n∑
k=1

|Bk/n −B(k−1)/n|p −→


0 si p > 1/H,

E[|N |p] si p = 1/H,

+∞ si p < 1/H.

Rogers proved in [24] that fBm has finite p−variation when p = 1/H and in consequence that fBm
is not a semimartingale, except in the case H = 1/2 since if H < 1/2, the 2-variation is infinite, and if
H > 1/2 the 2-variation is zero and for all H ∈ (0, 1) we have that 1-variation is infinite. We recall that
semimartingales are processes for which a stochastic calculus can be developed, and they can be expressed
as the sum of a bounded variation process and a local martingale which has finite 2−variation.

To define an integral of the form ∫ T

0
Xt dBH

t ,

we cannot apply Itô’s calculus because BH is not a semimartingale and we cannot apply Lebesgue-Stieltjes
integral because the sample paths of BH are not of bounded variation. Therefore, other techniques are
required so that an integral with respect to the fractional Brownian motion is well defined.

5.1.2 Fractional Brownian motion is not a Markov process

In addition, fractional Brownian motion loses the property of being a Markov process when the Hurst
parameter H 6= 1/2.

Let X = (Xt)t≥0 be a real-valued stochastic process. We say that (Xt)t≥0 is a Markov process if for
all Borel set A ⊂ R and all real numbers t > s > 0,

P(Xt ∈ A | Xu, u ≤ s) = P(Xt ∈ A | Xs).

That is, (Xt)t≥0 is a process without memory, which signifies that the conditional probability of the future
time of a stochastic process uniquely depends on present time, being independent of the history of that
process. For fractional Brownian motion, we have the following result (for the proof see [21, Theorem 2.3].

Theorem 5.3. Let BH = (BH
t )t≥0 be a fractional Brownian motion of Hurst index H ∈ (0, 1). Then BH

is not a Markov process for H 6= 1/2.
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5.1.3 Long-range dependence

Definition 5.4. A stationary sequence of random variables (Xn)n∈N, we say that has long-range depen-
dence if the covariance sequence

ρ(n) = Cov(Xk, Xk+1), k, n ∈ N

satisfies

lim
n→∞

ρ(n)

cn−α
= 1.

for some constants c and α ∈ (0, 1). In this case, the dependence between Xk and Xk−1 falls slowly when
n tends to infinity, since ρ(n) = O(cn−α), that is,

lim sup
n→∞

∣∣∣ ρ(n)

cn−α

∣∣∣ <∞.
For fractional Brownian motion, we have that has long-range dependence only when H > 1/2, since

ρH(n) ≈ n2H−2H(2H − 1)→ 0 as n→∞

for all H ∈ (0, 1). From here we can observe that covariance of the increments tends to zero in the same
order than n2H−2, so fBm is a long-range process. Furthermore,

lim
n→∞

ρH(n)

H(2H − 1)n2H−2
= 1,

hence, taking c = H(2H − 1) and α = 2 − 2H in Definition 5.4, we have that only when H ∈ (1/2, 1) it
satisfies that α ∈ (0, 1), consequently, when H ∈ (0, 1/2) fBm has not long-range dependence.

Now, to examine the characteristics that the fBm has in the case H ∈ (1/2, 1), we analyze the
covariance of his increments and for it, we will introduce the following definitions to try to understand in
a different context, how is the behavior of the sample path of fBm.

Definition 5.5. We say that a stochastic process is:

• Persistent: when the sample paths of the process tend to go in the same direction.

• Anti-persistent: when the sample paths of the process tend to back on itself.

As we can see from the following figures 5.1 and 5.2, the trajectories of fractional Brownian motion
behave differently for different values of Hurst index H ∈ (0, 1).

When H < 1/2, the increments of fBm tends in opposite directions, that is, it is anti-persistent. In
other words, the behavior of trajectories is very irregular, when H is very close to zero the trajectories are
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(a) H = 0.1 (b) H = 0.25

(c) H = 0.4

Figure 5.1: Simulation of sample paths of fBm on interval [0, 1] for different values of Hurst parameter
H < 1/2

very erratic, while the value of H is closer to 1/2 the trajectories are similar to trajectories of Brownian
motion.

When H > 1/2, the increments of fBm tends in the same direction, that is, it is persistent. The
trajectories of BH are essentially α−Hölder continuous with 0 < α < H, so we have a better management
on these, since there is a kind of continuity in the Hölder sense.
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(a) H = 0.6 (b) H = 0.75

(c) H = 0.9

Figure 5.2: Simulation of sample paths of fBm on interval [0, 1] for different values of Hurst parameter
H > 1/2

5.2 Preliminaries on Malliavin calculus

The Malliavin calculus is an infinite dimensional differential calculus introduced by Paul Malliavin to
provide a probabilistic proof of the Hörmander hypoellipticity theorem. Malliavin calculus is called too,
anticipating stochastic calculus, which is a powerful extension of the classical Itô calculus that allows us
to work with non-adapted processes.

The basic operators of Malliavin calculus are the derivative operator and its adjoint the divergence
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operator. For a complete introduction to this subject, we refer [22].
We fix a time interval [0, T ]. We consider W = (Wt)t≥0 a standard Brownian motion defined in a

filtered probability space (Ω,F , (Ft)t≥0,P). Let H be the Hilbert space L2([0, T ]). For any h ∈ H we
denote by W (h) the Wiener integral

W (h) =

∫ T

0
h(t)dWt.

We define by S the set of smooth and cylindrical random variables on (Ω,F ,P), of the form

F = f (W (h1) , . . . ,W (hn))

where n ≥ 1, h1, . . . , hn ∈ H and f ∈ C∞p (Rn) (i.e., f : Rn → R is infinitely differentiable such that f
and its partial derivatives have polynomial growth order).

Definition 5.6 (Derivative operator). Let F ∈ S. The derivative of a smooth random variable F , is the
stochastic process D = (DtF )t≥0 given by

DtF =
n∑
i=1

∂f

∂xi
(W (h1) , . . . ,W (hn))hi(t), t ∈ [0, T ].

The derivative DF is an element of the space L2([0, T ]×Ω). More generally, we can define in a general
form, the iterated derivatives of a smooth random variable F as

Dn
t1,...,tnF = Dt1 · · ·Dt1F.

The iterative derivative operator Dn is a closable unbounded operator from L2(Ω) into L2([0, T ]n×Ω) for
each n ≥ 1.

We have the following integration by parts formula: Let F ∈ S, then for all h ∈H , we have

E [〈DF, h〉H ] = E [FW (h)]

and as a consequence, if F and G are in S, and h ∈H , then

E [G〈DF, h〉H ] = E [−F 〈DG,h〉H + FGW (h)]

We denote by Dn,2 the closure of S with respect to the norm

||F ||2n,2 = ||F ||2
L2(Ω)

+
n∑
k=1

||DkF ||2
L2([0,T ]k×Ω)

.

The divergence operator δ is the adjoint of the derivative operator D that is also called Skorohod
integral with respect to Brownian motion (Wt)t≥0.
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We say that a random variable u ∈ L2(Ω,H ) belongs to the domain of the divergence operator,
denoted by Domδ, if there is a constant C such that

|E [〈DF, u〉H ] | ≤ C||F ||L2(Ω)

for all F ∈ S. If u ∈ Domδ, then δ(u) is an element of L2(Ω) defined by the duality relationship:

E(Fδ(u)) = E [〈DF, u〉H ]

for all F ∈ S and where δ(u) :=

∫ T

0
utdWt.

For all n ≥ 1, let Ln,2 := L2([0, T ];Dn,2) be equipped with the norm

||v||2n,2 = ||v||2
L2([0,T ]×Ω)

+

n∑
k=1

||Dkv||2
L2([0,T ]k+1×Ω)

.

We recall that L1,2 is included in Domδ, and for a process u ∈ L1,2 we can compute the variance of the
Skorohod integral of u as follows:

E[δ(u)2] = E
[∫ T

0
u2
tdt

]
+ E

[∫ T

0

∫ T

0
DsutDtusdsdt

]
.

5.2.1 Itô’s formula

Alòs [1] and Alòs and Nualart [4], proved the following version of Itô’s formula for anticipating process.

Theorem 5.7. Let us consider a process of the form

Xt = X0 +

∫ t

0
usdWs +

∫ t

0
vsds,

where X0 is an F0−measurable random variable and u, v ∈ L2
a([0, T ] × Ω). Consider also a process

Yt =

∫ T

t
θsds for some θ ∈ L1,2. Let F : R3 → R be a twice continuously differentiable function such that

there exists a positive constant C such that, for all t ∈ [0, T ], F and its derivatives evaluated in (t,Xt, Yt)

are bounded by C. Then it follows that

F (t,Xt, Yt) = F (0, X0, Y0) +

∫ t

0

∂F

∂s
(s,Xs, Ys)ds+

∫ t

0

∂F

∂x
(s,Xs, Ys)dXs +

∫ t

0

∂F

∂y
(s,Xs, Ys)dYs

+

∫ t

0

∂2F

∂x∂y
(s,Xs, Ys)

(∫ T

s
Dsθrdr

)
usds+

1

2

∫ t

0

∂2F

∂x2
(s,Xs, Ys)u

2
sds.

5.3 Fractional stochastic volatility models

Alòs, León and Vives in [2], used the Malliavin calculus techniques to obtain an expression for the short-
dated behavior of the implied volatility skew for general jump-diffusion stochastic volatility models.
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5.3.1 Statement of the model, notation and main results

The authors consider the following model for the log-price of a stock under the risk neutral probability
measure P∗:

Xt = x+ (r − λk)− 1

2

∫ t

0
σ2
sds+

∫ t

0
σs

(
ρdWs +

√
1− ρ2dBs

)
+ Zt, t ∈ [0, T ], (5.1)

where x is the current log-price, r is the instantaneous interest rate, W and B are independent standard
Brownian motions, ρ ∈ (−1, 1) is the correlation coefficient, Zt is a compound Poisson process with

intensity, Levy measure ν, independent of W and B, k =
1

λ

∫
R

(ey − 1)ν(dy) < ∞, and the volatility

process σ is a squared-integrable stochastic process adapted to the filtration generated by W .

We denote by FW ,FB and FZ the filtrations generated by W,B and Z respectively. Moreover, we
define F := FW ∨FB ∨FZ .

As we saw in the previous chapters, the price of a European call with strike price K is given by

Ct = e−r(T−t)EP∗
[
(eXT −K)+|Ft

]
.

We denote the future average volatility by vt := (Yt)
1/2, with Yt :=

1

T − t

∫ T

t
σ2
sds. CBS(t, x, σ) denote

the price of a European call under Black-Scholes model with constant volatility σ, current log stock price
x, maturity time T − t, strike price k and interest rate r:

CBS(t, x, σ) = exN(d1)−Ke−r(T−t)N(d2),

where

d1,2 =
x− x∗t
σ
√
T − t

± σ
√
T − t
2

,

with x∗t := logK− r(T − t) and N is the cumulative Gaussian distribution function. And finally we define
G(t, x, σ) := (∂2

xx − ∂x) CBS(t, x, σ).

In [2], Alòs, León and Vives studied the short-time behavior of the implied volatility. Let It(Xt) denote
the implied volatility process which is a F−adapted process such that

Ct = CBS(t,Xt, It(Xt)).

Furthermore, in [2, Proposition 4] they given an expression for the derivative of the implied volatility:

∂It
∂Xt

(x∗t ) =
E
[∫ T
t

(
∂xF (s,Xs, vs)− 1

2F (s,Xs, vs)
)
ds|Ft

]
∂σ CBS(t, x∗t , It(x

∗
t ))

∣∣∣∣∣
Xt=x∗t

, a.s.
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where

F (s,Xs, vs) :=
ρ

2
e−r(s−t)∂xG(s,Xs, vs)

(∫ T

s
Dsσ

2
rdr

)
σs

+

∫
R
e−r(t−s) (CBS(s,Xs + y, vs)− CBS(s,Xs, vs)) ν(dy)

− λke−r(t−s)∂x CBS(s,Xs, vs).

In [2, Section 6], the limit of
∂It
∂Xt

(x∗t ) is studied when T → t under the following hypothesis:

(H1) σ ∈ L2,4.

(H2) There exists a constant a > 0 such that σ > a > 0.

(H3) There exists a constant δ > −1

2
such that for all 0 < t < s < r < T ,

E
[
(Dsσr)

2|Ft

]
≤ C(r − s)2δ,

E
[
(DθDsσr)

2|Ft

]
≤ C(r − s)2δ(r − θ)−2δ.

(H4) σ has right-continuous trajectories.

(H5) For every t > 0,
sup

s,t,θ∈[t,T ]
E
[(
σsσr − σ2

θ

)2]→ 0, as T → t.

Theorem 5.8. ([2, Theorem 7]) Under conditions (H1)-(H5) and considering the model in (5.1):

1. Assume that δ in (H3) is nonnegative and that there exists a Ft-measurable random variable D+
t σt

such that, for every t > 0,

sup
s,r∈[t,T ]

∣∣∣E [(σsσr − σ2
θ

)2] ∣∣∣→ 0, as T → t.

Then
lim
T→t

∂It
∂Xt

(x∗t ) = − 1

σt

(
λk + ρ

D+
t σt
2

)
.

2. Assume that δ in (H3) is negative and that there exists a Ft−measurable random variable Lδ,+t σt,

where L := (∂2
xx −

1

2
∂x)G, such that, for every t > 0,

1

(T − t)2+δ

∫ T

t

∫ T

s
E [Dsσr|Ft] drds− Lδ,+t σt → 0, as T → t.

Then
lim
T→t

(T − t)−δ ∂It
∂Xt

(x∗t ) = − ρ

σt
Lδ,+t .
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5.3.2 Fractional volatility models

Assume that the volatility σ can be written as σr = f(Yr), where f ∈ C1
b (R) and Yt is a stochastic process

of the form

Yr = m+ (Yt −m)e−α(r−t) + c
√

2α

∫ r

t
e−α(r−s)dWH

s , (5.2)

where WH
s :=

∫ s

0
(s− u)H−

1
2dWu.

Case H > 1/2

Assume the volatility model in equation (5.2) for some H > 1/2. From Alòs, Mazet and Nualart [3],∫ r

t
e−α(r−s)dWH

s can be written as

(
H − 1

2

)∫ r

0

(∫ r

s
1[t,r](u)e−α(r−u)(u− s)H−

1
2du

)
dWs,

from where it follows that

sup
s,r∈[t,T ]

|E[Dsσr|Ft]| → 0 as T → t.

Then, Theorem 5.8 gives us that

lim
T→t

∂It
∂Xt

(x∗t ) = −λk
σt
.

That is, the at-the-money short-dated skew slope of the implied volatility is not affected by the correlation
in this case.

Case H < 1/2

Assume the volatility model in equation (5.2) for some 0 < H < 1/2. From Alòs, Mazet and Nualart [3],∫ r

t
e−α(r−s)dWH

s can be written as

(
1

2
−H

)∫ r

0

(∫ r

s

[
1[t,r](u)e−α(r−u) − 1[t,r](s)e

−α(r−s)
]

(u− s)H−
1
2du

)
dWs

+

∫ r

t
e−α(r−s)(r − s)H−

1
2dWs

Then hypothesis (H3) holds for every δ = H − 1

2
and we have that

E

[
1

(T − t)2+H− 1
2

∫ T

t

∫ T

s
Dsσrdrds− c

√
2αf ′(Yt)|Ft

]
→ 0 as T → t.
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Then, Theorem 5.8 gives us that

lim
T→t

(T − t)
1
2
−H ∂It

∂Xt
(x∗t ) = −c

√
2α

ρ

σt
f ′(Yt).

That is, the introduction of fractional components with Hurst parameter H < 1/2 in the definition of the
volatility process allows us to reproduce a skew slope of order O(T − t)δ, for every δ > −1/2.

Figure 5.3: Volatility surface. (Courtesy of Rafael de Santiago).

From this, we can say that the results obtained in fractional volatility models whit Hurst indexH < 1/2

allow to describe the blow up observed for the short-term slope, in Section 4.2.1. According to Roger Lee
in [16] also comment this blow up. These results also show that the compound Poisson process does not
allow to describe the blow up.



Appendix A

Octave codes

Geometric Brownian motion

Listing A.1: Geometric Brownian motion sample paths in Octave

function GBM(S0 ,mu, sigma ,T,N,M)
% This f unc t i on p l o t M sample paths o f Geometric Brownian motion
% where N i s the number o f s u b i n t e r v a l s
X = zeros (M,N+1);
X( : , 1 ) = S0 ;
dt = T/N;
t=0: dt :T; %Time
d r i f t = (mu−0.5∗ sigma^2)∗ dt ; % Ca l cu l a t i on o f the d r i f t term .
d i f f = sigma∗sqrt ( dt ) ; % Ca l cu l a t i on o f the d i f f u s i o n term .
for i =1:M

for j =1:N
X( i , j +1) = X( i , j )∗exp( d r i f t+d i f f ∗randn ) ;

end
end
%Plot Sample Paths
plot ( t ,X) ;
t i t l e ( ’ Geometric ␣Brownian␣Motion ’ )
xlabel ( ’ time ’ )
ylabel ( ’S ’ )

53
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Implied volatility

Listing A.2: Black-Scholes formula in Octave

function [ Ca l l ] = BS_price (S0 ,K, r ,T, sigma )
%% This func t i on compute the va lue o f a European opt ion
i f T > 0
d1 = ( log ( S0 . / abs (K) ) + ( r+sigma . ^ 2 . / 2 ) . ∗T) . / ( sigma . ∗ sqrt (T) ) ;
d2 = d1−sigma . ∗ sqrt (T) ;
N1 = 0.5 .∗(1+ erf ( d1 . / sqrt ( 2 ) ) ) ;
N2 = 0.5 .∗(1+ erf ( d2 . / sqrt ( 2 ) ) ) ;
Ca l l = S0 . ∗N1−K.∗exp(−r . ∗T) . ∗N2 ;
else
Cal l = max( S0−K, 0 ) ;
end

Listing A.3: Function vega in Octave

function [ vega ] = Vega (S0 ,K, r ,T, sigma )
%% This func t i on compute the vega in BS
d1 = ( log ( S0 . / abs (K) ) + ( r+sigma .^2/2)∗T) . / ( sigma . ∗ sqrt (T) ) ;
N1 = exp(−0.5∗d1 .^2 ) . / sqrt (2∗pi ) ;
vega = S0∗sqrt (T) . ∗N1 ;

Listing A.4: Implied volatility calculated by means Newton-Raphson method in Octave

function [ ImpVol ] = BS_ImpVol(S0 ,K, r ,T,C)
%% This func t i on compute the imp l i ed v o l a t i l i t y (Newton−Raphson method )
% I N P U T S :
% S0 : s t o c k p r i c e
% K : s t r i k e p r i c e
% r : r i s k f r e e i n t e r e s t ra t e
% T : time to matur i ty
% C : va lue o f a European Ca l l Option
% sigma0 : i n i t i a l va lue f o r the imp l i ed v o l a t i l i t y
n = 20 ; %number o f i t e r a t i o n s
t o l =0.001; %to l e r anc e
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sigma0 = 0 . 2 ; % i n i t i a l i t e r a t i o n
f = ’ BS_price ’ ;
d f = ’Vega ’ ;
for i =1:n−1

sigma1=sigma0 −((( feval ( f , S0 ,K, r ,T, sigma0))−C)/( feval ( df , S0 ,K, r ,T, sigma0 ) ) ) ;
i f (abs ( ( feval ( f , S0 ,K, r ,T, sigma0))−C)< t o l )

break
end

sigma0=sigma1 ;
end
ImpVol = sigma0 ;

Volatilty smile

Listing A.5: Function to plot volatility smile by Hull-White formula in uncorrelated case in Octave

clc
clear a l l
% % % % % % % % % % INPUTS OU % % % % % % % % % % % % % % % % % %
a = 0 . 5 ; b = 1 . 5 ; X0 = 1 ;
% % % % % % % % % % INPUTS BS % % % % % % % % % % % % % % % % % %
S0 = 100 ; K = 20 ; r = 0 ; T = 0 . 5 ; t0 = 0 ; %i n i t i a l t ime
% % % % % % % % % % INPUTS HW % % % % % % % % % % % % % % % % % %
N = 1000 ; % % Number o f time s t e p s per path
M = 50 ; % % Number o f paths t h a t we s imu la t e
% Time s t ep
dt = ( (T−t0 )/N) ; t = t0 : dt :T;
%% Generate random numbers
X = zeros (M,N) ; X( : , 1 ) = X0 ; %i n i t i a l cond i t i on
sigma = zeros (M,N) ; sigma ( : , 1 ) = 0 ; %i n i t i a l cond i t i on
dW = sqrt ( dt )∗randn(M,N) ;
% Simulat ion o f N−s t e p t r a j e c t o r i e s f o r the OU proces s
for i =1:N

X( : , i +1) = X( : , i ) − a∗X( : , i )∗ dt + b∗dW( : , i ) ;
X_square ( : , i ) = X( : , i ) . ^ 2 ;
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end
% We use numerical i n t e g r a t i o n ( t r a p e z o i d a l r u l e ) to compute the i n t e g r a l
sigma = (1/2∗X_square ( : , 1 ) + 1/2∗X_square ( : , end)

+ sum(X_square ( : , 2 : end−1) ,2))∗ dt/T;
sigma_bar = sqrt ( sigma ) ;
% We crea t e the s t r i k e s p r i c e s v e c t o r
for l =1:K

S t r i k e ( l ) = 90+(( l −1)) ;
end
% We app ly B−S formula
for l =1:K

p r i c e ( l )=0;
for j =1:M

Cal l ( j , l ) = BS_price (S0 , S t r i k e ( l ) , r ,T, sigma_bar ( j ) ) ;
p r i c e ( l ) = p r i c e ( l )+Cal l ( j , l ) . /M;

end
ImpVol ( l )=BS_ImpVol(S0 , S t r i k e ( l ) , r ,T, p r i c e ( l ) ) ;
end
for l =1:K

ImpVol ( l ) ;
end
plot ( ImpVol )
t i t l e ( ’ V o l a t i l i t y ␣Smile ’ )
xlabel ( ’ S t r i k e ’ ) ;
ylabel ( ’ Impl ied ␣ V o l a t i l i t i e s ’ ) ;

Volatilty skew

Listing A.6: Function to plot volatility skew by extended Hull-White formula in correlated case in Octave

clc
clear a l l
%% % % % % % % % % INPUTS HW WITH CORRELATION % % % % % % % % % % % %
a = 0 . 5 ; b = 1 . 5 ; X0 = 1 ; S0 = 100 ; K = 20 ; r = 0 ; T = 1 ; t0 = 0 ;
N = 1000 ; % % Number o f time s t e p s per path
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M = 10 ; % % Number o f paths t h a t we s imu la t e
rho = 0 . 2 ; %Corre l a t i on between [−1 ,1]
% Time s t ep
dt = ( (T−t0 )/N) ; t = t0 : dt :T;
%% Generate random numbers
X = zeros (M,N) ; X( : , 1 ) = X0 ; %i n i t i a l cond i t i on
sigma = zeros (M,N) ; sigma ( : , 1 ) = 0 ; %i n i t i a l cond i t i on
dW = sqrt ( dt )∗randn(M,N) ;
%% Simulat ion o f N−s t e p t r a j e c t o r i e s f o r the OU proces s
for i =1:N

X( : , i +1) = X( : , i ) − a∗X( : , i )∗ dt + b∗dW( : , i ) ;
X_square ( : , i ) = X( : , i ) . ^ 2 ;

end
%% We use numerical i n t e g r a t i o n ( t r a p e z o i d a l r u l e ) to compute the i n t e g r a l
sigma = (1/2∗X_square ( : , 1 ) + 1/2∗X_square ( : , end)

+ sum(X_square ( : , 2 : end−1) ,2))∗ dt/T;
sigma_bar = sqrt ( sigma∗(1− rho ^2 ) ) ; %we mu l t i p l y by (1−rho^2)
%% We compute the s t o c h a s t i c i n t e g r a l in ex t ens i on H−W formula
Stoch_Int = sum(X( : , 2 : end ) . ∗dW, 2 ) ; %Sto cha s t i c I n t e g r a l
S = S0∗exp ( ( rho∗Stoch_Int )−(0.5∗( rho ^2)∗ sigma ) ) ; %New Stock Price
%% We crea t e the v ec t o r s t r i k e s
for l =1:K

S t r i k e ( l ) = 90+(( l −1)) ;
end
%% We app ly B−S formula
for l =1:K

Pr i ce ( l ) = 0 ;
for j =1:M

Cal l ( j , l ) = BS_price (S( j ) , S t r i k e ( l ) , r ,T, sigma_bar ( j ) ) ;
Pr i ce ( l ) = Pr i ce ( l ) + Cal l ( j , l ) . /M;
ImpVol ( l ) = BS_ImpVol(S( j ) , S t r i k e ( l ) , r ,T, Pr i ce ( l ) ) ;

end
end
for l =1:K

ImpVol ( l ) ;
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end
plot ( ImpVol )
t i t l e ( ’ V o l a t i l i t y ␣Skew ’ )
ylabel ( ’ Impl ied ␣ V o l a t i l i t i e s ’ ) ;
xlabel ( ’ S t r i k e ’ ) ;

Fractional Brownian motion

Listing A.7: Fractional Brownian motion sample paths in Octave

function FBM(H)
%We p l o t a f r a c t i o n a l Brownian motion on i n t e r v a l [ 0 , 1 ]
% with Hurst index H in (0 ,1)
n = 2^10; % number o f po in t
r = nan (n+1 ,1) ; r (1 ) = 1 ;
for k=1:n
r ( k+1) = 0 . 5 ∗ ( ( k+1)^(2∗H) − 2∗k^(2∗H) + (k−1)^(2∗H) ) ;
end
r = [ r ; r (end−1 : −1 :2) ] ; % Fi r s t row o f a c i r c u l a r matrix
lambda = real ( f f t ( r ) )/ (2∗ n ) ; % Eigenva lues
B = f f t ( sqrt ( lambda ) . ∗ complex (randn(2∗n , 1 ) , randn(2∗n , 1 ) ) ) ;
B = n^(−H)∗cumsum( real (B( 1 : n+1)) ) ; % Resca l ing
plot ( ( 0 : n)/n ,B) ;
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