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General	and	stereoselective	aminoxylation	of	biradical	
titanium(IV)	enolates	with	TEMPO:	a	detailed	study	on	the	effect	
of	the	chiral	auxiliary	
Stuart	 C.	 D.	 Kennington,a	 Alejandro	 Gómez-Palomino,a	 Ernest	 Salomó,a	 Pedro	 Romea,*a	 Fèlix	
Urpí,*a	and	Mercè	Font-Bardiab		

A	 comprehensive	 analysis	 of	 the	 influence	 of	 the	 chiral	 auxiliary	 on	 the	α-aminoxylation	 of	 titanium(IV)	 enolates	 with	
TEMPO	 indicated	 that	 (S)	 4-tert-butyl-1-oxazolidine-2-thione	 is	 the	 most	 appropriate	 scaffold	 to	 provide	 a	 single	
diastereomer	 in	high	yields	 for	a	 variety	of	 substrates,	which	 converts	 such	a	 radical	 reaction	 into	a	highly	 chemo-	and	
stereoselective	 oxidation.

Introduction	
The	 widespread	 presence	 of	 α-hydroxy	 carbonylic	 and	
carboxylic	structures	in	biologically	active	natural	products	has	
fostered	 the	 development	 of	 increasingly	 efficient	
transformations	 involving	 either	 the	 asymmetric	 construction	
of	 carbon–carbon	 or	 carbon–oxygen	 bonds	 from	 metal	
enolates	to	access	these	structures	(Scheme	1).1		

	

	
Scheme	1	Reactivity	of	the	Cα	position	of	enolates	

Particularly,	 the	 stereoselective	 Cα-oxidation	 of	 carbonyl	
bonds	has	received	lasting	attention,	resulting	 in	a	number	of	
procedures	 based	on	 the	 treatment	of	metal	 enolates	with	 a	

variety	 of	 oxidizing	 agents	 like	 N-sulfonyloxaziridines,	
peroxides,	 or	 transition	metals.2,3	 Aside	 from	 these	methods,	
the	 emergence	 of	 organocatalytic	 procedures	 represented	 a	
major	 step	 forward	 in	 the	asymmetric	 synthesis	of	α-hydroxy	
carbonylic	 compounds.	 Thereby,	 initial	 reports	 on	 the	
enantioselective	preparation	of	aminoxylated	adducts	through	
addition	of	aldehydes	and	activated	ketones	to	nitrosobenzene	
catalyzed	by	chiral	amines4	were	soon	enlarged	by	the	SOMO	
activation	 mode	 concept.5	 This	 broadly	 referred	 to	 the	
oxidation	 of	 chiral	 enamines,	which	 provided	 a	 cation	 radical	
that	 underwent	 highly	 enantioselective	 reactions.	 Thus,	 it	
presently	stands	as	a	milestone	in	asymmetric	transformations	
involving	radical	or	electronically	excited	species.5,6		

Mirroring	 such	achievements,	 the	 recognition	of	 the	biradical	
character	 of	 titanium(IV)	 enolates7	 laid	 the	 foundations	 for	
their	use	in	SOMO-like	transformations	without	the	need	for	a	
stoichiometric	 oxidizing	 reagent.	 Zakarian	 proved	 the	
feasibility	 of	 such	 a	 new	 approach	 by	 developing	 a	 new	
photoredox	 alkylation	 of	 titanium(IV)	 enolates	 from	 chiral	N-
acyl	oxazolidinones	catalyzed	by	a	ruthenium	complex.8	In	this	
context,	 the	 commercially	 available	 and	 persistent	 radical	
TEMPO	 was	 an	 appealing	 reagent	 to	 trap	 chiral	 titanium(IV)	
biradical	 enolates	 and	 stereoselectively	 afford	 the	
aminoxylated	derivatives.	TEMPO	had	been	used	as	precursor	
of	electrophilic	reagents	for	the	stereoselective	construction	of	
carbon-oxygen	 bonds.9	 In	 contrast,	 its	 use	 in	 radical	 like	
reactions	 was	 scarce	 and	 restricted	 to	 non-stereoselective	
transformations10	 until	 Zakarian11	 and	 our	 group12	
independently	 developed	 the	 asymmetric	 oxidation	 of	
titanium(IV)	 enolates	 of	 a	 wide	 range	 of	 chiral	 N-acyl	
oxazolidinones	with	TEMPO,	which	provides	the	corresponding	
aminoxylated	 adducts	 with	 good	 yields	 and	
diastereoselectivities	(Scheme	2).	
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Scheme	2		Stereoselective	aminoxylation	of	titanium(IV)	enolates	with	TEMPO	

We	have	also	reported	theoretical	insights	of	this	TEMPO-mediated	
oxidation	reinforcing	the	proof	of	the	valence	tautomerism	and	the	
resulting	 biradical	 character	 of	 titanium(IV)	 enolates	 from	 N-acyl	
oxazolidinones	 as	 well	 as	 offering	 a	 concise	 explanation	 of	 the	
entire	mechanism.13	 Essentially,	 the	 process	 hinges	 on	 the	 radical	
attack	 of	 a	 first	 molecule	 of	 TEMPO	 to	 the	 Cα	 position	 of	 the	
biradical	 form	of	 the	 titanium(IV)	enolate	 (Scheme	3).	 This	 is	 then	
followed	by	a	fast	oxidation	of	the	resultant	titanium(III)	complex	by	
a	 second	 molecule	 of	 TEMPO.	 Thereby,	 the	 high	 stereocontrol	
achieved	 by	 such	 transformations	 may	 be	 explained	 through	 a	
chelated	titanium(IV)	enolate	in	which	the	C4-benzyl	group	favours	
the	approach	of	the	oxidizing	agent	to	the	less	sterically	hindered	π-
face	of	the	biradical	enolate.	

	

	

Scheme	3.	Mechanism	 for	 the	 stereoselective	 aminoxylation	 of	 titanium(IV)	 enolates	
from	chiral	N-acyl	oxazolidinones	with	TEMPO	

Thus,	 considering	 the	 key	 role	 played	 by	 chiral	 scaffolds	 in	
stereoselective	reactions,14,15	we	decided	to	assess	 its	 influence	on	
such	 oxidations	with	 the	 aim	 of	 identifying	 other	 chiral	 auxiliaries	
which	 may	 able	 to	 produce	 a	 single	 diastereomer	 and	 be	 easily	
removed	 from	 the	 resultant	 aminoxylated	 adduct	 leaving	
enantiopure	 synthons.	 Particularly,	 we	 focused	 our	 attention	 on	
chiral	 oxazolidinones	 developed	 by	 Evans16,17	 and	 related	 five	
membered	heterocycles	with	a	long	tradition	within	stereoselective	
synthesis	(Figure	1).18–21		

Herein,	 we	 describe	 a	 detailed	 study	 of	 the	 aminoxylation	 of	
titanium(IV)	enolates	derived	from	a	wide	array	of	chiral	auxiliaries	
possessing	different	 oxygen	 and	 sulphur	 patterns	 and	 several	 side	
chains	as	well	as	a	further	analysis	of	the	scope	of	the	reaction	and	
the	final	removal	of	the	chiral	scaffold.	

		

	

Fig.	1	Five	membered	cyclic	chiral	auxiliaries	

Results	and	Discussion	
Chiral	auxiliary	screening.	

Taking	 advantage	 of	 our	 own	 studies	 on	 the	 aminoxylation	 of	
titanium(IV)	 enolates	 from	N-acyl	 oxazolidinones	with	 TEMPO,12,13	
we	 initially	 investigated	 the	 influence	of	 chiral	 auxiliaries	1–6	with	
various	 combinations	of	oxygen	and	 sulphur	heteroatoms	exo	 and	
endo	 to	 the	heterocycle	 and	bulky	 groups	 at	C4	 (Figure	2).22–24	By	
choosing	 such	 a	 wide	 range	 of	 chiral	 substrates	 we	 envisaged	 to	
fully	understand	the	effect	both	the	heteroatoms	and	the	groups	at	
C4	and	therefore	to	find	the	most	effective	scaffold	for	this	type	of	
reaction.			

	

	

Fig.	2	C4	Substituted	five	membered	cyclic	chiral	auxiliaries	

To	 best	 analyse	 the	 isolated	 effects	 of	 such	 parameters	 we	
conducted	 the	 aminoxylation	 of	 N-propanoyl	 derivatives	 1a–6a	
(Scheme	 4),	easily	 prepared	 from	 chiral	 auxiliaries	 1–6,	 under	 the	
same	 conditions,	 more	 specifically	 the	 optimised	 conditions	
reported	 in	 our	 previous	 report.12	 The	 results	 of	 this	 preliminary	
examination	 summarised	 in	 Scheme	 3	 showed	 a	 clear	 trend.	
Indeed,	substitution	of	the	exocyclic	oxygen	by	sulphur	both	in	the	
isopropyl	and	the	tert-butyl	series	produced	a	significant		
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Scheme	4		Stereoselective	aminoxylation	of	titanium(IV)	enolates	from	N-propanoyl	C4-substituted	chiral	auxiliaries	1a–6a	with	TEMPO	

improvement	of	the	diastereoselectivity.	Moreover,	the	bulky	tert-
butyl	group	turned	out	to	be	crucial	to	obtain	a	single	diastereomer;	
in	 all	 cases	 moving	 from	 isopropyl	 to	 tert-butyl	 as	 the	 C4	 group	
induced	 a	 significant	 increase	 in	 the	 diastereomeric	 ratio.	
Particularly,	tert-butyl	N-propanoyl	oxazolidinethione	5a	(X:	S,	Y:	O,	
R:	 t-Bu)	 and	 thiazolidinethione	6a	 (X,	 Y:	 S,	 R:	 t-Bu)	were	 the	most	
appropriate	 platforms	 to	 carry	 out	 a	 completely	 stereocontrolled	
oxidation	in	high	yields.	

Having	 identified	 the	 crucial	 role	 of	 the	 exocyclic	 heteroatom	and	
the	C4	alkyl	group,	we	next	evaluated	the	consequences	of	placing	
geminal	groups	at	the	C5	position.	As	we	had	already	described	the	
aminoxylation	using	chiral	auxiliary	14,12	in	which	the	oxazolidinone	
possesses	a	geminal	dimethyl	moiety	at	C5,	we	next	evaluated	the	
outcome	 of	 parallel	 reactions	 from	 oxazolidinones	 and	
oxazolidinethiones	13–16	shown	in	Figure	3.25			

	

	

Fig.	3		C4	and	C5	Substituted	chiral	auxiliaries	

Thus,	N-propanoyl	derivatives	13a–16a,	easily	prepared	from	chiral	
auxiliaries	 13–16,	 were	 submitted	 to	 the	 previous	 experimental	
conditions.	The	results	summarised	in	Scheme	5	proved	the	benefit	
of	installing	two	groups	at	C5.	Indeed,	the	results	from	N-propanoyl	
C4	 benzyl	 oxazolidinones	 13a	 (X:	 O,	 R:	 H)	 and	 14a	 (X:	 O,	 R:	 Me)	
clearly	 showed	that	 the	diastereoselectivity	 is	greatly	 increased	by	
attaching	 two	 geminal	 methyl	 groups	 at	 C5.	 Furthermore,	 the	
placement	 of	 two	 phenyl	 groups	 at	 this	 position	 was	 also	
advantageous	 for	 the	 isopropyl	oxazolidinethione	15a	 (X:	 S,	 R:	 Ph,	
R1:	i-Pr)	since	just	a	single	diastereomer	19a	was	obtained	albeit	in	a	
moderate	 yield	 (compare	 8a	 and	 19a	 in	 Scheme	 4	 and	 5	
respectively).	 Finally,	 N-propanoyl	 5,5-disubstituted	
oxazolidinethione	 16a	 (X:	 S,	 R,	 R1:	 Ph)	 demonstrates	 that	 a	 C4	
substituent	 larger	 than	 Ph	 group	 is	 required	 to	 obtain	 a	 single	
diastereomer	(compare	19a	and	20a	in	Scheme	5).	

All	 together,	 these	 results	 indicate	 that	 only	 three	 of	 the	 ten	
different	 chiral	 auxiliaries	 evaluated	 (oxazolidinethiones	5	 and	15,	
and	 thiazolidinethione	 6)	 give	 complete	 control	 of	 the	 newly	
created	 stereocentre	 (see	 11a	 and	 12a	 in	 Scheme	 4	 and	 19a	 in	
Scheme	5).	Among	all	the	scaffolds,	the	tert-butyl	oxazolidinethione	
5	 emerges	 as	 the	 most	 appropriate	 choice.	 Certainly,	 it	 provides	
marginally	lower	yields	than	the	SuperQuat	auxiliary	14,	but	it	offers	
the	 advantage	 of	 giving	 complete	 stereocontrol	 and	 it	 is	 also	
significantly	easier	to	synthesise	starting	from	readily	available	tert-

leucine.§	
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Scheme	5	Stereoselective	aminoxylation	of	titanium(IV)	enolates	from	N-propanoyl	C4	and	C5-substituted	chiral	auxiliaries	13a–16a	with	TEMPO	

Scope	of	the	Aminoxylation	Reaction	

Since	the	screening	process	led	us	to	a	new	chiral	auxiliary,	we	next	
reexamined	 the	 scope	 of	 the	 radical	 aminoxylation	 with	 TEMPO	
using	 this	 new	 scaffold.	 To	 do	 this,	 we	 varied	 the	 acyl	 group	
attached	 to	 the	 chiral	 heterocycle	 intending	 to	 test	 the	 impact	 of	
sterically	 hindered	 R	 groups	 as	 well	 as	 others	 containing	 various	
common	 functional	 groups.	 The	 results	 summarised	 in	 Scheme	 6	
demonstrated	 that	 the	 simple	 treatment	 of	 titanium(IV)	 enolates	
from	 a	 wide	 array	 of	 N-acyl	 tert-butyl	 oxazolidinethiones	 (5a–g)	
with	TEMPO	afforded	a	single	diastereomer	11	for	all	the	substrates	
with	the	exception	of	α-phenyl	derivative	11e,	which	was	obtained	
as	 an	 equimolecular	mixture	 of	 two	 diastereomers	 in	 90%	 overall	
yield.	 Presumably,	 the	 higher	 acidity	 of	 the	 Cα	 position	 in	 N-(2-
phenylacetyl)	 oxazolidinethione	 5e	 precludes	 its	 use,26	 in	 contrast	
to	 the	 high	 stereocontrol	 achieved	 with	 a	 parallel	 reaction	 from	
oxazolidinone	 SuperQuat	14.	 Importantly,	 the	 steric	 bulk	 of	 R	 nor	
the	presence	of	a	terminal	double	bond	or	an	ester	had	a	significant	
influence	 on	 the	 yield.	 All	 together,	 these	 results	 highlight	 the	
excellent	 chemo-	 and	 diastereoselectivity	 of	 the	 radical-mediated	
direct	 oxidation	 with	 TEMPO,	 which	 permits	 the	 obtainment	 of	 a	
single	 stereoisomer	 in	 high	 yields	 using	 straightforward	 and	 mild	
experimental	conditions.	

In	 turn,	we	took	advantage	of	crystalline	properties	of	adduct	11b	
to	confirm	the	configuration	of	the	α	stereocentre	by	X-ray	analysis	
(Figure	4).‡		

Removal	of	the	chiral	auxiliary	

We	 finally	 proceeded	 to	 investigate	 the	 removal	 of	 the	 chiral	
auxiliary	from	adducts	11a	and	11b	(Scheme	7)	using	both	the	most	

simple	propyl	chain	and	also	a	more	complex	example.	Initially,	we	
employed	NaBH4	to	obtain	the	corresponding	alcohols	21a	and	21b.	
In	the	case	of	11a	 the	reaction	took	two	hours	at	0	°C	and	yielded	
85%	of	the	enantiopure	alcohol	21a.	Moving	to	the	more	hindered	
adduct	 11b	 the	 reaction	 required	 a	 longer	 time	 and	 at	 room	
temperature	 but	 also	 gave	 an	 excellent	 92%	 yield	 of	 the	 desired	
alcohol	 21b.	 Carboxylic	 acids	 22a	 and	 22b	 were	 next	 obtained	
through	 common	 treatment	 with	 lithium	 hydroperoxide	 in	 good	
yields.	Methanol	was	then	used	to	displace	the	auxiliary	and	 leave	
an	ester.	Adducts	11a	and	11b	performed	in	a	similar	manner.	Both	
gave	excellent	yields	of	methyl	esters	23a	and	23b	respectively	with	
11b	taking	longer	to	complete	the	reaction.	Changing	methanol	for		

	

	

Fig.	4	ORTEP	X-ray	structure	of	adduct	11b	(ellipsoid	contour	probability:	50%).	
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Scheme	6		Stereoselective	aminoxylation	of	titanium(IV)	enolates	from	(S)	N-acyl-4-tert-butyl-1,3-oxazolidine-2-thiones	5	with	TEMPO	

	

Scheme	7		Removal	of	the	chiral	auxiliary	from	α-aminoxylated	adducts			

morpholine	 allowed	 us	 to	 form	 amides	 24a	 and	 24b,	 again	 in	
excellent	 yields.	 Finally,	displacement	of	 the	 chiral	 auxiliary	with	a	
thiol	to	form	thioesters	25a	and	25b	also	proceeded	smoothly	and	
both	derivatives	were	 isolated	 in	excellent	yields.	Remarkably,	 the	

recovery	 of	 the	 auxiliary	 was	 excellent	 in	 all	 cases,	 with	 the	
minimum	amount	being	78%	and	an	average	recovery	of	89%	over	
the	ten	different	reactions.	
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Conclusions	
In	summary,	we	have	comprehensively	investigated	the	role	of	the	
chiral	 auxiliary	 on	 the	 outcome,	 both	 in	 terms	 of	 yield	 and	
stereocontrol,	 of	 the	 α-aminoxylation	 of	 the	 titanium(IV)	 enolates	
from	 a	 number	 of	 N-acylated	 imide-like	 derivatives	 with	 TEMPO.	
The	 4-tert-butyl-1,3-oxazolidine-2-thione	 auxiliary	 has	 been	
identified	as	the	most	appropriate	to	carry	out	this	reaction	since	it	
combines	 all	 the	 favoured	 characteristics	 and	 gives	 complete	
control	of	the	newly	formed	stereocentre	with	an	excellent	yield	for	
a	 wide	 range	 of	 N-acylated	 4-tert-butyl-1,3-oxazolidine-2-thiones.	
Compared	 to	 previous	 studies	 that	 used	 SuperQuat,	 this	 is	 more	
selective,	 with	 a	 comparable	 yield	 and	 is	 also	 much	 easier	 to	
synthesise	 from	 commercially	 available	 tert-leucinol.	 Finally,	
straighforward	conversion	of	α-OTEMP	adducts	affords	enantiopure	
intermediates	 in	 excellent	 yields	 and	 with	 a	 high	 recovery	 of	 the	
chiral	auxiliary.	

Experimental	section	

General	experimental	remarks	

Unless	 otherwise	 stated,	 reactions	 were	 conducted	 in	 oven-dried	
glassware	 under	 an	 inert	 atmosphere	 of	 nitrogen	with	 anhydrous	
solvents.	The	solvents	and	reagents	were	dried	and	purified,	when	
necessary,	 according	 to	 standard	 procedures.	 All	 commercial	
reagents	 were	 used	 as	 received.	 Analytical	 thin-layer	
chromatographies	 (TLC)	 were	 carried	 out	 on	 Merck	 silica	 gel	 60	
F254	 plates	 and	 analyzed	 by	 UV	 (254	 nm)	 and	 stained	 with	
phosphomolybdic	 acid.	 Rf	 values	 are	 approximate.	 Column	
chromatography	 were	 carried	 out	 under	 low	 pressure	 (flash)	
conditions	and	performed	on	SDS	silica	gel	60	(35-70	μm).	Melting	
points	are	uncorrected.	Specific	rotations	([α])	were	determined	at	
589	nm	and	at	20	°C.	IR	spectra	(Attenuated	Total	Reflectance,	ATR)	
were	 recorded	 on	 a	 Nicolet	 6700	 FT-IR	 Thermo	 Scientific	
spectrometer	and	only	the	more	representative	frequencies	(ν)	are	
reported.	 1H	 NMR	 (400	 MHz)	 and	 13C	 NMR	 (100.6	 MHz)	 spectra	
were	 recorded	 on	 a	 Varian	 Mercury	 400	 spectrometer.	 Chemical	
shifts	(δ)	are	quoted	in	ppm	and	referenced	to	internal	TMS	(δ	0.00	
for	 1H	 NMR)	 or	 CDCl3	 (δ	 77.0	 for	

13C	 NMR);	 data	 are	 reported	 as	
follows:	s,	singlet;	d,	doublet;	t,	triplet;	q,	quartet;	m,	multiplet;	br,	
broad	 (and	 their	 corresponding	 combinations)	 with	 coupling	
constants	 measured	 in	 Hz;	 when	 necessary,	 2D	 techniques	 (COSY	
and	HSQC)	were	also	used	to	assist	with	structure	elucidation.	High	
resolution	 mass	 spectra	 (HRMS)	 were	 obtained	 with	 an	 Agilent	
1100	 spectrometer	 by	 the	 Unitat	 d'Espectrometria	 de	 Masses,	
Universitat	de	Barcelona.	

Synthesis	of	(S)-4-tert-butyl-1,3-oxazolidine-2-thione	(5)	

Neat	 CS2	 (8.4	 mL,	 135	 mmol)	 was	 added	 to	 a	 solution	 of	 tert-
leucinol	 (5.27	 g,	 45	mmol)	 in	 EtOH	 (10	mL)	 at	 room	 temperature	
under	N2.	Then,	a	2.6	M	solution	of	KOH	(26	mL,	67.5	mmol)	in	1:1	
EtOH/H2O	 was	 added	 and	 the	 resulting	 mixture	 was	 heated	 at	
reflux	 for	 two	 days.	 The	 volatiles	 were	 removed	 and	 the	 residue	
was	 carefully	 acidified	 with	 2	M	 HCl	 until	 pH	 2.	 The	mixture	 was	

extracted	 with	 CH2Cl2	 (3	 ×	 100	 mL)	 and	 the	 organic	 layers	 were	
dried	 (MgSO4),	 and	 concentrated.	 The	 resulting	 solid	was	 purified	
by	column	chromatography	(CH2Cl2)	to	give	5.50	g	(34.5	mmol,	77%	
yield)	of	heterocycle	5	as	a	white	solid.	Mp:	155–156	°C	 [lit.27	Mp:	
155.1–155.3	°C].	Rf	=	0.65	(CH2Cl2).	[α]D

20
	=	–11.0	(c	1.0,	CHCl3)	[lit.

27	
[α]D

20
	 =	 –11.6	 (c	 0.92,	 CHCl3)].	 IR	 (ATR):	 3183,	 2997,	 2960,	 1534,	

1183	cm–1.	1H	NMR	(400	MHz,	CDCl3):	δ	8.43	(br	s,	1H),	4.62	(t,	J	=	
9.5	Hz,	1H),	4.46	(dd,	J	=	9.5,	6.3	Hz,	1H),	3.81	(dd,	J	=	9.5,	6.3	Hz,	
1H),	0.94	(s,	9H).	 13C	NMR	(100.6	MHz,	CDCl3):	δ	189.6,	71.8,	65.8,	
33.6,	20.0.	HRMS	(+ESI):	m/z	calcd.	for	C7H14NOS	[M+H]+:	160.0791;	
found:	160.0793.		

Acylation	of	5:	Synthesis	of	(S)-4-tert-butyl-N-propanoyl-1,3-
oxazolidine-2-thione	(5a)	

A	1.6	M	solution	of	n-BuLi	in	hexanes	(2.1	mL,	3.3	mmol)	was	added	
dropwise	to	a	solution	of	5	(478	mg,	3.0	mmol)	in	THF	(4	mL)	at	–78	
°C	under	N2.	The	reaction	mixture	was	stirred	for	10	min	and	then	
propanoyl	 chloride	 (0.34	 mL,	 3.9	 mmol)	 was	 carefully	 added	
dropwise.	The	resulting	solution	was	stirred	for	5	min	at	–78	°C	and	
then	allowed	to	warm	to	room	temperature	and	stirred	for	further	
1.5	h.	The	reaction	mixture	was	cooled	with	an	ice-water	bath	and	
quenched	with	sat	NH4Cl	(2	mL)	and	water	(5	mL).	This	mixture	was	
extracted	with	 CH2Cl2	 (3	 ×	 20	mL),	 the	 combined	 organic	 extracts	
were	dried	(MgSO4),	filtered,	and	concentrated.	The	crude	reaction	
mixture	 was	 purified	 by	 column	 chromatography	 (50:50	
CH2Cl2/Hexanes)	 to	 afford	 595	 mg	 (2.8	 mmol,	 92%	 yield)	 of	 N-
propanoyl	 oxazolidinethione	 5a	 as	 a	 colourless	 oil.	 Rf	 =0.4	 (50:50	
CH2Cl2/Hexanes).	 [α]D

20	 =	 +152.2	 (c	 1.1,	 CHCl3).	 IR	 (ATR):	 2967,	
1708,	1479,	1402,	1362,	1267,	1179,	1048	cm–1.	1H	NMR	(400	MHz,	
CDCl3):	δ	4.78	(dd,	J	=	7.5,	1.7	Hz,	1H),	4.45	(dd,	J	=	9.5,	1.7	Hz,	1H),	
4.34	(dd,	J	=	9.5,	7.5	Hz,	1H),	3.38	(dq,	J	=	18.1,	7.2	Hz,	1H),	3.29	(dq,	
J	 =	18.1,	7.2	Hz,	1H),	1.21	 (t,	 J=	7.2	Hz,	3H),	0.94	 (s,	9H).	 13C	NMR	
(100.6b	MHz,	 CDCl3):	 δ	 187.0,	 174.9,	 69.2,	 65.1,	 36.1,	 31.1,	 25.8,	
8.9.	 HRMS	 (+ESI):	 m/z	 calcd.	 for	 C10H18NO2S	 [M+H]+:	 216.1053;	
found:	216.1058.		

General	aminoxylation	procedure		

Neat	TiCl4	 (121	µL,	1.1	mmol,	1.1	equiv)	was	added	dropwise	 to	a	
solution	of	the	acylated	chiral	auxiliary	(1	mmol,	1	equiv)	 in	CH2Cl2	
(4	mL)	at	0	°C	under	N2	and	the	resultant	mixture	was	stirred	for	5	
min.	 Then,	 i-Pr2NEt	 (192	 µL,	 1.1	mmol,	 1.1	 equiv)	was	 added	 and	
the	 mixture	 was	 further	 stirred	 for	 30	 min.	 A	 solution	 of	 TEMPO	
(328	 mg,	 2.1	 mmol,	 2.1	 equiv)	 in	 CH2Cl2	 (0.5	 mL	 +	 0.5	 mL)	 was	
added	 via	 cannula	 and	 the	 reaction	 mixture	 was	 stirred	 for	 1	 h,	
quenched	with	sat	NH4Cl	(2	mL),	and	stirred	vigorously	for	10	min.	It	
was	then	diluted	in	water	(20	mL)	and	extracted	with	CH2Cl2	(3	×	20	
mL).	 The	 organic	 layer	 was	 washed	 with	 brine	 (50	 mL),	 dried	
(MgSO4),	 and	 concentrated	 to	 yield	 the	 crude	 product.	 Column	
chromatography	was	then	conducted	to	yield	the	isolated	product.	

(S)-4-tert-Butyl-N-[(S)-2-(2,2,6,6-tetramethylpiperidin-1-
yloxy)propanoyl]-1,3-oxazolidine-2-thione	 (11a).	 Starting	 from	 (S)	
4-tert-butyl-N-propanoyl-1,3-oxazolidine-2-thione	 (5a,	 215	mg,	 1.0	
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mmol)	 diastereomerically	 pure	 adduct	 11a	 (308	 mg,	 0.83	 mmol,	
83%	 yield)	 was	 isolated	 as	 a	 white	 solid	 after	 chromatographic	
purification	 (60:40	 CH2Cl2/Hexanes).	 Mp:	 130–131	 °C.	 Rf	 =	 0.3	
(60:40	CH2Cl2/Hexanes).	[α]D

20	=	+84.0	(c	1.0,	CHCl3).	IR	(ATR):	2970,	
2926,	 1717,	 1178,	 1357,	 1138,	 943,	 800,	 601	 cm–1.	 1H	 NMR	 (400	
MHz,	CDCl3):	δ	6.57	(q,	J	=	6.8	Hz,	1H),	4.66	(dd,	J	=	7.4,	1.4	Hz,	1H),	
4.45	(dd,	J	=	9.5,	1.4	Hz,	1H),	4.28	(dd,	J	=	9.5,	7.4	Hz,	1H),	1.50–1.15	
(m,	18H),	1.41	(d,	J	=	6.8	Hz,	3H),	0.98	(s,	9H).	13C	NMR	(100.6	MHz,	
CDCl3):	δ	186.9,	175.3,	79.4,	69.2,	66.0,	59.6,	40.2,	36.1,	34.0,	26.0,	
20.2,	 19.3,	 17.1.	 HRMS	 (ESI):	m/z	 calcd.	 for	 C19H35N2O3S	 [M+H]+:	
371.2363;	found:	371.2359.	

(S)-4-tert-Butyl-N-[(S)-3-phenyl-2-(2,2,6,6-tetramethylpiperidin-1-
yloxy)propanoyl]-1,3-oxazolidine-2-thione	 (11b).	 Starting	 from	 (S)	
4-tert-butyl-N-(3-phenylpropanoyl)-1,3-oxazolidine-2-thione	 (5b,	
291	 mg,	 1.0	 mmol)	 diastereomerically	 pure	 adduct	 11b	 (361	 mg,	
0.81	 mmol,	 81%	 yield)	 was	 isolated	 as	 a	 white	 solid	 after	
chromatographic	 purification	 (CH2Cl2).	 Mp:	 138–139	 °C.	 Rf	 =	 0.8	
(CH2Cl2).	 [α]D

20	 =	 +87.0	 (c	 1.0,	 CHCl3).	 IR	 (ATR):	 2962,	 2922,	 2862,	
1713,	1479,	1368,	1349,	1308,	1182,	1149	cm–1.	1H	NMR	(400	MHz,	
CDCl3):	 δ	 7.29–7.15	 (m,	 5H),	 7.00	 (dd,	 J	 =	 10.7,	 6.0	Hz,	 1H),	 3.97–
3.91	 (m,	 2H),	 3.47	 (dd,	 J	 =	 12.6,	 6.0	 Hz,	 1H),	 2.92–2.85	 (m,	 2H),	
1.57–1.13	 (m,	 18H),	 0.85	 (s,	 9H).	 13C	 NMR	 (100.6	 MHz,	 CDCl3):	 δ	
187.3,	175.1,	135.3,	129.6,	128.4,	126.9,	80.8,	68.7,	66.7,	59.9,	40.4,	
40.2,	35.9,	34.1,	33.5,	26.1,	20.2,	20.1,	17.2.	HRMS	(ESI):	m/z	calcd.	
for	C24H39N2O3S	[M+H]+:	447.2676;	found:	447.2682.	

(S)-4-tert-Butyl-N-[(S)-3-methyl-2-(2,2,6,6-tetramethylpiperidin-1-
yloxy)butanoyl]-1,3-oxazolidine-2-thione	(11c).	Starting	from	(S)	4-
tert-butyl-N-(3-methylbutanoyl)-1,3-oxazolidine-2-thione	 (5c,	 243	
mg,	 1.0	mmol)	 diastereomerically	 pure	 adduct	 11c	 (320	mg,	 0.80	
mmol,	 80%	 yield)	 was	 isolated	 as	 a	 white	 solid	 after	
chromatographic	 purification	 (CH2Cl2).	 Mp:	 111–112	 °C.	 Rf	 =	 0.7	
(CH2Cl2).	 [α]D

20	 =	 +97.0	 (c	 1.0,	 CHCl3).	 IR	 (ATR):	 2962,	 2929,	 1698,	
1468,	 1349,	 1301,	 1171,	 1145	 cm–1.	 1H	 NMR	 (400	MHz,	 CDCl3):	 δ	
6.75	(d,	J	=	5.4	Hz,	1H),	4.62	(dd,	J	=	7.3,	1.3	Hz,	1H),	4.44	(dd,	J	=	
9.5,	 1.3	Hz,	 1H),	 4.21	 (dd,	 J	 =	 9.5,	 7.3	Hz,	 1H),	 2.49–2.36	 (m,	 1H),	
1.63–1.09	(m,	18H),	1.02	(d,	J	=	6.7	Hz,	3H),	0.99	(s,	9H),	0.90	(d,	J	=	
7.1	Hz,	3H).	13C	NMR	(100.6	MHz,	CDCl3):	δ	187.6,	173.0,	82.3,	69.2,	
66.7,	59.8,	40.4,	36.2,	34.2,	31.7,	26.2,	25.8,	22.4,	22.3,	20.3,	17.9,	
17.1,	 16.8.	 HRMS	 (ESI):	 m/z	 calcd.	 for	 C21H39N2O3S	 [M+H]+:	
399.2676;	found:	399.2679.	

(S)-4-tert-Butyl-N-[(S)-2-cyclopropyl-2-(2,2,6,6-
tetramethylpiperidin-1-yloxy)acetyl]-1,3-oxazolidine-2-thione	
(11d).	 Starting	 from	 (S)	 4-tert-butyl-N-(2-cyclopropylacetyl)-1,3-
oxazolidine-2-thione	 (5d,	 241	 mg,	 1.0	 mmol)	 diastereomerically	
pure	adduct	11d	 (308	mg,	0.78	mmol,	78%	yield)	was	isolated	as	a	
white	solid	after	chromatographic	purification	(95:5	CH2Cl2/EtOAc).	
Mp:	107–108	°C.	Rf	=	0.4	(CH2Cl2).	 [α]D

20	=	+112.1	(c	1.0,	CHCl3).	 IR	
(ATR):	2958,	2925,	1716,	1483,	1353,	1316,	1182,	1138,	949	cm–1.	
1H	NMR	 (400	MHz,	CDCl3):	δ	6.64	 (d,	 J	 =	8.4	Hz,	1H),	4.64	 (dd,	 J	 =	
7.4,	1.4	Hz,	1H),	4.46	(dd,	J	=	9.5,	1.4	Hz,	1H),	4.26	(dd,	J	=	9.5,	7.4	
Hz,	1H),	1.47–1.15	(m,	19H),	0.97	(s,	9H),	0.71–0.56	(m,	2H),	0.54–
0.45	 (m,	 1H),	 0.29–0.21	 (m,	 1H).	 13C	 NMR	 (100.6	 MHz,	 CDCl3):	 δ	

187.0,	172.7,	83.1,	69.1	(×2),	66.1,	64.9,	59.7,	42.3,	40.1,	36.0	(×2),	
25.9,	25.7,	17.1,	14.6,	6.8,	4.3,	4.2,	1.4.	HRMS	(ESI):	m/z	 calcd.	 for	
C21H37N2O3S	[M+H]+:	397.2519;	found:	397.2524.	

(S)-4-tert-Butyl-N-[(S)-2-(2,2,6,6-tetramethylpiperidin-1-yloxy)-5-
hexenoyl]-1,3-oxazolidine-2-thione	 (11f).	 Starting	 from	 (S)	 4-tert-
butyl-N-(5-hexenoyl)-1,3-oxazolidine-2-thione	 (5f,	 255	 mg,	 1.0	
mmol)	diastereomerically	pure	adduct	11f	(368	mg,	0.90	mmol,	90%	
yield)	 was	 isolated	 as	 a	 white	 solid	 after	 chromatographic	
purification.	Mp:	 94–95	 °C.	Rf	 =	 0.8	 (CH2Cl2).	 [α]D

20	 =	 +96.9	 (c	 1.0,	
CHCl3).	 IR	 (ATR):	 2966,	2922,	2862,	1716,	1475,	1360,	1327,	1297,	
1179,	1134	cm–1.	1H	NMR	(400	MHz,	CDCl3):	δ	6.66	(dd,	J	=	7.0,	3.2	
Hz,	 1H),	 5.83–5.71	 (m,	 1H),	 5.02–4.96	 (m,	 1H),	 4.98–4.91	 (m,	 1H),	
4.63	(dd,	J	=	7.3,	1.3	Hz,	1H),	4.45	(dd,	J	=	9.5,	1.3	Hz,	1H),	4.26	(dd,	J	
=	9.5,	7.3	Hz,	1H),	2.23–2.11	(m,	2H),	2.02–1.90	(m,	1H),	1.89–1.78	
(m,	1H),	1.47	 (br	 s,	6H),	1.18	 (s,	6H),	1.16	 (s,	6H),	0.99	 (s,	9H).	 13C	
NMR	 (100.6	MHz,	CDCl3):	 δ	 186.9,	 173.7,	 137.9,	 114.7,	 81.2,	 69.2,	
66.5,	 40.3,	 36.2,	 31.1,	 27.4,	 26.1,	 17.1.	HRMS	 (ESI):	m/z	 calcd.	 for	
C22H39N2O3S	[M+H]+:	411.2676;	found:	411.2680.	

(S)-4-tert-Butyl-N-[(S)-5-methoxy-2-(2,2,6,6-tetramethylpiperidin-
1-yloxy)-5-oxopentanoyl]-1,3-oxazolidine-2-thione	 (11g).	 Starting	
from	 (S)	 4-tert-butyl-N-(5-methoxy-5-oxopentanoyl)-1,3-
oxazolidine-2-thione	 (5g,	 287	 mg,	 1.0	 mmol)	 diastereomerically	
pure	adduct	11g	 (413	mg,	0.93	mmol,	93%	yield)	was	 isolated	as	a	
white	solid	after	chromatographic	purification	(95:5	CH2Cl2/EtOAc).	
Mp:	104–105	°C.	Rf	=	0.4	(CH2Cl2).	 [α]D

20	=	+102.5	(c	1.0,	CHCl3).	 IR	
(ATR):	2929,	1731,	1713,	1360,	1320,	1297,	1167,	1142,	934	cm–1.	
1H	NMR	(400	MHz,	CDCl3):	δ	6.71	(dd,	J	=	6.1,	2.3	Hz,	1H),	4.54–4.48	
(m,	 1H),	 4.50–4.45	 (m,	 1H),	 4.45–4.40	 (m,	 1H),	 3.61	 (s,	 3H),	 2.61–
2.51	 (m,	 1H),	 2.41–2.30	 (m,	 2H),	 2.20–2.10	 (m,	 1H),	 1.47	 (s,	 6H),	
1.17	(s,	6H),	1.15	(s,	6H),	0.96	(s,	9H).	13C	NMR	(100.6	MHz,	CDCl3):	δ	
187.3,	 173.9,	 173.1,	 80.1,	 69.3,	 66.4,	 51.4,	 40.0,	 35.8,	 26.4,	 25.9,	
25.6,	 16.9.	 HRMS	 (ESI):	 m/z	 calcd.	 for	 C22H39N2O5S	 [M+H]+:	
443.2574;	found:	443.2576.	

Removal	of	the	chiral	auxiliary	

(S)-2-(2,2,6,6-Tetramethylpiperidin-1-yloxy)-1-propanol	 (21a).	 A	
solution	of	11a	(74	mg,	0.20	mmol)	in	THF	(1.5	mL)	was	added	to	a	
solution	of	NaBH4	(31	mg,	0.8	mmol,	4	equiv)	in	40:1	THF/H2O	(1.4	
mL)	at	0	°C	under	N2	and	the	resultant	mixture	was	stirred	at	room	
temperature	 for	 2	 h.	 The	mixture	was	 then	 diluted	with	 Et2O	 (20	
mL),	washed	with	1	M	NaOH	(3	×	20	mL),	water	(20	mL),	and	brine	
(20	mL).	 The	 organic	 layer	 was	 dried	 (MgSO4),	 and	 concentrated.	
The	 crude	 was	 purified	 by	 column	 chromatography	 (90:10		
Hexanes/EtOAc)	 to	 give	 36	 mg	 (0.17	 mmol,	 84%	 yield)	 of	 pure	
alcohol	21a	as	a	colourless	oil.	The	aqueous	phase	was	acidified	and	
extracted	with	CH2Cl2	 (3	×	20	mL)	 to	 recover	34	mg	 (90%)	of	pure	
auxiliary	 5.	 Rf	 =	 0.2	 (90:10	 Hexanes/EtOAc).	 [α]D

20	 =	 –35.6	 (c	 1.0,	
CHCl3).	 IR	 (ATR):	 3376	 (br),	 2972,	 2928,	 1453,	 1375,	 1162,	 1131,	
1043	cm–1.	1H	NMR	(400	MHz,	CDCl3):	δ	5.53	(s	br,	1H),	4.38	(dqd,	J	
=	9.3,	6.3,	2.2	Hz,	1H),	3.90	(dd,	J	=	11.9,	9.3	Hz,	1H),	3.57	(dd,	J	=	
11.9,	2.2	Hz,	1H),	1.60–1.25	(m,	6H),	1.32	(s,	3H),	1.30	(s,	3H),	1.15	
(s,	3H),	1.11	 (s,	3H),	1.01	 (d,	 J	=	6.3	Hz,	3H).	 13C	NMR	(100.6	MHz,	



ARTICLE	 Journal	Name	

8 	|	J.	Name.,	2012,	00,	1-3	 This	journal	is	©	The	Royal	Society	of	Chemistry	20xx	

Please	do	not	adjust	margins	

Please	do	not	adjust	margins	

CDCl3):	 δ	 76.8,	 69.3,	 61.1,	 59.9,	 40.2,	 39.9,	 34.5,	 32.6,	 20.4,	 20.3,	
17.2,	 16.0.	 HRMS	 (ESI):	 m/z	 calcd.	 C12H26NO2	 [M+H]+:	 216.1958;	
found:	216.1964.	

(S)-3-Phenyl-2-(2,2,6,6-tetramethylpiperidin-1-yloxy-1-propanol	
(21b).	A	 solution	 of	11b	 (58	mg,	 0.13	mmol)	 in	 THF	 (1.5	mL)	was	
added	to	a	solution	of	NaBH4	(31	mg,	0.8	mmol,	6.15	equiv)	in	40:1	
THF/H2O	 (1.4	mL)	 at	 0	 °C	under	N2	 and	 the	 resultant	mixture	was	
stirred	at	room	temperature	for	20	h.	The	mixture	was	then	diluted	
with	Et2O	(20	mL),	washed	with	1	M	NaOH	(3	×	20	mL),	water	 (20	
mL),	 and	 brine	 (20	mL).	 The	 organic	 layer	was	 dried	 (MgSO4)	 and	
concentrated.	 The	 crude	was	 purified	 by	 column	 chromatography	
(95:5	CH2Cl2/EtOAc)	 to	give	35	mg	 (0.12	mmol,	92%	yield)	of	pure	
alcohol	21b	 as	 colourless	 oil.	 The	 aqueous	 layer	was	 acidified	 and	
extracted	with	CH2Cl2	 (3	×	20	mL)	 to	 recover	20	mg	 (95%)	of	pure	
auxiliary	5.	Rf	=	0.5	(95:5	CH2Cl2/EtOAc).	[α]D

20	=	–62.1	(c	1.0,	CHCl3).	
IR	 (ATR):	 3303	 (br),	 2923,	 1451,	 1359,	 1131,	 1027,	 694	 cm–1.	 1H	
NMR	 (400	MHz,	 CDCl3):	 δ	 7.30–7.18	 (m,	 5H),	 5.67	 (br	 s,	 1H),	 4.47	
(dddd,	J	=	9.4,	7.2,	5.5,	2.0	Hz,	1H),	3.97	(dd,	J	=	11.9,	9.4	Hz,	1H),	
3.65	(dd,	J	=	11.9,	2.0	Hz,	1H),	2.72	(dd,	J	=	13.7,	7.2	Hz,	1H),	2.59	
(dd,	 J	 =	 13.7,	 5.5	Hz,	 1H),	 1.58–1.42	 (m,	 6H),	 1.47	 (s,	 3H),	 1.30	 (s,	
3H),	1.12	(s,	3H),	0.98	(s,	3H).	13C	NMR	(100.6	MHz,	CDCl3):	δ	138.3,	
129.4,	 128.1,	 126.1,	 81.2,	 67.8,	 61.5,	 60.0,	 40.3,	 39.9,	 37.6,	 34.5,	
32.4,	 29.7,	 20.6,	 20.2,	 17.1.	 HRMS	 (ESI):	m/z	 calcd.	 for	 C18H30NO2	
[M+H]+:	292.2271;	found:	292.2278.	

(S)-2-[(2,2,6,6-Tetramethylpiperidin-1-yl)oxy]propanoic	acid	 (22a).	
A	mixture	of	11a	(74	mg,	0.20	mmol),	30%	H2O2	(90	µL,	0.8	mmol,	4	
equiv),	and	LiOH	(10	mg,	0.42	mmol,	2	equiv)	in	3:1	THF/H2O	(4	mL)	
was	stirred	at	0	°C	for	30	min.	A	sat	solution	of	Na2S2O3	(2	mL)	was	
added	and	 the	volatiles	were	 removed	 in	 vacuo.	 The	 solution	was	
acidified	with	 2	M	HCl	 and	 the	 aqueous	 layer	was	 extracted	with	
EtOAc	 (3	 ×	 10	 mL).	 The	 combined	 organic	 extracts	 were	 dried	
(MgSO4)	 and	 concentrated.	 The	 crude	 was	 purified	 by	 column	
chromatography	(from	CH2Cl2	to	65:35	CH2Cl2/EtOAc)	to	give	27	mg	
(84%)	 of	 pure	 auxiliary	 5	 and	 35	 mg	 (0.15	 mmol,	 76%	 yield)	 of	
carboxylic	acid	22a	as	a	colourless	oil.	Rf	=	0.3	(65:35	CH2Cl2/EtOAc).	
[α]D

20	=	–	39.8	(c	1.0,	CHCl3).	IR	(ATR):	2974,	2927,	2873,	1720,	1454,	
1372,	 1359,	 1239,	 1128,	 1077,	 935,	 783	 cm–1.	 1H	NMR	 (400	MHz,	
CDCl3):	δ	4.55	(q,	J	=	6.7	Hz,	1H),	1.73–1.63	(m,	5H),	1.54–1.48	(m,	
1H),	1.50	(d,	J	=	6.7	Hz,	3H),	1.35	(s,	3H),	1.30	(s,	3H),	1.26	(s,	3H),	
1.24	(s,	3H).	13C	NMR	(100.6	MHz,	CDCl3):	δ	174.3,	62.9,	62.5,	39.2,	
39.0,	30.9,	30.1,	29.7,	20.9	(×2),	17.0,	16.4.	HRMS	(ESI):	m/z	calcd.	
for	C12H24NO3	[M+H]+:	230.1751;	found:	230.1759.		

(S)-3-Phenyl-2-(2,2,6,6-tetramethylpiperidin-1-yloxy)propanoic	
acid	(22b).	A	mixture	of	11b	(89	mg,	0.20	mmol),	30%	H2O2	(90	µL,	
0.8	mmol,	 4	 equiv),	 and	 LiOH	 (11	mg,	 0.42	mmol,	 2	 equiv)	 in	 3:1	
THF/H2O	(4	mL)	was	stirred	at	0	°C	for	3	h.	A	sat	solution	of	Na2S2O3	
(2	 mL)	 was	 added	 and	 the	 volatiles	 were	 removed	 in	 vacuo.	 The	
solution	 was	 acidified	 with	 2	 M	 HCl	 and	 the	 aqueous	 layer	 was	
extracted	with	 EtOAc	 (3	×	 10	mL).	 The	 combined	 organic	 extracts	
were	 dried	 (MgSO4)	 and	 concentrated.	 The	 crude	was	 purified	 by	
column	chromatography	(65:35	CH2Cl2/EtOAc)	to	give	25	mg	(78%)	

of	pure	auxiliary	5	and	42	mg	(0.14	mmol,	69%	yield)	of	carboxylic	
acid	22b	as	a	colourless	oil.	Rf	=	0.4	(65:35	CH2Cl2/EtOAc).	[α]D

20	=	–
68.5	 (c	 1.0,	 CHCl3).	 IR	 (ATR):	 2971,	 2927,	 2870,	 1717,	 1454,	 1372,	
1233,	1131,	1027,	751,	694	cm–1.	1H	NMR	(400	MHz,	CDCl3):	δ	7.33–
7.20	(m,	5H),	4.69	(dd,	J	=	8.5,	3.4	Hz,	1H),	3.46	(dd,	J	=	14.6,	8.5	Hz,	
1H),	3.14	(dd,	J	=	14.6,	3.4	Hz,	1H),	1.68–1.59	(m,	5H),	1.50–1.44	(m,	
1H),	 1.28	 (s,	 3H),	 1.18	 (s,	 3H),	 1.12	 (s,	 3H),	 1.09	 (s,	 3H).	 13C	 NMR	
(100.6	MHz,	CDCl3):	δ	173.1,	137.6,	129.6,	128.2,	126.5,	80.5,	63.1,	
62.8,	39.3,	39.2,	37.6,	31.2,	29.9,	21.0,	20.8,	16.3.	HRMS	(ESI):	m/z	
calcd.	for	C18H28NO3	[M+H]+:	306.2064;	found:	306.2070.		

Methyl	 (S)-2-[(2,2,6,6-tetramethylpiperidin-1-yl)oxy]propanoate	
(23a).	A	solution	of	11a	(74	mg,	0.20	mmol)	and	DMAP	(11	mg,	80	
µmol)	in	methanol	(5	mL)	was	stirred	for	20	h	at	room	temperature	
under	N2.	The	volatiles	were	removed	and	the	resultant	residue	was	
diluted	in	Et2O	(20	mL),	washed	with	1	M	NaOH	(3	×	20	mL),	water	
(20	mL),	and	brine	(20	mL).	The	organic	layer	was	dried	(MgSO4)	and	
concentrated.	 The	 crude	was	 purified	 by	 column	 chromatography	
(90:10	 Hexanes/EtOAc)	 to	 give	 42	 mg	 (0.17	 mmol,	 86%	 yield)	 of	
pure	ester	23a	as	a	colourless	oil.	The	aqueous	 layer	was	acidified	
and	 extracted	with	 CH2Cl2	 (3	×	 20	mL)	 to	 recover	 28	mg	 (88%)	 of	
pure	 auxiliary	5.	Rf	 =	 0.4	 (90:10	Hexanes/EtOAc).	 [α]D

20	 =	 –56.3	 (c	
1.0,	 CHCl3).	 IR	 (ATR):	 2931,	 1741,	 1452,	 1374,	 1361,	 1262,	 1243,	
1197,	1131,	1078,	973,	941,	788	cm–1.	1H	NMR	(400	MHz,	CDCl3):	δ	
4.34	(q,	J	=	6.9	Hz,	1H),	3.71	(s,	3H),	1.49–1.38	(m,	6H),	1.40	(d,	J	=	
6.9	Hz,	3H),	1.18	(br	s,	3H),	1.12	(br	s,	6H),	1.02	(br	s,	3H).	13C	NMR	
(100.6	MHz,	CDCl3):	δ	174.5,	81.6,	60.1,	59.5,	51.4,	40.3,	40.1,	33.6,	
32.9,	 20.2,	 20.0,	 18.1,	 17.1.	 HRMS	 (ESI):	m/z	 calcd.	 for	 C13H26NO3	
[M+H]+:	244.1907;	found:	244.1901.	

Methyl	 (S)-3-phenyl-2-(2,2,6,6-tetramethylpiperidin-1-
yloxy)propanoate	 (23b).	A	solution	of	11b	 (89	mg,	0.2	mmol)	and	
DMAP	(11	mg,	80	µmol)	in	methanol	(5	mL)	was	stirred	for	72	h	at	
room	 temperature	 under	N2.	 The	 volatiles	were	 removed	 and	 the	
resultant	 residue	 was	 diluted	 in	 Et2O	 (20	 mL),	 washed	 with	 1	 M	
NaOH	 (3	×	 20	mL),	water	 (20	mL),	 and	brine	 (20	mL).	 The	organic	
layer	was	dried	(MgSO4)	and	concentrated.	The	crude	was	purified	
by	 column	 chromatography	 (50:50	CH2Cl2/Hexanes)	 to	 give	 57	mg	
(0.18	mmol,	 89%	 yield)	 of	 pure	 ester	 23b	 as	 a	 colourless	 oil.	 The	
aqueous	 layer	was	acidified	and	extracted	with	CH2Cl2	 (3	×	20	mL)	
to	 recover	 30	 mg	 (94%)	 of	 pure	 auxiliary	 5.	 Rf	 =	 0.5	 (50:50	
CH2Cl2/Hexanes).	[α]D

20	=	–17.1	(c	1.0,	CHCl3).	IR	(ATR):	2946,	2911,	
1736,	 1366,	 1166,	 1043,	 694	 cm–1.	 1H	 NMR	 (400	 MHz,	 CDCl3):	 δ	
7.28–7.13	(m,	5H),	4.45	(dd,	J	=	10.2,	5.5	Hz,	1H),	3.50	(s,	3H),	3.25	
(dd,	J	=	13.2,	5.5	Hz,	1H),	2.99	(dd,	J	=	13.2,	10.2	Hz,	1H),	1.49–0.99	
(m,	18H).	13C	NMR	(100.6	MHz,	CDCl3):	δ	173.1,	136.0,	129.4,	128.3,	
126.6,	86.6,	60.6,	59.5,	51.1,	40.3,	40.2,	38.5,	33.5,	32.9,	20.3,	20.1,	
17.1.	 HRMS	 (ESI):	 m/z	 calcd.	 for	 C19H30NO3	 [M+H]+:	 320.2220;	
found:	320.2225.	

N-[2(S)-(2,2,6,6-Tetramethylpiperidin-1-
yloxy)propanoyl]morpholine	(24a).	A	solution	of	11a	 (74	mg,	0.20	
mmol),	morpholine	 (69	 µL,	 0.78	mmol,	 3.9	 equiv),	 and	 DMAP	 (14	
mg,	 0.1	 mmol)	 in	 THF	 (2	 mL)	 was	 stirred	 for	 12	 h	 at	 room	
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temperature	 under	 N2.	 The	 volatiles	 were	 then	 removed	 and	 the	
residue	 was	 purified	 by	 column	 chromatography	 (from	 CH2Cl2	 to	
90:10	CH2Cl2/EtOAc)	to	afford	57	mg	(0.19	mmol,	95%	yield)	of	pure	
amide	24a	 as	 a	white	 solid	 and	 31	mg	 (97%)	 of	 chiral	 auxiliary	5.	
Mp:	 57–58	 °C.	Rf	 =	 0.3	 (90:10	 CH2Cl2/EtOAc).	 [α]D

20	 =	 –3.0	 (c	 1.0,	
CHCl3).	IR	(ATR):	2949,	2851,	1644,	1464,	1429,	1233,	1109,	568	cm

–

1.	1H	NMR	(400	MHz,	CDCl3):	δ	4.61	(q,	J	=	7.1	Hz,	1H),	3.77–3.53	(m,	
8H),	 1.60–1.05	 (m,	 18H),	 1.44	 (d,	 J	 =	 7.1	 Hz,	 3H).	 13C	NMR	 (100.6	
MHz,	CDCl3):	δ	172.3,	83.0,	66.9,	66.6,	59.6,	46.1,	42.1,	40.2,	40.1,	
33.9,	 33.2,	 29.7,	 20.6,	 20.3,	 18.5,	 17.0.	HRMS	 (ESI):	m/z	 calcd.	 for	
C16H31N2O3	[M+H]+:	299.2329;	found:	299.2334.	

N-[(S)-[3-Phenyl-2-(2,2,6,6-tetramethylpiperidin-1-
yloxy)propanoyl]morpholine	 (24b).	A	solution	of	11b	 (89	mg,	0.20	
mmol),	morpholine	 (69	 µL,	 0.78	mmol,	 3.9	 equiv),	 and	 DMAP	 (14	
mg,	0.1	mmol	0.5	equiv)	in	THF	(2	mL)	was	stirred	for	24	h	at	room	
temperature	 under	 N2.	 The	 volatiles	 were	 then	 removed	 and	 the	
residue	 was	 purified	 by	 column	 chromatography	 (from	 CH2Cl2	 to	
80:20	CH2Cl2/EtOAc)	to	afford	69	mg	(0.18	mmol,	92%	yield)	of	pure	
amide	24b	 as	 a	white	 solid	 and	 26	mg	 (81%)	 of	 chiral	 auxiliary	5.	
Mp:	148–149	°C.	Rf	=	0.7	(90:10	CH2Cl2/EtOAc).	[α]D

20	=	–4.7	(c	1.0,	
CHCl3).	 IR	(ATR):	2930,	1632,	1448,	1239,	1109,	1024,	701	cm

–1.	1H	
NMR	(400	MHz,	CDCl3):	δ	7.28–7.17	(m,	5H),	4.73	(dd,	J	=	11.0,	4.6	
Hz,	 1H),	 3.64–3.53	 (m,	 2H),	 3.39	 (ddd,	 J	 =	 11.5,	 5.5,	 3.1	 Hz,	 1H),	
3.32–3.21	 (m,	 4H),	 3.10	 (dd,	 J	 =	 12.5,	 11.0	 Hz,	 1H)	 3.05–3.00	 (m,	
1H),	 2.74	 (ddd,	 J	 =	 11.5,	 7.8,	 2.9	 Hz,	 1H),	 1.62–1.02	 (m,	 18H).	 13C	
NMR	(100.6	MHz,	CDCl3):	δ	171.1,	136.5,	129.7,	128.4,	126.7,	82.6,	
66.5,	 66.1,	 60.4,	 59.5,	 46.0,	 41.7	 40.5,	 40.3,	 39.0,	 33.9,	 33.3	 20.4,	
20.2,	17.1.	HRMS	(ESI):	m/z	calcd.	for	C22H35N2O3	[M+H]+:	375.2642;	
found:	375.2651.	

S-Dodecyl	 (S)-2-(2,2,6,6-tetramethylpiperidin-1-
yloxy)propanethioate	 (25a).	A	1.6	M	solution	of	n-BuLi	 in	hexanes	
(38	µL,	60	µmol)	was	added	to	a	solution	of	dodecanethiol	(145	µL,	
0.6	mmol)	in	THF	(2	mL)	at	0	°C	under	N2	and	the	resultant	solution	
was	stirred	for	15	min.	Then,	a	solution	of	11a	(74	mg,	0.20	mmol)	
in	 THF	 (2	 ×	 0.75	 mL)	 was	 added	 and	 the	 reaction	 mixture	 was	
stirred	 at	 room	 temperature	 for	 6	 h.	 It	was	 diluted	with	 Et2O	 (20	
mL),	washed	with	1	M	NaOH	(3	×	20	mL),	water	(20	mL),	and	brine	
(20	mL).	The	organic	layer	was	dried	(MgSO4)	and	concentrated.	The	
crude	 was	 purified	 by	 column	 chromatography	 (70:30	
Hexanes/CH2Cl2)	 to	 give	 77	 mg	 (0.19	 mmol,	 93%	 yield)	 of	 pure	
thioester	 25a	 as	 a	 colourless	 oil.	 The	 aqueous	 layer	 was	 acidified	
and	 extracted	with	 CH2Cl2	 (3	×	 20	mL)	 to	 recover	 30	mg	 (94%)	 of	
pure	chiral	auxiliary	5.	Rf	=	0.2	(70:30	Hexanes/CH2Cl2).	[α]D

20	=	–5.8	
(c	 1.0,	 CHCl3).	 IR	 (ATR):	 2922,	 2852,	 1681,	 1453,	 1361,	 1132,	 957,	
922,	573	cm–1.	1H	NMR	(400	MHz,	CDCl3):	δ	4.42	(q,	J	=	6.9	Hz,	1H),	
2.85	(t,	J	=	7.4	Hz,	2H),	1.67–0.99	(m,	41H),	0.88	(t,	J	=	6.9	Hz,	3H).	
13C	NMR	 (100.6	MHz,	CDCl3):	 δ	203.4,	 87.1,	 60.5,	 59.5,	 40.3,	 34.4,	
33.5,	31.9,	29.6	 (×	3),	29.5,	29.4,	29.3,	29.1,	28.9,	28.1,	22.7,	20.3,	
19.4,	 17.1,	 14.1.	 HRMS	 (ESI):	 m/z	 calcd.	 for	 C24H48NO2S	 [M+H]+:	
414.3400;	found:	414.3390.	

S-Dodecyl	 (S)-[3-phenyl-2-(2,2,6,6-tetramethylpiperidin-1-
yloxy)]propanethioate	(25b).	A	1.6	M	solution	of	n-BuLi	in	hexanes	
(38	µL,	60	µmol)	was	added	to	a	solution	of	dodecanethiol	(145	µL,	
0.6	mmol)	in	THF	(2	mL)	at	0	°C	under	N2	and	the	resultant	solution	
was	stirred	for	15	min.	Then,	a	solution	of	11b	(89	mg,	0.20	mmol)	
in	 THF	 (2	 ×	 0.75	 mL)	 was	 added	 and	 the	 reaction	 mixture	 was	
stirred	at	 room	temperature	 for	14	h.	 It	was	diluted	with	Et2O	 (20	
mL),	washed	with	1	M	NaOH	(3	×	20	mL),	water	(20	mL),	and	brine	
(20	mL).	The	organic	layer	was	dried	(MgSO4)	and	concentrated.	The	
crude	 was	 purified	 by	 column	 chromatography	 (80:20	
Hexanes/CH2Cl2)	 to	 give	 87	 mg	 (0.18	 mmol,	 89%	 yield)	 of	 pure	
thioester	 25b	 as	 a	 colourless	 oil.	 The	 aqueous	 layer	 was	 acidified	
and	 extracted	with	 CH2Cl2	 (3	×	 20	mL)	 to	 recover	 28	mg	 (88%)	 of	
pure	 chiral	 auxiliary	 5.	 Rf	 =	 0.4	 (80:20	 Hexanes/CH2Cl2).	 [α]D

20	 =	
+21.1	(c	1.0,	CHCl3).	 IR	 (ATR):	2921,	2850,	1686,	1451,	1362,	1130,	
934,	696	cm–1.		1H	NMR	(400	MHz,	CDCl3):	δ	7.26–7.16	(m,	5H),	4.53	
(dd,	J	=	9.2,	5.1	Hz,	1H),	3.30	(dd,	J	=	13.5,	5.1	Hz,	1H),	3.01	(dd,	J	=	
13.5,	9.2	Hz,	1H),	2.74	(t,	J	=	7.3	Hz,	2H),	1.54–0.85	(m,	40H),	0.88	(t,	
J	=	6.7	Hz,	3H).	13C	NMR	(100.6	MHz,	CDCl3):	δ	201.1,	136.4,	129.7,	
128.2,	126.5,	91.4,	40.5,	38.8,	31.9,	29.7,	29.6	(×	2),	29.5,	29.4,	29.1,	
28.8,	 28.4,	 22.7,	 20.3,	 20.2,	 17.1,	 14.1.	HRMS	 (ESI):	m/z	 calcd.	 for	
C30H52NO2S	[M+H]+:	490.3713,	found:	490.3715.						
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