
www.sciencedirect.com

c o r t e x 1 0 0 ( 2 0 1 8 ) 7 1e8 3

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Diposit Digital de la Universitat de Barcelona
Available online at
ScienceDirect

Journal homepage: www.elsevier.com/locate/cortex
Special issue: Research report
A systematic linguistic profile of spontaneous
narrative speech in pre-symptomatic and early
stage Huntington's disease
Wolfram Hinzen a,b,c, Joana Rossell�o d, Cati Morey d, Estela Camara e,f,g,
Clara Garcia-Gorro e,f, Raymond Salvador c and
Ruth de Diego-Balaguer a,e,f,g,*

a ICREA (Catalan Institution for Research and Advanced Studies), Barcelona, Spain
b Department of Translation and Language Sciences, Universitat Pompeu Fabra, Barcelona, Spain
c FIDMAG Germanes Hospitalaries Research Foundation, Barcelona, Spain
d Department of Catalan Philology and General Linguistics, Universitat de Barcelona, Barcelona, Spain
e Cognition and Brain Plasticity Unit, IDIBELL, L'Hospitalet de Llobregat, Spain
f Department of Cognition, Development and Educational Psychology, Universitat de Barcelona, Barcelona, Spain
g Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain
a r t i c l e i n f o

Article history:

Received 20 January 2017

Reviewed 28 May 2017

Revised 27 June 2017

Accepted 21 July 2017

Published online 9 August 2017

Keywords:

Huntington's disease

Narrative speech

Grammatical deficits

Voxel-based morphometry

Basal ganglia
* Corresponding author. Department of Cogn
171, 08035 Barcelona, Spain.

E-mail addresses: ruth.dediego@ub.edu, r
http://dx.doi.org/10.1016/j.cortex.2017.07.022
0010-9452/© 2017 The Author(s). Published
creativecommons.org/licenses/by-nc-nd/4.0/
a b s t r a c t

Cognitive decline accompanying the clinically more salient motor symptoms of Hunting-

ton's disease (HD) has been widely noted and can precede motor symptoms onset. Less

clear is how such decline bears on language functions in everyday life, though a small

number of experimental studies have revealed difficulties with the application of rule-

based aspects of language in early stages of the disease. Here we aimed to determine

whether there is a systematic linguistic profile that characterizes spontaneous narrative

speech in both pre-manifest and/or early manifest HD, and how it is related to striatal

degeneration and neuropsychological profiles. Twenty-eight early-stage patients (19

manifest and 9 gene-carriers in the pre-manifest stage), matched with 28 controls,

participated in a story-telling task. Speech was blindly scored by independent raters ac-

cording to fine-grained linguistic variables distributed over 5 domains for which composite

scores were computed (Quantitative, Fluency, Reference, Connectivity, and Concordance).

Voxel-based morphometry (VBM) was used to link specific brain degeneration patterns to

loci of linguistic decline. In all of these domains, significant differences were observed

between groups. Deficits in Reference and Connectivity were seen in the pre-manifest

stage, where no other neuropsychological impairment was detected. Among HD patients,

there was a significant positive correlation only between the values in the Quantitative

domain and gray matter volume bilaterally in the putamen and pallidum. These results fill

the gap of qualitative data of spontaneous narrative speech in HD and reveal that HD is

characterized by systematic linguistic impairments leading to dysfluencies and disorga-

nization in core domains of grammatical organization. This includes the referential use of
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noun phrases and the embedding of clauses, which mediate crucial dimensions of

meaning in language in its normal social use. Moreover, such impairment is seen prior to

motor symptoms onset and when standardized neuropsychological test profiles are

otherwise normal.

© 2017 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Huntington's disease (HD) is an autosomal dominant genetic

neurodegenerative disease that involves cognitive and psy-

chiatric disorders in addition to motor impairment. Cognitive

decline can precede motor impairments by several years

(Stout et al., 2011; 2016). The earliest cognitive impairments in

clinicallymanifest HD have been found to implicate attention,

executive functions, memory, and social cognition (Caine,

Ebert, & Weingartner, 1977; Foroud et al., 1995; Ho et al.,

2003; Papoutsi, Labuschagne, Tabrizi, & Stout, 2014). Some of

these impairments, including deficits in social cognition (Bora,

Velakoulis, & Walterfang, 2016), can characterize, in milder

forms, the pre-manifest stage.

Since the discovery of the genetic polyglutamine expan-

sion as the cause of the disease (Gusella et al., 1983), an

increasing amount of research has focused on detecting bio-

markers that would allow tracking disease progression before

the onset of the clinical manifestations, which usually start in

the late thirties or forties of affected individuals. The potential

of language as such a biomarker has barely been explored,

thoughVogel, Shirbin, Churchyard, and Stout (2012) suggested

that markers of speech in the acoustic domain related to

speech timing could be potential signals in the early symp-

tomatic and perhaps the prodromal stage. While cognitive

dysfunction has been extensively studied in HD, only a

handful of studies have investigated the effects of the disease

on language function (De Diego-Balaguer et al., 2008; Long-

worth, Keenan, Barker, Marslen-Wilson,& Tyler, 2005; Sambin

et al., 2012; Teichmann et al., 2005, 2006; Teichmann, Dupoux

et al., 2008; Teichmann, Gaura et al., 2008; Ullman et al., 1997).

This is despite the fact that, cognitive, behavioral and motor

dysfunctions are expected to be reflected in the language use

of patients and to affect their everyday social interactions.

Normal language use requires the interaction and integration

of a myriad of cognitive systems, including memory, percep-

tion, attention, and the various subsystems of language itself.

Furthermore, language is a primary tool used for conveying

mental states and determining them in others, and hencemay

relate to the early impairments in the ability to understand the

mental states of others (theory of mind', ToM) noted in HD

(Adenzato & Poletti, 2013; Bora et al., 2016; Brüne, Blank,

Witthaus, & Saft, 2011; Eddy, Sira Mahalingappa, & Rickards,

2012; Saft et al., 2013).

HD involves primary neural death in the striatum extend-

ing progressively to widespread cortical areas. The striatum

forms part of the cortico-subcortical language network,

though its functional role and degree of specificity remain

unclear. Available evidence supports its role both in the

application of syntactic rules in language (Teichmann et al.,

2005) and in the access to lexical aspects of grammatical
processing (Friederici & Kotz, 2003; Friederici, Steinhauer, &

Frisch, 1999; Moro et al., 2001). Striatal damage in early man-

ifest HD has been shown to affect the application of structural

rules in different aspects of language, while leaving lexical

knowledge unaffected (De Diego-Balaguer et al., 2008; Sambin

et al., 2012; Teichmann, Dupoux et al., 2008; Teichmann et al.,

2005). In particular, impairments have been reported in sen-

tence comprehension (Sambin et al., 2012; Teichmann et al.,

2005) and the perception (Teichmann et al., 2006) and pro-

duction (Longworth et al., 2005; Ullman et al., 1997) of verbal

inflection.

Syntactic structuring and verbal inflection in sentences

require temporal processing (Bornkessel-Schlesewsky &

Schlesewsky, 2013), just as motor sequencing does. Thus,

the linguistic deficits described could derive from a more

general role of the basal ganglia shared by different aspects of

motor and cognitive functions. As first proposed by Graybiel

(1995a, 1995b), the role of the basal ganglia could be that of a

more general ‘pattern generator’, supporting the sequencing

of meaningful behavioral repertoires, reiteration, and timing

(Kotz& Schwartze, 2010; Kotz, Schwartze,& Schmidt-Kassow,

2009; Lieberman, 2007) in bothmotor sequences and cognitive

sequences. This is consistent with findings of impaired con-

trol over the timing and duration of speech units in patients

with striatal damage (Hertrich & Ackermann, 1994; Ludlow,

Connor, & Bassich, 1987; Vogel et al., 2012). Indeed, temporal

processing has been linked to the sequential processing

necessary for syntactic structuring (Bornkessel-Schlesewsky

& Schlesewsky, 2013) and the motor system appears to sus-

tain this timing function. Thus, given its relation with a vari-

ety of cognitive and motor functions, some language changes

could serve as an important and sensitive objective behavioral

marker of cognitive decline and disease progression in HD, as

has been suggested in the case of the schizophrenia prodrome

as well (Bedi et al., 2015).

Previous studies on HD have studied language dysfunc-

tions in constrained situations designed to test specific defi-

cits in experimental tasks. Although this effort has helped to

pinpoint that HD patients have particular difficulties with

different aspects of syntactic processing accompanied by less

impairment in lexico-semantic processing, these tasks may

not reflect HD speech in more natural situations and in its

normal social use. Narrative speech is a more ecologically

natural condition, which poses distinctive cognitive chal-

lenges. These may in part overlap with, but also add to those

of the experimental tasks previously mentioned. Specifically,

narrative speech requires introducing story characters and

tracking them throughout the story, setting up and developing

the story line, and bringing it to a conclusion. Since agents act

because of the reasons and intentions that underlie and

rationalize their actions, moreover, storytelling depends on

http://creativecommons.org/licenses/by-nc-nd/4.0/
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representing these mental states. This point is particularly

interesting since, as noted, deficits in ToM have been reported

inmild tomoderate stages of HD (Brüne et al., 2011; Eddy et al.,

2012), though not the pre-manifest stage (Saft et al., 2013). In

addition, referencing story characters and objects in language

and tracking them in a narrative requires specific grammatical

devices, such as the functional elements ‘a’ or ‘the’ in front of

nouns such as ‘girl’, where the former normally functions so

as to introduce a character, and the latter to reference an

already introduced one. In comprehension, the use of such

devices has already been reported to be deficient in HD

(Sambin et al., 2012) in experimental settings. Referencing of

mental states exploits specific forms of grammatical

complexity as well, such as the use of embedded clauses to

report the content of a mental state (e.g., [She thought that [he

was her grandmother]).

In this way, narrative represents language use in one of its

cognitivelymost complex forms. Neurocognitive impairments

are thus expected to bear on narrative performance. This

impact has been demonstrated in the case of autism spectrum

disorders (King, Dockrell, & Stuart, 2013), where language

decline transpires in narrative tasks even when the clinical

group is matched with controls on standardized language

scores (Banney, Harper-Hill,&Arnott, 2015; Norbury& Sparks,

2013), and in schizophrenia (Zinken, Blakemore, Zinken,

Butler, & Skinner, 2011). The disintegration of narrative

competence thus opens a fine-grained window for shedding

light on cognitive decline across different neurodegenerative

and neurodevelopmental conditions. Given the variety of

functions necessary to perform narrative tasks, these are a

prime domain to study cognitive and linguistic deficits with a

greater level of sensitivity than the tasks previously used for

the study of spontaneous speech (e.g., picture description,

structured interviews, etc.).

Despite its inherent interest, only a few studies have

focused on HD spontaneous speech and narrative. These

studies found spontaneous speech to be typically reduced,

with fewer words and syntactic structures formed in short,

simple sentence constructions and more paraphasic errors

(Chenery, Copland, & Murdoch, 2002; Murray & Lenz, 2001;

Gordon & Illes, 1987; Podoll, Caspary, Lange & Noth, 1998). In

spontaneous speech answering to open-ended autobio-

graphical questions, Illes' (1989) study found that the reduc-

tion of syntactic complexity was a landmark of HD speech as

compared to that of patients with Alzheimer's and Parkinson's
disease. More recently, using a picture description task,

Jensen, Chenery, and Copland (2006) found that patients with

HD produced significantly more grammatical errors and less

action verbs than both a group of patients with non-thalamic

subcortical lesions following stroke and healthy subjects.

Finally, there is practically no evidence of altered language

patterns in spoken narrative, though Caine, Bamford, Schiffer,

Shoulson, and Levy (1986) reported a pattern of defective

naming, impaired repetition and decreased language output

in written narratives by patients with HD who were very early

in the course of their illness.

Overall, these findings indicate language impairment in

spontaneous speech of HD converging with the experimental

studies to point to syntactic deficits in HD. However, sample
sizes of the few existing studies have been all small (typically

less than 12 HD patients), and they have mixed patients at

different stages of the disease. Furthermore, none of the pre-

vious studies included prodromal cases and thus, there is little

evidence for how spontaneous speech changes pattern across

the different stages of the disease. More importantly, another

limitation of this literature is that it did not develop a detailed

linguistic classification of deficits and thus it remains unclear

whether HD exhibits a systematic and distinctive profile.

The goal of the present study was to determine the spon-

taneous speech profile in both patients with HD and prodro-

mal identified gene-carriers more systematically, based on a

narrative task. This also allowed us to test whether previously

reported linguistic deficits, which were based on experimen-

tally controlled setups, could be linked to deficits seen in

spontaneous speech. We further investigated whether those

deficits were related to specific brain degeneration patterns by

using a voxel-basedmorphometry (VBM) analysis constrained

to the brain areas showing gray matter atrophy compared to

controls matched in age and education. More specifically, we

were interested in observing whether linguistic deficits were

related to the neurodegeneration of areas from the cortico-

striatal motor network, in order to illuminate whether there

is a relationship betweenmotor dysfunction and at least some

of the linguistic deficits observed, and whether different pat-

terns of degeneration including cortical areas outside of the

motor circuit may relate to the some of the linguistic errors.

This functional relation between motor and linguistic deficits

was complemented with correlations from the neurological

and neuropsychological assessments.
2. Material and methods

2.1. Participants

28 HD gene-carriers and 28 controls matched in age, gender

and educational background were tested. Nine of the gene-

carriers were at a prodromal stage of the disease (pre-HD),

defined as carriers of the genetic mutation with a unified HD

diagnostic confidence score (DCS) of less than 4. All patients

and controls had Spanish as their native language. Table 1

summarizes the demographic, genetic and clinical data from

the participants. None of the gene-carriers and controls re-

ported previous history of traumatic brain injury or neuro-

logical disorder other than HD. All participants signed an

informed consent to participate in this study that was

approved by the ethics committee of the University of Barce-

lona and the Bellvitge Hospital.

2.2. General clinical and specific neuropsychological
evaluation

All patients were evaluated using the Unified Huntington's
Disease Rating Scale (UHDRS; The Huntington Study Group,

1996), which comprises motor, cognitive and behavioral

scores and functional capacity. The medical and psychiatric

history, HD history and current medications were also

collected. The cognitive UHDRS includes the Stroop Test

http://dx.doi.org/10.1016/j.cortex.2017.07.022
http://dx.doi.org/10.1016/j.cortex.2017.07.022


Table 1 e Genetic, clinical and demographic information for controls and Huntington's disease patients, further divided in
manifest and pre-HD patients.

Controls HD Manifest HD Pre-HD

N 28 28 19 9

Gender (M/F) 8/20 9/19 9/10 0/9

Age in years 45 ± 15.2 46.8 ± 12.3 52.4 ± 9.7 35 ± 6.8

Education in years 13.1 ± 2.8 11.7 ± 3.1 10.6 ± 2.9 14.1 ± 1.7

CAG repeats e 43.5 ± 2.9 45.2 ± 2.6

TFC e 11.5 ± 1.4 12.9 ± 0.3

Disease Burden score e 398 ± 96.6 339.1 ± 105

UHDRS motor score e 20.3 ± 10.5 2.7 ± 4

UHDRS cognitive score e 193.19 ± 49.9 311.6 ± 57.3
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(Golden & Freshwater, 1978) and the verbal letter fluency test

(Butters, Wolfe, Granholm, & Martone, 1986) assessing exec-

utive functions; the Symbol Digit Test (SDT, Wechsler, 2008)

assessing processing speed and the Trail Making Test

(Tombaugh, 2004) part A (TMT-A) assessing processing speed

and sustained visual attention and part B (TMT-B) and AeB

assessing cognitive flexibility. In addition, patients completed

the Mattis Dementia Rating Scale (MDRS; Mattis, 1976); the

Hopkins Verbal Learning Test revised to evaluate memory

(HVLT-R; Rieu, Bachoud-L�evi, Laurent, Jurion, & Dalla Barba,

2006); the Boston Naming Test for word retrieval (Kaplan,

Goodglass, & Weintrab, 1983) and the digit span test (for-

ward to assess attention, and backward, to assess working

memory; Wechsler, 2008). In addition, we selected from this

evaluation the TMT and the digit span test and tested our

sample of controls in order to have two cognitive indexes of

executive functions and working memory characterizing the

specific sample of control participants studied. The clinical

evaluation was performed within three months of the narra-

tive task and the MRI acquisition.

2.3. Procedure

Participants were presented with a four-minute long muted

video clip that showed a summary of the story of Cinderella.

Afterwards, they were presentedwith a wordless picture book

of Cinderella in a computer screen that was kept open as

support to remember the content of the story while they were

telling it. Participants were instructed to shortly tell the story

to the experimenter and they were informed that their speech

would be recorded. Each speech sample was transcribed and

then analyzed sentence by sentence by two independent

raters using CLAN (MacWhinney, 2008). Since a sufficiently

comprehensive speech analysis tool for this population is not

currently available, we developed such a tool (available upon

request), intended to cover all core structural dimensions of

language. Prosodic aspects, though crucial to a wider HD

speech profile, were not considered. The recordings were

anonymized and the transcription and subsequent analysis

were blind to themedical condition of the participant (pre-HD,

symptomatic or control). Once the analysis of all participants'
recordings was finished, both ratings were compared under

the supervision of the second author, until an agreement of all

three was reached on all of the few cases where disagreement

was observed, always keeping blind the medical condition of

the participants. No cases of unresolvable dispute remained.
2.4. MRI acquisition

MRI data were acquired through a 3 T whole-body MRI scan-

ner (Siemens Magnetom Trio; Hospital Clı́nic, Barcelona),

using a 32-channel phased array head coil. Structural images

comprised a conventional high-resolution 3D T1 image

[magnetization-prepared rapid-acquisition gradient echo

sequence (MPRAGE), 208 sagittal slices, repetition time

(TR) ¼ 1970 msec, echo time (TE) ¼ 2.34 msec, inversion time

(IT)¼ 1050msec, flip angle¼ 9�, FOV¼ 25.6 cm, 1mm isotropic

voxel].
3. Analysis

3.1. Speech error categorization

Narratives of patients and controls were subjected to a fine-

grained linguistic analysis (57 variables) focused on the

grammatical level. Beyond the scope of the current analysis

were the most distal motoric components of speech (dysar-

thria), which can characterize speech in HD, and anomalous

prosodic patterns. Linguistic variables were organized around

a single ‘quantitative’ domain and four qualitative ‘error’ do-

mains: 1. Quantitative, comprising the Mean Length of Ut-

terances and number of words per Minute. 2. Fluency,

capturing disturbances in the flow of speech due to pauses,

word truncations, prolongations, filled pauses (e.g., ehm),

repetitions of words or part of words. 3. Connectivity,

capturing how clauses are grammatically combined with

others. 4. Reference, defined to capture problems in the

referential use of language to identify story characters and

objects and to establish topics of the discourse. 5. Concor-

dance, which comprised deficits in grammatical agreement. A

more detailed description of these five domains and the spe-

cific variables included in each one are given under

Supplementary Methods.

3.2. Statistical analysis of speech

Once speech variables were classified into the above five do-

mains, a composite score was generated for each one of these.

Specifically, additive combinations of the variable values

composing each domainwere used to characterize error levels

in each language domain for each individual. In order to

obtain relative frequencies comparable between individuals,

http://dx.doi.org/10.1016/j.cortex.2017.07.022
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these composite scores were derived from the variable values

divided by the total number of words in the individuals'
speech. Next, to equate the weight of each variable in the

composite score, variable values were divided by their stan-

dard deviation as calculated from the sample of controls.

Composite scores in the three groups (controls, pre-HD and

symptomatic gene-carriers) were compared by means of

ANOVA tests, and in those domains where ANOVAs were

statistically significant (at a p < .01 level), Tukey's Honest

Significant Difference (HSD) post-hoc tests were applied to

know which pairs were different. In three of the domains

(Sentence connectivity, Reference, and Concordance) loga-

rithmic transformations were previously applied to meet the

parametric requirements of the ANOVA test.

Apart from comparing language abnormalities at the

domain level, comparisons were also carried out for each one

of the individual speech variables. Specifically, variables with

less than 50% of null values (zeros) were compared with

KruskaleWallis tests (non-parametric ANOVA), and variables

with more than 50% of zeros were binarized and compared

with Fisher's Exact Tests. A False Discovery Rate (FDR)

correction (Benjamini & Yekutieli, 2001) was applied to the p-

values of all tests to control for the multiple comparisons.

3.3. Correlations of speech domain composite scores
with clinical tests

In order to study the relationship between each of the speech

domains with different aspects of cognition, a correlation

analysis was carried out between each composite score and

thoseneuropsychological tests inwhich therewere statistically

significant differences between patients and controls, that is,

TMT-A, TMT-B, digit span forward and digit span backward. A

FDR correction was applied to account for multiple compari-

sons in this analysis. Furthermore, a correlation analysis was

also performed between each composite score and two

important clinical scores, the cognitive UHDRS and the motor

UHDRS total scores. In order to have amore specific analysis of

the relation of the linguistic domains with the specific motor

dysfunctions that may affect more directly language produc-

tion, we derived an additional subscore including the items

associated with dysarthria, protrusion and Luria sequencing.

3.4. VBM analysis

Morphometric analysis was carried out using the vbm8

toolbox (http://dbm.neuro.uni-jena.de/vbm/) in the SPM8

software package (Welcome Department of Imaging Neuro-

science Group, London, UK) running on MATLAB (v12.b,

Mathworks, Natick, MA). Specifically, unified segmentation

(Ashburner & Friston, 2005) was applied to the structural T1-

weighted images of each subject to estimate tissue probabil-

ity maps (Gray matter or GMmaps). During this segmentation

step, spatial regularization (regularization: .02, discrete cosine

transform warp frequency cutoff of 22) was adapted to ac-

count for striatal neurodegeneration and ventricle dilatation.

The resulting GM maps were then imported and fed into

DARTEL to achieve spatial normalization into MNI space.

DARTEL normalization alternates between computing an

average template of the GM and white matter (WM)
segmentations from all subjects and warping all subject's GM

and WM segmentations into a better alignment with the

template created (Ashburner, 2009). GM normalized images

were modulated by their Jacobian determinants in order to

identify regional differences in the volume or amount of GM

(Mechelli, Price, Friston, & Ashburner, 2005). These normal-

ized and modulated images were smoothed by using an

isotropic spatial filter (FHWN¼ 8mm) to reduce residual inter-

individual variability. Finally, these images were visually

inspected to ensure good quality in the normalization step.

The individual smoothed GM volume images for both the

HD patients and controls were entered into a second-level

analysis using a two-sample t-test, including intracranial

volume (ICV) as a covariate to create an explicit mask to

differentiate between HD patients and controls. This mask

was used in the following correlation analysis to restrict the

analysis to the areas with significant atrophy in the HD group,

as described in the next subsection. The estimation for the ICV

was taken as the value calculated by FreeSurfer (v. 5.1).

3.5. Correlation analysis

After defining those regions with tissue differences between

HD and the control group, we investigated potential GM in-

dividual differences among the HD group, whichmay relate to

the language deficits observed. A regression analysis within a

linear model was applied individually for each language-

related domains (i.e., Quantitative, Fluency, Concordance,

Connectivity and Reference), including the GM volume images

and the corresponding domain as covariates. ICV was also

included as a nuisance variable in the model in order to cor-

rect for global differences in GM volume (Buckner et al., 2004).

We report two statistical thresholds: p < .05 with FDR

correction for multiple comparisons at cluster level, and an

exploratory threshold of p < .001 uncorrected and taken at a

minimal cluster size of 20 voxels. The maxima of supra-

threshold regions were localized by rendering them onto T1

structural template-image on the MNI reference brain.
4. Results

4.1. Spontaneous speech errors

The ANOVAs for the five composite scores were all significant,

indicating that, at least, one of the groups differed from the

others [Quantitative: F(2,53) ¼ 11.88, p < .001; Fluency:

F(2,53) ¼ 12.61 p < .001; Connectivity: F(2,53) ¼ 15.71, p < .001;

Reference: F(2,53) ¼ 22.09, p < .001; Concordance: F(2,53) ¼
8.423, p < .001].

Fig. 1 contains box plots for the five domains, including

results from the Tukey's HSD post hoc tests. As expected from

the ANOVA results, the two most dissimilar groups (controls

and manifest patients) differed significantly in all domains.

The general Quantitative composite score showed no hint of

decline in the pre-HD group but is clearly diminished in the

symptomatic group. In the other remaining domains a gradual

pattern of impairment is observed. For two of the domains

(Connectivity and Reference) significant alterations were

already observed in the pre-HD group. Since the subgroup of

http://dbm.neuro.uni-jena.de/vbm/
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Fig. 1 e Boxplots for the composite scores (y axis) of the five defined language domains in the three groups. Units in the y

axis correspond to added values of variables of each domain after being divided by the total number of words in the

individuals' speech and by their standard deviation calculated from the control sample. Significant differences between

pairs of groups as given by the Tukey's HSD test are also shown (*: p < .05, **: p < .01, ***p < .001). Pre-HD: pre-symptomatic

patients.
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pre-HD and manifest patients differed from controls in terms

of gender distribution, we conducted the same analysis with a

subset of controls matched in gender in addition to age and

educational background to each subgroup. The pattern of
results was the same. Both sentence connectivity (p ¼ .021)

and reference (p ¼ .019) were the only domains altered in pre-

HD compared to controls. All domains were affected in man-

ifest compared to controls (all p < .001).

http://dx.doi.org/10.1016/j.cortex.2017.07.022
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Table 3 e Results of the subtests of the neuropsychological
evaluation selected for the assessment of executive (TMT)
and working memory functions (digit span) in the control
sample and in the HD group.

Controls Manifest HD Pre-HD

TMT A (sec) 35 ± 10 63.7 ± 24.3a 32.4 ± 11.2

TMT B (sec) 82.9 ± 41.8 258.7 ± 206.5a 65.9 ± 39.3

TMT BeA (sec) 47.9 ± 40.9 194.9 ± 184.4a 33.4 ± 33

Digit span forward 6.6 ± 1.1 4.32 ± 1.3a 5.7 ± 1.1

Digit span backward 4.9 ± 1.1 3 ± 0.7a 4.6 ± 1.1

Digit span

forwardebackward

1.6 ± 1.3 1.6 ± 0.6 1.1 ± 0.9

a Significant differences between manifest patients and controls

(p < .05). Values are given in means ± SD; TMT ¼ Trail Making

Test.
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In the whole group comparisons, comparisons directly

carried out on the individual speech variables led to a subset

of significant variables after FDR correction for multiple

comparisons (see Supplementary Table S1). The same com-

parisons comparing each subgroup of patients (pre-HD and

manifest) to their gender, education and age matched control

subgroups showed that these results were carried by the

manifest group since none of these variables were signifi-

cantly different between pre-HD and controls after FDR

correction.

4.2. General clinical and neuropsychological assessment

The pre-HD group showed comparable scores to the control

group in all neuropsychological assessments. The manifest

HD group showed moderate impairment in immediate

memory recall (HVLT-R total recall, see Table 2) and mild

impairment in delayed recall (HVLT-R delayed recall) and

speed processing (symbol digit code) in the general clinical

assessment. In the more specific assessment of executive

function and working memory a significant impairment in all

subtests except one (digit span forward-backward) was

observed only in manifest HD group when compared with

matched controls (see Table 3).

The Quantitative domain correlated significantly with the

workingmemory score (digit span backwards: r¼ .60, p¼ .012)

and, in the general clinical assessmentwith the total cognitive

(r ¼ .59, p ¼ .001) UHDRS score (Table 2). The Fluency and

Reference domains correlatedwith executive function (TMTB:

r ¼ .54, p ¼ .025 and r ¼ .63, p ¼ .009, respectively) and, in the

general clinical assessment, with the cognitive UHDRS

(r¼�.40, p¼ .035 and r¼�.380, p¼ .046, respectively) (Tables 2

and 3). No significant correlation was observed between the

Connectivity and Concordance domains and any of the neu-

ropsychological or clinical assessments.

Focusing more narrowly on the relation with the motor

disabilities, we correlated the domains with the UHDRS motor

score. Overall UHDRS motor score correlated only with the
Table 2 e Results of the neuropsychological evaluation in
the pre-HD andmanifest HD groups including the Hopkins
Verbal Learning Test (HVLT-R), theMattis Dementia Rating
Scale (MDRS), the subtests of the UHDRS-Cognitive score
and the Boston Naming Test (BNT).

Manifest HD Pre-HD

MDRS 132.5 ± 7.4x 141.2 ± 4.6

HVLT-R total recall 15.4 ± 4.8ax 28 ± 5.9

HVLT-R delayed recall 4.3 ± 2.5ǂx 10 ± 1.4

HVLT-R percentage retained 66.9 ± 25.5x 99.4 ± 23.4

HVLT-R discrimination index 8.1 ± 4.2x 11,6 ± 0,5

Letter fluency (FAS) 24.4 ± 9.2x 43 ± 14.5

Stroop interference 2.9 ± 4.4x 13.8 ± 11.5

Symbol digit code 28.4 ± 11.2ǂx 51 ± 9.4

BNT 50.1 ± 3.9x 56.7 ± 2.2

a Moderate impairment compared to standardized scores in pub-

lished norms of the tests (standard score < 30). ǂMild impairment

compared to standardized scores (standard score 30e34). x igni-

ficantly different from pre-HD (in pairwise comparisons, p < .05).

MDRS ¼Mattis Dementia Rating Scale; HVLT-R ¼ Hopkins Verbal

Learning Test-Revised; BNT ¼ Boston Naming Test.
Quantitative domain (r¼�.49, p¼ .008).We also created amore

specific subscore including the items of the UHDRS affecting

mouth movement (dysarthria, tongue protrusion) and Luria

sequencing to focus on those items that couldmore specifically

tap intomotor aspectsmore associated to languageproduction.

This subscore in the UHDRS was again only significantly

correlated with the Quantitative domain (r ¼ �.38, p ¼ .043).

4.3. Neuroimaging results

4.3.1. Group comparison
When comparing HD patients with controls, regional decrease

of GM volume indicative of atrophy was predominantly

observed in the basal ganglia, including the dorsal and ventral

regions. Additionally, evidenced atrophy was also shown in

different cortical regions mainly involved in motor, executive

and fronto-parietal networks (see Table 4, Fig. 2). More spe-

cifically, regional decrease of GM volume indicative of the

atrophy in HD compared to controls was predominantly

observed in the bilateral basal ganglia (caudate, putamen,

pallidum) but also in different bilateral cortical regions in the

temporal (middle temporal gyrus [MTG], superior TG [STG],

hippocampus), frontal (Supplementary Motor Area [SMA],

Middle Frontal Gyrus [MFG], Inferior Frontal Gyrus [IFG],

Insula), Parietal (Supramarginal Gyrus [SMG]) and Occipital

Cortices.

4.3.2. Language-related correlations within the HD group
Among the HD patients, there was a significant positive corre-

lation between the Quantitative domain and the GM volume

bilaterally in the dorsal basal ganglia (Putamen/Pallidum) (Table

5, Fig. 3). In contrast, for the other language related domains

(Concordance, Connectivity and Reference), no significant

structural correlations were observed, except for a correlation

tendency in the post central gyrus (i.e., somatosensory cortex)

when a more permissive statistical threshold (p < .001, uncor-

rected) was used, which revealed a decrease in the gray matter

volume related to the Fluency scores (Table 5, Fig. 4).
5. Discussion

This study sought to define the spontaneous speech profile of

HD manifest patients as compared with prodromal gene-
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Table 4 e Peak coordinates of the voxel-wise comparison
between the HD and the Control groups. IFG: Inferior
Frontal Gyrus, SMA: Supplementary Motor Area, MFG:
Middle Frontal Gyrus, ITG: Inferior Temporal Gyrus, IPG:
Inferior Parietal Gyrus, INS: Insula, STG: Superior
Temporal Gyrus (p < .001, FDR < .05 corrected at cluster
level).

Brain regions Cluster
extent

Coordinates p-Value

x y z T-value

L Caudate 43,631 �10 0 21 8.54 .001

L Putamen/Pallidum �14 3 �2 7.61

R Pallidum/Putamen 14 4 �5 7.61

R Caudate 10 0 19 7.01

L Hippocampus �31 �10 �15 6.5

LIFG �40 31 1 4.85

R INS 39 1 6 4.67

R STG �54 �19 9 4.48

L STG �46 �27 10 4.19

R Hippocampus 24 �12 �13 4.19

R IFG �45 24 9 3.96

L MOG 24,470 33 �87 6 6.37 .001

R MOG �38 �87 12 5.91 .001

R MFG 17,436 38 0 57 5.85 .001

R Precentral G 39 �19 57 4.11

SMA 1 0 46 3.45

L MFG �39 19 58 5.67 .001

L Precentral G �36 �27 60 4.65

R ITG 659 62 �43 �9 5.06 .037

R MTG 944 56 �1 �20 4.35 .014

R MTG 869 �60 �19 �20 4.35 .016

L IPG 1018 �56 �52 40 4.04 .012

Table 5 e Peak coordinates of the main contrast of interest
masked by the Controls > HD contrast for the Quantitative
domain (*whole brain level p < .001, FDR < .05 corrected at
cluster level) and for the Lack of Fluency domain (þwhole
brain level p < .001, uncorrected).

Brain regions Cluster
extent

Coordinates p-Value

x y z T-value

Quantitative domain

R Putamen/Pallidum 1468 23 �6 1 5.42 .004*

L Putamen/Pallidum 846 �14 0 0 4.92 .022*

Fluency domain

L postcentral gyrus 23 �62 �3 39 3.64 .001þ
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carriers and controls, based on a story-telling task that re-

quires a good coordination of several cognitive and linguistic

capacities. Linguistic variables were grouped into five do-

mains defined by linguistic criteria, one ‘quantitative’ and

four qualitative ‘error’ domains, comprising core dimensions

of the grammatical organization of language, leaving out pe-

ripheral aspects relating to articulation, as well as prosody.

Results show that in all five domains, language changes take

place in the HD group as comparedwith controls. Importantly,

these are not restricted to purely quantitativemeasures (Mean

Length of Utterances, the Number of Words, and Words per

Minute), but also affect the flow of speech and its structuring
Fig. 2 e Regional differences between controls and HD patients

HD patients compared with controls were rendered onto sagittal

each slice. Statistical maps are thresholded at a p < .005, uncor

Frontal Gyrus, MFG: Middle Frontal Gyrus, Str: Striatum, MOG: M
into meaningful units as indexed by anomalous pausing,

truncations, and repetitions (Fluency). They further affect core

aspects of grammatical organization that are central to

normal linguistic functions in communication and discourse,

as captured in the remaining three domains, which we will

discuss in more detail below. In all four error domains, the

language level in pre-manifest gene-carriers is between that

of controls and manifest HD. Two of these domains, however,

namely Connectivity and Reference, stand out insofar as even

the pre-manifest group differs significantly in relation to

controls, in the absence of neurocognitive decline as

measured with standardized tests, while in the Quantitative

domain our measures showed no hint of decline prior to the

manifest phase.

These findings entail that HD, as a motor disease, not only

presents with linguistic symptoms, but actually starts out

linguistically before motor symptoms are detected. Moreover,

cognitive decline widely noted to affect the pre-symptomatic

phase may be first detectable in the domain of linguistic

cognition. In short, at a stage when motor and cognitive

functions present no detectable deficit behaviorally or neuro-

psychologically yet, there is linguistic impairment affecting

core higher-order linguistic functions (Reference and Con-

nectivity). This suggests the clinical significance of language

as an early disease marker of HD, and motivates the devel-

opment of more fine-grained clinical linguistic tests of lan-

guage function, which could be applied to pre-HD in

particular. However, the clinical diagnostic utility of such tests
. Regions with significantly reduced gray matter volume in

and axial viewswith MNI coordinates at the bottom right of

rected threshold, for illustrative purposes. IFG: Inferior

iddle Occipital Gyrus, Hipp: Hippocampus, R: Right, L: Left.
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http://dx.doi.org/10.1016/j.cortex.2017.07.022


Fig. 3 e Quantitative domain correlated with gray matter volume. Correlations were rendered onto sagittal and coronal

views with MNI coordinates at the bottom right of each slice. Statistical maps are thresholded at a p < .005, uncorrected

threshold, for illustrative purposes. Pu: Putamen, Pall: Globus Pallidum, R: Right, L: Left.

Fig. 4 e Fluency correlated with gray matter volume. Correlations were rendered onto sagittal and coronal views with MNI

coordinates at the bottom right of each slice. Statistical maps are thresholded at a p < .005, uncorrected threshold, for

illustrative purposes. L pCG: Left postcentral Gyrus.
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at an individual level needs to be demonstrated, given the

high variability of clinical presentations along a number of

dimensions, which interact with language at the individual

level.

Reference is a primary function of all ordinary language

use. Language cannot function normally without speakers

using noun phrases such as the girl, some food, everybody, the car

crash, etc., to pick out particular objects, persons, or events

about which they wish to provide some information. Refer-

ence in this sense is a complex phenomenon that integrates a

number of linguistic sub-domains including the lexicon, the

grouping of words into phrases, and grammatical relations

between them. Moreover, in the context of normal discourse

and especially storytelling, the referential function of lan-

guage is not confined to merely picking particular objects out.

It also relates these objects to others, and to events in which

they play a role. It further allows tracking them through a

narrative and update our knowledge about them. Such refer-

ence tracking is a primary function of the word the in English,

which is standardly used to refer to objects that have been

introduced before. Storytelling derails when it is not clear to

the hearer which of a number of possible referents is intended
by the speaker using a phrase like the man, or what topic a new

utterance is providing further information about. Two of the

individual variables in the Reference domain that turned out

to be significant, Ambivalence and Vague ormissing topic (see

Supplementary Methods, Table S1) directly reflect this diffi-

culty in the HD group of using referential devices such as noun

phrases to establish a coherent narrative.

Clausal Connectivity, affected from the pre-symptomatic

stage of HD as well, also captures a crucial, high-level

element of grammatical organization on which the meaning

of ordinary discourse depends. Within this domain, our vari-

ables particularly relate to the use of mental state verbs or

verbs of communication such as think or say, whose function

is to represent in discourse the content of what someone

thinks, feels or says. Such content are represented through

clauses such as she is happy, which feature as the subordinated

complements of the verbs in question, as in He thinks she is

happy. Utterances involving these verbs therefore have ameta-

representational function: they represent what someone else

mentally represents. If subordination is misused or under-

used, this meta-representation function fails. In particular,

connecting clauses with coordinating conjunctions (e.g., and)

http://dx.doi.org/10.1016/j.cortex.2017.07.022
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cannot have this function: The man came and she was unhappy

only states two facts. Individual variables in the domain of

connectivity that were significantly different between pa-

tients and controls (see Supplementary Methods, Table S1)

included use (quantity) of subordinations and both correct

and incorrect coordinations. The HD group used less sub-

ordinations in total with significantly less correct subordina-

tion (i.e., SUB RIGHT, see Table S1). This is in contrast with

coordination, which was significantly higher in both right and

wrong instances of it (i.e., CRD RIGHT, CRDWRONG, see Table

S1). This result strongly suggests that coordination was

replacing subordination in HD patients, which would entail a

loss in meta-representational capacity. A difficulty with

clausal connectivity predicts poor story-telling, since ratio-

nalizing people's actions depends on representing what they

think, say, or desire. This could relate to the noted ‘theory of

mind’ (ToM) deficits in patients with HD (Adenzato & Poletti,

2013; Bora et al., 2016; Brüne et al., 2011; Saft et al., 2013).

More direct testing of language-ToM correlations in this pop-

ulation are therefore called for. A link between performance

on sentences with embedded clauses and performance on

false belief tasks has been widely demonstrated, both in pre-

school typically developing children (De Villiers, 2007) and in

older children with Autism Spectrum Disorders (Lind &

Bowler, 2009).

With respect to earlier studies on HD spontaneous speech,

the present study significantly fine-grains results from studies

documenting a reduction in grammatical complexity in HD

speech (Chenery et al., 2002; Gordon & Illes, 1987; Illes, 1989;

Murray & Lenz, 2001; Podoll et al., 1998), by showing that

error patterns can be meaningfully grouped into linguistically

coherent domains made up of linguistically highly specific

variables. Specifically, our findings in the domain of Reference

provide important information with respect to earlier exper-

imental studies manipulating specific aspects of grammatical

complexity. In particular, Sambin et al. (2012) showed, con-

trolling for working memory and executive functioning defi-

cits, that early-stage HD patients face difficulties in

grammatical principles governing the comprehension of the

referential use of noun phrases such as proper names and

pronouns. Here we show that errors in this domain are highly

manifest in spontaneous speech as well, and concern the

referential use of language more generally as based on

grammar. This is clear from linguistic variables included in

the Reference domain, none of which concern lexical-level

errors such as word-finding difficulties, word approxima-

tions, or neologisms. Instead they concern grammatical-level

anomalies, such as the setting (e.g., vagueness or lack) of

topics, the use of determiner phrases, grammatical agreement

between determiner and noun, missing referents for pro-

nouns, or incorrect or inappropriate referents. Therefore,

while error patterns recorded here do not suggest that errors

are due to a defect in any highly specific syntactic principle as

suggested in Sambin et al. (2012), they do clearly indicate that

they concern the role of grammar in reference.

In line with previous VBM studies in HD patients (Kassubek

et al., 2004, 2005) reduced GM was detected in the whole

striatum and in widespread cortical areas including the pari-

etal, temporal and frontal cortices. However, despite the

clearly deviant patterns of spontaneous speech in HD and the
prominent striatal and cortical degeneration observed, neu-

rodegeneration measures showed only significant correla-

tions with the Quantitative domain. Specifically, patients with

poorer speech in terms of length of utterances, number of

words per sentence, etc. had greater neurodegeneration in the

bilateral putamen and pallidum. These striatal structures are

part of the motor loop involving the SMA, premotor and so-

matosensory areas. The deficits observed within this domain

may partially be explained by underlying motor alterations in

this circuit. This is consistent also with the correlations be-

tween the Quantitative and the UHDRSmotor scores and with

the working memory scores that also have a motor compo-

nent for the articulatory rehearsal of phonological informa-

tion to be maintained for the task. The Quantitative score was

also correlated with a subscore derived from the UHDRS items

measuring dysarthria, tongue protrusion and Luria

sequencing indicating that part of the variability in this

domain could only derive fromalteredmouthmovements and

sequencing dysfunction. However, the Quantitative factor

also correlated with the UHDRS cognitive score suggesting

that these errors derive not only from a motor component.

In the domains of Reference and Connectivity, linguistic

impairment occurs pre-symptomatically in the absence of

neurocognitive impairment detectable at least through the

standardized clinical and neuropsychological tests used in

regular clinical assessment of HD. The Fluency and Reference

domains did correlate both with executive function measures

(TMTB)and, in thegeneral clinicalassessment,with thegeneral

cognitiveUHDRS score (r¼�.40, p¼ .035 and r¼�.380, p¼ .046,

respectively) (Tables 2 and 3). These facts, and the absence of

any correlations with clinical or neuropsychological measures

in the domains of Connectivity and Concordance, suggest the

importance of measuring cognitive decline linguistically in HD

and the linguistic specificity of these deficits.

The above VBM results raise the question of why no cor-

relations with specific brain areas of neurodegeneration were

found in any of the other four error domains. One possibility is

that the deficits may be only detectable for a purely quanti-

tative analysis of speech whereas the association between

brain degeneration and decline in the more subtle quality of

speech organization cannot be observed before more

advanced stages of the disease. Indeed, it is noteworthy that,

as mentioned above, it is only in the Quantitative domain that

language levels in pre-HD are essentially at the same level as

in controls. Neuronal dysfunction precedes cell death (Levine,

Cepeda, Hickey, Fleming, & Chesselet, 2004; Tobin & Signer,

2000) and psychiatric, cognitive, and motor symptoms often

appear alongside cellular and synaptic alterations in the

absence of neuronal loss (Vonsattel & DiFiglia, 1998). These

qualitative deficits in speech errors may be more sensitive to

individual differences in brain dysfunction and not sensitive

to brain atrophy measures.

The lack of correlations with neurodegeneration may

also be explainable from the fact that all the five domains

are aspects of language that require the confluence of

multiple linguistic and cognitive mechanisms involved in

ordinary language use and functioning. Therefore a wide-

spread neuronal network may be necessary. For example,

reference is a high-level, integrative linguistic function in

the sense that it comprises multiple systems interacting

http://dx.doi.org/10.1016/j.cortex.2017.07.022
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coherently, including different linguistic subcomponents

(lexical organization, phrase structure, agreement, and

grammatical relations) and interfacing working-memory,

and executive functions. It is in line with this that the

Fluency and Reference domains did correlate both with

executive function measures (TMT B) and with the general

cognitive UHDRS scores (Tables 2 and 3). Despite the fact

that distributed networks are likely to be involved, each of

our error domains comprised linguistically highly specific

variables. We avoided linguistically non-specific variables

(e.g., ‘coherence in discourse’). This specificity of the vari-

ables is further attested by the fact that within error do-

mains, several of these variables dissociated from others in

being significant in the individual (non-domain based)

analysis (see Table S1).

Reference is one possible domain where specific brain re-

gions may be expected to be associated with the errors

observed, despite its relation with multiple language levels of

processing and the engagement of different functions. Several

studies have recently identified a critical recruitment of the

parietal lobe (SMG and angular gyrus) in the processing of

reference (Brodbeck & Pylkk€anen, 2017; Egorova, Shtyrov, &

Pulvermüller, 2016; Peeters, Snijders, Hagoort, & €Ozyürek,

2017). Although we did observe decreased GM volume in the

inferior parietal lobe (including SMG), no significant correla-

tion was obtained with neurodegeneration in this brain area

and the score of the reference domain. As noted, this domain

was correlated with executive function, which is related to a

widespread brain network, varying depending on the specific

executive function studied (e.g., dorsolateral prefrontal cor-

tex, anterior cingulate, parietal lobe). It remains to be seen

whether the relation between reference deficits and inferior

parietal lobe function would be visible with functional re-

sponses in this brain area instead of structural measures that

may only be more sensitive with greater progression of the

disease.
6. Conclusions

In sum, our analysis of spontaneous narrative speech

comparing controls and pre- and symptomatic HD patients

reveals that cognitive impairment in HD shows in primary

abnormalities in core domains of linguistic organization and

function. Moreover, it does so prior to motor impairment and

before cognitive decline is detectable at least through the

standardized clinical and neuropsychological tests used here.

This supports the value of using grammatical measures to

track disease progression, which appear to show greater

sensitivity than earlier work focusing on the acoustic pa-

rameters of speech (Vogel et al., 2012).
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guez-Dechich�a, Jesús M. Ruiz, Pilar Santacruz, Susana Subir�a

and Irene Vaquer who provided the clinical evaluations of the

patients. We are grateful to the patients and their families for

their participation.
Supplementary data

Supplementary data related to this article can be found at

http://dx.doi.org/10.1016/j.cortex.2017.07.022.
r e f e r e n c e s

Adenzato, M., & Poletti, M. (2013). Theory of mind abilities in
neurodegenerative diseases: An update and a call to introduce
mentalizing tasks in standard neuropsychological
assessments. Clinical Neuropsychiatry, 10(5), 226e234.

Ashburner, J. (2009). Computational anatomy with the SPM
software. Magnetic Resonance Imaging, 27(8), 1163e1174.

Ashburner, J., & Friston, K. J. (2005). Unified segmentation.
NeuroImage, 26(3), 839e851. http://dx.doi.org/10.1016/
j.neuroimage.2005.02.018.

Banney, R. M., Harper-Hill, K., & Arnott, W. L. (2015). The autism
diagnostic observation schedule and narrative assessment:
Evidence for specific narrative impairments in autism
spectrum disorders. International Journal of Speech-Language
Pathology, 17(2), 159e171. http://dx.doi.org/10.3109/
17549507.2014.977348.

Bedi, G., Carrillo, F., Cecchi, G. A., Slezak, D. F., Sigman, M.,
Mota, N. B., et al. (2015). Automated analysis of free speech
predicts psychosis onset in high-risk youths. Npj Schizophrenia,
1, 1e7. http://dx.doi.org/10.1038/npjschz.2015.30.

Benjamini, Y., & Yekutieli, D. (2001). The control of the false
discovery rate in multiple testing under dependency. Annals of
Statistics, 1165e1188.

Bora, E., Velakoulis, D., & Walterfang, M. (2016). Social cognition
in Huntington's disease: A meta-analysis. Behavioural Brain
Research, 297, 131e140.

Bornkessel-Schlesewsky, I., & Schlesewsky, M. (2013). Reconciling
time, space and function: A new dorsal-ventral stream model
of sentence comprehension. Brain and Language, 125(1), 60e76.
http://dx.doi.org/10.1016/j.bandl.2013.01.010.

Brodbeck, C., & Pylkk€anen, L. (2017). Language in context:
Characterizing the comprehension of referential expressions
with MEG. NeuroImage, 147, 447e460. http://dx.doi.org/10.1016/
j.neuroimage.2016.12.006 (December 2016).

Brüne, M., Blank, K., Witthaus, H., & Saft, C. (2011). “Theory of
mind” is impaired in Huntington's disease.Movement Disorders,
26(4), 671e678. http://dx.doi.org/10.1002/mds.23494.

Buckner, R. L., Head, D., Parker, J., Fotenos, A. F., Marcus, D.,
Morris, J. C., et al. (2004). A unified approach for morphometric
and functional data analysis in young, old, and demented
adults using automated atlas-based head size normalization:

http://dx.doi.org/10.1016/j.cortex.2017.07.022
http://refhub.elsevier.com/S0010-9452(17)30247-2/sref1
http://refhub.elsevier.com/S0010-9452(17)30247-2/sref1
http://refhub.elsevier.com/S0010-9452(17)30247-2/sref1
http://refhub.elsevier.com/S0010-9452(17)30247-2/sref1
http://refhub.elsevier.com/S0010-9452(17)30247-2/sref1
http://refhub.elsevier.com/S0010-9452(17)30247-2/sref2
http://refhub.elsevier.com/S0010-9452(17)30247-2/sref2
http://refhub.elsevier.com/S0010-9452(17)30247-2/sref2
http://dx.doi.org/10.1016/j.neuroimage.2005.02.018
http://dx.doi.org/10.1016/j.neuroimage.2005.02.018
http://dx.doi.org/10.3109/17549507.2014.977348
http://dx.doi.org/10.3109/17549507.2014.977348
http://dx.doi.org/10.1038/npjschz.2015.30
http://refhub.elsevier.com/S0010-9452(17)30247-2/sref6
http://refhub.elsevier.com/S0010-9452(17)30247-2/sref6
http://refhub.elsevier.com/S0010-9452(17)30247-2/sref6
http://refhub.elsevier.com/S0010-9452(17)30247-2/sref6
http://refhub.elsevier.com/S0010-9452(17)30247-2/sref7
http://refhub.elsevier.com/S0010-9452(17)30247-2/sref7
http://refhub.elsevier.com/S0010-9452(17)30247-2/sref7
http://refhub.elsevier.com/S0010-9452(17)30247-2/sref7
http://dx.doi.org/10.1016/j.bandl.2013.01.010
http://dx.doi.org/10.1016/j.neuroimage.2016.12.006
http://dx.doi.org/10.1016/j.neuroimage.2016.12.006
http://dx.doi.org/10.1002/mds.23494
http://refhub.elsevier.com/S0010-9452(17)30247-2/sref11
http://refhub.elsevier.com/S0010-9452(17)30247-2/sref11
http://refhub.elsevier.com/S0010-9452(17)30247-2/sref11
http://refhub.elsevier.com/S0010-9452(17)30247-2/sref11
http://dx.doi.org/10.1016/j.cortex.2017.07.022
http://dx.doi.org/10.1016/j.cortex.2017.07.022


c o r t e x 1 0 0 ( 2 0 1 8 ) 7 1e8 382
Reliability and validation against manual measurement of
total intracranial volume. NeuroImage, 23(2), 724e738.

Butters, N., Wolfe, J., Granholm, E., & Martone, M. (1986). An
assessment of verbal recall, recognition and fluency abilities
in patients with Huntington's disease. Cortex, 22(1), 11e32.

Caine, E. D., Bamford, K. A., Schiffer, R. B., Shoulson, I., & Levy, S.
(1986). A controlled neuropsychological comparison of
Huntington's disease and multiple sclerosis. Archives of
Neurology, 43(3), 249e254.

Caine, E. D., Ebert, M. H., & Weingartner, H. (1977). An outline for
the analysis of dementia. The memory disorder of
Huntington's disease. Neurology, 27(11), 1087e1092.

Chenery, H. J., Copland, D. A., & Murdoch, B. E. (2002). Complex
language functions and subcortical mechanisms: Evidence
from Huntington's disease and patients with non-thalamic
subcortical lesions. International Journal of Language &
Communication Disorders, 37(4), 459e474.

De Diego-Balaguer, R., Couette, M., Dolbeau, G., Dürr, A.,
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