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SAMPLING OF REAL MULTIVARIATE POLYNOMIALS AND
PLURIPOTENTIAL THEORY

By ROBERT J. BERMAN and JOAQUIM ORTEGA-CERDÀ

Abstract. We consider the problem of stable sampling of multivariate real polynomials of large de-
gree in a general framework where the polynomials are defined on an affine real algebraic variety M ,
equipped with a weighted measure. In particular, this framework contains the well-known setting of
trigonometric polynomials (whenM is a torus equipped with its invariant measure), where the limit of
large degree corresponds to a high frequency limit, as well as the classical setting of one-variable or-
thogonal algebraic polynomials (whenM is the real line equipped with a suitable measure), where the
sampling nodes can be seen as generalizations of the zeros of the corresponding orthogonal polyno-
mials. It is shown that a necessary condition for sampling, in the general setting, is that the asymptotic
density of the sampling points is greater than the density of the corresponding weighted equilibrium
measure ofM , as defined in pluripotential theory. This result thus generalizes the well-known Landau
type results for sampling on the torus, where the corresponding critical density corresponds to the
Nyqvist rate, as well as the classical result saying that the zeros of orthogonal polynomials become
equidistributed with respect to the logarithmic equilibrium measure, as the degree tends to infinity.

1. Introduction.

1.1. Background. By the classical Whittaker-Shannon-Kotelnikov sam-
pling theorem a band-limited signal f on the real line R, normalized so that its
frequency is in [−1,1] may be recovered from its values at the points tj = jπ

where j ranges over the integers and
ˆ
R

∣
∣f(t)

∣
∣2dt= π

∑

j

∣
∣f
(
tj
)∣∣2.

In mathematical terms, f is in the Paley-Wiener space PW1(R) consisting of all
functions in L2(R) whose Fourier transform is supported in [−1,1]. More gener-
ally, in the theory of non-regular sampling a sequence Λ := {λ}λ∈Λ of points on
the real line R is said to be sampling for PW1(R) if there exists a constant C such
that the following sampling inequality holds

1
C

ˆ
R

∣∣f(t)
∣∣2dt≤

∑

λ∈Λ

∣∣f(λ)
∣∣2 ≤ C

ˆ
R

∣∣f(t)
∣∣2dt
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for any f ∈ PW1(R), ensuring that the reconstruction of f is stable in the L2-
sense. Corresponding results also hold in the higher dimensional setting where
R is replaced with R

n and the band [−1,1] with the unit-cube [−1,1]n (or more
generally any fixed convex body of volume one). By the seminal result of Landau
[17], a necessary condition for a set Λ to be sampling is that the corresponding
asymptotic density of points in R

n (in the sense of Beurling) is at least equal to the
Nyqvist rate 1/πn, i.e.,

liminf
R→∞

#{Λ∩RΩ}
Rn

≥
ˆ
Ω

1
πn
dt

(uniformly over translations) for any smooth domain Ω ⊂ R
n assuming a uniform

separation lower bound on the points in Λ. In one-dimension the reversed strict
inequality is also a sufficient condition for sampling, but not in higher dimensions.

By a rescaling, Landau’s density results may also be formulated in terms of
the high frequency limit which appears when the frequency domain [−1,1]n is re-
placed with [−k,k]n for k large, i.e., PW1(R

n) is replaced with the corresponding
Paley-Wiener space PWk(R

n). In this context a sequence Λk := {λ(k)} of sets of
points on R

n is said to be sampling for PWk(R
n) if

1
C

ˆ
Rn

∣∣f(t)
∣∣2dt≤ 1

kn

∑

λ(k)∈Λk

∣∣f
(
λ(k)

)∣∣2 ≤ C
ˆ
Rn

∣∣f(t)
∣∣2dt

for any f ∈ PWk(R
n) with the constant C independent of k. For the sake of sim-

plicity if it is clear from the context we will omit the superindex k in λ(k) and write
simply λ ∈ Λk. The corresponding necessary density condition on the sampling
points may then be reformulated as

liminf
k→∞

#{Λk ∩Ω}
kn

≥
ˆ
Ω

1
πn
dt

uniformly over translations for any domain Ω ⊂ R
n with |∂Ω| = 0. (Landau’s set-

ting corresponds to the case when Λk is of the form k−1Λ, but his arguments extend
to this high-frequency setting).

There is also a natural compact analogue of the Paley-Wiener setting on R
n

which is the one which is most relevant for the present paper, where R (or Rn) is
replaced with the circle S1 := R/2π (or the n-dimensional torus). Then the role of
PWk(R) is played by the space Hk(S

1) of all finite Fourier series on [0,2π] with
frequencies in [−k,k], i.e., the space of all trigonometric polynomials of degree at
most k. A sampling sequence of finite sets of points Λk ⊂ S1 in this setting is also
called a Marcinkiewicz-Zygmund family [24].

From an abstract point of view the previous settings fit into a general Hilbert
space framework where Hk(M) is a given sequence of Hilbert spaces of functions
on a setM with reproducing kernelsKk(x,y). Then a sequence Λk of sets of points
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on M is said to be sampling for Hk(M) if the family of normalized functions
κλ :=Kk(·,λ)/‖Kk(·,λ)‖ for λ ∈ Λk, form a frame in the Hilbert space Hk(M),
in the sense of Duffin-Schaeffer [13], i.e.:

1
C
‖f‖2 ≤

∑

λ∈Λk

∣∣〈f,κλ
〉∣∣2 ≤ C‖f‖2, ∀f ∈Hk(M),

which is equivalent to the sampling inequalities:

1
C
‖f‖2 ≤

∑

λ∈Λk

∣∣f(λ)
∣∣2

Kk(λ,λ)
≤ C‖f‖2, ∀f ∈Hk(M),(1.1)

where we will assume that C can be taken to be independent of k.

1.2. The present setting. The main aim of the present paper is to general-
ize the Landau type necessary density conditions for sampling on S1 to a general
setting where the Hilbert space Hk(M) consist of polynomials of degree at most
k on an affine real algebraic variety M equipped with a weighted measure. We
are not dealing with the very interesting problem of finding sufficient conditions
for sampling multivariate polynomials. This and its numerical implementation is
a very basic question in signal analysis, see for instance [14] and the references
therein for the one-variable numerical sampling.

Our setting is the following: by definition M is the variety cut out by a finite
numbers of polynomials on R

m and Hk(M) is the space of polynomials of total
degree at most k restricted to M and equipped with the L2 norm

∥∥pk
∥∥2
L2(e−kφμ) :=

ˆ
M

∣∣pk
∣∣2e−kφdμ

defined by a compactly supported measure μ on M and a continuous function φ on
M (referred to as the weight function). Following [2] we will refer to the pair (μ,φ)
as a “weighted measure”. In order that the latter norm be non-degenerate some
regularity assumption has to be made on μ. The affine case, i.e., when M = R

m is
thus the classical setting for multivariate orthogonal polynomials. We will assume
two regularity conditions: the Bernstein-Markov property and moderate growth,
see Section 2.1 for the precise definitions.

Our first main result in this general setting is:

THEOREM 1. Let M be an affine real algebraic variety equipped with a non-
degenerate measure μ and a weight function φ. Assume that the pair (μ, φ) satisfies
the Bernstein-Markov property (2.1) and it is of moderate growth (2.2). Then a
necessary condition for a sequence Λk of sets of points in M to be sampling for
the space Hk(M) of polynomials of degree at most k, with respect to the weight
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kφ and measure μ, is that

liminf
k→∞

1
Nk

∑

λ∈Λk

δλ ≥ μeq(1.2)

in the weak topology on the measures on M , where μeq denotes the normalized
equilibrium measure of the weighted measure (μ,φ) and Nk = dim(Hk(M)).

1.3. Sampling on compact real algebraic varieties equipped with a vol-
ume form. One disadvantage of the definition of the sampling inequalities (1.1)
in this general setting is that it is of a rather abstract nature as it involves the re-
producing kernel Kk(x,x) which in general is impossible to compute explicitly.
On the other hand, only the asymptotic behavior of Kk(x,x) as k→ ∞ is needed
and these asymptotics can often be estimated. Also, if μeq is absolutely continuous
with respect to Lebesgue measure than the condition (1.2) above may be written as

liminf
k→∞

#{Λk ∩Ω}
#Nk

≥ μeq(Ω)

μeq(M)
(1.3)

for any smooth domain Ω. We will refer to the latter condition as the “pluripotential
Nyqvist bound”. One particularly interesting case where Theorem 1 can be made
explicit is the following:

THEOREM 2. Let M be an n-dimensional affine real algebraic variety, which
is non-singular and compact, let μ be a volume form on M and let φ = 0. Then
there exists a positive constant C such that the reproducing kernel for (Hk(M),μ)

satisfies

1
C
kn ≤Kk(x,x)≤ Ckn(1.4)

and thus (μ,φ) is non-degenerate, it satisfies the Bernstein-Markov property and it
is of moderate growth. Moreover, a necessary condition for a sequence Λk of sets
of points on X to be sampling for Hk(M) is that the density of sampling points is
at least equal to the density of the equilibrium measure μeq of M , as k→ ∞, i.e.,
the pluripotential Nyquist bound (1.3) holds.

The definition of the equilibrium measure of M and more generally the equi-
librium measure attached to a weighted measure will be recalled in Section 2.2.
As pointed out above this result thus generalizes the results in [24] concerning the
case when M is the unit-circle. Moreover, the case when M is the unit-sphere cor-
responds to the case studied in [20], where the signals in questions are spherical
harmonics. While in all these special cases the equilibrium measure μeq is explic-
itly given by the Haar measure (since the corresponding Riemannian manifolds are
homogeneous) the equilibrium measure of a general real affine algebraic variety
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appears to be of a highly non-explicit nature. Another generalization of the homo-
geneous cases was considered in [23], where the signals are “band-limited” sums of
eigenfunctions of the Laplacian on a given compact Riemannian manifolds (M,g)

and then the role of the equilibrium measure is played by the Riemannian volume
form. In another direction sampling sequences have previously been studied in
the complex geometric setting of a positively curved line bundle over a projective
complex algebraic manifold in [5] (where the corresponding equilibrium measure
is explicitly given by the volume form induced by the curvature form). Our setting
can thus be viewed as a real analog of the latter setting. As will be explained be-
low the main new challenge that appears in our setting comes from the absence of
point-wise and precise decay estimates for the corresponding Bergman kernels.

It is not evident a priori that there are sampling sequences at all. This is assured
with the following Bernstein type theorem:

THEOREM 3. Given a smooth compact real manifold M ⊂ R
m of dimension

n, the following are equivalent:
• M is algebraic.
• M satisfies a Bernstein inequality, i.e., for some q ≥ 1 (or for all q ≥ 1):

∥
∥∇tp

∥
∥
Lq(M)

≤ Cq deg(p)‖p‖Lq(M).

• There is a uniformly separated Λk such that for some (all) q ≥ 1
ˆ
M
|p|qdVM � 1

kn

∑

λ∈Λk

∣∣p(λ)
∣∣q �

ˆ
M
|p|qdVM , ∀p ∈ Pk

(
R
m
)
.

This generalizes the main result of [9] where the case q = ∞ was considered.

1.4. Sampling of multivariate real polynomials on convex domains. An-
other instance where Theorem 1 can be made more precise is the case were M =

R
n, μ is the Lebesgue measure restricted to a smooth bounded convex domain

Ω and φ = 0. In this case the equilibrium measure is very well understood, see
[1, 9]. It behaves roughly as dμeq 
 1/

√
d(x,∂Ω)dV , (this will also follow from

the asymptotics (1.5) below).

THEOREM 4. Let Ω be a smoothly bounded convex domain in R
n. Then the

reproducing kernel for (Hk(Ω),dV ) satisfies

Bk(x) =Kk(x,x)
min

(
kn

√
d(x)

,kn+1

)

∀x ∈ Ω,(1.5)

where d(x) denotes the distance of x ∈ Ω to the boundary of Ω. Thus it satisfies
the Bernstein-Markov property (2.1) and it is of moderate growth (2.2). Moreover,
a necessary condition for the sequence Λk of sets of points on Ω to be sampling
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for Hk(M) is that the density of sampling points is at least equal to the density of
the equilibrium measure μeq of Ω, as k→ ∞, i.e., the pluripotential Nyquist bound
(1.3) holds.

1.5. Interpolating sequences. A natural companion problem to that of
sampling sequences are the interpolating sequences. In the same abstract point of
view that we considered for sampling sequences we consider a sequence Hk(M)

of Hilbert spaces of functions on a set M with reproducing kernels Kk(x,y)

and instead of a frames we consider Riesz sequences of normalized reproducing
kernels:

Definition 1. A sequence Λk of sets of points on M is said to be interpolating
for Hk(M) if the family of normalized reproducing kernels

κλ :=Kk(·,λ)/
∥∥Kk(·,λ)

∥∥

for λ ∈ Λk, is a Riesz sequence in the Hilbert space Hk(M), i.e.:

1
C

∑

λ∈Λk

∣
∣cλ

∣
∣2 ≤

∥∥
∥
∥∥
∥

∑

λ∈Λk

cλκλ

∥∥
∥
∥∥
∥

2

≤C
∑

λ∈Λk

∣
∣cλ

∣
∣2, ∀

{
cλ
}
λ∈Λk

∈ �2

where we will assume that C can be taken independent of k.

Landau in [17] studied also these sequences in the Paley-Wiener space, and his
observation was that locally if a sequence Λ is interpolating then its density should
be smaller than the local density of the space. We can again use the ideas inspired
in [22] to deal with the case of polynomials in real algebraic varieties.

Our main result to this problem is:

THEOREM 5. Let M be an affine real algebraic variety equipped with the
Lebesgue measure. Then a necessary condition for a sequence Λk of points on M
to be interpolating for the space Hk(M) of polynomials of degree at most k, is that

limsup
k→∞

1
Nk

∑

λ∈Λk

δλ ≤ μeq(1.6)

in the weak topology onM , where μeq denotes the normalized equilibrium measure
of M and Nk = dim(Hk(M)), i.e., the following reversed pluripotential Nyqvist
bound holds:

limsup
k→∞

#
{
Λk ∩Ω

}

#Nk
≤ μeq(Ω)

μeq(M)

for any given smooth domain Ω in M .



SAMPLING REAL POLYNOMIALS 795

1.6. Discussion of the proof of Theorem 2. Let us make some brief com-
ments on the circle of ideas involved in the proof of the previous theorems. First of
all, since the sampling points uniquely determine a polynomial pk on M the total
number #Λk of sampling points at level k is of course at least equal to the dimen-
sion Nk of Hk(M). As a well-known guiding principle the necessary conditions
for sampling should come from a localized version of this argument saying the as-
ymptotic lower density of sampling points should at least be given by the “local
dimension” of the Hilbert space (Hk(M),‖ ·‖L2(dμk)), were μk := e−kφdμ, i.e., by

the leading asymptotics of N−1
k times the function

Bk(x) :=
Nk∑

i=1

∣
∣p(k)i (x)

∣
∣2e−kφ(x)

where {p(k)i (x)} is any orthonormal base in the Hilbert (Hk(M),‖ · ‖L2(dμk))

(note that integrating Bk(x) with respect to dV indeed gives the dimension Nk

of Hk(M)). The independence of the choice of base follows from the following
extremal representation of Bk(x):

Bk(x) := sup
pk∈Hk(M)

∣
∣pk(x)

∣
∣2e−kφ(x)´

M

∣∣pk
∣∣2dμk

.(1.7)

From the point of view of general Hilbert space theory Bk(x) may be written as
Bk(x) = Kk(x,x) where Kk(x,y) is the reproducing kernel of the Hilbert space
(Hk(M),‖·‖L2(dμk)), i.e., the kernel of the orthogonal projection from L2(dμk) to
Hk(M). By the general results in [2]

N−1
k Bk(x)dμk −→ μeq/μeq(M)(1.8)

weakly onM as k→∞, which in the view of the guiding principle above thus gives
a strong motivation for the previous theorems. However, this guiding principle does
not seem to hold in all generality and it has to be complemented with some further
asymptotic information of the full reproducing kernel Kk(x,y). This is already
clear from Landau’s classical proof in the Paley-Wiener setting on R

n [17], where
the decay asymptotics of Kk(x,y), away from the diagonal are needed in order to
construct functions fk which are well localized on a given domain Ω (using suitable
Toeplitz operators). Moreover, Landau’s approach also relies on certain submean
inequalities for fk which pose difficulties in our general setting. Instead we use a
new approach to proving necessary conditions for sampling, which is inspired by
[18, 22], where we reduce the problem to establishing two asymptotic properties
of Kk(x,y) (given the convergence of the Bergman function to the equilibrium
measure):
• A growth property of Bk.
• A weak decay property of |Kk(x,y)| away from the diagonal.
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The interpolation theorem 5 is proved in a similar way, but by replacing the
moderate growth property with a Bernstein type inequality, see Theorem 9.

One interesting feature is that although the statement of the problems studied
are purely real, all the proofs rely on the process of complexification with one im-
portant exception: the off-diagonal estimate on the Bergman kernel (Theorem 17)
which exploits, in an essential way, the real structure. Somewhat remarkably, the
off-diagonal estimate for the Bergman kernel that we get (which is sharp in terms
of powers of the distance function) matches precisely the decay needed in our new
approach to sampling (and interpolation).

1.7. Further relations to previous results. As explained above one im-
portant ingredient in the proof of Theorem 1 is the asymptotics for Bk(x) in for-
mula (1.8) established in [2], which holds generally under the Bernstein-Markov
assumption on (μ,φ). In turn, the latter result can be seen as a consequence of a
very general result in [2] giving the convergence towards the equilibrium measure
of (μ,φ) for the normalized Dirac measure associated to a sequence of Nk points
under the condition that the points are asymptotic Fekete points for the weighted
set (Supp(μ),φ). It may thus be tempting to try to deduce Theorem 1 in the present
paper directly from the general convergence results in [2] by the following tentative
procedure: one removes points from a sampling sequence Λk until one arrives atNk

points, while keeping the sampling property. But as shown by a counter example in
[24, Example 2] such a procedure is doomed to fail, already in the homogenouous
case of the circle.

The point-wise asymptotics for Bk(x) in Theorem 2 (formula (1.4)) can be
seen as an improvement—in the special case of a real algebraic manifold—of a
classical result for regular compact subsets complex space going back to Siciak
and Zaharyuta giving that Bk(x)1/k → 1 point-wise on M (this latter classical
result was given a ∂̄−proof by Demailly, [12] which can seen as a precursor to
our proof). In view of the weak asymptotics (1.8) and the bounds in formula (2.3)
below, it seems natural to conjecture thatBk(x)/kn in fact converges pointwise (in
the almost everywhere sense) to the L1-density of the equilibrium measure of M
(and similarly in the setting of a convex domain; as in the one dimensional setting,
see [28]). This would be a real analog of the point-wise asymptotics for Bk(x) in
[4], where the role of M is played by a complex projective variety endowed with a
hermitian holomorphic line bundle (the case of positive curvature is a fundamental
result in complex geometry, due to Bouche [7] and Tian [27]).

On the other hand, in the line bundle setting, the asymptotics for |Kk(x,y)|2
in Theorem 17 are only known in the case of a line bundle with positive curvature,
but it seems natural to expect that they hold in general (see [4] for some results
in this direction in connection to the study of fluctuations of linear statistics of
determinantal point processes).

Finally, we recall that in the one-dimensional case there is a vast literature on
various asymptotic results for orthogonal polynomials, in particular in connection
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to random matrix theory. For example, the asymptotics of the scaled reproducing
kernel k−nKk(x+

a
k ,x+

b
k ) have been established, in connection to the question

of universality, under very general condition on a given measure μ on the real line,
when x is a fixed point in the “bulk” of the support of μ; see for example [19] (and
similar scaling result holds at the “edge” of the support). However, there seem to
be very few results in the higher dimensional setting (but see [29, 16], where the
case of the ball and the simplex in is settled). It would be interesting to extend the
asymptotics in the present paper to study similar universality questions in higher
dimensions and we leave this as a challenging problem for the future.

Acknowledgments. The authors are grateful to Ahmed Zeriahi for very useful
discussions regarding the Bernstein inequality.

2. Pluripotential theory and asymptotics of real orthogonal polynomials.

2.1. Setup. Let M be an n-dimensional affine real algebraic variety, which
is non-singular and compact. In particular, M is the common zero-locus of a col-
lection of real polynomials p1, . . . ,pr in R

m. We denote by Hk(M) the real vector
space consisting of the functions on M which are restrictions of real polynomials
in R

m of total degree at most k. We will also consider the “complexifications” X
and Hk(X) of the real variety M and the real vector space Hk(M), respectively.
More precisely, X is the complex algebraic variety in C

m defined by the common
complex zeros of the ideal defining M and Hk(X) is the complex vector space
consisting of restrictions to X of polynomials in C

m of total degree at most k.
Then M is indeed the real part of X in the sense that it consists of all points in z
in X such that z̄ = z and real vector space Hk(M) is the real part of Hk(X) in the
sense that it consists of all pk in Hk(X) such that pk = pk (restricted to M ).

We will denote by Kk(x,y) the Bergman reproducing kernel of Hk equipped
with the L2-norm induced by a given weighed measure (μ,φ) and moreover we
will use the notation Bk(x) =Kk(x,x)e

−kφ(x).

Example 6. Let M be the unit-circle realized as the zero-set in R
2 of p(x,y) =

x2+y2−1. Setting x= cosθ for θ ∈ [0,2π] we may identifyHk(M) with the space
Hk([0,2π]) of all Fourier series on [0,2π] “band-limited” to [−k,k], i.e., spanned
by 1 and cosmθ and sinmθ for m ∈ [1,k]∩Z. More precisely, Hk([0,2π]) is the
pull-back of Hk(M) under the corresponding map from [0,2π] to M . To see the
relation to the more standard setting where M corresponds to the unit-circle S1 in
C with complex coordinate τ (equal to eiθ on S1) we note that the embedding F
of C∗ in C

2 given by

z :=
(
τ + τ−1)/2 w =

(
τ − τ−1)/2i

maps C∗ to the complex quadric X cut out by p(z,w) := z2 +w2−1 and the unit-
circle S1 in C

∗ is mapped to the real part M of X. Indeed, τ ∈ S1 if and only if
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τ̄ = τ−1 iff z(τ) = ℜτ(= cosθ) and w(τ) = ℑτ(= sinθ). The pull-back of Hk(X)

under F is the space of Laurent polynomials on C spanned by the monomials τm

for m ∈ [−k,k]∩Z. Hence, the real part of F ∗Hk(M) is indeed spanned by 1 and
cosmθ(= ℜτm) and sinmθ(= ℑτm) for m ∈ [1,k]∩Z.

Definition 2. (Bernstein-Markov) The standard assumption on the pair (μ, φ)
is that it satisfies the Bernstein-Markov property (with respect to the support of μ),
which may be formulated as the property that the reproducing kernel Kk(x,y) have
sub-exponential growth on the diagonal, i.e., for any ε > 0 there exists a positive
constant Cε such that

Bk(x)≤ Cεeεk(2.1)

uniformly on the support of μ.

For our general results to hold we will also need the following technical regu-
larity of the growth assumption on the reproducing kernel along the diagonal:

Definition 3. (Moderate growth) We say that Hk has a reproducing kernel with
moderate growth if

Kk+1(x,x)≤ CKk(x,x)(2.2)

on the support of μ. More precisely, for our purposes the constant C may be re-
placed by any sequence with growth of the order o(k).

Anyway, in all examples that we are aware of the constant C in (2.2) may ac-
tually be replaced by a sequence tending to one as k → ∞ (which, by iteration,
actually implies the Bernstein-Markov property (2.1)). All the measures μ sup-
ported in M that we will consider are non-degenerate, in the sense that ‖f‖ �= 0
if 0 �= f ∈ Hk(M). Otherwise if the support of μ is contained in the zeros of a
non-vanishing polynomial in Hk(M) one may replace M with a subvariety.

While Definition 2 is standard (see [2] and references therein), Definition 3
appears to be new. We expect it to hold in great generality and we will establish it
in the situations relevant to the present paper.

2.2. The extremal function attached to a real affine variety. Recall that
the Lelong class L(Cm) is the convex space of all plurisubharmonic (psh, for short)
functions φ on C

m with logarithmic growth, in the sense that φ≤ log(1+ |z|2)+C .
The restriction of this space toX will be denoted by L(X) and it may be identified
with the space of all (singular) metrics on the line bundleO(1)X̄→ X̄ with positive
curvature current, see [2] and references therein for further background. The Siciak
extremal function (sometimes called the equilibrium potential) of a compact and
non-pluripolar subset K of X and a weight ψ ∈ C(K) is the function in L(X)
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defined as the upper semi-continuous regularization v∗K of the envelope

vK,ψ(x) = sup
φ∈L(X)

{
φ(x) : φ≤ ψ on K

}

and the weighted set (K,ψ) is called regular if v∗K,ψ = vK,ψ. The Monge-Ampère
measure

μK,ψ :=MA
(
vK,ψ

)

is called the (pluripotential) equilibrium measure of (K,ψ) and it is supported on
K (when there is no risk of confusion we will write μK,ψ := μeq).

In the following we will take K :=M as above, which is thus embedded in the
complex affine variety X in such a way that M = X ∩{y = 0}, where y denotes
the imaginary part of z ∈ C

n. We will also take ψ = 0.

PROPOSITION 7. Let M be an n-dimensional affine real algebraic variety,
which is non-singular and compact and denote by vM its extremal function, defined
on the complexification X of M . Then M is non-pluripolar and regular. Moreover,
there exists a constant C such that

1
C
|y| ≤ vM ≤ C|y|(2.3)

in a neighborhood of M in X. In particular, the equilibrium measure μM is abso-
lutely continuous with respect to the Lebesgue measure dVM on M and its density
is bounded from above and below by positive constants:

1
D
dVM ≤ μM ≤DdVM(2.4)

on M .

Proof. The lower bound on vK follows from a simple max construction. In-
deed, we may after a scaling assume that |z|< 1 on M and then set

ψ :=

{
max

{
|y|/C, log |z|2

}
if |z| ≤ 2

log |z|2 if |z|> 2

with C sufficiently large to ensure that ψ is continuous along |z| = 2. Since, ψ =

|y|/C close to M the function ψ is a contender for the sup defining vM and hence
ψ ≤ vM , which proves the lower bound in (2.3). The proof of the upper bound
is more involved: We know that vM ∈ L∞

loc(X) because M is algebraic, see [25].
Moreover there is a distance d such that g(r) = supz∈X:d(z,M)=r vM (z) is convex
in r in [0,δ], see the proof of Theorem 10 for details. Therefore g(r)≤ Cr and the
upper bound in (2.3) follows.
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Anyway, for the proof of the lower bound in (1.4) we will only need the lower
bound in (2.3). Note also that combining (1.4) and the asymptotics (1.8) immedi-
ately gives the inequalities (2.4) which also follow from the inequalities (2.3) by
the comparison principle for the Monge-Ampère measure, see [1, Lemma 2.1]. �

2.3. The proof of the lower bound on Bk in (1.4). Denote by BkvM the
Bergman function onX defined by the L2-norm onHk(X) induced by the measure
e−kvMdVX . The idea of the proof is to first show that

BkvM ≥ Ck2n on M,(i)

and then that

Bk ≥ Ck−nBkvM on M.(ii)

This would clearly imply the result in question. However, for technical reasons we
will only show a slightly weaker version of these inequalities (needed for (i)) where
vM is replaced by

vεM := vM (1− ε)+ εψ

where ψ is a continuous function in L(X) such that ψ = v2
M/C in a neighborhood

of M . Here ε is a sufficiently small positive number which is fixed once and for all.
To see that such a function ψ exists we may after scaling assume that |z|< 1 on M
and then simply set ψ :=max{v2

M/C, log |z|2}when |z|< 2 and φ := log |z|2 when
|z|> 2. The constant C is taken sufficiently large to ensure that ψ is continuous at
|z|= 2.

Let us start with the proof of (i). To simplify the notation we will assume
that n = 1 (but the general proof is essentially the same). To this end fix a point
in M and introduce local holomorphic coordinates z on U in X, centered a the
fixed point, such that M = {y = 0} locally, i.e., on U (not to be confused with
the global coordinates on C

m and R
n, respectively). The idea is to first construct a

local function fk, holomorphic on U such that

|fk(0)|2´
U |fk|

2 e−kvMdVX
≥ k2/C(2.5)

and then perturb fk slightly to become a polynomial pk by solving a global ∂̄-
equation on X̄ with an L2-estimate.

There is no loss of generality assuming that fk(0) = 1. Working in a local
coordinates and reescaling (2.5) it is enough to prove that there is a function f ∈
H(C) such that f(0) = 1 and

ˆ
C

∣
∣f(z)

∣
∣2e−C|ℑz| < ∞,



SAMPLING REAL POLYNOMIALS 801

then fk(z) = f(kz) will satisfy (2.5). The function f(z) = sinc2(Cz/2) has the
desired properties.

2.3.1. Modification and globalization. Let now χ be a smooth cut-off
function supported on U (say equal to one on U/2). In view of standard globaliza-
tion arguments the problem with the present setting is that ∂̄ of the global function
χfk on X does not have a small weighted L2-norm (compared to the weighted
norm of fk). The reason is that e−k2|y| is only well localized in the y-direction. To
bypass this difficulty we will instead replace vM with vεM and modify fk accord-
ingly as follows. First observe that, by definition,

ˆ
U

∣
∣gk

∣
∣2e−kv

ε
MdVX ≤

ˆ
U

∣
∣gk

∣
∣2e−kvM (1−ε)e−kε4|y|

2
dVX

for any gk. We next observe that |e−2z2 |e−4|y|2 = e−2|z|2 and hence setting gk :=
fke
−kεz2

gives

∣
∣gk

∣
∣2e−k4ε|y|2 =

∣
∣fk

∣
∣2e−2kε|z|2 ≤

∣
∣fk

∣
∣2

and gk(0) = fk(0). In particular,

∣
∣gk(0)

∣
∣2

´
U

∣
∣gk

∣
∣2e−kv

ε
MdVX

≥
∣
∣fk(0)

∣
∣2

´
U

∣
∣fk

∣
∣2e−k(1−ε)vMdVX

≥ k2/Cε.

Here the optimal constant Cε is slightly smaller than the previous optimal C , but
on the other hand we have gained a Gaussian factor that we will next exploit. The
point is that ∂̄(χgk) = ∂̄χgk is supported where |z|> 1/4 and hence

ˆ
U

∣∣∂̄
(
χgk

)∣∣2e−kv
ε
MdVX ≤C

ˆ
1/4≤|z|≤2

∣∣gk
∣∣2e−kvM (1−ε)e−kε4|y|

2
dVX

=C

ˆ
1/4≤|z|≤2

∣∣fk
∣∣2e−kvM (1−ε)e−kε2|z|

2
dVX .

Estimating the Gaussian factor e−kε2|z|
2

with its sup, i.e., with e−k2ε/42
thus gives

the bound
ˆ
U

∣∣∂̄
(
χgk

)∣∣2e−kv
ε
MdVX ≤O

(
e−δk

)ˆ
U

∣∣fk
∣∣2e−kvM (1−ε)dVX .

Here and henceforth O(e−δk) denotes a term which is exponentially small in k
(recall that ε is a small number which is fixed once and for all).

With this local estimate in place we can now apply a standard globalization
argument: using L2-estimates for ∂̄ on the line bundle O(1)X over X̄ , or more
precisely (if the latter variety is singular) on its pull-back to a smooth resolution of
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X̄ there exists a smooth function uk on such that pk := gk−uk is in Hk(X) and

∂̄uk = ∂̄(χgk),

ˆ
X
|uk|2 e−kv

ε
MdVX ≤ C

ˆ
U

∣
∣∂̄(χgk)

∣
∣2 e−kv

ε
MdVX

(strictly speaking to apply L2-estimates we have to slightly modify the weight vεM
with a k-independent term to ensure that the corresponding metric on the line bun-
dle kO(1)X has a sufficiently large uniform lower bound on its curvature form, but
this only changes the L2-estimates with an overall multiplicative constant, which is
harmless). This is a standard procedure; for a precise statement which also applies
in the singular setting see, for example [3, Section 2].

By the previous estimate this means that

ˆ
X

∣∣uk
∣∣2e−kv

ε
MdVX ≤O

(
e−δk

)ˆ
U

∣∣fk
∣∣2e−kvM (1−ε)dVX .

Moreover, applying the mean value property for holomorphic functions on a small
coordinate ball then gives

∣∣uk(0)
∣∣2 ≤ Ck2

ˆ
X

∣∣uk
∣∣2e−kv

ε
MdVX ≤O

(
e−δk

)ˆ
U

∣∣fk
∣∣2e−kvM (1−ε)dVX .

Hence,

∣
∣pk(0)

∣
∣2

´
X

∣∣pk
∣∣2e−kv

ε
MdVX

=

∣
∣gk(0)−uk(0)

∣
∣2

´
X

∣∣χgk−uk
∣∣2e−kv

ε
MdVX

≥
∣∣gk(0)

∣∣2−O
(
e−δk

)´
U

∣∣fk
∣∣2e−kvM (1−ε)

´
U

∣
∣χgk

∣
∣2e−kv

ε
MdVX +O

(
e−δk

)´
U

∣
∣fk

∣
∣2e−kvM (1−ε)dVX

.

But |gk(0)|2 = |fk(0)|2 and |gk|2e−kv
ε
M ≤ |fk|2e−kvM (1−ε). Moreover, as explained

above
´
U |fk|2e−kvM |(1−ε) =O(k2) and hence we get just as above

∣∣pk(0)
∣∣2

´
X

∣
∣pk

∣
∣2e−kv

ε
MdVX

≥ Cεk2(1+O
(
e−δk

))

which concludes the proof of the bound (i)

BkvεM ≥ Ck
2n on M.

2.3.2. The inequality between Bk and BkvM . First observe that it is
enough to prove the following lemma where now y denotes the imaginary part of
z ∈ C

n (so that X ∩{y = 0}=M ):
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LEMMA 8. Let Uk be the set of all points in X such that |y| ≤ 1/k (which
defines a neighborhood of M in X). Then there exists a constant C such that

ˆ
M

∣∣pk
∣∣2dVM ≤ C

1

Vol
(
Uk

)
ˆ
Uk

∣∣pk
∣∣2dVX

for any polynomial of total degree at most k.

Indeed, since the function vM on X is comparable to |y| close to M (by The-
orem 7) and in particular kvεM is uniformly bounded on Uk, we then get that

ˆ
M

∣
∣pk

∣
∣2dVM ≤ C ′

1
kn

ˆ
X

∣
∣pk

∣
∣2e−kv

ε
MdVX .

It follows immediately that

Bk ≥ kn/C ′BkvεM

onM , which combined with the inequality (i) thus concludes the proof of the lower
bound in (1.4), given Lemma 8, to whose proof we next turn.

For any x ∈M there are constants C and r0 such that for any r < r0,

∣
∣f(x)

∣
∣2 ≤ C

r2n

ˆ
X∩B(x,r)

∣
∣f(y)

∣
∣2dVX(y)

for any f holomorphic in X. In particular if we integrate over x ∈X a polynomial
of degree k taking r = 1/k we get

ˆ
M

∣∣pk
∣∣2dVM ≤ Ck2n

ˆ
Uk

∣∣pk(y)
∣∣2VM

(
B(y,1/k)∩M

)
dVX(y)

≤ Ckn
ˆ
Uk

∣
∣pk

∣
∣2dVX ≤

C

Vol
(
Uk

)
ˆ
Uk

∣
∣pk

∣
∣2dVX . �

2.4. The Lq Bernstein inequality. Let M be a smooth compact algebraic
variety in R

m of dimension n.
Given a polynomial p ∈ Pk(Rm) and x ∈M we denote by ∇tp(x) the tangen-

tial gradient of p along the manifold M . The following Bernstein type inequality
holds:

THEOREM 9. Let q ∈ [1,∞], then there is a constant Cq such that

∥∥∇tp
∥∥
Lq(M)

≤ Cq deg(p)‖p‖Lq(M).

The case q = ∞ was proved in [6]. We prove now the case q = 1 and the others
follow by interpolation.
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Let X be a complexification of M , i.e., an algebraic variety in C
m such that

M =X∩Rm. We denote by Ur ⊂X the neighborhood ofM defined as Ur = {x∈
X : d(x,M)< r}. By the Cauchy inequalities we have that for any x ∈M and any
f ∈H(X):

∣∣∇tf(x)
∣∣� 1

r2n+1

ˆ
B(x,r)

∣∣f(y)
∣∣dVX(y).

and integrating over M we have
ˆ
M

∣∣∇tf(x)
∣∣dVM � 1

r2n+1

ˆ
M

ˆ
B(x,r)

∣∣f(y)
∣∣dVX(y)dVM (x)

� 1
rn+1

ˆ
Ur

∣∣f(y)
∣∣dVX(y).

Therefore Theorem 9 follows from the following result:

THEOREM 10. There is C > 0 such that for all polynomials pk of degree k,
the following inequality holds:

ˆ
U1/k

∣
∣pk

∣
∣dVX ≤ Ck−n

ˆ
M

∣
∣pk

∣
∣dVM .

Proof. In order to estimate the integral over U1/k we will integrate along sur-
faces surrounding M . These surfaces will be level sets of plurisubharmonic func-
tions with Monge-Ampère 0. In this setting there is a generalization of Hadamard
three circles theorem due to Demailly that will be used, see [11]. In order to use this
technique we need that the psh-function that defines the level sets is smooth out of
M , and its square must be smooth. We can use the function provided by Guillemin
and Stenzel in [15] in their study of Grauert tubular neighborhoods around real
analytic manifolds. We present the setting:

Take ψ a plurisubharmonic function in a neighborhood U of M in X defined
as

ψ(z) = d(z,M),

where the distance d is given by a metric provided in a Grauert tubular neighbor-
hood U as in [15]. The function ψ satisfies (ddcψ)n = 0 in U \M , ψ2 is a real
analytic Kähler potential in U and (ddc(ψ2))n is comparable to the volume form
in X in a neighborhood of M .

We use the same notation as in [11]. Consider the pseudospheres Sr = {z ∈
U ; ψ(z) = r}, r > 0 and the positive measures μr supported on Sr that are defined
as

μr(h) :=
ˆ
Sr

h
(
ddcψ

)n−1∧dcψ
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for any h ∈ C(U). When r = 0, then we define

μ̄0(h) :=
ˆ
M
h
(
ddcψ

)n
.

We have that μr(h) is continuous for r > 0 with μr(h)→ μ̄0(h) as r→ 0+ see [11,
Theorem 3.2].

Moreover (ddcψ)n which is supported onM is comparable to the volume form
in M . This is so because at any point z ∈ M we can write local holomorphic
coordinates such that M corresponds to z ∈ C

n : ℑz = 0. In this coordinates ψ(z)
is comparable to |ℑz| and since (ddc|ℑz|)n is the Lebesgue measure on R

n then
by the comparison principle for the Monge-Ampère measure, see [1, Lemma 2.1],
the measure μ̄0 is locally comparable to the volume form and M being compact it
is globally comparable.

Take the psh function V = log |pk|, then [11, Corollary 6.6(a)] says that the
function

u(r) = logμr
(
eV

)
, r > 0, u(0) = log μ̄0

(
eV

)

is convex and increasing in r. We fix R > 0 such that SR belongs to the tubular
neighborhood U . The convexity of u implies that for any r > 0

u(r)≤ u(0)R− r
R

+u(R)
r

R
.(2.6)

We have that

u(0) = log
ˆ
M

∣∣pk
∣∣dμ̄0.

We are going fix R such and estimate u(R). Since pk is a polynomial of degree k
we have that by the Bernstein-Walsh estimate

sup
SR

∣
∣pk

∣
∣≤ sup

SR

ekφM (z) sup
M
|p|,

where φM is the Siciak extremal function defined in Section 2.2
It is a well-known theorem of Sadullaev, see [25] that if X is algebraic then

φK ∈ L∞
loc(X) for any non-pluripolar compact set K relative to X. Certainly M is

non-pluripolar relative to X since it is totally real. Therefore:

sup
SR

∣∣pk
∣∣≤ Ck sup

M
|p|.

Moreover, we need the following Bernstein-Markov type inequality:

sup
M
|p| ≤ CkM

ˆ
M
|p|.(2.7)
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This is easier than the standard Bernstein-Markov property since we are not requir-
ing that CM is close to 1. In our case (2.7) is a special case of [8, Theorem 4.1].

Finally supSR
|pk| ≤Ck

´
M |p|, and we have that u(R)≤ (C+ log‖p‖L1(M))k.

Therefore if r = 1/k and using the convexity (2.6) we deduce that

u(1/k) ≤ u(0)+C.

Since u(r) is increasing we have that for any r < 1/k
ˆ
Sr

∣∣pk
∣∣dμr ≤ C

ˆ
M

∣∣pk
∣∣dμ̄0.

But the measures μr disintegrate the form (ddcψ)n−1 ∧ dψ ∧ dcψ, see [11,
Proposition 3.9], and we have that

ˆ 1/k

0
rn−1

ˆ
S(r)

∣
∣pk

∣
∣dμr =

ˆ
ψ<1/k

∣
∣pk(z)

∣
∣ψ(z)n−1(ddcψ

)n−1∧dψ∧dcψ.

Moreover

ψ(z)n−1(ddcψ
)n−1∧dψ∧dcψ =

(
ddc

(
ψ2))n.

But ψ2 is a real analytic Kähler potential in X, see [15]. Thus (ddc(ψ2))n is equiv-
alent to the original volume form VX in a neighborhood of M in X:

ˆ
ψ<1/k

∣
∣pk

∣
∣dVX 


ˆ 1/k

0
rn−1

ˆ
S(r)

∣
∣pk

∣
∣dμr. �

Remark. With the same proof, for any 1≤ q < ∞,
ˆ
U1/k

∣∣pk
∣∣qdVX � k−n

ˆ
M

∣∣pk
∣∣qdVM .

It is also true that

sup
U1/k

∣
∣pk

∣
∣� sup

M

∣
∣pk

∣
∣.

The proof is the same, but instead of [11, Corollary 6.6(a)] one uses that

u(r) = sup
Sr

log
∣
∣pk

∣
∣,

is a convex function of r, see [11, Corollary 6.6(b)].

Remark. For any x ∈M we consider a ball BX(x,1/k) in the complexified
manifold X. By the submean value property we have that

∣∣pk(x)
∣∣2 � k2n

ˆ
BX (x,1/k)

∣∣pk(y)
∣∣2 dVX(y)� kn

ˆ
M

∣∣pk
∣∣2dVM .
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Therefore Kk(x,x) � kn and we have proved the upper inequality in (1.4). We
include the argument for completeness but this upper bound is well known and it
follows from the arguments in [30].

It is also possible to prove a converse result to Theorem 9:

THEOREM 11. Let M be a smooth compact submanifold in R
m. If there is a

constant C > 0 such that for some q ∈ [1,∞],

∥
∥∇tp

∥
∥
Lq(M)

≤ C deg(p)‖p‖Lq(M),

for all polynomials p ∈ P(Rm), then M is algebraic.

Proof. We will need a definition

Definition 4. A sequence of finite sets {Λk} is an ε-net if it is uniformly sepa-
rated and 1≤

∑
λ∈Λk

χB(λ,ε/k)(x)≤C , for all x ∈M and k > 0.

By an application of the Vitali covering lemma it is possible to construct ε-nets
for arbitrarily small ε where the constant C =CM depends on the dimension of M
but not on ε.

Given an ε-net Λ = Λ(ε) we denote by lk = #Λk. We may define: Tk :
Pk(M)→ R

lk as

Tk(p)(λ) = pBM (λ,ε/k) :=
 
BM (λ,ε/k)

pdVM ∀λ ∈ Λk.

We will prove now that if ε is small enough then

ˆ
M

∣
∣pk

∣
∣q � 1

kn

∑

λ∈Λk

∣
∣Tk(p)(λ)

∣
∣q.(2.8)

If this is the case, then Tk is one to one and dim(Pk(M)) ≤ lk 
 kn where n =

dim(M) which is much smaller than km. Thus M is algebraic.
Let us prove (2.8).

ˆ
M

∣
∣pk

∣
∣q dVM � 1

kn

∑

λ∈Λk

∣
∣Tk(p)(λ)

∣
∣q+

∑

Λk

ˆ
BM (λ,ε/k)

∣
∣p(x)−pBM (λ,ε/k)

∣
∣q dVM .

By the Poincaré inequality:

ˆ
BM (λ,ε/k)

∣∣p(x)−pBM (λ,ε/k)

∣∣q dVM � εq

kq

ˆ
BM (λ,ε/k)

∣∣∇tp
∣∣q dVM .
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By Theorem 9
ˆ
M

∣∣pk
∣∣q dVM � 1

kn

∑

λ∈Λk

∣∣Tk(p)(λ)
∣∣q+ ε

ˆ
M

∣∣pk
∣∣q dVM ,

and if ε is small enough then (2.8) follows. �

2.5. Applications. We will use now the Bernstein inequality to get some
more information on sampling and interpolation sequences of finite sets.

Definition 5. A sequence of measures {μk}k is said to be a uniformly sequence
of Carleson measures if there is a C > 0 such that

ˆ
M

∣∣pk
∣∣2dμk ≤ C

∥∥pk
∥∥2
, ∀pk ∈ Pk.(2.9)

In M we consider the balls defined by any Riemannian metric.

PROPOSITION 12. A sequence {μk}k is a uniformly sequence of Carleson
measures if and only if there is a C > 0 such that

μk
(
B(x,1/k)

)
< C/kn for all x ∈M, k ∈N.

Proof. The necessity follows from testing (2.9) against normalized reproduc-
ing kernels. For any x ∈M , let κx,k(y) = Kk(x,y)/

√
Kk(x,x). Then it is clear

that for all y ∈M :

∣∣κx,k(y)
∣∣≤

∣∣〈Kk(x, ·),Kk(y, ·)
〉∣∣/

√
Kk(x,x)≤

√
Kk(y,y)
 kn/2,

and |κx,k(x)| =
√
Kk(x,x) 
 kn/2. On the other hand since M is algebraic we

have the classical Bernstein inequality, see [6]:

sup
M

∥
∥∇tκx,k

∥
∥� k sup

M

∣
∣κx,k

∣
∣
 kn/2+1.

This means that there is a δ > 0 such that

∣∣κx,k(y)
∣∣� κx,k(x)
 kn/2, ∀y ∈BM (x,δ/k).

Therefore if we test (2.9) with κx,k we get that μk(BM (x,δ/k)) � 1/kn.
In the other direction for any x∈M we consider a ball BX(x,r) the ball in the

complexified manifold X. By the submean property of the holomorphic functions
f ∈H(X), we have that for r ≤ r0, |f(x)|�

ffl
BX (x,r) |f(y)|dVX(y). Thus

∣∣pk(x)
∣∣2 �

 
BX (x,1/k)

∣∣pk(y)
∣∣2dVX(y)
 k2n

ˆ
BX (x,1/k)

∣∣pk(y)
∣∣2 dVX(y).
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Finally, thanks to Theorem 10
ˆ
X

∣
∣pk(x)

∣
∣2dμk(x)�

ˆ
x∈X

k2n
ˆ
BX (x,1/k)

∣
∣pk(y)

∣
∣2dVX(y),dμk(x)

�
ˆ
y∈X,d(y,M)<1/k

k2n
∣∣pk(y)

∣∣2μk(BX(y,1/k)∩X)dVX (y)

�
ˆ
y∈X,d(y,M)<1/k

kn
∣∣pk(y)

∣∣2dVX(y)

�
ˆ
X

∣
∣pk(x)

∣
∣2dVM (x). �

An immediate corollary is the description of the sequences that satisfy the left-
hand side inequality of the sampling sequences, that is a Plancherel-Polya type
inequality.

We say that a sequence of finite sets Λk is uniformly separated if and only if
there is an ε > 0 such that d(λ,λ′)≥ ε/k for all λ �= λ′, λ,λ′ ∈ Λk.

COROLLARY 13. (Plancherel-Polya type inequality) The sequence of finite
sets Λk is a finite union of uniformly separated sequences if and only if there is
a constant C > 0 such that

1
kn

∑

λ∈Λk

∣∣p(λ)
∣∣2 ≤ C

ˆ
M
|p|2, ∀p ∈ Pk.

Proof. Apply Proposition 12 to the measures μk =
1
kn

∑
λ∈Λk

δλ. This implies
that the Plancherel-Polya type inequality holds if and only if #{Λk ∩B(x,1/k)} ≤
C uniformly in x and k. That is, the sequence Λk is a finite union of uniformly
separated sequences of sets. �

Once we have a Bernstein type inequality the following Proposition is stan-
dard, see [26, Proposition 5, p. 47] and it allows to reduce our considerations to
uniformly separated sequences.

PROPOSITION 14. If Λk is a sampling sequence then there is a uniformly sep-
arated sequence of subsets Λ′k ⊂ Λk such that Λ′k is still a sampling sequence.

It is also completely standard that:

PROPOSITION 15. If Λk is an interpolating sequence then it is uniformly sep-
arated.

Theorem 10 can also be used to provide a sufficient condition that assures the
existence of sampling sequences. More precisely, we say that the sequence Λk is an
ε-net if it is uniformly separated and 1≤

∑
λ∈Λk

χB(λ,ε/k)(x)≤CM , for all x∈M
and k > 0, the constant CM depends on M but not on ε. By an application of the
Vitali covering lemma it is possible to construct ε-nets for arbitrarily small ε.
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PROPOSITION 16. There is an ε0 such that any sequence Λk that is an ε-net
with ε < ε0 is a sampling sequence.

Proof. Take one ε-net Λk = Λk(ε). Then

ˆ
M

∣∣pk
∣∣dVM ≤

∑

λ∈Λk

ˆ
BM (λ,ε/k)

∣∣pk
∣∣dVM

≤
∑

λ∈Λk

∣
∣pk(λ)

∣
∣
∣
∣BM (λ,ε/k)

∣
∣+

∑

λ∈Λk

ˆ
BM (λ,ε/k)

∣
∣pk(x)−pk(λ)

∣
∣dVM

�
∑

λ∈Λk

εn

kn
∣∣pk(λ)

∣∣+
∑

λ∈Λk

ε

k

∣∣∇tpk
(
ζλ
)∣∣∣∣BM (λ,ε/k)

∣∣,

where ζλ ∈ BM (λ,ε/k) is such that |∇tpk(ζλ)| = supx∈BM (λ,ε/k) |∇tpk(x)|. By
the Cauchy inequality, if we take a ball BX(λ,1/k) in the complexification X of
M , we have

∣
∣∇tp

(
ζλ
)∣∣� k

 
BX (λ,1/k)

∣
∣pk

∣
∣dVX .

Therefore,

ˆ
M

∣
∣pk

∣
∣dVM � εn

kn

∑

λ∈Λk

∣
∣pk(λ)

∣
∣+

∑

λ∈Λk

εn+1kn
ˆ
BX (λ,1/k)

∣
∣pk

∣
∣dVX .

Since Λk is an ε-net there are at most Cε−n points of Λk in any given ball
BX(x,1/k) of center x ∈ U1/k. Thus,

ˆ
M

∣
∣pk

∣
∣dVM � εn

kn

∑

λ∈Λk

∣
∣pk(λ)

∣
∣+ εkn

ˆ
U1/k

∣
∣pk

∣
∣dVX .

We use now Theorem 10 to control the right-hand side integral. If we take ε small
enough we can absorb the integral in the left-hand side and we get

ˆ
M

∣
∣pk

∣
∣dVM � 1

kn

∑

λ∈Λk

∣
∣pk(λ)

∣
∣.

The L∞ version: supM |pk| � supΛk
|pk| follows immediately by the Bernstein in-

equality proved in [6], if ε is small enough. By interpolation we get that for any
q ∈ [1,∞)

ˆ
M

∣∣pk
∣∣qdVM � 1

kn

∑

λ∈Λk

∣∣pk(λ)
∣∣q.
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The reverse inequality

1
kn

∑

λ∈Λk

∣
∣pk(λ)

∣
∣q �

ˆ
M

∣
∣pk

∣
∣qdVM ,

follows from Corollary 13 since Λk is uniformly separated. �

We can finish now the proof of Theorem 3

Proof. We have already proved that the algebracity of M is equivalent to the
Bernstein inequality, this is Theorem 9 and 11. Moreover Proposition 16 proves
that compact algebraic manifolds have uniformly separated sampling sequences.
So we only need to check that if there are such sequences then M is algebraic.
This is proved in a similar way to Theorem 11. We denote by lk = #Λk as before.
Define: Rk : Pk(M)→ R

lk as

Rk(p)(λ) = p(λ) ∀λ ∈ Λk.

Clearly, since we have the sampling property, Rk is one-to-one. Therefore

dim(Pk(M))≤ lk.

Moreover since Λk is uniformly separated, then lk ≤ kn. This implies that M is
algebraic. �

2.6. A general off-diagonal estimate on the reproducing kernel.

THEOREM 17. LetM be an n-dimensional affine real algebraic variety (possi-
bly singular), μk a sequence of non-degenerate finite measures on M with support
contained in a compact of M and denote by Kk(x,y) the reproducing kernel for
the space Hk(M), viewed as a subspace of L2(M,μk). Then there exists a positive
constant C such that

ˆ
M×M

1
kn

∣
∣Kk(x,y)

∣
∣2dμk(x)⊗dμk(y)|x−y|2 ≤ C/k.

Remark. Observe that if we pick μk = e−kφμ the theorem covers the weighted
setting as well.

Proof. Given a bounded function f on M we denote by Tf be the Toeplitz op-
erator onHk(M)∩L2(M,μk) with symbol f , i.e., Tf :=Πk ◦f ·where Πk denotes
the orthogonal projection from L2(M,μk) to Hk(M), i.e., Tf is the Hermitian op-
erator on Hk(M) determined by

〈
Tfpk,pk

〉
L2(M,μk)

=
〈
fpk,pk

〉
L2(M,μk)
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for any pk ∈Hk(M). The following is essentially a well-known formula

TrT 2
f −TrTf2 =

1
2

ˆ
M×M

∣∣Kk(x,y)
∣∣2dμk(x)⊗dμk(y)

(
f(x)− f(y)

)2
.

We provide nevertheless a proof for convenience of the reader:

CLAIM. Let H be a reproducing kernel Hilbert space with kernel K, then for
any bounded symbol f we have

¨ ∣∣f(x)− f(y)
∣∣2∣∣K(x,y)

∣∣2 = Tr
(
2T|f |2 −Tf ◦Tf̄ −Tf̄ ◦Tf

)
.

Proof. K(x,y) =
∑

n fn(x)fn(y) and

Tf (g)(x) =

ˆ
K(x,y)f(y)g(y).

We compute the traces of T|f |2 and of Tf ◦Tf̄ .

Tr
(
T|f |2

)
=

∑

n

〈
fn,T|f |2

(
fn

)〉

=
∑

n

ˆ
x
fn(x)

ˆ
y
K(x,y)|f |2(y)fn(y) =

¨ ∣
∣K(x,y)

∣
∣2|f |2(y).

Thus

Tr
(
T|f |2

)
=

¨ ∣∣K(x,y)
∣∣2|f(x)|2 =

¨ ∣∣K(x,y)
∣∣2∣∣f(y)

∣∣2.

Now

Tr(Tf ◦Tf̄ ) =
∑

n

ˆ
x
fn(x)

ˆ
y
K(x,y)f(y)Tf̄ (fn)(y)

=
∑

n

ˆ
x

ˆ
y
fn(x)K(x,y)f(y)

ˆ
w
K(y,w)f(w)fn(w)

=

˚
K(x,w)K(y,w)K(y,w)f(y)f(w)

=

¨
|K(y,w)|2f(y)f(w).

Similarly

Tr
(
Tf̄ ◦Tf

)
=

¨ ∣
∣K(y,w)

∣
∣2f(y)f(w). �

Now, setting f := xi for a fixed index i ∈ {1, . . . ,m} we note that there exists
a vector subspace Vk in Hk(M) such that dimVk =Hk(M)−O(kn−1) such that
Tf = f and T 2

f = f 2. We can take Vk to be the space spanned by the restrictions to
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M of all polynomials of total degree at most k− 1, i.e., Hk−1. The dimension of
Nk = dim(Hk) is the Hilbert polynomial of degree for k ≥ k0. Thus Nk = dkn+

O(kn−1) where d is the degree of the variety M and n is the dimension. In par-
ticular, denoting by Wk the orthogonal complement of Vk in Hk(M)∩L2(M,μk)

then dim(Wk) =O(kn−1). Setting Ak := T 2
f −Tf2 gives Ak = 0 on Vk and hence

TrT 2
f −TrTf2 = 0+TrAk|Wk

≤ Ckn−1

using that 〈Tfpk,pk〉L2(M,μk) ≤ sup |f |M 〈pk,pk〉L2(M,μk) and dimWk =O(kn−1).
�

3. Sampling and interpolation of real orthogonal polynomials.

3.1. Sampling polynomials in a real variety.

Proof of Theorem 1. We equip M with the distance function d induced by the
Euclidean distance in R

m, i.e., d(x,y) := |x−y|. We recall that the corresponding
Wasserstein L1-distance on the space P(M) of all probability measures on M is
defined as

W (μ,σ) = inf
ρ

¨
M×M

d(x,y)dρ(x,y),

where the infimum is taken among all probability measures such that the first mar-
ginal of ρ is μ and the second σ. The Wasserstein distance metrizes the weak-∗
convergence.

We rely on the fact that

1
Nk

Bk(x)dμk(x)−→ μeq(x),

where the convergence is in the weak-∗ topology, see [2]. Thus the way to prove
the inequality of the theorem is by proving that there are constants {cλ}λ∈Sk

, 0 ≤
cλ < 1 such that

W
(
σk,βk

)
−→ 0

where σk =
1
Nk

∑
λ∈Λk

cλδλ, βk =
1
Nk
Bk(x). Instead of the standard Wasserstein

distance we will use an alternative expression more convenient for our purpose that
it is equivalent to it, see [18]:

W (μ,σ) = inf
ρ

¨
M×M

d(x,y)
∣
∣dρ(x,y)

∣
∣,

where the inf is taken among all complex measures ρ such that the first marginal
of f is μ and the second σ. The difference is that ρ is not necessarily positive and
even if we don’t require that σ and μ are probability measures it still metrizes the
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weak-∗ convergence. Any candidate ρ with the right marginals is called a transport
plan.

The transport plan ρk that is convenient to estimate is:

ρk(x,y) =
1
Nk

∑

λ∈Λk

δλ(y)× gλ(x)
Kk(λ,x)√
Bk(λ)

dμk(x),

where Kk(λ,x) is the reproducing kernel for λ in the space Hk and {gλ}λ∈Sk
is

the canonical dual frame (see [10]) to {Kk(λ,x)√
Bk(λ)

}λ∈Λk
in Hk. The latter is a frame

because Λk is sampling.
If we compute the marginals of ρk we get on one hand:

σk(y) =
1
Nk

∑

λ∈Λk

gλ(λ)√
Bk(λ)

δλ(y),

and the other marginal is given by

dβk(y) =
1
Nk

∑

λ

gλ(x)
Kk(λ,x)√
Bk(λ)

dμk(x) =
1
Nk

Kk(x,x)dμk(x).

In the last equality we have used that gλ is a dual frame of the normalized repro-
ducing kernels.

The fact that {gλ} it is the canonical dual frame to the normalized reproduc-
ing kernels allows us to conclude that gλ(λ)√

Bk(λ)
= 〈gλ(x), Kk(λ,x)√

Bk(λ)
〉 is positive and

smaller than one. This follows from the following well-known fact:

CLAIM. If {xn}n is a frame in a Hilbert space H and {yn}n is the dual frame
then 〈xn,yn〉 ∈ [0,1].

Proof. Let T be the frame operator, i.e.: T (x) =
∑
〈x,xn〉xn. Since {xn}n is

a frame then T is bounded, self-adjoint and invertible. The definition of the dual
frame is T (yn) = xn. For any vector v ∈H we have

v = T
(
T−1v

)
=

∑

n

〈
T−1v,xn

〉
xn.

In particular

xk =
∑

n

〈
yk,xn

〉
xn,

and multiplying by yk at both sides we get

〈
xk,yk

〉
=

∑

n

∣
∣〈yk,xn

〉∣∣2.
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Therefore 〈xk,yk〉 ≥ 0 and 〈xk,yk〉> 0 unless xk = 0. Moreover,

〈
xk,yk

〉
−
∣∣〈yk,xk

〉∣∣2 =
∑

n �=k

∣∣〈yk,xn
〉∣∣2 ≥ 0.

Thus
〈
xk,yk

〉(
1−

〈
xk,yk

〉)
≥ 0,

therefore 〈xk,yk〉 ≤ 1 too. �

Finally we need to estimate

I =

¨
M×M

|x−y|
∣
∣dρk

∣
∣≤ 1

Nk

∑

λ∈Λk

ˆ
M
|λ−x|

∣
∣Kk(λ,x)

∣
∣ gλ(x)√

Bk(λ)
dμk(x).

Since ‖gλ‖2 
 1 we can estimate

I2 � 1
Nk

∑

λ∈Λk

ˆ
M
|λ−x|2 |Kk(λ,x)|2

Bk(λ)
.

We would like to use the sampling inequality (1.1), and obtain that

1
Nk

∑

λ∈Λk

ˆ
M
|λ−x|2

∣
∣Kk(λ,x)

∣
∣2

Bk(λ)
dμk(x)

≤ 1
Nk

¨
M×M

|y−x|2
∣
∣Kk(y,x)

∣
∣2dμk(x)dμk(y).

(3.1)

This we cannot do immediately because the polynomial (x− y)Kk(y,x) (in the
variable y) is of degree k+1 instead of k as required in (1.1).

But we are assuming that (μ,φ) define spaces with reproducing kernels of
moderate growth. Thus Bk+1 
 Bk in M . Therefore if {Λk}k is sampling for
Hk(M) then {Λk+1}k is sampling for Hk(M). Thus, it is harmless to assume
that Λk is sampling both for Hk and for Hk+1 and we have established (3.1). Then,
using Theorem 17, we obtain

W
(
σk,βk

)
=O(1/

√
k),

as desired. �

3.2. Interpolating polynomials in a real variety. The property that a se-
quence of sets of points Λk is an interpolating family as in Definition 1 is equivalent
to the two following properties. First, the Plancherel-Polya inequality:

∑

λ∈Λk

∣
∣f(λ)

∣
∣2

Kk(λ,λ)
≤ C‖f‖2, ∀f ∈Hk(M)(3.2)
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and, second, the interpolation property: for any sequence of sets of values
{c(k)λ }λ∈Λk

there are functions fk ∈Hk such that fk(λ(k)) = c
(k)
λ with

∥∥fk
∥∥2 ≤ C

∑

λ∈Λk

∣
∣cλ

∣
∣2

Kk(λ,λ)
,(3.3)

and again the constant C should not depend on k.
The property that the collection {κλ}λ∈Λk

is a frame in Hk(M) is a quanti-
tative version of the fact that the normalized reproducing kernels span the whole
space and the property that they are a Riesz sequence quantifies the fact that they
are linearly independent.

Proof of Theorem 5. Let Fk ⊂Hk be the subspace spanned by

κλ(x) =Kk(λ,x)/
√
Kk(λ,λ) ∀λ ∈ Λk.

Denote by gλ the dual (biorthogonal) basis to κλ in Fk. We have clearly that:
• We can span any function in Fk in terms of κλ, thus:

∑

λ∈Λk

κλ(x)gλ(x) =Kk(x,x),

where Kk(x,y) is the reproducing kernel of the subspace Fk.
• The norm of gλ is uniformly bounded since κλ was a uniform Riesz se-

quence.
• gλ(λ) =

√
Kk(λ,λ). This is due to the biorthogonality and the reproducing

property.
We are going to prove that the measure σk =

1
Nk

∑
λ∈Λk

δλ, and the measure

βk =
1
Nk
Kk(x,x)dμ(x) are very close to each other: W (σk,βk)→ 0. In this case

then since Kk(x,x) ≤ Kk(x,x) and 1
Nk
Bk(x)dμ→ dμeq, where μeq is the nor-

malized equilibrium measure on M , then limsupk σk ≤ μeq.
In order to prove that Wk(σk,βk)→ 0 we use the transport plan:

ρk(x,y) =
1
Nk

∑

λ∈Λk

δλ(y)× gλ(x)κλ(x)dμ(x).

It has the right marginals, σk and βk and we can estimate the integral in the same
way as in the proof of Theorem 1

W
(
σk,βk

)
≤
¨
M×M

|x−y|
∣∣dρk

∣∣=O(1/
√
k).
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The only point that merits a clarification is that we need an inequality similar to
(3.1), i.e.:

1
Nk

∑

λ∈Λk

ˆ
M
|λ−x|2

∣∣Kk(λ,x)
∣∣2

Kk(x,x)
dμ(x)

≤ 1
Nk

¨
M×M

|y−x|2
∣∣Kk(y,x)

∣∣2dμ(x)dμ(y).

This time this is true because Λk is a uniformly separated sequence by Proposi-
tion 15 and therefore, it is a Plancherel-Polya sequence, see Proposition 13. �

3.3. Sampling in convex domains. We proceed with the proof of Theo-
rem 4. The only part that we need to proof are the estimates for the reproducing
kernel (1.5). If these are proved, then it follows that the measure has the Bernstein-
Markov property (2.1) and the kernel is of moderate growth (2.2), thus we can
apply Theorem 1 in the particular case where M = R

n and μ = χΩdm(x) where
dm is the Lebesgue measure in R

n and the weight φ= 0.

Proof. We start by the case when Ω = B is the unit ball. We denote by BΩ(x)

the Bergman function which is the reproducing kernel Kk(x,x) evaluated at the
diagonal of the space of polynomials of total degree k endowed with the L2 norm
with respect to the standard volume form. To get a lower bound for BΩ we con-
sider the cube Q such that the ball is inside it and tangent to its faces. Clearly
by the comparison principle of the Bergman functions BB ≥ BQ and BQ(x) 

BI(x1) · · ·BI(xn) where BI is the one dimensional Bergman kernel associated to
the interval. This is known to be, see [21, p. 108]:

BI(x)
min

(
k

√
d(x)

,k2

)

.

This implies that for points x in the interval that joins the origin with the center of
one of the faces of the cube Q we have

BQ(x)
min

(
kn

√
d(x)

,kn+1

)

.

Thus we have the lower bound for BB that we wanted. To get the upper bound we
will work in dimension n = 2 for simplicity but a similar argument works in any
dimension. Observe that the space of polynomials of degree smaller or equal than
k is spanned by the functions {ρj cosj(t),ρj sinj(t)}j=0,...,k in polar coordinates in
the interval [0,1]× [0,2π] with the measure ρdρ in the first interval and dt in the
second. Consider now the space of functions H̃k in the product interval such that
it is spanned by {ρj cosm(x),ρj sinm(x)}j=0,...,k m=0,...,k. The space H̃k is bigger
than the space of polynomials thus the Bergman function at the diagonal BH̃k

(x)≥



818 R. J. BERMAN AND J. ORTEGA-CERDÀ

BB,k(x). But BH̃k
is easier to analyze because it is a product space of two one-

dimensional spaces: The space of one dimensional polynomials of degree smaller k
with the norm ρdρ in the interval [0,1] and the space of trigonometric polynomials
{sinj(x),cosj(x)}j=0,...k with the measure dx in [0,2π]. The Bergman function
of H̃k is the product of the one-dimensional Bergman functions. The Bergman
function corresponding to the trigonometric polynomials is constant by invariance
under rotations and by dimensionality it must be 2k+1. The space of polynomials
in ρ are a space of Jacobi polynomials and its Bergman function has been estimated,
see [21, p. 108]:

BJ(x)
min

(
k

√
d(x)

,k2

)

∀x > 1/2.

Thus finally when n= 2 we get

BB � min

(
k2

√
d(x)

,k3

)

.

Similarly in higher dimension we get

BB � min

(
kn

√
d(x)

,kn+1

)

.

Now for an arbitrary convex domain there is an r > 0 (small) and an R > 0 (big)
that depend only on the domain such that for any point x in the boundary of the
domain, there is a ball B(y,r) inside the domain tangent at x and with center y in
the normal direction to the boundary of the domain at x and a cube Q(R) tangent
to the domain at x in the middle of a face of the cube and such that the domain is
contained in the cube. Again by the comparison principle of the Bergman function
we get

min

(
kn

√
d(x)

,kn+1

)

�BQ(R)(x)�BΩ(x)

�BB(y,r)(x)� min

(
kn

√
d(x)

,kn+1

)

. �

3.4. Existence of simultaneously interpolating and sampling sequences in
the one-dimensional setting. We conclude the paper by recalling some classical
facts which are special for the one dimensional setting.
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Let μ be a finite measure on R with compact set K and assume that μ has
the Bernstein-Markov property with respect to K. By the classical Christoffel-
Darboux formula there exists constants ak+1 such that

Kk(x,y) = ak+1
qk+1(x)qk(y)− qk(x)qk+1(y)

x−y

where qk+1 is the kth orthogonal polynomial (with respect to μ). Let Λk := {x(k)j }
be the set of k+1 zeros of qk (which by classical results are indeed all distinct and
contained in the support K of μ). Then Kk(x

(k)
i ,x

(k)
j ) = 0 if i �= j, as follows im-

mediately from the Christoffel-Darboux formula. Hence, normalizing Kk(·,x(k)j )

yields an orthonormal base inHk(M,μ) and as a consequence the following “sam-
pling equality” holds for any pk ∈Hk(M):

ˆ
M

∣
∣pk

∣
∣2dμ=

∑

i

1

Bk
(
x
(k)
i

)
∣
∣pk

(
x
(k)
i

)∣∣2,

and in particular the sequence Λk is both sampling and interpolation. Finally, re-
call that by classical results the normalized Dirac measure δk on the zeros Λk has
the same weak limit points as Bk/(k+ 1)μ. In particular, if μ has the Bernstein-
Markov property, then 1

k

∑
δk→ μeq, which is thus consistent with Theorem 1 and

Theorem 5.
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