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Abstract

Recent research suggests that some people with aphasia preserve some ability to learn novel words 

and to retain them in the long-term. However, this novel word learning ability has been studied 

only in the context of single word-picture pairings. We examined the ability of people with chronic 

aphasia to learn novel words using a paradigm that presents new word forms together with a 

limited set of different possible visual referents and requires the identification of the correct word-

object associations on the basis of online feedback. We also studied the relationship between word 

learning ability and aphasia severity, word processing abilities, and verbal short-term memory 

(STM). We further examined the influence of gross lesion location on new word learning. The 

word learning task was first validated with a group of forty-five young adults. Fourteen 

participants with chronic aphasia were administered the task and underwent tests of immediate and 

long-term recognition memory at 1 week. Their performance was compared to that of a group of 

fourteen matched controls using growth curve analysis. The learning curve and recognition 

performance of the aphasia group was significantly below the matched control group, although 

above-chance recognition performance and case-by-case analyses indicated that some participants 
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with aphasia had learned the correct word-referent mappings. Verbal STM but not word processing 

abilities predicted word learning ability after controlling for aphasia severity. Importantly, 

participants with lesions in the left frontal cortex performed significantly worse than participants 

with lesions that spared the left frontal region both during word learning and on the recognition 

tests. Our findings indicate that some people with aphasia can preserve the ability to learn a small 

novel lexicon in an ambiguous word-referent context. This learning and recognition memory 

ability was associated with verbal STM capacity, aphasia severity and the integrity of the left 

inferior frontal region.
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1. Introduction

Humans have a remarkable word learning capacity. While most of their vocabulary is 

acquired effortlessly during childhood (Lindfors, 1991) adults can continue to integrate 

novel technological terms and new words of a second language into their already well-

shaped mental lexicons (Davis & Gaskell, 2009; Grosjean & Li, 2013; Nation, 2001). Yet, 

access to this previously acquired vocabulary can be limited or severely impaired after brain 

insult (Goodglass & Wingfield, 1997) leading to the difficulties in retrieving and producing 

words commonly observed in aphasia (Nickels, 2002). The investigation of the residual 

ability for novel word learning may be crucial to further understand the mechanisms 

underlying language recovery in aphasia. Importantly, recent research has shown a 

relationship between new word learning ability and response to anomia therapy in chronic 

aphasic individuals (Dignam et al., 2016). Thus, methods that facilitate this new learning 

potential could be useful in the context of therapy (Kelly & Armstrong, 2009), as associative 

learning procedures could be suited for intensive training (Breitenstein et al., 2007) even 

when brain regions essential for language processing have been extensively damaged 

(Tuomiranta et al., 2014).

The existing literature on novel word learning in aphasia suggests that: (i) people with 

aphasia can preserve some ability to learn new word-referent associations despite residual 

language impairment (McGrane, 2006); (ii) this learning potential can be observed using 

different facilitation procedures (Marshall, Freed, & Karow, 2001) (iii) novel words and 

some pre-existing but inaccessible vocabulary can be trained and retained in the long-term 

(Tuomiranta, Rautakoski, Rinne, Martin, & Laine, 2012; Tuomiranta et al., 2014); and (iv) 

people with aphasia show large inter-individual variability in their capacity to learn and store 

novel word forms and to re-learn their affected vocabulary (Kelly & Armstrong, 2009). 

These previous studies have examined novel word learning in aphasia using single word-

picture pairings. However, the relationship between a given referent and a lexical item is not 

unequivocal in natural language learning (Smith & Yu, 2008), nor in the case of some 

language therapy practice (Kelly & Armstrong, 2009). Natural language learning contexts 

provide a rich and complex input in terms of words and multiple possible referent candidates 

(Romberg & Saffran, 2010). Yet, both children and adult learners can successfully infer the 
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correspondence between words and referents from highly ambiguous contexts (Markman, 

1994; Yu, Smith, Klein, & Shiffrin, 2007). Learners can benefit from different cues and 

representational, social and attentional constraints (Markman, 1990; Smith, 2000; 

Tomasello, 2000) to establish word-to-object mappings in a single learning situation. 

However, this word-referent indeterminacy can also be resolved by infants and adults across 

multiple encounters and learning instances (Smith & Yu, 2008; Yu & Smith, 2007). Recent 

research has proposed cross-situational learning as a learning mechanism that allows 

computing the co-occurrences between words and referents while keeping track of multiple 

possible word-referent pairings simultaneously to finally converge on single mappings based 

on the accumulated statistical evidence (Smith & Yu, 2008; Yu & Smith, 2007). Another 

account for this type of learning is the propose-but-verify learning strategy (Trueswell, 

Medina, Hafri, & Gleitman, 2013) which suggests that learners formulate a single 

hypothesized meaning for a given word and maintain it to evaluate its consistency across the 

next learning instances to either confirm and strengthen it in memory or abandon it and 

postulate a new one for subsequent confirmation or rejection. Although the debate regarding 

the mechanisms that support word learning under referential ambiguity continues, there is 

clear evidence that adults can learn multiple word-referent mappings rapidly and effectively 

(Yu & Smith, 2007; Smith, Smith & Blythe, 2011) and retain this knowledge in the long 

term (Vlach & Sandhofer, 2014).

Word learning paradigms that simulate this word-referent ambiguity may thus provide an 

appropriate and ecologically valid method to study this ability in aphasia. To our knowledge, 

only one previous study (Breitenstein, Kamping, Jansen, Schomacher, & Knetcht, 2004) 

evaluated word learning in aphasia using a task with a higher statistical co-occurrence of the 

correct label-object pairings as compared to incorrect pairings, thus, simulating this word-

referent ambiguity. The two aphasic participants described in this report could learn most of 

the correct word-picture associations. However, the sample was rather small and the novel 

words were paired with known visual referents. In the present multicenter study, we aimed 

to examine the ability of individuals with chronic aphasia to learn novel word-referent 

mappings using a more complex natural language learning approach. We employed a word 

learning paradigm (Magnuson, Tanenhaus, Aslin, & Dahan, 2003; Mirman, Magnuson, Graf 

Estes, & Dixon, 2008) that presents novel words combined with a limited set of different 

possible novel referents, calling for the evaluation of these word-object relationships on the 

basis of online visual feedback. Our first goal was to examine the learning performance of a 

group of aphasic participants as compared to that of a group of matched controls and a group 

of young adults with whom the word learning task was first validated. We also examined the 

ability of the participants with aphasia to remember the trained word-object associations in 

the short-term and one week after training without feedback. We further explored the 

influence of aphasia severity in the encoding of novel word-object associations during 

training and the later recognition of these associations.

Importantly, because the acquisition of novel words encompasses various cognitive abilities 

(Carroll, 1993; Gupta & Tisdale, 2009), the individual variability in word learning 

performance in aphasia may be associated with the cognitive and language processes 

available to encode and strengthen novel word memory traces after brain damage. Verbal 

short-term memory (STM) has been related to word learning ability during early language 
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acquisition (Gathercole & Baddeley, 1989) and across the life-span (Gathercole, 2006; 

Gupta, 2003). It has been suggested that the acquisition of new words is constrained by the 

capacity to hold phonological codes in a temporary phonological memory (Gathercole, 

Service, Hitch, Adams, & Martin, 1999) that makes them available for long-term learning 

(Baddeley, Gathercole, & Papagno, 1998). Phonological STM as measured by nonword 

repetition and STM span tasks (Gathercole et al., 1999) has been associated with vocabulary 

knowledge in the native language (Gathercole & Addams, 1994; Michas & Henry, 1994) and 

the acquisition of foreign vocabulary (Papagno & Vallar, 1995; Service, 1992). However, 

semantic representations also contribute to verbal STM (Martin & Saffran, 1997, 1999; 

Martin, Wu, Freedman, Jackson, & Lesch, 2003), as the maintenance of verbal information 

in STM is affected by its lexical-semantic features such as lexical frequency (Roodenrys, 

Hulme, Alban, Ellis, & Brown, 1994), semantic category (Poirier & Saint-Aubin, 1995; Tse, 

2009), and imageability (Bourassa & Besner, 1994). Moreover, a distinction between 

phonological STM and semantic STM has been proposed (Martin, Lesch, & Bartha, 1999; 

Shivde & Anderson, 2011) based on neuropsychological case studies suggesting that these 

are dissociable capacities (Freedman & Martin, 2001; Majerus, van der Linden, Poncelet, & 

Metz-Lutz, 2004; Martin, Shelton, & Yaffee, 1994). Therefore, it is possible that semantic 

STM and phonological STM make differential contributions to new word learning.

Phonological and lexical-semantic processing alone may also influence word learning 

ability. For instance, phonological knowledge of word forms may facilitate the acquisition of 

new words (Gupta & Tisdale, 2009). Likewise, semantic factors such as the number of 

semantic neighbors can influence the recall of recently learned word-object associations 

(Storkel & Adlof, 2009). In aphasia, previous research has demonstrated that phonological 

ability is related to familiar word learning when words in a list are low in frequency and 

imageability, whereas semantic ability is associated with learning performance when words 

present the opposite pattern (Martin & Saffran, 1999). Similarly, a relationship between 

word processing and novel word learning has been reported in aphasic individuals, with 

phonological abilities predicting phonological learning and lexical-semantic abilities 

predicting receptive recognition learning (Gupta, Martin, Abbs, Schwartz, and Lipinski, 

2006). However, the evidence of the influence of phonological and semantic STM on novel 

word learning in aphasia is still limited. The present study also examined the involvement of 

phonological discrimination ability, lexical-semantic skills, and verbal STM capacity for 

phonological and lexical-semantic representations in the immediate and delayed recognition 

of newly acquired word-referent associations in aphasia. Finally, we also examined if 

recognition ability in aphasia was associated with gross lesion location.

2. Materials and methods

2.1. Participants

Participants were seventy-three individuals (45 female) recruited in three laboratories: 

Barcelona (Spain) (n = 57), Philadelphia (USA) (n = 8), and Turku (Finland) (n = 8). The 

total sample included three groups. The first group involved 45 undergraduate psychology 

students at the University of Barcelona (hereafter young adults). The young adults (39 

female) had a mean age of 22.4 years (SD = 6) and their mean number of educational years 
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was 14.02 (SD = 1.5). They were predominantly early bilinguals for Catalan and Spanish. 

This group was recruited to validate the experimental task and to ensure that the standard 

level of word learning across blocks was similar to previous research using this paradigm 

(Mirman et al., 2008). The second and third groups included 14 persons with stroke-induced 

chronic aphasia and 14 healthy controls (hereafter, “matched controls”), respectively.1 The 

participants in these two groups were matched by gender, age and years of education. There 

were 3 female participants in each group. The mean age was 65.36 years (SD = 8.28) for the 

aphasia group and 66.57 years (SD = 6.42) for the matched control group. The mean number 

of educational years was 12.71 (SD = 5.1) for the aphasic participants and 15.36 (SD = 4.4) 

for the matched controls. Each one of the aphasia and the matched control groups included 6 

Spanish speakers, 4 English speakers, 2 Swedish speakers, and 2 Finnish speakers.

Table 1 presents the demographic and clinical information of the participants with aphasia. 

Participants in the aphasia group fulfilled the following inclusion criteria: i) age between 25 

and 77 years, ii) first and single stroke confirmed by CT or MRI scan, iii) persistent stroke-

induced aphasia as determined by formal speech and language assessment at 1 year or more 

from stroke onset, iv) preserved ability to understand and follow instructions to complete the 

experimental task. The aphasic participants had an average time of enrollment in the study of 

53.8 months (SD = 48.3) after stroke onset. They were recruited as follows: the Spanish 

speakers were recruited from a database of patients who had been admitted to the stroke unit 

of the Hospital Universitari de Bellvitge in Barcelona, the English speakers were recruited 

from the subject pool of the Aphasia Rehabilitation Research Laboratory at Temple 

University in Philadelphia, the Finnish speakers were contacted through an aphasia 

association and the Swedish speakers through the Abo Akademi university speech therapy 

clinic in Turku.

All participants in the young adult group were right-handed. Participants with aphasia and 

their matched controls were right-handed except for participant BB who was left-handed and 

had suffered a right hemisphere stroke. The young adults had normal vision and hearing, and 

no visual and auditory deficits were detected upon screening in the aphasia group and the 

matched control group. None of the participants had a history of neurological disorders 

(other than stroke for the aphasia group), mental illnesses, or learning impairments. All 

participants gave their written informed consent and all procedures were approved by the 

ethical committees of each participating institution.

2.2. Language processing and STM assessment

The diagnosis of aphasia and aphasia severity was determined using versions of the Boston 

Diagnostic Aphasia Examination (BDAE) for the Spanish (Goodglass, Kaplan, & Barresi, 

2005), Swedish (Laine, Niemi, Koivuselkä-Sallinen, & Koivusalo, 1986) and Finnish 

aphasic speakers (Laine, Niemi, Koivuselkä-Sallinen, & Tuomainen, 1997). The language 

background testing of these participants included the following assessments. Spontaneous 

speech was assessed with the conversational and expository speech subtests of the BDAE. 

1The people with aphasia, their matched controls and most participants in the young adults group whose data is reported in the present 
work had been recruited for an earlier study on speech segmentation in aphasia (Peñaloza et al., 2015). Their demographic information 
as well as their background language testing provided in the earlier study is also reported here.
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Verbal comprehension was evaluated with the Word comprehension, Commands, and 

Complex ideational material subtests of the BDAE, as well as with the Token Test (De Renzi 

& Faglioni, 1978). Naming ability was assessed with the Responsive naming and Animal 

naming subtests of the BDAE, and versions of the Boston Naming Test (Kaplan, Goodglass, 

& Weintraub, 2005; Laine, Koivuselkä-Sallinen, Hänninen, & Niemi, 1997; Tallberg, 2005). 

Repetition ability was assessed using the Word repetition and the Sentence repetition 

subtests of the BDAE.

Because the Western Aphasia Battery-Revised (WAB-R; Kertesz, 2006) is traditionally used 

in North America for clinical practice, the aphasia profile and aphasia severity of the 

English-speaking participants were determined by this battery. The WAB-R subtests tapping 

on spontaneous speech, comprehension, naming and word finding, and repetition were used 

as part of their language background assessment. For each individual with aphasia, a general 

quotient was calculated for each of these language domains. The BNT was used to assess 

visual confrontation naming. In addition, the 5-point severity rating scale of the BDAE 

(Goodglass, Kaplan, & Barresi, 2001) was also applied with the participants in order to have 

comparable aphasia severity scores for the entire aphasia group to examine the relationship 

between word learning ability and aphasia severity. The speech and language profiles of the 

participants with aphasia are presented in Tables 2 and 3.

A selection of subtests of the Temple Assessment of Language and Short-term memory in 

Aphasia (TALSA; Martin, Kohen, & Kalinyak-Fliszar, 2010) available in English, Spanish 

and Finnish (Tuomiranta, Laine, & Martin, 2009) was administered to 11 participants with 

aphasia (see Table 4 for direct and composite scores). One Spanish speaker with aphasia was 

unavailable for testing and the Swedish speakers with aphasia were not evaluated with the 

TALSA battery, as it is currently unavailable in this language. The selection of tests included 

word processing tasks with STM manipulations (Phoneme discrimination, Rhyming 

judgements, Lexical comprehension, and Category judgements) and STM measures with 

lexical-semantic manipulations (Word pointing span, Digit pointing span, Word repetition 

span, and Digit repetition span) and without lexical-semantic support (Nonword repetition).2 

A brief description of the individual measures and the composite scores derived from them 

is provided below.

2.2.1. Phonological processing measures—The Phoneme discrimination subtest 

requires participants to hear two items (words or nonwords) and to judge whether they are 

the same or not. This probe includes 20 word and 20 nonword pairs. Words are concrete 

tokens of 1 or 2 syllables. Nonwords are generated by modifiying 1 or 2 phonemes of the 

words included. The Rhyming judgment subtest demands deciding whether a given pair of 

words or nonwords rhyme. The test includes 20 pairs of words and 20 pairs of nonwords (10 

rhyming and 10 non-rhyming test pairs in each set).

2The subtests Phoneme discrimination, Rhyming judgements, Lexical comprehension, Category judgments, and Nonword repetition 
were administered under two conditions that varied memory load. In the 1-sec unfilled interval, the presentation of the stimuli of each 
pair is separated by 1-sec delay (Phoneme discrimination, Rhyming judgements, and Category judgments), or a response is required 1 
sec after stimuli presentation (Lexical comprehension and Word-nonword repetition). In the 5-sec unfilled interval, a 5-sec gap is 
included between the presentation of each stimulus of a pair (Phoneme discrimination, Rhyming judgements, and Category 
judgments) or a response is required 5 sec after stimuli presentation (Lexical comprehension and Nonword repetition), thus allocating 
an additional load on the verbal short-term store.
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2.2.2. Lexical-semantic processing measures—The Lexical comprehension subtest 

requires matching a spoken word to one of four pictures of the same semantic category. The 

Category judgments subtest involves the presentation of two items (words or pictures) and 

requires participants to determine whether the two items belong to the same semantic 

category. In the Word condition, words are presented auditorily and visually on the screen, 

whereas in the Picture condition, the images are presented on the screen but their labels are 

not provided.

2.2.3. Verbal STM measures—The Nonword repetition subtest requires participants to 

repeat 15 nonwords. The task includes 1, 2 and 3-syllable items, matched for length and CV 

structure. In addition, two types of STM span probes were administered. The Word 

repetition span and the Digit repetition span require the immediate repetition of 10 strings of 

either words or digits in each of 7 string length conditions (1 item, 2 items, etc.). The Word 

pointing span and the Digit pointing span demand the participant to listen to a sequence of 

words or digits and to point at the sequence on a visual array of 9 possible items (item 

position is randomized for each trial). Words and digit names are matched in syllable length, 

and sequences are generated from a finite set of 9 items. Sequences must be recalled in serial 

order, and a span size is calculated for each subtest using Shelton, Martin, & Yaffee (1992) 

formula: string length at which at least 50% of the strings are recalled + (.50 × proportion of 

strings recalled in the next string length).

2.2.4. Composite scores—In order to assess the relationship between word learning 

performance and the language and STM measures, we collapsed the scores of the 

participants with aphasia into five composite measures. Composite phonological processing 
summed up performance on the Phonological discrimination and the Rhyming judgments 

subtests, whereas composite lexical-semantic processing involved the Lexical 

comprehension and Category judgments subtests. These two composite scores reflected the 

status of the word processing abilities of the aphasic participants without speech output 

requirements. The STM composite scores were determined according to two factors: (i) 

whether measures involved phonological or lexical-semantic support, (ii) whether or not 

measures involved speech production demands. Accordingly, composite nonword repetition 
included nonword repetition subtests in both interval conditions measuring phonological 

STM with speech output, composite repetition span included the word and digit repetition 

span tests tapping lexical-semantic STM with speech output, and composite pointing span 
included the word and digit pointing span tests measuring lexical-semantic STM without 

speech output. This last composite does not require speech production which can be 

disrupted in aphasia, and therefore it can be considered as a more pure measure of lexical-

semantic STM. The raw scores on each of the TALSA subtests were converted into 

percentages of correct responses and composite scores were obtained by calculating the 

mean percentage of correct performance of all the measures involved, except for composites 

pointing and repetition span which represent the average span of the STM subtests involved 

in each composite.
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2.3. Object-word learning task

The experimental word learning task reported in this study was similar in structure to that 

reported in Magnuson et al. (2003) and Mirman et al. (2008). Fig. 1 depicts the experimental 

design of the task. The auditory stimuli consisted of six trisyllabic pseudo-words (hereafter 

words). A set of six words was developed according to the phonotactic rules of each of the 

native languages of the participants, ensuring that the syllables used to create the words were 

frequent at the first, second and third position of real words of each language. The words 

were matched in word length and number of syllables across languages. The audio files of 

these words were generated with MBROLA (Dutoit, Pagel, Pierret, Bataille, & van der 

Vreken, 1996) using a monotone male voice in all cases. All phonemes had the same 

duration (150 msec) and pitch (200 Hz; equal pitch rise and fall, with maximum pitch at 

50% of the phoneme). The visual referents included six black and white outline drawings of 

objects from the Ancient Farming Equipment Paradigm (Laine & Salmelin, 2010). The same 

set of images was used across languages (see Fig. 1 for the set of images and the Appendix 

A for the words used in each language).

The word learning task consisted of 210 trials distributed across 7 learning blocks (30 trials 

per block). In each trial two novel objects (target and foil) appeared on the screen, one to the 

left and one to the right of a fixation cross. At the same time, the participant could hear the 

label (word) that corresponded to one of the two objects. The participant was required to 

decide whether the spoken word was the label for the object appearing on the left or on the 

right side of the screen by pressing the corresponding mouse button. Visual feedback was 

provided following the participant’s response in each trial: a yellow happy face appeared on 

the screen when the word-object association was correct, and a red sad face followed an 

incorrect association. The two visual referents remained on the screen until a response was 

given, and the visual feedback was presented for 1500 msec. After feedback offset, a fixation 

cross appeared at the center of the screen for 1000 msec signaling the beginning of the next 

trial. The 30 learning trials within each block resulted from the exhaustive combination of 

each object with the remaining 5 objects yielding 5 object pairs. These object pairs were 

exhaustively associated with the 6 to-be-learned words. Thus, during the 7 learning blocks, 

each object was presented 35 times as the correct visual referent for each word, and 35 times 

as the foil. The position of the target object on the screen was counterbalanced across trials. 

The order of trials was randomized separately for each participant. The recognition of the 

word-referent associations was evaluated immediately after training and at 1 week. Each of 

these assessments consisted of an additional block of 30 randomized trials. The trials in 

these testing blocks were similar to those of the learning phase but no feedback was 

provided for response accuracy.

The task was presented on E-prime 2.0 (Psychology Software Tools. Inc., PA, USA). At the 

beginning of the word learning task, participants were instructed to pay attention to the novel 

word they would hear and to carefully look at the pair of objects appearing simultaneously 

on the screen, as they were to decide which one of the two objects corresponded to the label 

provided. They were also told that a happy face would appear if their response was correct, 

and a sad face would indicate an incorrect label-object association. All participants were 

encouraged to respond as quickly and accurately as possible. In order to reduce fatigue 
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effects due to the task length, short pauses (ca. 1–2 min) were held every two learning blocks 

(60 trials). Once the 7 learning blocks were completed and a short pause was held, 

participants underwent the first test block assessing the immediate recognition of the word-

referent associations after learning. They were explained that this time they would not 

receive feedback after response; therefore they needed to be careful with their responses. All 

participants were available for re-testing at 1 week. At this time, they were reminded of the 

same instructions, and were administered the second test block of 30 trials without feedback.

3. Results

3.1. Learning curves

The learning curves were analyzed using multilevel regression (growth curve analysis, GCA: 

Mirman, 2014) with a second-order orthogonal polynomial model of change over time, fixed 

effects of time (block) and group, and random effects of participants for each of the time 

terms. Because the outcome variable is dichotomous (correct or incorrect response), the data 

were analyzed using logistic GCA. Model comparisons were used to evaluate overall group 

differences with respect to particular time terms. In orthogonal polynomial models, the 

intercept corresponds to overall average outcome, the linear term corresponds to the linear 

slope, and the quadratic term corresponds to the curvature.

3.1.1. Group differences—In order to study group differences, the matched control 

group was set as the reference level for the fixed effect of Group and parameters were 

estimated for the young adult and the patient group relative to the matched control group. 

The logistic GCA revealed statistically significant differences between groups in terms of 

overall accuracy during learning [Intercept term: χ2 (2) = 33, p < .001] and in terms of linear 

increase in accuracy [Linear term: χ2 (2) = 48, p < .001]. There was no overall group 

difference in curvature of the learning curves [Quadratic term: χ2 (2) = 4.13, p = .13]. The 

group learning curves with logistic GCA model fits are shown in Fig. 2.

The parameter estimates capture pairwise group comparisons. These revealed that compared 

to the matched control group, the mean proportion correct responses during learning was 

significantly lower for the participants with aphasia (Estimate = −.863, SE = .296, p = .003) 

and was higher for the young adult group (Estimate = 1.95, SE = .25, p < .001). The linear 

slope of the learning curves was also shallower for the participants with aphasia compared 

with the matched controls (Estimate = −1, SE = .413, p = .015) and steeper for the young 

adults compared with the matched controls (Estimate = 1.77, SE = .385, p < .001). We found 

no significant differences in the curvature of accuracy increase for the participants with 

aphasia (Estimate = −.055, SE = .211, p > .05) or the young adults (Estimate = −.396, SE = .

218, p > .05) compared with the matched controls.

3.1.2. Learning and aphasia severity—To examine the effect of aphasia severity on 

word learning, the analyses were restricted to just the participants with aphasia and the 

individual scores on the BDAE severity rating scale were added as a continuous fixed effect 

on each time term. As in the group comparisons above, the base model contained the fixed 

effects of each time term (intercept, linear, and quadratic) and random effects of participants 

for each of the time terms. The continuous fixed effect of severity on each time term was 
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added to successively evaluate its continuation to model fit. Model comparisons revealed 

severity-related differences on the intercept term [overall percent correct: χ2 (1) = 8.33, p = .

004] and the quadratic term [curvature: χ2 (1) = 5.54, p = .019]. These differences 

seemingly reflect differences in the learning performance of the participants with aphasia in 

the early part of the learning curves rather than the outcome of learning. In other words, 

while the less severely affected participants achieved fast learning that hit a plateau after 3–4 

blocks, the more severely affected participants showed slow learning that reached the same 

level at the end of the 7 learning blocks.

3.2. Recognition tests

3.2.1. Immediate recognition test—Each of the three groups performed significantly 

above chance on the immediate recognition test (Table 5). Logistic regressions indicated that 

the differences between groups were also highly reliable with the participants with aphasia 

performing substantially worse than their matched controls (Estimate = − 1.55, SE = .18, p 
< .001) and the young adults performing much better than the matched controls (Estimate = 

1.99, SE = .251, p < .001).

The correlations between word learning and the three STM composite scores are depicted in 

Fig. 3. Stepwise logistic regression was used to evaluate predictors of performance on the 

immediate recognition test for the participants with aphasia (n = 11) (Table 6). Individually, 

overall aphasia severity and each of the composite scores predicted word learning 

performance. However, after controlling for aphasia severity, only the verbal STM 

composite measures (nonword repetition, repetition span and pointing span) captured 

additional variance in performance. Note that composite nonword repetition and composite 

pointing span were marginally correlated (r = .53, p = .095), and composite repetition span 

was highly correlated with the composite nonword repetition (r = .76, p = .007) and with the 

composite pointing span (r = .83, p = .002). Therefore, the effects of STM measures on 

recognition performance should not be considered independent effects.

3.2.2. Follow-up recognition test—There were only slight decreases in performance 

after one week (Table 5), with each group still showing above-chance performance and the 

group differences remaining statistically significant: the participants with aphasia still 

performed substantially worse than the matched controls (Estimate = −1.22, SE = .162, p < .

001) and the young adults still performed much better than the matched controls (Estimate = 

1.93, SE = .206, p < .001).

Table 6 shows tests of predictors of performance on the follow-up recognition test for the 

participants with aphasia. Individually, overall aphasia severity and each of the composite 

scores predicted performance, but none of the composite scores were significant after 

controlling for aphasia severity. However, the relationship between recognition test 

performance and composite verbal STM measures was quite consistent across the immediate 

and follow-up recognition tests. In order to directly test whether the relationship between 

verbal STM composite measures and recognition test performance changes from immediate 

to follow-up testing, we combined the data from both recognition tests and analyzed them 

using multilevel logistic regression. After effects of aphasia severity and test time 
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(immediate us follow-up) were accounted for, there was an additional highly reliable main 

effect for each of the composite verbal STM composite measures [nonword repetition: χ2 

(1) = 38.7, p < .0001; repetition span: χ2 (1) = 40.1, p < .0001; pointing span: χ2 (1) = 40.3, 

p < .0001] and a marginal STM by test time interaction [nonword repetition: χ2 (1) = 3.8, p 
= .05; repetition span: χ2 (1) = 3.5, p < .06; pointing span: χ2 (1) = 1.8, p > .18]. In other 

words, these verbal STM composite measures accounted for substantial variance in word 

learning beyond aphasia severity, although this effect weakened slightly between the 

immediate and follow-up recognition tests (except for pointing span which does not appear 

to weaken) as observed in Fig. 3.

3.3. Effects of lesion location

The learning and recognition performance of the participants with aphasia were compared 

according to gross lesion location (frontal lesion n = 5 vs non-frontal lesion n = 8). 

Participant BB was excluded from these analyses as he had a right hemisphere stroke. Fig. 4 

shows that the frontal lesion group performed worse during both word learning and on 

recognition tests. The recognition test performance by lesion location is presented in Table 

7, along with binomial tests showing that the frontal lesion group was not different from 

chance but the non-frontal lesion group was well above chance. During word learning, there 

was a significant effect of lesion location on overall accuracy [intercept term: χ2 (1) = 33.6, 

p < .001] and a marginal effect on the slope of the learning curve [linear term: χ2 (1) = 3.79, 

p = .052)]. During the recognition tests, after controlling for differences due to aphasia 

severity and test time, there was a significant effect of lesion location [χ2 (1) = 13, p = .

0003], that was approximately constant across the immediate and follow-up recognition tests 

[no lesion location by test time interaction: χ2 (1) = .829, p = .36]. However, the lesion 

location effects were reduced when additionally controlling for verbal STM effects: they 

became non-significant after composite nonword repetition or composite repetition span was 

included in the model [both χ2 (1) < 1.0, p > .3] and only marginally significant after 

composite pointing span was in the model [χ2 (1) = 2.93, p = .087].

3.4. Lesion location and verbal STM

We used a Mann–Whitney U test to examine group differences in verbal STM according to 

lesion location. The verbal STM scores of participant AE with a frontal lesion and 

participant BL with a lesion that spared the frontal region were unavailable. This test showed 

that the non-frontal lesion group (Md = 4.15, n = 7) had significantly better verbal STM 

capacity than the frontal lesion group (Md = 2.65, n = 4) as measured by their composite 

pointing span scores (U = .00, z = −2.66, p = .008). The differences between these two 

groups in their composite repetition span and composite nonword repetition scores were 

non-significant (p > .010 in both cases).

3.5. Individual differences in learning performance in aphasia

The individual learning curves of the participants with aphasia are depicted in Fig. 5. 

Individual differences in the outcome of learning performance were examined in the aphasia 

group using the exact binomial test to contrast response accuracy in the immediate and 

follow-up recognition tests against chance level. Participants AF, RS, QH, BL, and EP 

performed significantly above chance in the immediate recognition test (binomial test, p ≤ .
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042 in all cases) and all of these participants except EP performed significantly above 

chance in the follow-up test (binomial test, p ≤ .016 in all cases). All the remaining 

participants were not reliably different from chance level in both recognition tests (binomial 

test, p > .05 in all cases).

4. Discussion

The present study aimed to examine novel word learning ability in aphasia using a paradigm 

that presents novel words together with a limited set of novel visual referents, thus 

simulating the word-to-referent mapping ambiguity of natural language learning contexts. 

The logistic GCA revealed that the aphasia group showed a lower overall accuracy and 

slower learning performance than the matched control group. However, the immediate and 

follow-up recognition performances of the aphasia group were significantly above chance, 

indicating that at least some aphasic participants could successfully acquire the novel word-

referent associations. Importantly, the subsequent individual analyses revealed that some 

people with chronic aphasia preserve the ability to learn novel word-object associations and 

maintain this newly acquired small lexicon 1 week after training, supporting previous reports 

of spared word learning ability in aphasia in single word-picture pairing tasks (McGrane, 

2006; Tuomiranta et al., 2012, 2014) and in more referentially ambiguous learning 

conditions (Breitenstein et al., 2004).

A large range of new word learning performance is often observed in aphasia (Kelly & 

Armstrong, 2009). In our cohort, individual variability in new word learning was modulated 

by aphasia severity, phonological and lexical-semantic processing, and verbal STM 

composite measures. However, only verbal STM measures (not phonological or lexical-

semantic processing measures) captured unique variance beyond aphasia severity, with 

phonological STM (i.e., composite nonword repetition) and lexical-semantic STM (i.e., 

composites repetition and pointing span) all predicting word learning. This is consistent with 

language-based models of verbal STM, which postulate that STM supports the maintenance 

of both phonological and lexical-semantic representations of verbal information (Martin & 

Saffran, 1997; Martin et al., 1999), and suggest that phonological and semantic components 

of STM are essential for the long-term learning of such representations (Freedman & 

Martin, 2001).

In our paradigm, learners necessarily depart from random correspondences between 

unrelated words and pictures which are nevertheless informative for subsequent attempts. 

Learning the correct word-referent associations may require the temporary retention of the 

phonological representations of the novel words while the learner evaluates the referent 

candidates presented in each trial and selects one on the basis of their perceptual features 

and the visual feedback of previous correct and incorrect associations. However, the 

retention of the novel semantic information (i.e.: visual referents) is important because even 

when one referent has been chosen, the two alternative referents provided in a given trial 

need to be held in the short-term until visual feedback is presented. Insofar as the novel 

referents constitute basic visual-semantic representations, these must be maintained in 

semantic STM in order for feedback to be used for learning (i.e., positive feedback 

strengthens selected referent, negative feedback strengthens alternative referent). In this way, 
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verbal STM plays a crucial role in new word learning by holding the new phonological and 

semantic representations long enough to allow the formation of long-term associations 

(Freedman & Martin, 2001). With more trials, both phonological and semantic STM ensure 

that the correct mappings stay active and that their memory traces are strengthened over 

time, thus reducing the likelihood of mapping novel words onto wrong referents in 

subsequent trials. This is coherent with the mutual exclusivity constraint on word learning 

(Markman, 1990) which suggests that learning can be more efficient when one word can 

only be associated with one picture. In this way, learners can narrow down the possible 

candidates for unmapped words as otherwise they would persist in making randomly 

conflicting word-picture associations (Yu et al., 2007).

Importantly, because of this close relationship between verbal STM and word learning, 

factors that impact verbal STM capacity may also impair word learning ability. Reduced 

STM capacity for phonological or semantic codes involves their overly rapid decay from 

verbal STM (Freedman & Martin, 2001). Verbal STM is often affected in aphasia (Martin & 

Ayala, 2004; Martin & Saffran, 1999) and reduced capacity to retain phonological or 

semantic codes in the short-term can account for impaired ability to learn the corresponding 

novel phonological or semantic information in aphasic individuals (Freedman & Martin, 

2001). Performance in the present word learning task should reflect the individual ability to 

map the novel word forms onto the right lexical-semantic representations and to recognize 

such representations when cued by the novel phonology at testing, thus drawing on both the 

lexical-semantic components of the associations and the active recall of the novel word 

phonology. We found that the participants with aphasia with more spared verbal STM also 

showed better word learning performance. Participants AF, QH, EP, RS and BL showed 

individual learning curves that resembled the matched controls’ average and achieved the 

highest scores on the recognition tests, and four of these participants also had the highest 

lexical-semantic STM spans (STM spans for BL were unavailable). Participants QH, EP and 

RS also had the highest phonological STM spans. In contrast, the remaining aphasic 

participants had lower scores in the recognition tests and were more impaired in their 

lexical-semantic and phonological STM.

Interestingly, while participant AF’s lexical-semantic STM and word learning performance 

were high in spite of his impaired phonological STM, participant KM whose phonological 

STM was amongst the highest in the aphasia group, had impaired lexical-semantic STM and 

word learning ability.3 This suggests that in aphasia, the retention of the novel lexical-

semantic representations might be more crucial than the retention of the novel phonology for 

effective word learning in a highly ambiguous word-referent context. According to 

language-based models of STM, there are multiple levels of lexical representation that 

contribute to STM (Martin & Saffran, 1997; Martin et al., 1999) and previous studies have 

evidenced the dissociation of such components (Freedman & Martin, 2001; Majerus et al., 

3Participant AF showed high word learning performance in spite of his impaired phonological STM capacity (composite nonword 
repetition expressed in proportion of correct responses = .23/1). His lexical-semantic STM capacity was well above 50% correct 
performance (composite STM pointing span = 4.8/7; composite STM repetition span = 4.7/7). Conversely, participant KM showed 
impaired word learning performance in spite of his largely spared phonological STM capacity (composite nonword repetition 
expressed in proportion of correct responses = .80/1). However, he also showed reduced lexical-semantic STM capacity (composite 
STM pointing span = 2.8/7; composite STM repetition span = 3.6/7).
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2004; Shivde & Thompson-Schill, 2004). The differences in word learning and verbal STM 

between participants AF and KM point in this direction. However, although our relatively 

pure measures of phonological (composite nonword repetition) and lexical-semantic STM 

(composite pointing span) were not significantly correlated, we had limited power to detect 

independent effects of these word learning predictors. Future research with a larger sample 

of aphasic individuals is needed to determine whether or not phonological and lexical-

semantic STM capacity make independent contributions to novel word learning in aphasia in 

high word-referent ambiguity contexts.

We also found a significant effect of lesion location on word learning in aphasia, although 

this effect was reduced after controlling for verbal STM probably due to STM deficits 

resulting from anterior brain damage. The dorsal and ventral processing speech pathways 

have been related to the temporary maintenance of verbal information (Majerus, 2013). The 

dorsal speech pathway (Hickok & Poeppel, 2004, 2007), a left lateralized network for 

auditory-motor integration, is implicated in novel phonology processing (Kümmerer et al., 

2013) and language acquisition (Scott & Wise, 2004; Rodríguez-Fomells, Cunillera, 

Mestres-Missé, & de Diego-Balaguer, 2009). This neural circuit also supports phonological 

verbal STM (Hickok & Poeppel, 2000) with the posterior superior temporal gyrus (pSTG) as 

the neural basis for phonological storage and the posterior inferior frontal regions (including 

Broca’s area, insula, and dorsal premotor regions) supporting the rehearsal of phonological 

codes (Hickok & Poeppel, 2004). The ventral speech pathway (Hickok & Poeppel, 2004, 

2007) is a fronto-temporal network supporting the mapping of sounds to meanings (Saur et 

al., 2008). Within this language stream, the middle temporal cortex and a more anterior part 

of the left inferior frontal cortex are involved in the retention of semantic information 

(Martin et al., 2003; Shivde & Thompson-Schill, 2004). It has been suggested that while the 

storage of phonological information is commonly localized in posterior regions of the left 

cortex, the inferior frontal regions could support the retention and rehearsal of verbal 

information, be it semantic or phonological in nature (Martin et al., 2003). In our study, the 

aphasia group with lesions that spared the left frontal cortex had a significantly superior 

overall learning and recognition performance than the group with left frontal lesions who 

were clearly impaired in this ability. It has been proposed that people with lesions involving 

inferior frontal regions experience difficulty with tasks that draw on semantic and 

phonological STM, whereas individuals with posterior lesions mainly show deficits that 

selectively impair phonological STM (Martin et al., 2003). We found that lexical-semantic 

STM as measured by the composite pointing span was significantly more preserved in 

participants with non-frontal lesions which predominantly involved the left temporal and/or 

parietal cortex, than in participants with frontal lesions. It is likely that inferior frontal 

lesions lead to a rapid decay of the semantic representations of novel words, impairing the 

encoding and recognition of the correct novel word-referent associations. Conversely, 

aphasic individuals with spared frontal regions may preserve the ability to retain the correct 

semantic representations for encoding and recognition when cued by novel phonological 

input, as reflected by their superior word learning ability. The frontal and non-frontal lesion 

groups did not significantly differ in their composite repetition span scores, yet the 

composite pointing span provides a relatively more pure measure of lexical-semantic STM 

capacity because it is not influenced by verbal output capacity. We found no significant 
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differences in phonological STM capacity between the frontal and the non-frontal lesion 

groups. Although the participants with non-frontal lesions showed higher performance than 

those with frontal lesions, their composite nonword repetition scores represented equal or 

below 50% correct performance (except for QH and EP who were largely spared in their 

phonological STM), probably due to damage to regions that support the phonological 

storage component of phonological STM. Nevertheless, substantial learning in the non-

frontal lesion group may be due to more preserved lexical-semantic STM and only enough 

ability to retain the novel phonology, whereas word learning deficits in the frontal lesion 

group may be related to an impairment that affects both lexical-semantic and phonological 

STM. While it is likely that anterior frontal lesions impair novel word learning in aphasia by 

impairing verbal STM capacity as discussed here, our aphasic sample is not sufficiently 

large to tease apart contributions of lesion location and STM to word learning. The 

possibility that damage to anterior frontal regions impairs word learning per se, beyond its 

effect on verbal STM, should be further studied.

Although not directly examined in the present study, it is likely that attentional control and 

executive processes involved in complex storage and processing tasks (Majerus, 2013) are 

also engaged in novel word learning under referential ambiguity. Learners should focus their 

attention on the relevant aspects of the learning context to correctly identify the proper 

meanings of new words (Rodríguez-Fornells et al., 2009), while the erroneous competing 

associations of alternative word-object couplings are inhibited and progressively suppressed 

during this lexical acquisition process (Yu & Smith, 2007). Frontal lesions can impair 

executive functioning affecting verbal memory performance in aphasia (Beeson, Bayles, 

Rubens, & Kaszniak, 1993). Moreover, impaired executive control of inhibition processes 

may lead to deficits in the retention of semantic representations in STM in aphasia due to 

increased interference from irrelevant information (Martin & Allen, 2008). Executive 

dysfunction may also impair learning in our participants with frontal lesions by 

compromising their ability to monitor response accuracy and feedback processing, two 

cognitive aspects that contribute to learning mechanisms (McCandliss, Fiez, Protopapas, 

Conway, & McClelland, 2002; McClelland, Thomas, McCandliss, & Fiez, 1999). External 

feedback may be effectively used to increase the production of target responses of aphasic 

individuals in word learning tasks (but see Breitenstein et al., 2004 for evidence of learning 

without feedback) and it can be helpful to control for the difficulty of learning in errorful 

situations (McCandliss et al., 2002). Yet, the production of errors may reinforce incorrect 

associations when feedback processing is compromised (Fillingham, Hodgson, Sage, & 

Lambon Ralph, 2003). In our study, performance feedback signaled response correctness to 

reduce the production of erroneous word-referent associations, as referential ambiguity 

could otherwise increase the possibility of forming incorrect associations. Nevertheless, the 

production of erroneous associations in the absence of optimal feedback modulation 

mechanisms may have hindered learning by increasing their likelihood of occurrence in 

subsequent learning trials due to their reactivation through familiarity-based implicit 

memory mechanisms (Anderson & Craik, 2006; Baddeley & Wilson, 1994). The fact that 

the early part of the learning curves was influenced by aphasia severity also suggests that the 

decreased availability of verbal STM and other cognitive resources impairs rapid word 

learning in aphasia.
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Our study also contributes to the existing evidence of the overall decrement in learning 

ability associated with healthy aging. We found a clear learning advantage for young adults 

relative to their older counterparts who had a slower and less successful learning 

performance. Previous studies have shown that older adults perform worse than young adults 

when learning paired-associates (Service & Craik, 1993), single word-picture associations 

and more complex word-referent relationships in fast-mapping paradigms (Greve, Cooper, & 

Henson, 2014). These differences have been attributed to an age-related decline in episodic 

memory that affects the ability to create associations between individual items and contexts 

during encoding (Naveh-Benjamin, 2000; Naveh-Benjamin, Guez, Kilb, & Reedy, 2004; 

Overman & Becker, 2009). Moreover, such decreased learning performance in older adults 

has been related to a reduction of hippocampal grey matter volume (Greve et al., 2014). It 

has been proposed that younger subjects rely on lexical-semantic learning more effectively 

than older adults, using their existing lexicon to rapidly establish semantic associations 

between novel items and their familiar vocabulary to mediate new word learning, which in 

turn may reduce the need of maintaining previously unknown words in phonological STM 

(Service & Craik, 1993). This interpretation seems to be supported by the fact that the 

associative deficit observed in older adults can be reduced when the information to be held 

in memory can be supported by existing semantic connections (Naveh-Benjamin, Hussain, 

Guez, & Bar-On, 2003). Finally, our findings are in line with previous studies demonstrating 

age-related differences in adult learners in errorful or feedback-based learning situations 

(Anderson & Craik, 2006; Ferdinand & Kray, 2013). It has been shown that this type of 

learning promotes better recollection in young adults probably by engaging explicit memory 

mechanisms which allow for correct memory reinforcement and explicit error elimination. 

In contrast, older adults who depend more on automatic, implicit familiarity-based 

processes, may less effectively oppose familiarity-based errors due to a decline in explicit 

memory (Anderson & Craik, 2006). Moreover, older adults rely more on positive than 

negative feedback during learning as compared to young adults possibly due to their reduced 

working memory capacity (Ferdinand & Kray, 2013).

Regarding the existing proposals about the possible learning mechanisms underlying word 

learning under referential uncertainty (Trueswell et al., 2013; Yu et al. 2007; Vlach & 

Sandhofer, 2014), the present data cannot conclusively speak in favor of one versus the 

others. Our word learning paradigm based on Mirman et al. (2008) differed from those used 

in previous studies in several aspects: (i) the experimental manipulation of the number of 

learning conditions (i.e.: Vlach & Sandhofer, 2014), (ii) the inclusion of high and low 

informative learning instances (i.e.: Trueswell et al., 2013), (iii) the constraints placed on the 

order of presentation of each word learning instance (i.e.: Trueswell et al., 2013; Smith et al., 

2011) and (iv) the exclusion of feedback (i.e.: Smith et al., 2011; Trueswell et al., 2013; 

Vlach & Sandhofer, 2014; Yu & Smith, 2007; Yu et al., 2007). Such methodological 

differences prevent these and our study from being directly comparable. Nevertheless, some 

considerations are worth taking into account. Both the cross-situational (Yu & Smith, 2007; 

Yu et al., 2007) and the propose-but-verify learning strategy (Trueswell et al., 2013) 

explicitly suggest that the hypothesized word-referent mappings need to be retained across 

learning instances. Regardless which account proves right, either tracking simultaneous co-

occurrences for many words and referents (Yu & Smith, 2007; Yu et al., 2007) or testing 
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single word-referent hypotheses (e.g.: because words appear interleaved across learning 

instances), learning in situations with referential ambiguity seems to rely also on STM 

capacity to some extent. It has been suggested that STM may modulate the ability to hold 

relevant information for successful word-object mapping under referential uncertainty, and 

the ability to retrieve such information during learning seems to lead to stronger retention of 

the acquired mappings in the long term (Vlach & Sandhofer, 2014).

There are of course some limitations in the present study. While examining the influence of 

verbal STM on new word learning in aphasia is important because STM deficits are 

common in this pathology, we did not address this relationship in the groups of healthy 

participants. Current research with healthy adults proposes that STM may modulate learning 

ability in high referential ambiguity conditions (Vlach & Sandhofer, 2014). Future studies 

are needed to determine whether and how verbal STM capacity in healthy individuals is 

related to the ability to learn new word-meaning mappings in such learning contexts. 

Furthermore, the influence of other cognitive processes not addressed in the present study 

(e.g.: executive functioning) on this type of word learning ability should also be examined in 

both aphasic and healthy individuals in the future. Finally, the influence of linguistic 

background and bilingualism in novel word learning in aphasia was beyond the scope of our 

study and the small size of the aphasia sample precluded any comparisons on word learning 

performance across the four languages involved in this study. It has been suggested that 

bilingualism may facilitate learning the phonology of novel words in healthy adult learners 

(Kaushanskaya & Marian, 2009), however, it remains unknown whether the same holds 

when learning ambiguous word-referent mappings and how this extends to people with 

aphasia. Further research may help revealing whether linguistic background in aphasic 

individuals also impacts their novel word learning possibilities.

5. Conclusions

The present study demonstrates that some people with aphasia can successfully acquire 

novel words even in word-referent ambiguity conditions, and maintain this lexical 

knowledge in the long-term in the absence of training and feedback. We suggest that verbal 

STM makes a unique contribution to new word learning in aphasia, with learning ability 

being critically influenced by the functionality of lexical-semantic and phonological STM 

mechanisms. Our findings further propose the integrity of the left inferior frontal region as 

the crucial component of the language-verbal STM network supporting the maintenance and 

the ultimate acquisition of novel linguistic material. Future studies should determine whether 

language rehabilitation could benefit from the use of more natural language learning 

approaches to potentiate language re-learning in aphasic individuals. Further contributions to 

this field should consider minimizing the cognitive demands (verbal STM, and possibly 

attentional and executive requirements) of learning tasks involving referential uncertainty. 

The use of errorless learning methods (Fillingham et al., 2003) and high frequency exposure 

to word-referent co-occurrence without feedback (Breitenstein et al., 2004) could be 

explored as potential ways to boost the participation of implicit memory mechanisms in the 

word-learning process, and decrease overall STM load and cognitive effort so that learning 

can be maximized in people with aphasia.
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Fig. 1. 
Word learning task. Panel A shows the stimuli used with the Spanish speaking participants. 

Panels B and C depict a sample of two learning trials with a correct and an incorrect 

response respectively. In each trial, two novel objects, a target and a foil were presented 

together with a spoken label and participants needed to decide whether the spoken word was 

the label for the picture on the left or the right side of the screen by pressing the 

corresponding mouse button (bold text). Visual feedback was provided following the correct 

(B) or incorrect (C) association between novel words and visual referents in each trial.
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Fig. 2. 
Comparison of learning curves for the young adults, matched controls and participants with 

aphasia (PWA). The observed (symbols) and logistic GCA model fit (lines) learning curves 

are depicted for the three groups.
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Fig. 3. 
Correlations between recognition performance and composite scores of STM. Only 

phonological STM (nonword repetition) and lexical-semantic STM (repetition and pointing 

span) composite scores predicted the immediate and follow-up recognition of the newly 

acquired word-object associations beyond aphasia severity.
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Fig. 4. 
Effect of lesion location on learning curves and recall tests. The learning performance of the 

aphasic participants with frontal lesions and non-frontal lesions is shown for comparison. 

The mean (symbols) and SEM of each group is depicted at each time point over seven 

learning blocks and two test blocks. Note that the learning and recognition performance of 

the participants with aphasia with non-frontal lesions was clearly superior to the 

performance of the aphasic participants with frontal lesions.

Peñaloza et al. Page 26

Cortex. Author manuscript; available in PMC 2017 January 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. 
Individual variability in performance across learning and recognition testing blocks. Panel A 

and B depict the individual performances of participants with spared frontal region and 

participants with damaged frontal region respectively. Panel B also includes the learning 

performance of participant BB with a right hemisphere stroke. The individual learning 

curves of the participants with aphasia are displayed over the seven learning blocks with 

online feedback, and the immediate and follow-up recognition test blocks without feedback. 
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The gray ribbon shows 95% confidence interval for the matched control participants 

(computed by nonparametric bootstrap) for comparison.
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Table 3

Speech and language profile of the English speaking participants with chronic aphasia.

Language measure Participants with
aphasia

CM FS QH KM

WAB-R

Spontaneous speech quotient 18 18 17 13

Auditory comprehension quotient 9.5 9.2 9.9 8.4

Repetition quotient 7.7 6.7 8.2 8.6

Naming and word finding quotient 9.5 8.9 7.4 8

WAB-R aphasia quotient 89.3 85.5 84.9 76

Other tests

BNT 42 32 NA NA

BDAE severity rating 4 4 5 3
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Table 5

Recognition tests: group mean performance (95% confidence interval in parentheses). All means are above 

chance performance (.5) according to exact binomial test (all p < .001).

Recognition test Matched controls Participants with aphasia Young adults

Immediate .879 (.843–.908) .605 (.556–.652) .981 (.973–.988)

Follow-up .826 (.786–.861) .583 (.535–.631) .970 (.960–.979)
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Table 7

Recognition tests: mean performance (with 95% confidence interval and p-value for difference from chance 

based on exact binomial test) by test and gross lesion location.

Recognition
Test

Damaged frontal
region

Spared frontal
region

Immediate .473 (.391–.556) .688 (.625–.746)***

Follow-up .467 (.385–.550) .646 (.582–.706)***

***
Significant at the .001 probability level.
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