Nutrients, control of gene expression and metabolic homeostasis

Lipid metabolic enzymes: emerging drug targets for the treatment of obesity

• Obesity

- Type 2 diabetes
- Insulin resistance
- Dyslipidaemia
- Hypertension
- Coronary heart disease
- Stroke
- Gallbladder disease
- Sleep apnoea
- Osteoarthritis
- Hyperuricaemia
- Cancer

Metabolic control of gene expression. The beginning

Genetic regulatory mechanisms in the synthesis of proteins. F. Jacob, J. Monod. J. Mol. Biol., 3 (1961), pp. 318–356

PPAR-mediated fatty acid control of mitochondrial fatty acid metabolism

Mascaró C et al. J. Biol. Chem. 1998;273:8560-8563 ©1998 by American Society for Biochemistry and Molecular Biology

FGF21 expression is regulated by diet and its effects are widely distributed.

Pérez-Martí A et al. Horm Mol Biol Clin Invest 2016

FGF21: A missing link in the biology of fasting

Fibroblast growth factor (FGF) 21 is a member of the FGF family, predominantly produced by the liver in response to the PPARa transcription factor, inducing adipose tissue lipolysis, liver ketogenesis, and metabolic adaptation to the fasting state.

FGF21 expression is induced by the 26S proteasome inhibitor MG132

Amino acid starvation (HisOH) induces FGF21 transcription

FGF21 is an ATF4 target gene

4		AARE1	AARE1		
human	-639	5'-TCTGGTGAAAGAAACACCAGGATTGCATCAG	-609		
mice	-1049	5'-TCTGGTGAAAGAAGCACTAGGATTGCATCAG	-1019		
rat	-1480	5'-TCTGGTGAAAGAAGCAATAGGATTGCATCAG	-1450		
dog	-683	5'-TCTGGTGAAAGAAACACCAGGATTGCATCAG	-653		
horse	-1015	5'-TCTGGTGAAAGAAACACCAGGATTGCATCAG	-985		
rhesus	-808	5'-TCTGGTGAAAGAAACACCAGGATTGCATCAG	-778		

Consensus		XTTXCATCA			

AARE2

Human	-163	5'-CAG	GTTACATCA	TCCATT	-146
Mouse	-143	5'-CCC	ATTGCATCA	TCCGTC	-126
Rat	-320	5'-CCC	ATTGCATCA	TTCGTC	-303
Dog	-324	5'-CTG	ATTGCATCA	TCCACT	-307
Horse	-323	5'-CTG	ATTGCATCA	TCCGTT	-306
Rhesus	-325	5'-CAG	GTTACATCA	TCCATT	-308
		*	** *****	*.*	
Consensus		L.	XTTXCATCA		

ATF4 binds to the FGF21 gene (ChIP analysis)

FGF21, the mising link between amino acid deprivation and lipid metabolism

FGF21 induces:

- gluconeogenesis
- fatty acid oxidation
- ketogenesis
- brown fat activation
- reduction in adipose tissue and body weight

FGF21: ADAPTATIVE STARVATION RESPONSE

Could be FGF21 the link between aminoacid deprivation and lipid metabolism response observed in liver, WAT, and BAT?

Leucine deprivation in FGF21 knockout mice

FGF21 is differently regulated by leucine deprivation in liver and adipose tissues

FGF21 is required for (–)leu diet effects on body weight without affecting food consumption.

Leucine deprivation effects on white adipocytes size are FGF21 dependent

Leucine deprivation effects on lipid metabolism in WAT are FGF21 dependent

FGF21-KO liver has impaired lipid accumulation in response to leucine deprivation

FGF21 is required for inducing **BAT** activation during amino acid deprivation

Working model of the FGF21 regulatory pathway under leucine deprivation

Generation and characterization of the Fgf21 liver-specific knockout mice

Experimental design

FGF21 is induced by a LPD in liver but not in BAT or WAT, and this induction correlates positively with plasma concentration

LPD increases ATF4 protein levels in liver

Fgf21 deficiency significantly attenuates weight loss under a LPD

Hepatic FGF21 is required for inducing thermogenic gene expression in scWAT under a LPD.

A low-protein diet induces body weight loss and browning of subcutaneous white adipose tissue through enhanced expression of hepatic FGF21

Insulin Resistance is Attenuated by Sofrito Supplemented-Diet in OZR

FGF21 Serum Levels are not Influenced by Sofrito

FGF21 Signaling is Improved in vWAT of OZR Fed with a Sofrito-Supplemented Diet

Sofrito Induces UCP1 Expression in the vWAT of OZR

Diego Haro Pedro F. Marrero Joana Relat Albert Pérez Ana Luisa De Sousa Alexandra Carrilho Do Rosário Maite Garcia-Guasch Viviana Sandoval Úrsula Martínez-Garza Hèctor Sanz-Lamora Antoni Femenias

Francesc Villarroya Elayne Hondares Francesc Ribas

Rosa Lamuela-Raventos Ramon Estruch Anna Treserra-Rimbau Rosalía Rodríguez-Rodríguez

