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PRICING ENDOWMENTS WITH SOFT COMPUTING 

 

Abstract: This paper develops life insurance pricing with different 

representation of its two sources of uncertainty: stochastic behaviour of mortality 

of the insured and fuzzy quantification of interest rates within the time horizon. 

Concretely we analyse endowment contracts, which are present in several financial 

real-world contexts as residential mortgage loans or retirement plans. We show 

that modelling the present value of these contracts with fuzzy random variables 

allows a well-founded quantification of their fair price and the risk resulting from 

the uncertainty of mortality and discounting rates. To do this, we firstly describe 

fuzzy random variables and some associated measures (mathematical expectation, 

variance, distribution function and quantiles) are defined. Subsequently the present 

value of a endowment contract (pure and mixed) is modelled with fuzzy random 

variables. Finally we show how the price and risk measures for endowment 

portfolios can be obtained. 

 

Keywords: Life insurance, endowment, stochastic mortality, fuzzy interest 

rate, fuzzy random variable. 

 

JEL Classification: C67, G12, G22



 

 

 

 

Jorge De Andrés-Sánchez, Laura González-Vila Puchades 

__________________________________________________________ 

 

1. Introduction 

Life insurance pricing has to model the uncertainty of demographic 

events and financial parameters. From its beginning, actuarial science has paid 

much attention to quantifying demographic phenomena and its stochastic 

uncertainty. In fact, its probabilistic behaviour is commonly accepted and 

practitioners obtain the corresponding probabilities from life tables. However, from 

70s several authors introduce the uncertainty related to the financial parameters 

(specially the discount rate used to price contracts) by means of random variables 

(RV) and stochastic processes (see for example [Boyle, P.P., 1976]). From these 

papers a lot of contributions appeared, using different approaches but agreeing on 

the consideration of the stochastic nature of the interest rate. 

From 90s some contributions like [Lemaire, J., 1990] and [Ostaszewski, 

K., 1993] also propose the use of some appropriate instruments of the Fuzzy Set 

Theory (FST) to model the behaviour of interest rate. In this respect, the papers 

published later [Andrés-Sánchez, J., Terceño, A., 2003] and [Betzuen, A., 

Jiménez, M., Rivas, J.A., 1997] are particularly noteworthy. 

Most of papers on fuzzy actuarial pricing reduce the randomness of the 

behaviour of claiming processes to predefined frequencies – i.e. the randomness of 

the present value of premiums and benefits is reduced to its mathematical 

expectation – and, therefore, these processes become deterministic. On one hand, 

this approach allows insurance contracts to be priced by automatically applying the 

financial mathematics with fuzzy parameters developed in [Buckley, J.J., 1987], 

[Kaufmann, A., 1986] and [Li Calzi, L., 1990]. On the other, the information that 

provides the complete statistical description of claiming is lost, making it hard to 

rigorously introduce the uncertainty of claiming when fitting magnitudes like 

reserves for deviations of mortality or premium surplus. In this paper we develop 

an approach to price endowment contracts that combines the stochastic approach to 

life insurance mathematics (see [Gerber, H.U., 1995] under deterministic interest 

rates) and the quantification of interest rates with fuzzy numbers (FNs), following 

the developments in [Andrés-Sánchez, J., González-Vila, L., 2012]. Our 

approach will therefore allow us to maintain stochastic and fuzzy sources of 

uncertainty throughout all of the valuation processes. Related to our fuzzy 

methodology, [Shapiro, A., 2009] describes fuzzy random variables with actuarial 

modelling in view and [Huang, T., Zhao, R., Tang, W., 2009] develops a non-life 

individual risk model where the number of claims follows a Poisson process 

whereas their value is estimated with a triangular fuzzy number (TFN). 

We have structured this paper as follows. In sections 2 we describe the 

concepts and instruments of FST on which our approach is based. In section 3 we 

calculate price of endowment policies with a fuzzy random approach whereas in 

section 4 we evaluate endowment portfolios.  
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2. Fuzzy random variables 

In many real situations the uncertainty is the result any one of numerous different 

causes: randomness, hazard, inaccuracy, incomplete information, etc. The concept 

of Fuzzy Random Variable (FRV) combines both random and fuzzy uncertainty: 

[Krätschmer, V., 2001], [Kruse, R., Meyer, K.D., 1987], [Kwakernaak, H., 

1978 and 1979], [Puri, M.L., Ralescu, D.A., 1986] and [Zhong, C., Zhou, G., 

1987], but there is not a unique definition for it. This paper uses [Puri, M.L., 

Ralescu, D.A., 1986] because it is very suitable for modelling the present value of 

life insurance contracts. When pricing life insurances the randomness is due to the 

demographical phenomenon in such a way that the moment in which the benefit is 

paid can be described with a conventional RV. Likewise, the outcomes of the 

present value of life insurance will not be real but fuzzy numbers because we 

suppose that discount rates used to calculate present values are estimated by means 

of generalized intervals. 

Let ,A  be a measurable space, ,B  the Borel measurable space 

and F( ) denote the set of FNs. The fuzzy set valued mapping X : 

:  F( ) 

 

is called a fuzzy random variable if: 

B B, 0,1 , | X B A  

where X  is a FN that must be viewed as a generalized interval with 

membership function X
z  and -level representation: 

| ,X z z X X
X

 

[Guangyuan, W., Yue, Z., 1992] demonstrates that any FRV X  

defines, 0,1 , an infima RV X  and a suprema RV X  whose 

realizations are, respectively, the lower and upper extremes of -cuts of 

,X , ,X X . 

Let , ,A P  be a probability space. Given that in our paper we will 

price discrete life insurances, the next definitions are referred to discrete FRVs that 
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come from the set of elemental outcomes 
1, ,i i n

 with 

, 1, ,i iP p i n .  

Let X  be a discrete FRV on , ,A P , being FX  and F
X

, 

0,1 , the distribution functions of the RVs X  and X  obtained from X

. Then, , we define the couple of the distribution functions of the RVs infima 

and suprema for that membership level F x
X

= ,F x F x
X X

: 

F x P x F x
X X

X ,  F x
X P x F xXX  (1) 

Likewise, for a discrete FRV X  with FX  and F
X

, 0,1 , 

being the distribution functions of the probability of the RVs X  and X  

obtained from X , we define the couple of th quantiles of the RVs infima and 

suprema for that membership level ,Q Q Q
X X X

: 

min |Q x F xXX
 and min |Q x F x

XX
  (2) 

In the case that , 1, ,i i n , the FNs iX  satisfy, 

0,1 , 1i iX X  and 1 ,  1, , 1i iX X i n , 

for Q
X

 we find:  

min |i j
i j i

Q X p
X

 and min |i j
i j i

Q X p
X

 

Given the probability space , ,A P  with 
1, ,i i n

 and 

, 1, ,i iP p i n , the mathematical expectation of a discrete ordinary RV 

X is a function of its realizations {x1, x2,...,xn}: 1 2
1

, ,...,
n

n i i
i

E x x x x pX . 

So, given a FRV X  its mathematical expectation, , is the FN induced by the 

FNs 1 2( ), ( ), , ( )nX X X  through E X . Concretely, following [Puri, 
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M.L., Ralescu, D.A., 1986] we can compute the extremes of the -cuts of , 

,E E EX X X , 0,1  as: 

1 1

,  ,
n n

i i i i
i i

E X p X p E EX X X   (3) 

Regarding the variance of FRVs some authors propose fuzzy definitions, 

as in the case of mathematical expectation, whereas other authors such as [Feng, 

Y., Hu, L., Shu, H., 2001] and [Körner, R., 1997] propose using scalar (crisp) 

values for the variance since it is a dispersion measure. This dichotomy in the 

definition makes that a choice of one definition must be done (for a more detailed 

discussion of this topic see [Couso, I., Dubois, D., Montes, S., Sánchez, L., 

2007]. Due to the choice we have made of the FRV concept we will expose the 

concept of variance contained in [Feng, Y., Hu, L., Shu, H., 2001] that is built up 

from the variance of the infima and suprema RVs X  and X  obtained from X  

So, for a discrete FRV X with infima and suprema discrete RVs X  

and X , 0,1 , the variance of X ,V X , is the real number: 

1

0

1
 

2
V V V dX X X    (4) 

Of course, from this definition of the variance of a FRV we can derive a crisp 

standard deviation as D VX X . 

Notice that we use the superscript “ ” to symbolise fuzzy magnitudes 

and we write random variables with bold letters. So, the symbols corresponding to 

fuzzy random variables will be in bold and contain the superscript “ ”. 

 

3. Pricing endowment policies with fuzzy random variables 

 

Following [Andrés-Sánchez, J., González-Vila, L., 2012] we propose 

adapting the stochastic approach to life insurance contracts to the use of fuzzy 

discount rates. In this case, the RV present value of premiums and present value of 

benefits turn into FRVs that will allow us to maintain all the uncertainty associated 

with discount rates but also with mortality. Considering that the discount rates are 

given via FNs, the value of discount function for 1 monetary unit (m.u.) payable at 
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t is a FN, td , with α-cut representation ,t t td d d . Notice that [Andrés-

Sánchez, J., González-Vila, L., 2012] exposes several ways to estimate actuarial 

discount rates with FNs.  

Let us consider the simple case of an n-year pure endowment for a person 

aged x years. In this case the insured will receive 1 m.u. if he survives n years and 

no amount otherwise. The space of events is ={ 0, 1} where 0= “the insured 

survives n years (and so perceives 1 m.u.)” and 1= “the insured dies within the 

next n years (and so does not perceive the insured amount)”. 

From the discount function td ,we can generate the FRV present value of 

pure endowment associated to a person aged x years 

x:n

A 1 . The outcomes of this 

FRV are random because they depend on the insurer’s death age. But these 

outcomes are also FNs since they are calculated with fuzzy discount rates that are 

generalized intervals. This FRV adopts as values the following FNs, with 

respective probabilities P: 

outcomes

0 1 n x

n n x

P

p

d p

 

being n xp  the probability that the insured aged x will survive n years. 

The FRV 

x:n

A 1  defines, , the infima and suprema RVs 

x:n

A 1  and 

x:n

A 1  as:  

outcomes

0 1 n x

n n x

P

p

d p

x:n

A 1

  outcomes

0 1 n x

n n x

P

p

d p

x:n

A 1

 

Based on the concepts defined in section 2, contained in (1) to (4), we can 

determine the next magnitudes. 

 

0,1
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 -cuts of the mathematical expectation of the FRV 

x:n

A 1 . 

0,1 , E

x:n

A 1 = ,E E

x:n x:n

A A1 1 , with: 

n n xE E d p1 1

x:n x:n

A A  

n n xE E d p1 1

x:n x:n

A A  

 Variance and standard deviation of the of the FRV 

x:n

A 1 . 

The variances of the RVs 

x:n

A 1  and 1

x:n

A  are: 

2 2 2
1n n x n n x n n x n xV d p d p d p p1

x:n

A  

2 2 2
1n n x n n x n n x n xV d p d p d p p

x:n

A 1
 

So the variance of the FRV 

x:n

A 1  is: 

1 2 2

0

1
1  

2
n n n x n xV d d p p d1

x:n

A  

being its standard deviation D V

x:n x:n

A A1 1 . 
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 Couple of distribution functions of the RVs 

x:n

A 1  and 1

x:n

A , 

0,1 . 

Considering (1), 0,1 , ,F y F y F y

x:n x:n x:n

A A A1 1 1

 

Notice that F y
1

x:n

A
 F y

1

x:n

A
 can be obtained from the 

distribution function of the RV 1

x:n

A  1

x:n

A . So: 

0 if 0

1 if 0

1 if

n x n

n

y

F y p y d

y dx:n

A 1
  (5a) 

0 if 0

1 if 0

1 if

n x n

n

y

F y p y d

y dx:n

A 1
  (5b)  

 Couple of th quantiles of the RVs 

x:n

A 1  and 1

x:n

A , 0,1 . 

From (5a) and (5b) the couples are ,Q Q Q

x:n x:n x:n

A A A1 1 1
: 

- If 0 1 :n xp  0,0Q

x:n

A 1
 

- If 1 1:n xp  ,n nQ d d

x:n

A 1
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Now let us consider the most usual case in practice of a mixed 

endowment. The insured party aged x will receive 1 m.u. at the end of the year of 

his death if this happens within the next n years. Moreover he will receive 1 m.u. if 

he survives n years. The space of events is ={ 0, 1,…,, n-1, n} where 0= “the 

insured survives n years (and so perceives 1 u.m.)” and j= “the insured dies 

within the jth  year (and so perceives the m.u. at the end of this year)”, j=1,2,…,n. 

From td ,we built up the FRV present value of mixed endowment 

associated to a person aged x years 
x:n

A . This FRV adopts as values the 

following FNs, with respective probabilities P: 

1 |

outcomes

, 0,1, , 1r r x

n n x

P

d q r n

d p

 

where |r xq  is the probability that the insured aged x dies within the rth  year. 

The FRV 
x:n

A  defines, 0,1 , the infima and suprema RVs 

x:n
A  and 

x:n
A as:  

1 |

outcomes

r r x

n n x

P

d q

d p

x:n
A

, 0,1, , 1r n  

1 |

outcomes
, 0,1, , 1

r r x

n n x

P
r n

d q

d p

x:n
A

 

We want to remark that the outcomes of these two RVs are not in 

increasing order.  

Following a similar process used for the pure endowment, we can 

determine the next magnitudes. 

 -cuts of the mathematical expectation of the FRV 
x:n

A . 

0,1 , ,E E E
x:n x:n x:n

A A A  with: 

1

1 |
0

n

r r x n n x
r

E E d q d p
x:n x:n

A A  (6a) 
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1

1 |
0

n

r r x n n x
r

E E d q d p
x:n x:n

A A  (6b) 

 Variance and standard deviation of the FRV 
x:n

A . 

The variances of the RVs 
x:n

A  and 
x:n

A  are: 

2
1 122

1 | 1 |
0 0

n n

r r x n n x r r x n n x
r r

V d q d p d q d p
x:n

A

 (7a) 

2
1 12 2

1 | 1 |
0 0

n n

r r x n n x r r x n n x
r r

V d q d p d q d p
x:n

A

 (7b) 

So the variance and standard deviation of the FRV 
x:n

A  are obtained by 

substituting (7a) and (7b) in (4). 

 Couple of distribution functions of the RVs 
x:n

A  and 
x:n

A , 

0,1 . 

Taking into account (1), F y
x:n

A
,F y F y

x:n x:n
A A , 

and considering that F y
x:n

A
 F y

x:n
A

 can be obtained from 

the distribution function of the RV 
x:n

A  
x:n

A , for 

0,1,..., 2r n : 

1 1

1 1 | 1
1

1

0 if

if

if

1 if

n

n x n n

r

n x x n rn s n r
s

y d

p d y d

F y
p q d y d

y d

x:n
A

      (8a) 
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1 1

1 1 | 1
1

1

0 if

if

if

1 if

n

n x n n

r

n x x n rn s n r
s

y d

p d y d

F y
p q d y d

y d

x:n
A       (8b)  

 Couple of th quantiles of the RVs infima (
x:n

A ) and suprema (
x:n

A

), 0,1 . 

From (8a) and (8b), ,Q Q Q
x:n x:n x:n

A A A
 are: 

- If 10 : ,n x n np Q d d
x:n

A
 

- If 1 1 2| 1 1: ,n x n x n x n np p q Q d d
x:n

A
 

- If 
1

1 11 | 1 |
0 0

:
r r

n x x n x xn s n s
s s

p q p q  

1 1,n r n rQ d d
x:n

A
, 0,1, , 2r n  

Numerical application 

We will analyze a mixed endowment for a person aged 75 years with n = 

5. To price the life insurance we use the mortality tables* GRM-80. We consider a 

fuzzy discount rate given by the TFN i
~

=(0.02, 0.03, 0.045) that will be applied 

throughout all the duration of the contract. Its -cuts are: 

0,1 , , 0.02 0.01 , 0.045 0.015i i i  

                                                           

* Mortality probability tables of the Swiss male population “Grundzahlen Renten 

Männer”, 1980. Those tables can be obtained from Table Manager 3.0 available at 

http://www.soa.org/professional-interests/technology/tech-table-manager.aspx. 

http://www.soa.org/professional-interests/technology/tech-table-manager.aspx
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So, the -cuts of the discount function 1
t

td i  are 0,1 : 

, 1.045 0.015 , 1.02 0.01
t t

t t td d d  

The FRV present value of the mixed endowment 
:

A
75 5

, will adopt as 

values the FNs with their respective probabilities reflected in Table 1. 

1 1 1

2 2 2

3 3 3

4 4

outcomes cuts of the outcomes

1 1.045 0.015 , 1.02 0.01 0.0414

1 1.045 0.015 , 1.02 0.01 0.0437

1 1.045 0.015 , 1.02 0.01 0.0460

1 1.045 0.015 , 1.02 0

P

i

i

i

i
4

5 5 5

5 5 5

.01 0.0481

1 1.045 0.015 , 1.02 0.01 0.0501

1 1.045 0.015 , 1.02 0.01 0.7707

i

i

 

Table 1. FRV present value of the mixed endowment 
:

A
75 5

 

Figure 1 shows these FNs as well as the mathematical expectation of the 

FRV, whose - cuts are calculated as indicated in (6). Using (7) the standard 

deviation of this FRV is 0.0296D
75 5:

A . 
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Figure 1. Present value of the mixed endowment and its mathematical 

expectation 

With expressions (8) the couples of distribution functions of probability and 

th quantiles of the RVs 
:

A
75 5

 and 
:

A
75 5

 associated to 
:

A
75 5

 can also be 

obtained. Moreover, it is possible to calculate the probability P B  for different 

Borel sets of the real line which will depend on the value considered for 0,1 . 

 

4. Pricing endowment portfolios with simulated fuzzy random variables 

 

This subsection introduces the fuzzy stochastic quantification of the 

present value of a group of life insurances. The FRV present value of the portfolio 

of endowment insurances, that we will suppose mixed, PVP
~

 PVP
~

, is obtained by 

adding the individual present values of endowment contracts (
j jx :n

A ), j=1,2,...,J, 

with J the total number of insured parties, i.e., PVP
~

=
1

J

j
j jx :n

A .  

In our analysis we will suppose, as is commonplace, independence in the 

mortality among insured parties. Of course, the dependence of the interest rate 

behaviour is complete, i.e. the path of interest rates throughout pricing horizon is 

common for all contracts. Any case, in order to obtain operational results, we must 

use the infima and suprema RVs P α
PV  and P α

PV , obtained from PVP
~

 

E
75 5:

A

0.80 0.82 0.84 0.86 0.88 0.92 0.94 0.96 0.980.90

11

E
75 5:

A

0.80 0.82 0.84 0.86 0.88 0.92 0.94 0.96 0.980.90

11



 

 

 

 

Jorge De Andrés-Sánchez, Laura González-Vila Puchades 

__________________________________________________________ 

 

0,1 , defined as P α
PV

1
j j

J

j
x :n

A  and P α
PV =

1
j j

J

j
x :n

A where 

j jx :n
A  and 

j jx :n
A  are the RVs obtained from the FRV 

j jx :n
A  

0,1 , j=1,2,...,J. 

The -cuts of the mathematical expectation of PVP
~

 and its variance are 

easily obtained using the results of section 3. Specifically, for PVP
~

E  we obtain, 

0,1 : 

J

j
nx

J

j
nx jjjj

EEEEE

1
|:

1
|:

,,
~

AAPVPVVP PPP  (9) 

where 
j j

E
x :n

A  and 
j j

E
x :n

A  are calculated as depicted in (6a) and 

(6b). 

Regarding the variance: 

dVVV
jjjj nxnx

1

0

|:|:2

1~
AAVP P  

 

1

1 10

1

2 j j j j

J J

j j

V V d
x :n x :n

A A   (10) 

Likewise, in the case of pure endowments, the expectation and variance 

of the present value of the portfolio can be obtained analogously to (9) and (10). 

Now we can determine the fair price of life insurance (net premiums or 

net premium reserves). On the other hand, fixing stability surpluses for mortality 

deviations is difficult because the risk can only be quantified with the variance of 

present value of portfolio. To make an accurate estimate of cost of risk magnitudes 

it is also necessary to obtain the quantiles of PVP
~

 using the distribution functions 

of probability of the infima and suprema RVs P α
PV  and P α

PV . However, it is 

not possible to find an exact analytical expression of these distribution functions. 
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Our approximation is based on the random simulation for pricing life insurances in 

[Pitacco, E., 1986] and [Alegre, A., Claramunt, M.M., 1995]. However, in this 

case the results of the simulations will be FNs, due to the fuzziness in discount 

rates, instead crisp values.  

To simulate the FRV PVP
~

 we consider the RVs “moment when the 

insured amount will be paid”, 
j jn xT  j=1,2,…J. If we suppose a portfolio of pure 

endowments, for the jth member of the collective the realizations of 
j jn xT  are 

{nj,∞} and their probabilities: ,1
j j j jn x n xp p . On the other hand, if we 

suppose a portfolio of mixed endowments the outputs of 
j jn xT  are {1,2,...,nj} and 

their probabilities: 0| 1| 2| 1, ,..., ,
j j j j j jx x n x n xq q q p . 

Subsequently we implement the following steps: 

Step 1. We will simulate S times the RVs 
j jn xT , j=1,2,…,J. We 

suppose that those RVs are stochastically independent. So, the sth simulation of 

j jn xT , j=1,2,…,J, generates a vector for the moment of payment 

1 ,..., ,...,s s s
s j JT t t t , s=1,2,...,S. Of course, 

s
jt  is the moment when the insured 

amount will be paid for the jth contract in the sth simulation. 

Step 2. For the sth simulation we can now calculate the present value of 

the endowment for the jth insured, that is the FN s
jt

d , whose -cuts, 0,1 , 

are s
jt

d ,s s
j jt t

d d . 

Step 3. For the sth simulation we calculate the present value of the 

portfolio, s
PVP

~
, by adding the present value of the J policies. It is the FN 

J

j
t

s
P s

j

dVP

1

~~
, where the -cuts, 

s
PPV , are: 

,s s s
P PP

PV PV PV
1 1

,s s
j j

J J

t t
j j

d d . 
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Notice that in this step the original FRV PVP
~

 has been approximated by 

a simulated FRV *
PVP

~
 whose realizations are the FNs 

S
P

s
PPP VPVPVPVP

~
,...,

~
,...,

~
,

~ 11  with the a probability of occurrence 
1

S
. This FRV 

defines, 0,1 , the infima and suprema RVs 
*
P α

PV  and 
*
P α

PV . 

Step 4. We describe 
*
PPV  from its infima and suprema RVs 

*
P α

PV  and 
*
P α

PV . 

To do this, the values of these RVs, 0,1 , are ordered increasingly in such a 

way that the outcomes of 
*
PPV  are 

(1) (2)
...P PPV PV  

( ) ( )
... ...

s S
P PPV PV and analogously for 

*
PPV : 

(1)
PPV  

(2)
PPV  

…
( )s
PPV …

( )S
PPV . With the parentheses we symbolize that the 

realizations of the RVs are ordered increasingly and not from their position in the 

simulation. Of course, in this case 
( )s
PPV  and 

( )s
PPV  may be the extremes of 

the -cuts of two different realizations of *
PVP

~
 that were obtained in step 3. Now 

we can obtain, 0,1 , the couple yF *
PVP

~ yFyF *
P

*
P VPVP

~~ , : 

)(

)1()(

)1(

~

1

1,...,2,1 ,

0

S
P

s
P

s
P

P

PVy

SsPVyPV
S

s

PV

yFyF
*
P

*
P PVVP

 

)(

)1()(

)1(

~

1

1,...,2,1 ,

0

S
P

s
P

s
P

P

PVy

SsPVyPV
S

s

PV

yFyF *
P

*
P PVVP

 

From these expressions we obtain the couple of th quatiles 
*
PVP

~Q : 

)()(
~~~ ,,

s
P

s
P PVPVQQQ *

P

*

P

*

P VPVPVP
 for 1

, 1,2,...,
s - s

s S
S S
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Numerical application 

We will analyse the liability of a portfolio comprised of 12 mixed 

endowments contracts with an insured amount of 1.000 m.u. The insured parties 

for j=1,2,…,5 are 45 years old whereas for j=6,7,…,12 the insured parties are 55 

years old. We price the contracts with the technical basis used in section 3. In both 

cases the contracts end when the insured is 65 years old (age of retirement). So for 

people aged xj=45 years, nj=20 and when xj=55 years, nj=10. The possible results 

of 20T45 are {1,2,...,19,20} and their probabilities: 0| 45 1| 45 18| 45 19 45, ,..., ,q q q p . 

Likewise 10T55 can take {1,2,...,9,10} with the probabilities: 

0| 55 1| 55 8| 55 9 55, ,..., ,q q q p . 

Figure 2 shows the shape of the fuzzy numbers expectation of the present 

value for the two mixed endowments, E A
45:20

 and E
55:10

A . Likewise, 

D
45:20

A =67.98 and D
55:10

A =38.74. 

 

Figure 2. Expectation of present value for the two types of endowments and 

for the portfolio 

From (9) we deduce the mathematical expectation of PVP
~

, PVP
~

E , 

which can be interpreted as the fuzzy fair price of the portfolio of endowments and 

which is also represented in Figure 2. Moreover, using (10), PVP
~

D =185.59. 

We approximate the FRV PVP
~

 from S=5000 simulations. Table 2 shows 

the approximate to its 90
th
, 95

th
 and 99

th
 quantile couples. Table 3 shows the values 

of the infima and suprema distribution function evaluated in the mode of the 95th 

    E
45:20

A          E
55:10

A  
PVP

~~
E

  

    439.98      573.98   688.55   657.01    753.79    827.29                6796.43     8146.41       8233.78 

1 

1 
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quantile in Table 2; i.e. y=8487.79. The infima and suprema distribution function 

are evaluated for =0, 0.25, 0.5, 0.75, 1. We can check that the accumulated 

probability in the most feasible value of the quantile is its own probability level 

(i.e. 95%) but the distribution functions may take practically all values between 0 

and 1. So, for =0.75, the accumulated probability can oscillate between 74.10% 

and 99.40%. In the worst (best) interest rate scenarios, i.e.  interest rates under 

(over) 2%  (4.5%), the level of solvency may be 0% (100%).  

)()(
~~~ ,,

s
P

s
P PVPVQQQ *

P
*
P

*
P VPVPVP

 

 

 
%90
~*

PVP
Q  %95

~*
PVP

Q  %99
~*

PVP
Q  

 
%90
~*

PVP
Q  %90

~*
PVP

Q  
%95
~*

PVP
Q  %95

~*
PVP

Q  
%99
~*

PVP
Q  %99

~*
PVP

Q  

1 7977.04 7977.04 8487.79 8487.79 8700.78 8700.78 

0.75 7597.07 8243.04 8151.44 8724.53 8377.88 8924.91 

0.5 7238.61 8519.74 7833.36 8970.43 8070.38 9156.98 

0.25 6900.25 8807.65 7527.09 9225.88 77799.2 9397.35 

0 6580.71 9107.29 7240.32 9490.66 7502.48 9646.38 

 

Table 2. Couples of several present value quantiles of the portfolio 

 

 
yF *

PVP
~  yF *

PVP
~  

1 95.00% 95.00% 

0.75 74.10% 99.40% 

0.5 0.00% 99.90% 

0.25 0.00% 1.00% 

0 0.00% 1.00% 

 

Table 3. Values of the couple yF *
PVP

~  for y=8487.79. 

 

5. Conclusions 

Following the developments in [Andrés-Sánchez, J., González-Vila, L., 

2012] for life annuities, we model the present value of pure and mixed endowment 

contracts with FRVs because they allow quantifying their expected price and risk 

resulting from the uncertainty sources considered.  

As several authors mentioned above have done, in this paper we use FNs 

to quantify uncertain insurance discount rates. We show how the use of FRV not 
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only allows the fair price of the policy to be quantified, but also measures for the 

risk of mortality, both of which are fundamental for fitting surplus over pure 

premiums or reserves for deviation of mortality. It is important to consider that, to 

the contrary, “traditional” fuzzy life insurance quantification reduces random cash 

flows to their expected values, thereby making the risk of mortality difficult to 

quantify.  

We do not want to conclude this section without commenting that the 

most representative value of a FRV, its mathematical expectation, is a FN. 

However to state premiums or account reserves in financial statements a crisp 

quantification of this relevant magnitude is required. For example, in section 4 the 

expected present value of the portfolio of mixed endowments has a 1-cut equal to 

8146.41 whereas its 0-cut is [6796.43, 8233.78]. If we consider that this value 

quantifies the net reserves of the portfolio it can be understood that “the reserves 

must be approximately 8146.41 m.u but they may fluctuate between 6796.43 and 

8233.78 m.u.” To obtain the definitive value of the magnitude, it must be 

transformed into a crisp value. To do this a defuzzifying method (see [Zhao and 

Govind, 1991] for a wide discussion of fuzzy mathematics, and [Cummins and 

Derrig, 1997] for applications in fuzzy-actuarial analysis) must be applied. 

Another way of doing this is to consider the fuzzy quantification as a first 

approximation that allows a margin for the “actuarial subjective judgment” who 

must use his/her experience to establish the crisp value of the fuzzy estimate.  
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