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ABSTRACT 

During the last decades, most of the studies based on climate change effects on 

vegetation physiology have focused on upland forests and species at their 

border of distribution, since, in both conditions, species are highly affected by 

water scarcity. Although few studies have focused on water availability effects 

on riparian vegetation, these species could be extremely affected by water 

scarcity as they are usually found in wet environments and they may not have 

enough ecophysiological controls to cope with prolonged drought periods. 

Moreover, riparian zones are considered hotspots of nitrogen (N) processes. 

These ecotones can reduce part of the N loads received from adjacent 

ecosystems before they reach the stream, mainly via denitrification and 

vegetation uptake. In Mediterranean regions, where shallow organic soil layers 

are disconnected from groundwater, denitrification process is limited by the 

weak anoxic conditions on riparian forests soils. There, vegetation uptake 

becomes the main driver for N removal in Mediterranean riparian zones. 

Climate change effects on riparian vegetation may cascade down and modify 

this well-known capacity to remove N from riparian zones.  

The findings from two Mediterranean riparian forests in La Tordera catchment 

showed that riparian tree species are already experiencing the effects of 

drought periods in the Mediterranean region. Quercus robur species, typically 

found in mid-European floodplains, is already experiencing tree growth 

decline at its southernmost distribution range edge. On the other hand, 

riparian tree species at Mediterranean forests showed high dependence on soil 

water availability during summer, obtaining more than 80% of the water 

transpired from the vadose zone. Phreatophitic species, Alnus glutinosa and 

Populus nigra, took up water from the groundwater compartment during 

spring but soil water was their main water source during summer. A. glutinosa 

did not present ecophysiological controls to avoid drought situations, while P. 

nigra increased its iWUE during dry years. Fraxinus excelsior was cohabiting 

with both species in the riparian forest. This species, located far away from the 

stream channel, was more depending on soil water availability and did not 



 

present any ecophysiological mechanism to cope with summer drought. 

Conversely, the N-fixing invasive species Robinia pseudoacacia, which was co-

occurring all across the riparian forest, showed high plasticity to cope with 

different water availability conditions.  

Additionally, the findings obtained from the effects of riparian vegetation on 

water and N fluxes highlighted the high spatial heterogeneity of 

Mediterranean riparian forests within relatively small distances (~25 m). The 

studied Mediterranean riparian forest showed a remarkable spatial 

heterogeneity on water availability, with groundwater levels increasing from 

the near-stream zone (~0.6m deep) to the hillslope edge (~2.2m deep). Shallow 

groundwater tables enhanced the connectivity between vadose zone and 

groundwater at the near-stream zone, allowing greater transpiration and N 

uptake rates compared to the hillslope edge. Conversely, denitrification rates 

were generally low across all the riparian area due to water limitation and its 

weak anoxic conditions. Nevertheless, these soil conditions promote 

respiration rates all across the riparian forest soil, and thus, riparian soils 

emitted large CO2 fluxes. Finally, simulation based on climate change 

projections suggested a future increase in soil N concentrations as well as a 

reduction of the effective N-removal area of this riparian zones. The feasible 

substitution of autochthonous species by the already present R. pseudoacacia 

may homogenize soil N availability across the riparian area but would not 

increase the future soil N availability.  

Overall, our findings highlight the spatial heterogeneity of Mediterranean 

riparian zones and the need to better evaluate spatio-temporal processes to 

understand their mechanisms. N retention in Mediterranean riparian soils 

occur mainly by vegetation uptake. Yet, future climate projections may 

exacerbate water scarcity problems, inhibiting denitrification rates and 

reducing vegetation uptake. Therefore, these results challenge the well-

accepted capacity to reduce N loads reaching the stream, and suggest that 

Mediterranean riparian soils can become a potential source of N to adjacent 

aquatic ecosystems in the future. 



 

 

RESUM 

Durant les darreres dècades, la majoria d'estudis sobre els efectes del canvi 

climàtic en la vegetació s'han centrat en boscos d'alta muntanya amb un 

gradient latitudinal i espècies en els seus límits de distribució geogràfica, ja 

que, en ambdues situacions, els individus poden trobar-se afectades per 

l'escassetat d'aigua. Tot i que pocs estudis s'han centrat en els efectes de 

disponibilitat d'aigua en la vegetació de ribera, aquestes espècies podrien 

veure's extremadament afectades per l'escassetat d'aigua, donat que 

normalment es troben en ambients humits i poden no disposar de controls 

ecofisiològics suficients per afrontar períodes sequera prolongada. D'altra 

banda, les zones de ribera es consideren hotspots dels processos del nitrogen 

(N). Aquests ecotons poden reduir part de les càrregues N que arriben dels 

ecosistemes adjacents abans d'arribar al riu, principalment a través de la 

desnitrificació i l'absorció per part de la vegetació. A les regions mediterrànies, 

on els horitzons orgànics dels sòls orgànics queden desconnectats de l'aigua 

del freàtic, el procés de desnitrificació està limitat per les baixes condicions 

anòxiques dels sòls de ribera. Així doncs, l'absorció de N per part de la 

vegetació es converteix en el principal procés de retenció de N a les zones de 

ribera mediterrànies. Els efectes del canvi climàtic en la vegetació de ribera 

poden també modificar aquesta capacitat d'eliminar N de les zones de ribera. 

Els resultats obtinguts en dos boscos de ribera mediterranis de la conca de La 

Tordera mostren que les espècies arbòries de ribera estan experimentant els 

efectes de la sequera a la regió mediterrània. Quercus robur, que normalment es 

troba en planes d'inundació d'Europa central, estan experimentant un declivi 

en el creixement anual dels individus en el seu límit de distribució geogràfica 

més meridional. D'altra banda, les espècies arbòries dels boscos de ribera 

mediterranis una elevada dependència a la disponibilitat d'aigua del sòl durant 

el període d'estiu, obtenint més del 80% de l'aigua transpirada a la zona de no 

saturada del sòl. Les espècies freatòfiles, Alnus glutinosa i Populus nigra, 

obtenen l'aigua principalment del freàtic durant la primavera, però el sòl no 

saturat és la principal font d'obtenció d'aigua durant l'estiu. A. glutinosa no 



 

presenta controls ecofisiològics per evitar les situacions de sequera, mentre que 

P. nigra augmenta la seva iWUE durant els anys secs. Fraxinus excelsior conviu 

amb ambdues espècies al bosc de ribera. Aquesta espècie, situada a les zones 

allunyades del llit del riu, presenta una forta dependència a la disponibilitat 

d'aigua del sòl tot i no tenir mecanismes ecofisiològics per afrontar la sequera 

estival. Contràriament, l'espècie invasora fixadora de N, Robinia pseudoacacia, es 

troba distribuida al llarg de tot el bosc de ribera i presenta una gran plasticitat 

per fer front a les diferents condicions de disponibilitat d'aigua. 

A més, els resultats obtinguts sobre els efectes de la vegetació de ribera sobre 

els fluxos d'aigua i N han destacat la gran heterogeneïtat espacial dels boscos 

de ribera mediterranis en distàncies relativament curtes (~ 25 m). El bosc de 

ribera mediterrània estudiat mostra una notable heterogeneïtat espacial en la 

disponibilitat d'aigua, amb nivells freàtics decreixents des de la zona pròxima a 

la llera del riu (~ 0,6 m de profunditat) fins a les zones més allunyades (~ 2,2 m 

de profunditat). Els nivells freàtics més superficials faciliten l'intercanvi entre 

la zona saturada i no saturada del sòl, permetent també una major transpiració 

de la vegetació i absorció de N per part d'aquesta a les zones més pròximes a la 

llera del riu. Per contra, les taxes de desnitrificació són baixes a tota la zona de 

ribera degut a la limitació del sòl de ribera en quant a contingut d'aigua del sòl, 

i la conseqüent anòxia que afavoreix l'activitat dels bacteris desnitrificadors. 

No obstant això, aquestes condicions aeròbiques del sòl, amb relativa humitat, 

promouen altes taxes de respiració a tot el sòl forestal de ribera, i la conseqüent 

elevada emissió de CO2. Finalment, la simulació basada en les projeccions del 

canvi climàtic suggereixen un augment futur de les concentracions del N al sòl, 

així com una reducció de l'àrea de ribera capaç de retenir N de forma efectiva. 

La possible substitució de les espècies autòctones per la invasora R. 

pseudoacacia podria homogeneïtzar la disponibilitat de N del sòl al llarg de la 

zona de ribera, però no augmentaria la futura disponibilitat de N del sòl. 

Així doncs, els nostres resultats destaquen l'heterogeneïtat espacial de les 

zones de ribera mediterrànies i la necessitat d'avaluar els processos a escala 

espaciotemporal per comprendre'ls millor. La retenció de N en sòls de ribera 

mediterranis es produeix principalment per l'absorció d'aquest per part de la 



 

 

vegetació. No obstant, les projeccions climàtiques poden agreujar els 

problemes d'escassetat d'aigua, inhibint les taxes de desnitrificació i reduint 

l'absorció de N per part de la vegetació. Per tant, aquests resultats qüestionen 

la capacitat de les zones de ribera mediterrànies de reduir les càrregues de N 

que arriben als rius, així com suggereixen que els sòls de ribera mediterranis 

poden esdevenir una font potencial de N als ecosistemes aquàtics adjacents en 

el futur. 
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General Introduction and Objectives 
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1.1. Riparian zones and hydrological linkages 

Riparian zones are those ecosystems lying next to the streams and considered 

ecotones between uplands and streams. Riparian ecosystems are characterized 

by having greater water availability than the surrounding uplands given their 

proximity to streams and the shallow groundwater table. Riparian zones are 

also characterized by having alluvial soils from the particles transported by the 

stream flow and deposited at the adjacent zones of the stream channel during 

flooding events or changes in stream velocity. These characteristics promote 

that riparian zones become hotspots of biodiversity. For instance, plant 

communities inhabiting riparian areas have high water requirements and they 

cannot be found elsewhere in the catchment. Moreover, the high resources at 

the area support a large number of animal species such as invertebrates, 

amphibian, reptile, mammals and birds (Naiman et al., 2005; Perry et al., 2012). 

Despite riparian zones occupy a small proportion (generally <3%) of 

catchments (Tockner and Stanford, 2002), these systems can provide multiple 

ecosystem services. Riparian zones can play a key role in regulating water and 

solute exports from the uplands into the streams because of the presence of 

riparian vegetation at the stream margins, which constitute a strong influence 

on geomorphological processes by reducing erosion and minimizing flow 

effects. Riparian zones also act as a hotspots of biogeochemical processes 

within catchments (McClain et al., 2003). For instance, high soil moisture from 

riparian zones also enhance microbial activity accelerating processes such as 

organic matter decomposition or nitrogen (N) removal via denitrification. 

Moreover, riparian vegetation supply organic matter to the stream providing 

food for the in-stream organisms and woody debris that enhance sediment 

retention and create new habitats (Magdaleno et al., 2014). Finally, riparian 

forest also influences stream biogeochemistry, by regulating light entrance and 

water temperature with canopy trees, and processing part of the nutrients 

arriving from uplands to stream through groundwater fluxes or with stream-

spiraling (Lupon et al., 2016b). Therefore, both stream and riparian ecosystem 

are tightly linked.  
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Riparian vegetation is representative of these areas not only because of its high 

water availability requirements, but also because of its capacity to colonize 

unstructured and alluvial soils from the river margins. The vegetation 

inhabiting in riparian areas can vary across different spatial scales. At global 

scale, climatic conditions exert a fundamental influence on riparian zone 

characteristics. Among climatic variables, the hydrological regime has been 

reported to be the most important factor influencing riparian species 

composition across regions (Douda et al., 2016). In the Iberian Peninsula, 

riparian forests are mainly occupied by species of Atlantic distribution such as 

Alnus glutinosa, Fraxinus angustifolia and F. excelsior. Nevertheless, in arid and 

semiarid Mediterranean regions, riparian forests are dominated by species 

with less water demands, such as F. angustifolia, Populus alba, P. nigra and 

Platanus orientalis (Douda et al., 2016). However, in Mediterranean subhumid 

riparian zones, species can cohabit with some mid-European species, such as 

Quercus petraea and Q. robur, which find in these wet areas of the region the 

proper conditions to survive. More recently, many invasive species have been 

detected in Mediterranean riparian zones, as they colonize open spaces caused 

by human disturbances at these sites such as clearcutting management. Robinia 

pseudoacacia and Ailanthus altissima are considered common invasive species 

across the Iberian Peninsula (Sanz Elorza et al., 2004). 

At catchment scale, the riparian community is strongly influenced by 

hydrology and associated fluvial processes such as base flow, drought periods, 

and floods magnitude and timing and thus, it can vary along the river 

continuum dynamics. In mountainous Mediterranean environments, riparian 

areas differed between the erosion, transfer, and depositional zones. The 

riparian area increases its width from the headwater to the floodplains 

downstream, also increases the influence of the stream on the riparian 

hydrology and the deposition of alluviums (Fig. 1.1). Along the catchment, 

heavier stream sediments (i.e. cobbles, gravel, and sand) are deposited at the 

river margins of the headwater and middle reaches, while lighter particles (i.e. 

silt and clay) settle at the floodplain of the depositional reaches.  
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Finally, in regions where water availability have strong gradients across the 

riparian area, such as arid and semi-arid ones, plant species distribute also 

differently across the area depending on their water requirements or abilities 

to cope with water stress. For instance, phreatophitic species are located near 

by the stream edge where their roots can access to the shallow groundwater, 

while species with less water dependence occupy zones farther from the 

stream where groundwater table is deeper. In Mediterranean regions this 

spatial segregation is specially marked. There, the phreatophic species A. 

angustifolia and P. nigra are often find near the stream edge. Contrary, F. 

excelsior, F. angustifolia, Ulmus minor, and Salix salicaceae, more tolerant to water 

availability variability, are located farther away from the stream channel 

(Magdaleno et al., 2014) (Fig. 1.2).  

 

 

 

 

 

Figure 1.1 Schematic representation of energy and water transfers between the stream and its 

catchment along the river continuum: erosion-transfer-deposition concept describing alluvial 

morphological regions. Riparian floodplain width increases along the river continuum (adapted from 

Church et al 1992 and Tabacchi et al. 1998). Expansion and contraction stream periods are represented 

along the river continuum. Flow paths are represented with orange arrows. 
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1.2. Mediterranean riparian trees and water availability 

Water exchange between riparian areas and adjacent streams are commonly 

studied across most of biomes. However, the control that riparian vegetation 

exert on stream discharge and stream-riparian water exchanges is depending 

on the hydrological connection between both ecosystems, but also on the 

climatic regimes and the transpiration rates in the area. Riparian vegetation 

generally intercepts precipitation before it reaches the soil surface. This 

mitigates erosion and leaching effects on riparian soils. In temperate systems, 

groundwater recharges the stream especially during rainfall events. Yet, in arid 

and semi-arid regions, reversal hydrologic flow paths from streams to riparian 

zones can occur when water is scarce, like in summer (Butturini et al., 2003a; 

Martí et al., 2000). These drier periods can switch the characteristics of stream 

flow from an expansion situation, when the stream is recharged by hyporheic 

and riparian lateral water fluxes, to a contraction situation, when the stream 

recharges hyporreic and riparian groundwater compartments (Fig. 1.1). 

Indeed, in Mediterranean zones stream, riparian forest transpiration can 

decrease stream discharge during the vegetative period (Lupon et al., 2016c; 

Medici et al., 2008). For instance, daily transpiration rates can affect 

groundwater and soil water dynamics (Barnard et al., 2010; Bosch et al., 2014; 

Ghazavi et al., 2011; Gribovszki et al., 2010). Thus, the high transpiration rates 

from trees (Huxman et al., 2005; Zhang et al., 2001, 2005) can drive to lower 

groundwater table and facilitate those reverse patterns from the stream to the 

riparian zone (Hernandez-Santana et al., 2011; Medici et al., 2008; Sabater and 

Bernal, 2011; Williams and Scott, 2009) (Fig. 1.1).  

Riparian trees can obtain water simultaneously from soil, groundwater, and 

stream compartments to supply their evapotranspiration demands (Dawson 

and Ehleringer, 1991a; Sánchez-Pérez et al., 2008). Most of the riparian tree 

species obtain the hugest amounts of water from the unsaturated soil, but they 

can switch to other sources depending on its root system distribution and on 

seasonal and annual conditions. For instance, species with shallow root 

distribution system would depend more on soil water availability, while those 

species with deeper root system may obtain water from unsaturated soil and 
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groundwater depending on the seasonality of water availability (Bertrand et 

al., 2014). Among the riparian tree species occuring in the Mediterranean 

region, F. excelsior has been reported to develop shallow root system 

distribution, while P. nigra and A. glutinosa can develop a deep root system that 

can reach the groundwater table (Fig. 1.2). Some studies have pinpointed the 

capacity of these two species to obtain water directly from the stream channel 

when it is needed (Sargeant and Singer, 2016; Singer et al., 2013). Usually, soil 

water is the dominant source for tree transpiration whenever soil water content 

is high (Bertrand et al., 2014). Nevertheless, in arid regions where surface flows 

are low and annual precipitations do not supply enough water to satisfy the 

annual potential evapotranspiration rates, groundwater becomes an important 

source for riparian trees (Liu et al., 2017). This role of groundwater can come 

by direct water root uptake from the compartment or by capillarity fluxes that 

recharge soil water content in the unsaturated zone. This particular need of 

groundwater especially happens during summer drought periods (Bertrand et 

al., 2014). This may propitiate the above mentioned inverse flow connectivity 

with the stream.  

1.3. Riparian trees and soil nitrogen cycling 

Riparian zones are considered hotspots of nitrogen (N) transformations across 

the landscape, as they provide a filter for nitrate (NO3-) transported from 

surrounding lands via runoff and subsurface path flows (Hill, 1996; Vidon et 

al., 2010). In most riparian zones, the primary N removal mechanisms is 

denitrification, an anaerobic process whereby NO3- is transformed to N gas or, 

less frequently, to nitrous oxide (N2O) (Clément et al., 2002). However, 

denitrification requires of anoxic conditions to occur, which barely happens in 

arid or semi-arid regions. Conversely, in these systems, aerobic N 

transformations, such as mineralization or nitrification dominate the riparian 

biogeochemistry, suggesting that N removal capacity by denitrification in these 

riparian zones is really low (Harms and Grimm, 2008) (Fig. 1.3a). Therefore, in 

arid and semiarid zones plant N uptake can be the main N removal process. 

Yet, in Mediterranean regions the groundwater table is often lower than 1m, 

reducing the chance of the emergence of water up to the surface, and 
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disconnecting the saturated zone from surface soil layers which content the 

organic matter and N necessary for microbial N removal (Vidon, 2017). 

Nevertheless, the existence of wetlands can occur in the downstream 

floodplains due to gentler slopes. 

Figure 1.2 Species distribution across a Mediterranean riparian zone: (1) Alnus glutinosa, (2) Populus 

nigra, (3) Salix alba, (4) Ulmus minor, (5) Fraxinus excelsior and F. angustifolia, and (6) Quercus 

pubescens and Q. ilex.  A zoom into the riparian tree root system is shown in the inlet. Deep root 

distribution reached the groundwater table (for A. glutinosa and P. nigra) or even the stream (A. 

glutinosa), while shallow root distribution remains in the unsaturated soil profile (S. alba, U. minor, 

Fraxinus spp. and Q. spp.). 

Riparian trees play a key role in riparian biogeochemistry. First, the strong 

influence that transpiration does on soil water availability influences the 

seasonality of microbial activity. Decreasing soil water availability along the 

vegetative period can switch from anaerobic to aerobic soil microbial processes 

(from denitrification and methanogenesis to mineralitzation, nitrification and 

respiration), or even stop them when reaching a threshold of low water 
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availability (Chang et al., 2014). Yet, little is known about how important is 

transpiration in regulating soil processes. Second, vegetation nutrient uptake 

partly regulates nutrient cycles in the soil compartment, such as C and N. Plant 

uptake is usually questioned as an N removal process because of the 

temporality of this removal, as that C and N removed will return to the 

ecosystem at the end of the vegetative period or after the death of the 

individual. Nevertheless, it may have an important role in arid and semi-arid 

riparian zones due to the negligible denitrification rates. Only few attempts 

have been carried out to quantify vegetation N uptake, as it is difficult to 

obtain direct measurements, and it is usually estimated from N concentration 

in plant tissues (Hefting et al., 2005; Williams and Scott, 2009).  Finally, plant 

species are a source of organic matter and nutrients to the soil compartment 

that will be mineralized afterwards. These compounds can reach the soil 

through leaf litter inputs, wood debris or root exudates. The quality of this 

organic matter is determined by plant species characteristics and it would 

influence microbial processes characteristics in the soil (e.g. decomposition 

rates) (Rascher et al., 2012). Some species can fix atmospheric N in symbioses 

with bacteria. This can induce rapid leaf decomposition rates and end up to an 

increase of soil N stock. For instance, A. glutinosa can fix up to 40-300 kg N ha-1 

year-1 (Silvester, 1976) and its presence is very common in riparian areas.  

1.4. Global change implications 

Climate change but also human population growth and resources 

consumption, with all the consequences in land-use practices, energy use and 

pollution, will impact biological systems across many scales (Green et al., 2011; 

Perry et al., 2012). For instance, climate change and water management are 

expected to alter hydrology (Barnett et al., 2008; Kløve et al., 2011), affecting 

significantly water balances and leading to ecological changes in terms of 

riparian species distribution and productivity (Bertrand et al., 2014; Magdaleno 

et al., 2014; Merrit et al., 2010). All these expected changes in ecosystems can 

induce a loss of their ecosystem services provision (Kløve et al., 2014). 
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Figure 1.3 (a) Relationship between water-filled soil pore space and relative amount of microbial 

nitrification, denitrification and respiration (adapted from Linn and Doran 1984). (b) Comparison between 

riparian zones from mesic and xeric regimes, showing that high groundwater levels and soil water 

contents promote higher gas emissions, while drier conditions reduce them to punctual rewetting 

episodes (adapted from Vidon, 2017). 

It is challenging to predict the effects that global environmental change can 

have on riparian forests. First, there are still many uncertainties about the 

effects that global change can exert on groundwater level (Kløve et al., 2011; 

Meixner et al., 2016). For instance, ecological changes in small catchments may 

be more exacerbated than in larger systems, where ecological changes can be 
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buffered along the catchment (Kløve et al., 2014). Second, it is not fully 

understood the effects that changing groundwater levels can have on riparian 

vegetation, since they are adapted to high water availability. Third, riparian 

ecosystems are already temporally and spatially dynamic systems changing 

geomorphology and species composition to natural hydrology variations 

(Webb et al., 2006). However, the study of the effects that natural climate and 

hydrology variability produce on riparian ecosystems can help to predict the 

feasible effects that climate change may exert on them. 

Climate change forecasts project an increase of temperatures and decrease of 

precipitation in the Mediterranean region (IPCC, 2013). Higher temperatures 

may increase the evapotranspiration demand of vegetation, yet lower water 

resources may difficult to supply this new demand and induce hydrologic 

stress on vegetation. This hydrologic stress may be particularly troubling for 

riparian trees, after their high water demand (Huxman et al., 2005), and at 

present barely encountered with water deficit situations. Therefore, riparian 

forests species may be exposed to higher water stress conditions and be more 

vulnerable than species in upland terrestrial forests.  

Vegetation can perform different adjustments to cope with water limitations. 

For instance, trees perform changes in the root system, their hydraulic 

architecture, transpiration regulation, tree growth or phenology (Jump et al., 

2006; Martnez-Vilalta et al., 2014; Perry et al., 2012; Sperry et al., 2002). Yet, 

severe or long periods of water limitation may lead to the collapse of the plant 

hydraulic system, especially for riparian tree species. There are already several 

widespread examples of altered riparian plant composition such as shifts in the 

dominance of deciduous and coniferous species, increases in drought-tolerant 

species facilitating the entrance of invasive species, and the increasing global 

distribution of plantation and crop species (Kominoski et al., 2013). For 

instance, R. pseudoacacia is an invasive N-fixing species that has been already 

reported to be naturalized in Europe, temperate Asia, Australia, New Zeland 

northern and southern Africa and temperate South America (Vítková et al., 

2015; Weber, 2003). The presence of this species can have a fertilizing effect on 

N-poor ecosystems (Rascher et al., 2012; Vilà et al., 2011), but their effects on N-
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enriched ecosystems are still uncertain (Akamatsu et al., 2011; Castro-Díez et 

al., 2009). 

Therefore, changes on the diversity and distribution of plant functional traits 

can provoke cascade effects on terrestrial and aquatic food webs, organic 

matter production and processing, nutrient cycling, water quality, and water 

availability (Rascher et al., 2012; Reich, 2006). For instance, changes in litter 

quality and production may also affect decomposition rates and nutrient 

cycling. On the other hand, species substitution can result in species with a 

higher performance of plant water use (higher water use efficiency, WUE), 

preventing drastic soil moisture decreases (Perry et al., 2012). Besides, climate 

change will affect differently litter decomposition and nutrient cycling in 

riparian zones. On one side, warmer temperatures may enhance detritivore 

and microbial activities, enhancing decomposition and nutrient cycle (Briones 

et al., 2009). Yet, lower water availability may limit microbial activity (Lupon et 

al., 2015; Rustand et al., 2001). Some authors suggest that in arid and semiarid 

regions, lower spring and summer water availability under increasing 

temperatures would lead to slower decomposition rates and nutrient cycling 

(Perry et al., 2012). However, it is challenging to understand how global 

change projections can affect the complex interaction between soil, vegetation, 

and atmosphere at riparian zones (Fig. 1.4) 

Microbial soil processes can have gas molecules as a final product of the 

reaction, which are usually reaching the atmosphere and represent an 

output/loss of the system. This gas emissions can contribute to greenhouse gas 

effect, but their magnitudes differ among soil water availability conditions. For 

instance, riparian zones with shallow groundwater table where soil remains 

wet during most of the year can be potential sources of methane (CH4) and 

N2O to the atmosphere as they are they are final products of anaerobic 

processes (methanogenesis and incomplete denitrification and nitrification, 

respectively). However, during summer drought periods, when soil water 

availability decreases, aerobic respiration increases emitting higher volumes of 

CO2 to the atmosphere (Fig. 1.3b). Contrary, in riparian zones with lower 

groundwater tables and soil water content,  gas emissions remain poor along 
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the year increasing after rewetting events (Harms and Grimm, 2012; Jacinthe et 

al., 2015) (Fig. 1.3b).  

1.5. Objectives 

This thesis aims to contribute to a better understanding on how riparian tree 

species respond to changes in water availability with changes in both 

physiological and their relative abundance across the riparian gradient. 

Besides, it studies how these changes cascade down to C and N cycling in 

riparian soil, which will ultimately affect stream ecosystems. Although some 

studies have examined the influence of nutrients and organic matter transfer 

between riparian and stream ecosystems, very few studies have examined 

these linkages by explicitly merging perspectives from terrestrial and stream 

ecology as it is presented in this thesis. Moreover, few studies have paid 

attention to responses of riparian vegetation to climate and water availability 

variability, as they occupy small areas in the catchment and they barely 

encounter water deficit situations.  

Figure 1.4 Complex interaction between riparian hydrology, and riparian forest and soil compartments. 

Orange arrows represent the processes studied in this dissertation. 
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Mediterranean regions provide strong intra- and interannual variability in 

environmental conditions. This makes Mediterranean riparian forests a 

suitable natural laboratory to study possible climate change effects on tree 

species and soil biogeochemistry. For that, we have studied two well 

developed forest under Mediterranean climate, one at the floodplain of the 

depositional zone of La Tordera river, and the second at the middle reach of the 

same river. Most of the work included in this thesis have been carried out in 

the stand at the middle reach. In order to study biogeochemistry at riparian 

zones, we used N as a proxy due to (i) its high reactivity and (ii) the well-

known importance of riparian zones controlling uplands exports to the 

streams. 

The third chapter aimed to study the vulnerability of riparian tree species to 

warmer and drier conditions from the last decades. For all species, we expected 

a decline in growth trends and an increase on wood water use efficiency as a 

consequence of warming over last decades, especially in the zones of the forest 

where water availability is lower. Q. robur species, which founds in the 

Mediterranean region its southernmost distribution edge, is expected to be the 

most sensible species 

The fourth chapter aimed to evaluate the sensitivity of riparian tree species to 

water availability limitation and to determine the main water sources to supply 

their transpiration. For that, we compared tree species between a wet and a dry 

year. We expected that those species at the stream edge would depend on 

groundwater availability and would show weak strategies to cope with water 

stream limitation. Contrary, we expected that those tree species located near 

the hillslope edge and the invasive R. pseudoacacia would present more 

strategies to cope with environmental conditions of the drier year (i.e. reducing 

leaf biomass production, producing smaller leaves, increasing iWUE, and 

increasing leaf litter fall during summer). 

In the fifth chapter we aimed to evaluate how the spatiotemporal variability of 

soil water availability drive soil N processes, and thus soil CO2 and N2O 

emissions, in Mediterranean riparian soils. We expected low denitrification 
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rates due to low water availability. However, aerobic soil conditions would 

enhance nitrification and microbial respiration, especially during warm 

conditions. Anoxic processes would take place at the near-stream riparian 

zone, while aerobic processes would be dominant farther away from the 

stream channel. 

The sixth chapter aimed to estimate the relative contribution of riparian 

vegetation to influence water and N exports to the stream and simulate climate 

change effects on this influence. For that, we studied riparian spatial 

heterogeneity. We expected that transpiration during vegetative periods would 

promote water and nitrate retention from the soil compartment, especially at 

the near-stream riparian zone where higher soil water availability would 

facilitate higher nitrate uptake. Based on climate change projections, we 

hypothesized that future drier conditions would cause a decrease on soil water 

content and an increase of soil nitrate concentration due to lower root-uptake 

rates. 

The seventh chapter aimed to estimate the effects of a potential tree species 

substitution on the riparian forest soil N availability due to changes in leaf 

litter inputs. We hypothesized that  future climate change would difficult 

native tree species survival and then facilitate their substitution by the already 

present invasive N-fixing tree species R. pseudoacacia. We expected that the 

expansion of R. pseudoacacia would increase soil N inputs, soil N processes and 

soil N availability. 
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CHAPTER 2 
Study Site and Field Design 
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2.1. The Tordera basin  

The present thesis research has been carried out in La Tordera catchment, 

located in the NE of the Iberian Peninsula.  La Tordera catchment occupies 869 

km2 and its altitude ranges from 0 m (river mouth) to 1700 m (headwaters). The 

marked altitudinal gradient that characterizes La Tordera basin determines a 

high variability of local microclimates. At  the highest elevations, the local 

climate is sub-humid Mediterranean (average annual precipitation >900 mm), 

whereas the surrounding climate in the area is typically semi-arid 

Mediterranean (average annual precipitation < 500 mm) in the lowland areas 

close by the river mouth. Given the high variation of local microclimates, a 

wide range of vegetation characteristic from different climate conditions can be 

found.. Thus, vegetation types cover from boreo-alpine (Junipuerus nana, 

Vaccinium myrtillus, Antennaria dioica),  to Atlantic (Abies alba, Quercus petrea, Q. 

obur, Fraxinus excelior, Castanea Sativa, Pinus sylvestris) and to Mediterranean 

types (Quercus ilex, Pinus pinaster, Pinus halepensis, ...) (Boada et al., 2008). 

Moreover, La Tordera has a wide range of land-uses, from forest (77%) to 

agricultural (16%) and urban or industrial uses (7%). 

The uniqueness of climatic and floristic characteristics of La Tordera basin has 

supported  its recognition for protection and conservation. This results in  a 

numerous of protected areas in the catchment, like the Montseny Mountain 

Natural Park (since 1995) or the Roureda de Tordera (since 1993). The ecological 

importance of the Roureda de Tordera has been decisive for its recognition in 

protecting the area under local (Natural Interesting Place), regional (Natural 

Interest Spaces Plan (PEIN) and Wetlands Inventory of Catalonia) and 

European (Nature 2000 network) administrative figures. Moreover, the 

catchment has been the focus of multiple studies with ecological and biological 

perspectives (e.g. Àvila and Rodà, 2012; Bernal et al., 2015; Lupon et al., 2015; 

Pastor et al., 2014; Von Schiller et al., 2008), which are a valuable knowledge 

background.  

We selected two study sites across the catchment with distinct climate and 

vegetation community: the Roureda de Tordera, located at the lowlands of the 
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catchment, and the Font del Regàs, located at the headwaters of the catchment. 
(Fig. 2.1).  Both sites are located in protected areas, thus they are relatively 
pristine with low anthropic pressure and relatively well preserved riparian 
forests. These forests are dominated by deciduous trees. Moreover, both sites 
are characterized for being close to the river and for presenting  a strong spatial 
gradient of water availability. This spatial gradient, together with the 
seasonality of climatic conditions, typical from Mediterranean regions, make 
them a perfect natural lab to explore the effects of water availability on tree 
species distribution and functionality.  

 

  

Figure 2.1 La Tordera catchment where Font del Regàs is at the headwaters and the Roureda de 
Tordera close to the river mouth. 

 

2.2. Roureda de Tordera  

La Roureda de Tordera, also known as Roureda de Verdalet, is a flat forested area 
(35 ha) located at the lowland of La Tordera river (Fig. 2.2a). The climate is semi-
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arid Mediterranean, with a mean annual temperature of 15.6 ± 0.7 ºC and a 

mean annual precipitation of 627 ± 185 mm (mean ± SD, period: 1968-2008, 

Blanes Meteorological Station). The singularity of the Roureda de Tordera lies on 

flooding periods that last from 4-7 months per year, as a result of surface 

inputs and the emergency of groundwater table level. The flooding is not 

homogeneous across the area, shows a gradient from dry to flooded zones.   

The microclimate and the high water availability in this area facilitates the 

presence of both  Atlantic species such as Pedunculate oak (Quercus robur), and 

riparian species such as Ash (Fraxinus angustifolia) and Field elm (Ulmus minor). 

But also  Mediterranean species  as Algerian oak (Quercus canariensis), Holm 

oak (Quercus ilex), Cork oak (Quercus suber), and Pubescent oak (Quercus 

pubescens). Among them, Q. canariensis, Q. robur, and F. angustifolia are the most  

abundant, but their distribution differs across the flooding gradient (Fig. 2.2a). 

Q. robur and F. angustifolia cohabit in the flooded areas, while Q. canariensis is 

located in the driest zones. Both Quercus species are considered transitional 

communities between Atlantic and Mediterranean climates, and thus, they 

only inhabited in singular, restricted areas. Q. robur is at its southern 

distribution edge while Q. canariensis at its northern distribution edge. 

2.3. Font del Regàs catchment 

Font del Regàs catchment is relatively small and forested (14.2 km2), located in 

the headwaters of La Tordera river, within the Natural Park of the Montseny 

Mountains (UNESCO’s Biosphere Reserve). The climate is subhumid 

Mediterranean and the catchment can be considered as a temperate island 

surrounded by a semiarid landscape. The mean annual temperature is 12.1 ± 

2.5ºC and the mean annual precipitation averages 925 ± 151 mm (mean ± SD, 

period: 1940-2000, Catalan Meteorological Service). Total inorganic 

atmospheric N deposition in the Montseny Mountains Range oscillates 

between 15-30 kg N ha-1 yr-1 (period: 1983-2007, Àvila and Rodà, 2012). 

The catchment is dominated by biotitic granite and it has steep slopes (slope ~ 

28%). Mediterranean evergreen oak (Q. ilex) and temperate European beech (F. 
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 sylvatica) forests cover the major part of the catchment, while heathlands and 

grasslands can be found at higher altitudes (Cartographic and Geological 

Institute of Catalonia). At the valley bottom of the catchment, the stream 

channel is flanked by a riparian forest that occupies the 6% of the catchment 

area. Common riparian tree species are black alder (Alnus glutinosa), black 

poplar (Populus nigra) European ash (Fraxinus excelsior), black locust (Robinia 

pseudoacacia), and hybrid sycamore (Platanus hybrid).  

 

Figure 2.2 Tree species distribution across (a) the flooding gradient of Roureda de Tordera, and (b) the 

riparian area of Font del Regàs. 

We selected a well-developed riparian stand at the valley bottom of the 

catchment (surface area = 25 x 30 m). The riparian soil (pH ~ 7) is sandy-loam 

with a 5 cm deep organic layer followed by a 30 cm deep A-horizon (Lupon et 

al., 2016a). The riparian stand consisted of R. pseudoacacia, P. nigra, A. glutinosa 

and F. excelsior (74%, 13%, 10%, and 3% of the total basal area (BA), 
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respectively). As in the Roudera de Tordera, riparian trees species were 

differently located across the water availability gradient, with both 

phreatophic species (A. glutinosa and P. nigra) inhabiting the area near by the 

stream edge, F. excelsior inhabiting only by the hillslope edge, and the invasive 

R. pseudoacacia standing across all the riparian area (Fig. 2.2b). 

The near-stream section (0-4 m from the stream edge) occupied 16 % of the 

riparian area and it was composed by A. glutinosa, P. nigra, and R. pseudoacacia 

(45%, 33%, and 22% of the section’s BA). The intermediate section (4-7 m from 

the stream edge) occupied 12% of the riparian area and it was composed by P. 

nigra and R. pseudoacacia (29% and 71% of the section’s BA). The hillslope 

section (7-25 m from the stream edge) was the largest (72% of the riparian area) 

and it was composed by F. excelsior and R. pseudoacacia (7% and 93% of the 

section’s BA) (Fig. 2.2b). 

2.4. General methods  

This spatial gradient of water availability together with the seasonality of 

climatic conditions typically from Mediterranean regions, make both riparian 

forests the Roureda de Tordera and Font del Regàs perfect natural labs to explore 

the effects of water availability on riparian tree species and soil N dynamics, as 

well as the effects that riparian trees can have on soil N availability. Table 2.1 

presents a summary of all the field methods used in this thesis. 

2.4.1.Environmental conditions 

A meteorological station was located at ca. 800 m distance from the study site. 

Air temperature, relative humidity, solar radiation, photosynthetic active 

radiation (PAR), precipitation, and wind’s speed were monitored  at a height 

of 3 m and measured at 30-s intervals. Data were stored as 15-min average in a 

data-logger (CR1000 Data-logger and AM16/32 Multiplexers, Campbell 

Scientific, Inc., Logan, UT, USA). Vapor pressure deficit (VPD) was obtained 

from air temperature and relative humidity. Soil water content (in cm3 cm-3) 

and groundwater level (in m below soil surface) fluctuations were monitored 

across the riparian area during the study period (2010-2013). Soil water content 
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was measured for the upper 30-cm of soil every 15-min using frequency 

domain reflectometers (TDR sensors, CS616, Campbell Scientific, Logan, USA) 

at different distances from the stream channel (1.5, 4, and 14 m).  

2.4.2. Riparian forest characterization 

In both studied riparian forests we conducted forest inventories to evaluate 

tree species distribution across the water availability gradients. For each tree 

we determined the species, DBH, height, and distance to the stream channel. 

In Roureda de Tordera, we extracted tree cores with a borer  to measure tree-ring 

width and estimate  annual tree basal area increment. Moreover, we measured 

the concentration of the isotope 13C on tree-ring wood to estimate iWUE. See 

further details in Chapter 3. 

In Font del Regàs we conducted an exhaustive study of leaf characterization. 

First, we measured every two weeks the photosynthetic active radiation (PAR) 

below the canopy forest and outside the forest to estimate temporal changes of 

leaf area index (LAI) applying  Norman and Jarvis equation (1975). PAR 

measurements were carried out with a Sunfleck Par Ceptometer Model SF-80 

(Decagon Devices, USA). Second, we did characterize fully developed sunlit 

leaves for all riparian tree species. We measured leaf area, leaf wet and dry 

weight, leaf thickness, leaf C and N concentrations, and 13C to estimate iWUE. 

Third, we installed 30 baskets of 1 m2 to collect leaf litterfall. From these 

samples we measured annual leaf production and leaf litterfall soil inputs by 

species, in terms of  dry weight mass and N (both in g m-2). The study of  leaf 

litterfall seasonality by tree species allows us to evaluate the different species 

responses to drought. Nutrient reabsorption efficiency (NRE) was also 

estimated from differences in leaf N concentrations sampled from the canopy 

and collected from leaf litterfall baskets. Finally, we conducted leaf 

decomposition experiments to estimate specific decomposition rates. Most of 

the measurements were conducted along one humid year (2011) and one dry 

year (2012). For further details see Chapter 4 and Chapter 7.   
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2.4.3. Soil biogeochemistry characterization 

To study the spatio-temporal patterns of soil N processes we evaluated them 

along one year. We measured soil net mineralization (NNM) and soil net 

nitrification (NN) using the incubation method (Eno 1960). Soil incubations 

(Fig. 2.3a) were conducted during 4 days among 5 different environmental 

conditions, each field day (N=4) we measured soil N2O emissions with open 

chambers, soil denitrification using the acetylene method with closed chambers 

(Fig. 2.3b), and soil CO2 emissions using and IRGA (PP Systems, Amesbury, 

MA) (Fig. 2.3c). Soil and gas samples were analyzed afterwards in the 

laboratory. Further information provided in Chapter 5. 

   

Figure 2.3 (a) Soil incubations to measure soil N processes, (b) soil chambers to measure natural N2O 

emissions and denitrification, and (c) EGM-4 chamber associated to an IRGA. Source: Anna Lupon, 

Sílvia Poblador, and Francesc Sabater. 

 

2.4.4. Isotopes analyses 

Isotopic techniques have been developed and extensively used in the last 

decades, conveying some of the most exciting advances in ecological and 

environmental research (Hobson and Wassenaar, 1999; West et al., 2006). In 

particular, natural abundance of stable isotopes (i.e. molecules of the same 

element that differ in neutron number) in organisms are extensively used for 

ecological research. We measured stable isotopes with two purposes. First, we 

measured the isotope 13C concentration in tree-ring wood and leaves. This 

isotope is naturally present in the atmosphere and the proportion 12C:13C is 

99:1. Plant species discriminate to preferentially use 12CO2 for photosynthesis. 

However, when plant species control stomatal closure due to drought stress, 

the isotopic discrimination is reduced  and thus 13C concentration in the tissue 

b a c 
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(wood, leaf, ...) increases. From this relation 12C:13C an intrinsic water use 

efficiency (iWUE) can be estimated (Farquhar et al., 1982). Second, the study of 

18O and 2H from trees sap and possible water sources (i.e. groundwater, stream 

water, or soil water) is an extensively used technique to estimate the relative 

contribution of different water sources to provide water for plant transpiration 

(Dawson and Ehleringer, 1991a). Water reaching the soil from precipitation has 

lower proportion of heavy isotopes, as 18O and 2H, while they are enriched in 

the remaining water after evaporation processes. Therefore, water from 

different compartments usually differ on their isotopic composition. See 

Chapter 3 and Chapter 4 in the case of 13C and in Chapter 4 for 18O/2H for 

further details. 

2.4.5. Groundwater measurements 

A grid of 35 wells were installed at different distances from the stream channel 

across the study site of Font del Regàs (1.5, 2.5, 5, 11, 17, and 25 m distance) to 

assess groundwater level fluctuations and water quality. Wells were PVC tubes 

(32 mm Ø) uniformly screened along their length and placed at 1 to 3 m b.s.s. 

at the near-stream edge and hillslope edge, respectively. At one well of each 

distance from the stream channel groundwater level was monitored every 15-

min using water pressure transducers (HOBO U20-001-04) and measured 

every two weeks with a water level sensor (Eijelkamp 11.03.30). Moreover, 

stream water and groundwater were also sampled every two weeks. All water 

samples were filtered (Whatman GF/F, 0.7 μm pore Ø) and kept cold (< 4ºC) 

until laboratory analysis (< 24 h after collection). N-NO3- concentration was 

quantified with cadmium reduction method (Keeney and Nelson, 1982) using a 

Technicon Autoanalyzer (Technicon, 1976). These results are presented in  

Chapter 4 and Chapter 6. 

2.4.6. Modellization 

In order to inferred future scenarios of water and N dynamics in 

Mediterranean riparian forests we modelled them using HYDRUS 1D model 

(Simunek et al., 2006). HYDRUS is a well-known software that allow the user 

to model transfer fluxes and reactions along the unsaturated soil layer 
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(Simunek et al 2009). We initially applied HYDRUS 1D to determine soil 
properties of our riparian forest. Afterwards water fluxes were simulated using 
HYDRUS 1D and 2D. Since similar results were obtained from both 
approaches we kept the simple 1D approach to study the spatial heterogeneity 
across the riparian soil (Fig. 2.4). Further details of modeling parameters used 
for Font del Regàs can be found in Chapter 6. 

  

 

Figure 2.4 Schematic conceptual model showing input/output fluxes from the riparian forest 
compartments based on riparian trees distribution: evapotranspiration (1), precipitation (2), leaching (3), 

flooding (4), capillarity (5), infiltration (6), effluent (7) and influent (8) stream situation. 

 
To evaluate the effects of the introduction and complete replacement of native 
species by R. pseudoacacia on soil N availability across the riparian area we 
developed a conceptual model (Fig. 2.5) and applied it using measured data. 
More details are found in Chapter 7.  

2.4.7. Data analyses 

All data analyses were conducted with R statistical software (R Development 
Core Team, 2016, version 2.15.1). The specific statistical methods are 
thoroughly explained in each chapter. 
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Figure 2.5 Schematic conceptual model showing input/output N fluxes from the riparian forest floor.  

 

Table 2.1 Site, field scale, field data, and frequency and duration of the field work used for each chapter of this 

dissertation. For field data: GHG (greenhouse gas), GWL (groundwater level), and GW (groundwater).  

 

Chapter Site Scale Field data Frequency Duration 

3 Roureda de Tordera Forests by 

flooding zones 

Tree-rings Annual 1 month 

(80 years) 

4 Font del Regàs Forest stand Fresh leaves and leaf 

litterfall characterization 

2 weeks 24 months 

4 Font del Regàs Riparian zones Sap and water 18O and 
2H composition 

1 week 2 seasons  

(spring and 

summer) 

5 Font del Regàs Riparian zones Soil N processes GHG 

soil  emissions 

2 months 12 months 

6 Font del Regàs Riparian zones GW L 

GW Nconcentration 

Meteorological data 

2 weeks 36 months 

7 Font del Regàs Riparian zones Leaf litterfall 

Leaf decomposition 

Soil mineralization 

Soil nitrification 

2 weeks 12 months 

Leaf litter fall i 

Soil N-NO3 i available

Litter i 

k i 
Mineral N i 

NN/NNM
NH4 i NO3 i 

Forest floor
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CHAPTER 3 

Living at the edge of the species distribution: 

Effects of temperature increase and flooding 

conditions on growth and iWUE of  

Quercus robur and Q. canariensis 

 

 

The understanding of environmental conditions effects on tree growth 

performance at species distribution edge is crucial to predict how climate change 

can modify species distribution. Roureda de Tordera is a unique natural lab where 

Quercus robur and Quercus canariensis meet, respectively, at their southernmost and 

northernmost geographic distribution edge, where Fraxinus angustifolia is also 

present. The groundwater table rise produces flooding periods (4-7 months per 

year) in the forest, providing extra-water to trees. Tree species are distributed over 

a water availability and flooding gradient in Tordera river floodplain, from non-

flooded (Q. canariensis) to mid- and extremely-flooded (Q. robur and F. angustifolia). 

The aim of this work was to evaluate to what extent, these species out of their core 

distribution range are already experiencing any effects of last decades climate 

change, mainly increasing temperatures and flood variability. We analysed species 

annual wood stem basal area increment (BAI) and intrinsic water use efficiency 

(iWUE), along a water availability and flooding gradient. Our results show that 

increasing temperatures from last decades had no effects on Q. canariensis growth 

while increased its iWUE (+21%). In addition, BAI decreased in the wet zone for Q. 

robur (-33%) and in the mid-flooded zone for F. angustifolia (-56%). iWUE trends of 

Q. robur increased in wet and mid-flooded zones (+13% and +17%, respecitvely). 

No effects were found for iWUE of F. angustifolia. Since Q. robur and F. angustifolia 

are depending on phreatic water availability, on top of rainfall, these species are 

likely to reduce their presence in the area, facilitating the expansion of Q. 

canariensis. This is likely to happen in these singular areas if human induced dry-

out practices of floodplains expands and rainfall at catchment level is reduced as 

expected by climate change projections. 
 

With permission of: F. Sabater and S. Sabater, who are co-authors of this study. 
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3.1. Introduction 

The inherent microclimatic characteristics of Mediterranean floodplains offer 

suitable conditions for the occurrence of temperate tree species. In fact, the 

Mediterranean Basin is considered a hotspot of biodiversity (Myers et al., 2000) 

due to its large variety of ecosystems and habitats. It is a transitional region 

where many species from temperate and dry regimes reach their limit of 

geographic distribution. Pedunculate oak (Quercus robur) is a mid-European 

species that reaches its southern geographic distribution edge in the north of 

the Iberian Peninsula (Dyderski et al., 2018; Huang et al., 2017). This species, 

usually found in European floodplains cohabiting with Fraxinus spp. (Janík et 

al., 2016; Kazda et al., 2000), requires high water availability (Breda et al., 1993; 

Doody and O’Reilly, 2008; Nardini and Tyree, 1999) and soil fertility (Balboa-

Murias et al., 2006; Breda et al., 1993; Nardini and Tyree, 1999). Despite Q. 

robur presence in the Mediterranean region is scarce, in some areas with high 

annual precipitation rates (> 800mm year-1) or shallow groundwater level, 

some stands of this species can be found (Bolós and Vigo, 1984). By contrast, 

Algerian oak (Quercus canariensis) is another deciduous Quercus spp. that is 

usually found in cold and wet areas of the Mediterranean Basin (Urbieta et al., 

2008). It reches its northern distribution edge in the north of the Iberian 

Peninsula (Wazen and Fady, 2015).  

Riparian floodplain areas are upon the most severely threatened terrestrial 

ecosystems, especially downstream, where smooth slopes facilitate the 

establishment of human activities on them. In particular, downstream 

floodplains are usually affected by water extraction, habitat fragmentation 

promoted by agriculture and other land-use practices, forest exploitation or 

even dry-out to prevent diseases from mosquitoes-vector (Asaeda et al., 2015; 

Balboa-Murias et al., 2006; Perry et al., 2012; Sala et al., 2000a; Tylianakis et al., 

2008). These areas have been pointed to be potentially affected by climate 

change in the Mediterranean region (IPCC, 2013). Despite rising temperatures 

can initially promote higher transpiration rates, through increasing 

evaporation demand and lengthing the growing season, they can also result in 

vegetation hydrological stress when water availability is scarce. Global change 
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is expected to reduce flooded areas as a combined result of groundwater 

recharge reduction, linked to precipitation decrease, the increase in 

temperatures, and water extraction for human use purposes. Thus, many 

threats affect the presence of this mid-European species in the Mediterranean 

region.  

The relation between climate and tree-ring width has been widely studied, 

providing information on tree growth responses to climate variations at 

ecosystems' past conditions (Becker et al., 1994; Grace et al., 2002; Jump et al., 

2006; Linares and Tíscar, 2010; Rozas, 2005; Silva et al., 2010). However, tree-

rings widths are also affected by an age-related decline in individual mature 

stages that can mask environmental conditions effects on growth (Phipps and 

Whiton, 1988). To avoid that, tree-ring widths can be converted into stem basal 

area increment (BAI), which shows negative trends when a true decline in tree 

growth takes place (Pedersen, 1998). Moreover, long-term changes in the gas 

exchange metabolism of trees are recorded in the variation of carbon isotopic 

composition (13C) in tree-rings wood, and the intrinsic water use efficiency 

(iWUE) can be indirectly estimated from it (Farquhar et al., 1982; Loader et al., 

2003). These measurements indicate how tree individuals have responded to 

increasing evaporative demands during the last decades. In Mediterranean 

regions, water availability is the most important factor limiting plant growth 

and net primary production. Warmer temperatures associated to climate 

change trends can increase the length of the growing season (Peñuelas and 

Boada, 2003) and thus enhance tree-ring widths, while the decrease of water 

availability may counterbalance this positive effect (Pigolt and Hunthy, 1978). 

Some species in their limit of geographic distribution in the Mediterranean 

Basin have already shown adverse drought effects, such as growth decline, tree 

mortality or species distribution shifts (Jump et al., 2006; Martínez-Sancho et 

al., 2018; Peñuelas and Boada, 2003).  

Our study site represents a singular natural lab where two tree species (Q. 

robur and Q. canariensis, Fig. 3.1) at their geographic distribution range edge, as 

wells as another typically riparian species (Narrow-leaf Ash, Fraxinus 

angustifolia), co-occur along a spatial gradient of water availability and flooding 
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intensity under a Mediterranean climate context. The aim of this study was to 

investigate the effects of flooding periods’ variability, and increasing 

temperatures reported over the last decades, on these tree species growth and 

iWUE trends. This should provide valuable information to evaluate their 

vulnerability to global change. We assessed the annual BAI along the spatial 

gradient and calculated the iWUE from wood tree-rings for particular water 

availability extreme years (i.e. dry and wet). In addition we evaluated the 

effects of environmental conditions on both parameters. We expected to find a 

tree growth decline over the last decades for all tree species, but especially for 

Q. robur, which is at its southernmost distribution range edge, and it is most 

likely very dependent on groundwater availability. Similarly, we expected an 

increase of iWUE over the last years, and a remarkable response of Q. 

canariensis, usually found in drier regions, and likely to better face increasing 

temperatures. Moreover, these differences in growth and iWUE termporal 

trends were expected to show up across a spatial gradient of water availability 

and flooded periods. For F. angustifolia we expected a slight decrease in growth 

and increase in iWUE trends in the wet zone, however, we expected no 

remarkable differences among forest zones. 

3.2. Materials and methods 

3.2.1.Study site  

This study was conducted in Roureda de Tordera (41º 43'N, 2º43'E), a forested 

area in the floodplain of the Tordera River (35 ha, 25-28 m above sea level), NE 

of Spain. The area has a humid Mediterranean climate with mean annual 

temperature of 15.6 ± 0.7 ºC and mean annual precipitation of 627 ± 185 mm. It 

also shows an arid period during summer months (1968-2008, Blanes 

Meteorological Station, Fig. A1). Long-term climate data show a positive 

increase trend of mean annual temperature up to 1.2 ºC (linear regression, p < 

0.001) along the last forty years, and a slight decrease of precipitation (decrease 

of 2 mm year-1; linear regression, p = 0.32) (Fig. 3.2). The forest is located in a 

floodplain area at 500 m from the river side channel and separated from it by 

several human infrastructures (i.e. roads, railway, and some industrial parks). 
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Due to an almost flat topography of the area, the forest remains flooded about 

4-7 months per year. However, this area has a gentle slope that results in 

different flooding levels aligning with the riparian gradient: from flooded 

zones (>50 cm of surface water column) to non flooded ones. Data of annual 

flooding level in Roureda de Tordera were not available, but it is known to be 

higher during years with high precipitation  and stream discharge. The soil of 

the forest has a deep organic horizon (15-20 cm) with a significant organic 

matter content, and a wide clay horizon with iron oxides below it (Borrell, 

1989). The microclimate and high water availability of the area allow the 

presence of typical Atlantic vegetation species such as Q. robur; but also 

riparian species like Ash (F. angustifolia), and more Mediterranean deciduous 

oak such as Algerian oak (Q. canariensis). The wetland behavior and the 

presence of Quercus spp. at their distribution range edge has promoted several 

local and regional administrative protection figures of the area. 

 

Figure 3.1 Geoprgaphical distribution of Q. robur and Q canariensis (data source: Global Biodiversity 

Information Facility). The Roureda de Tordera forest location is pointed by dashed lines. Barplot 

represents tree species basal area (DBH 5>cm) distribution along the zones and groundwater level 

range at each zone (in m below soil surface (b.s.s.)) in the Roureda de la Tordera forest. 

3.2.2. Sampling design 

We determined four zones within the limits of the protected area of the 

floodplain, in order to study the effect of increasing temperatures at different 

flooding levels. Two of them were defined on a non-flooded area: a dry zone 
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with groundwater level (GWL) at < -3 m from soil surface and wet zone where 

GWL ranged from -1.5 m to +0.05 m along the year (data from November 2008 

to July 2009). The other two zones were settled in the flooded area covering a 

gradient from the zone where flooding happens during a short period of the 

year (mid-flooded zone, GWL ranged from -1 m to +0.2 m) to the area flooded 

for several months (extremely-flooded zone, GWL from -0.5 m to 0.5 m) (Fig. 

3.1). Forest inventories (i.e. tree species identification, diameter at breast height 

and tree height measurements) were conducted at each zone. The three tree 

species studied (Q. canariensis, Q. robur, and F. angustifolia) were not evenly 

distributed across the area. Q. canariensis was only present in the dry zone. Q. 

robur was found in all the studied zones, although its presence was scarce in 

the dry zone, being mainly located in zones with higher water availability 

together with F. angustifolia. The highest Q. robur density was found in the wet 

zone, where GWL was high but soil barely flooded. In contrast, the highest 

densities of F. angustifolia were found in the extremely-flooded zone, where 

the GWL emerged over the soil surface during months (Fig. 3.1, Table 3.1). In 

each zone, increment wood cores were taken from mature trees of the three 

species at breast height (1.3 m) in winter 2010 using a 12 mm increment borer.  

3.2.3. Tree-ring growth  

A total of 78 cores were placed into grooved boards to air-dry them. In order to 

avoid contamination among rings wood for future isotope analysis, core’s 

surfaces were blade-cut (Gutiérrez et al., 2004). All samples were visually 

cross-dated. Afterwards, cores were high resolution scanned (1200 d.p.i, Epson 

Expression 10000 XL Scanner) and tree-ring widths measured using 

Windendro software (Regent Instrument Inc. 2002). For each species and zone, 

the resulting tree-ring width series were cross-dated for quality control with 

the statistical programme COFECHA (Holmes, 1983), showing 99% of 

correlation among them. Individuals BAI were calculated from ring-width 

measurements following: 

𝐵𝐴𝐼 =  𝜋 ( 𝑟𝑛
2 − 𝑟𝑛−1

2 )    (Eq. 3.1) 
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where r is the radius of the tree and n is the year of the tree-ring formation. For 

each zone and species, mean stem BAI chronologies were calculated in order to 

evaluate stem BAI changes over time from all species. Current mean stem BAI 

was also analyzed (mean growth per year during last five years) for each 

specie and zone. The study of wood stem BAI, for the last years is appropriate 

to evaluate tree’s production and reponses in front of environmental 

conditions (Rubino and McCarthy, 2000).  

 

Figure 3.2 A) Mean annual temperature trend and B) total annual precipitation trend at Blanes (1968-

2008). Source: Arxiu Municipal de Blanes. 

3.2.4. Water use efficiency 

We carefully separated tree-rings per year from five individuals of each tree 

species and zone. Climatic data (1968-2008) from the Meteorological Station 

located in Blanes (~ 10km from the study site) (Fig. 3.2), was analyzed and we 
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selected years with extreme precipitation and temperature patterns (i.e. dry 

and wet years with  annual temperature and/or precipitation value > ± 1 SD). 

The late wood of corresponding tree-rings (n=12 years) were grounded and 

analyzed for 13C wood signature (Loader et al., 2003; Saurer et al., 2004) in an 

Elemental Analyser Flash 1112 (Carlo Erba, Milano, Italy) coupled to an IRMS 

Delta C isotope ratio mass spectrometer with a CONFLO III interface (Thermo 

Finnigan MAT, Bremen, Germany). Analyses were carried out at the Scientific 

Technical Service of the University of Barcelona. Values are expressed per 

thousand (‰) on the relative -scale and referred to international standards 

following the equation:  

δZ = (Rsample - Rstandard) - 1   (Eq. 3.2) 

where Z is the heavy isotope of C, and R is the ratio of heavier to lighter 

isotope for the sample and standard (13C/12C). For 13C, the international 

standard V-PDB (Vienna Pee Dee Belemnite) was used. From wood 13C we 

calculate intrinsic WUE (iWUE) according to the equations (McCarroll and 

Loader, 2004): 

𝑐𝑖 =  𝑐 𝑎   
δ 13Cplant  − δ 13Cair  + a 

− (b−a)
    (Eq.3.3)  

   iWUE = A/g = ca [1 - (Ci/Ca)] x (0.625)                           (Eq.3.4) 

where a is the discrimination against 13CO2 during diffusion through the 

stomata (±4.4 ‰), b is the net discrimination due to carboxylation (±27 ‰), and 

ci and ca are intercellular and ambient CO2 concentrations (Farquhar et al., 

1982). A is the rate of CO2 assimilation and g is the stomatal conductance. Data 

of 13Cair, Ci and Ca were obtained from McCarroll and Loader (2004) who 

used the high precision records of atmospheric 13C from Antarctic ice cores 

(Francey et al., 1999), and the atmospheric CO2 concentration (ppm) from 

Robertson et al. (2001).  

3.2.5. Theoretical gas-exchange scenarios 

The relationship between carbon uptake and atmospheric carbon (Ci/Ca) was 

calculated along time for each species and zone. Following Saurer et al. (2004), 
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we compared the measured temporal trends to the three theoretical scenarios 

for plant-gas exchange regulation. The three theoretical scenarios differ in how 

Ci follows changes in Ca. In the scenario 1 (Ci = constant), Ci do not follow Ca 

variations, remaining constant and reducing Ci/Ca ratio along time. This 

scenario indicates a strong stomatal closure. In the scenario 2 (Ci/Ca = 

constant), Ci follows Ca in a proportional way due to a regulation of Ci by both 

photosynthesis and stomatal conductance. In scenario 3 (Ca-Ci = constant), Ci 

follows Ca at the same rate, what increase Ci/Ca ratio and suggest a weak 

stomatal response. 

3.2.6. Data statistical analysis 

Mean stem BAI for species and zone was smoothed with a 9-running average 

to reduce interannual variability while highlighting growth trend. Once the 

smoothed stem BAI was represented, the mature age was clearly identifiable 

(Becker et al., 1994; Johnson and Abrams, 2009). For Q. robur in the wet zone, 

mean stem BAI was smoothed using a 5-running average, as it fitted better to 

the BAI trend. All smoothing procedures were conducted using SigmaPlot 

v11.0. 

Statistical analyses were carried out using the package lmer and Hmisc for R 

2.15.1 statistical software (R Developement Core Team, 2012). We performed 

linear-mixed model analysis of variance (ANOVA) to test differences in BAI 

trends, five last year mean wood stem BAI, and tree-ring WUEi across riparian 

tree species and zones. We used tree species and zones as fixed effects, and 

individuals (nested within zones) as random effect. For each model, post hoc 

Tukey contrasts were used to test which species or zones differed from each 

other. In all cases, residuals were tested for normality using a Shapiro-Wilk test 

and homogeneity of variance was visually examined by plotting predicted and 

residual values. In all analyses, differences were considered significant when p 

< 0.05. 

We evaluated the correlation between annual mean mature BAI and annual 

environmental conditions for each species and zone using Pearson correlations. 

We considered as environmental conditions annual and monthly average 
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temperature (T), precipitation (P), and GWL. Climate data (T and P) were 

obtained from the meteorological station in Blanes (~10 km from the study site) 

for the period 1968-2008. Annual data was considered for the vegetative year: 

from October of the previous year tree-ring formation to September of the 

current year (i.e. assuming all trees growth period ended in September). GWL 

for the period 2001-08 was recorded nearby the study area (Data obtained from 

Agència Catalana de l'Aigua: piezometer G-1 Tordera/Maresme, UTMX 476854 

UTMY 4617581). Correlation between precipitation and the groundwater level 

was significant (period 2000-2008; pearson correlation, p < 0.01). 

3.3. Results 

3.3.1. Tree growth and environmental conditions effects 

Q. canariensis was the eldest species in Roureda de Tordera with an average age 

of 80 ± 9 years in the dry zone. Q. robur was 71 ± 4 years in the wet zone, 71 ± 2 

years in the mid-flooded zone and 51 ± 9 years in the extremely-flooded zone. 

F. angustifolia's age ranged from 58 to 76 years (Fig. 3.3, Table 3.1). 

Table 3.1 Tree density (individuals ha-1), mean tree age (year tree-1), and last 5 years mean BAI (cm2 yr-

1 tree-1) for F. angustifolia, Q. robur and Q. canariensis (DBH > 5cm) at the four study zones. 

Variable 
 

Species 
 

Dry 
 

Wet 
 

Mid-flooded 
 

Extremely-
flooded 

Tree density Q. canariensis 1085 - - - 

 
Q. robur 31 604 541 31 

  F. angustifolia - 382 795 1655 

Mean tree age Q. canariensis 80 ± 9 - - - 

 
Q. robur - 71 ± 4A 71 ± 2A 51 ± 9B 

  F. angustifolia - 76 ± 14A 58 ± 15A 61 ± 8A 

Mean stem BAI Q. canariensis 5.96 ± 3.49 - - - 

 
Q. robur - 18.51 ± 6.74A 10.81 ± 2.21AB 9.12 ± 4.85B 

  F. angustifolia - 4.32 ± 3.54A 8.75± 5.54A 6.19 ± 3.87A 

 

The average of the last 5 years wood stem BAI (cm2 tree-1 yr-1) was considerably 

higher in the wet zone, where the wood stem BAI was maximum for Q. robur 

(18.51 ± 6.74 cm2 tree-1 yr-1). In zones where Q. robur coexists with F. angustifolia, 

stem BAI values were considerably higher for Q. robur although no significant 

differences were found (Table 3.1). However, in dry areas where Q. canariensis 
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coexists with Q. robur, Q. canariensis showed the highest wood stem BAI (data 

not shown as the number of individuals of Q. robur where not enough to have 

a representative sample).  

 

Figure 3.3 Mean stem BAI trends (cm2 tree-1) of Q.canariensis (A), Q. robur (B), and F. angustifolia (C) 

in floodplain zones where they were present: dry zone (yellow), wet zone (blue), mid-flooded zone 

(green), and extremely-flooded zone (purple). Dashed coloured lines are the smoothed trends.   

The study of mature BAI trend over time showed different trends for different 

species and zones (Fig. 3.4). Q. canariensis' BAI showed no decline since mid-

1980s (Fig. 3.4a). Its annual BAI showed a weak correlation with temperatures, 

being only negatively correlated with July's temperature (p<0.05) (Fig. 3.5). On 
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the contrary, early spring (March), summer (June and July), december and 

annual precipitation enhanced annual BAI of Q. canariensis. Higher summer 

GWL in the decade of 2000 had also positive effects on its annual BAI (Fig. 3.5). 

 

Figure 3.4 Mature mean BAI trends for Q. canariensis (A), Q. robur (B), and F. angustifolia (C) along 

the riparian zones (means ± standard error). Significant decline trends were found at wet zone for Q. 

robur (y = -0.46x + 937.78, r2 = 0.64, p < 0.0001), and at mid-flooded zone for Q. robur (y = -0.16x + 

326.88, r2 = 0.23, p = 0.04) and F. angustifolia (y = -0.46x + 942.53, r2 = 0.52, p = 0.0001). 

BAI trends of Q.robur differed among water availability and flooding gradient. 

In wet and mid-flooded zones, Q. robur showed a slight growth decline after 

mid-1980s (-33% and -36% respectively, Fig. 3.4b). Significant differences (p < 

0.05) were found between Q. robur mean stem BAI trends for the wet zone with 
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respect to mid-flooded and extremely-flooded zones. Moreover, environmental 

conditions also showed different effects on Q. robur growth depending on the 

forest zone location. In the wet zone, BAI was negatively correlated with high 

temperatures during May, June, and annual means (Fig. 3.6). On the contrary, 

high precipitations during March and July had positive effects on its BAI (Fig. 

3.6). In the mid-flooded zones, only annual total precipitation and mean annual 

temperature influenced Q. robur BAI  (positive and negative effects on BAI, 

respectively). Higher GWL during spring (March to May) had also positive 

effects on BAI in these areas. Nevertheless, the response was completely 

different in the extremely-flooded zone, where Q. robur growth was only 

negatively affected by high precipitations in September and high GWL in 

December (Fig. 3.6). 

Growth trends of F. angustifolia also depended on water availability and 

flooding gradient, but they differ of those of Q. robur. F. angustifolia 

experienced a remarkable decline during the last years in mid-flooded zone (-

56%, Fig. 3.4c). A higher stem BAI was found in the mid-flooded zone where it 

was more productive (+80%) than in the wet (+30%) and the extremely-flooded 

(+60%) zones (Table 3.1, Fig. 3.3c and 3.4c). In the wet zones of the forest its 

BAI was enhanced by April, October and annual precipitation, as well as 

spring and annual high GWL. In the mid-flooded zones, June and July 

temperatures had a negative effect on F. angustifolia growth, while the effect of 

annual precipitation was positive (Fig. 3.7). In the extremely-flooded zones 

only temperature from February and November seemed to affect BAI. In mid- 

and extremely-flooded zones, GWL recharge in October and December had 

negative effects on BAI of F. angustifolia. (Fig. 3.7). 
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Figure 3.5 Pearson correlation values for mature BAI trends of Q. canariensis and monthly and annual 

environmental conditions (temperature, precipitation, and groundwater level). Data shown from october 

of previous year to september of current year. Significant correlations are indicated by asterisks: ***, p < 

0.001; **, p < 0.01; *, p < 0.05). 
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Figure 3.6  Pearson correlation values for mature BAI trends of Q. robur and monthly and annual 

environmental conditions (temperature, precipitation, and groundwater level). Data shown from october 

of previous year to september of current year. Significant correlations are indicated by asterisks: ***, p < 

0.001; **, p < 0.01; *, p < 0.05). 

 

 

Figure 3.7 Pearson correlation values for mature BAI trends of F. angustifolia and monthly and annual 

environmental conditions (temperature, precipitation, and groundwater level). Data shown from october 

of previous year to september of current year. Significant correlations are indicated by asterisks: ***, p < 

0.001; **, p < 0.01; *, p < 0.05). 
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3.3.2. Wood iWUE and environmental conditions effects 

iWUE trends differed among species and zones. iWUE of Q. canariensis 

increased during the last decades (+21) (Fig. 3.8a). For the same period, Q. robur 

iWUE was lower and only increased in the wet (+13%) and mid-flooded (+17%) 

zones, while it remained steady in the extremely-flooded zone (+6%) (Fig. 

3.8b). F. angustifolia showed no trends in iWUE over the last decades but 

annual iWUE was consistently higher in the extremely-flooded zone (88.28 ± 

0.82 µmolCO2 molH2O-1) than in the mid-flooded (81.42 ± 0.99 µmolCO2 mol 

H2O-1) and the wet zones (71.91 ± 0.65 µmolCO2 molH2O-1) (Fig. 3.8c).  

Despite these differences among tree species, few correlations between iWUE 

and environmental conditions were found. Q. canariensis iWUE was enhanced 

by June temperatures and diminished by precipitations in November (Fig. 

A.2). Precipitation in August decreased Q. robur iWUE in the wet zones, while 

mean temperatures in May and precipitations of November from the previous 

year  decreased iWUE in the mid-flooded one. In the extremely-flooded zone, 

iWUE was negatively correlated with October temperatures from the previous 

year (Fig. A.3). High GWL had positive effects on iWUE of Q. robur during 

summer in the wet and mid-flooded zone. iWUE of F. angustifolia was only 

correlated with water availabiliy: January and June precipitation decreased 

iWUE in the wet zone, while GWL increased iWUE during spring in the wet 

zone and winter in the extremely-flooded zone (Fig. A.4). 

3.3.3. Ci/Ca theoretical scenarios 

The comparision between theoretical gas-exchange scenarios and measured 

Ci/Ca trends showed differences among tree species and water availiability 

floodplain zones. Q. canariensis showed a significant decrease in Ci/Ca along 

years (Fig. 3.9). This Ci/Ca trend was close to the Ci = constant (scenario 1). 

Ci/Ca trends of Q. robur were not significant, yet, they were closer to the Ci/Ca 

= constant scenario (scenario 2) in the wet and the extremely-flooded zones, 

while closer to the Ci = constant scenario (scenario 1) in mid-flooded zone (Fig. 

3.10). More diverse responses were found for F. angustifolia among zones (Fig. 

3.10). In the extremely-flooded zone Ci/Ca trend was closer to the Ci = constant 
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scenario (scenario 1) from mid-80s to mid-90s, and closer to the Ci/Ca = 

constant scenario (scenario 2) from mid-90s to 2008. Ci/Ca trend in the mid-

flooded scenario was in between the Ci/Ca = constant and Ca-Ci = constant 

scenarios (scenario 2 and 3, respectively). Finally, F. angustifolia in the wet zone 

showed a Ci/Ca response close to Ca-Ci = constant scenario (scenario 3).    

 

 

Figure 3.8 iWUE trends for mauture Q. canariensis (A), Q. robur (B), and F. angustifolia (C) along the 

riparian zones (means ± standard error). Significant trends were found at the dry zone for Q. 

canariensis (y = 0.84x - 1596.29, r2 = 0.67, p = 0.0007), wet zone for Q. robur (y = 0.42x + 752.626, r2 

= 0.45, p = 0.005), and at mid-flooded zone for Q. robur (y = 0.71x - 1333.91, r2 = 0.47, p = 0.03). 
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3.4. Discussion 

3.4.1.Water availability compensation for temperature BAI decline 

This study evaluates how individuals of Q. canariensis and Q. robur perform at 

the northern and southern edge of their distribution, respectively. Moreover, 

the flooding gradient in Roureda de Tordera allows to distinguish the 

importance of water availability for Q. robur survival in these warm regions, 

and to enlight the potential future viability of these relict forests. IPCC (2013) 

climatic change projections for the studied region may difficult tree growth. 

Hidrologic stress is likely to increase given that increasing temperatures would 

enhance the evaporative demand, but it would not be compensated by 

precipitation, since it is projected to decresase. Besides, the expected higher 

transpiration rates may induce a rapid fall of the GWL in the floodplains, 

increasing tree competition and reducing growth rates.  

The spatial distribution of water availability and flooding intensities of Roureda 

de Tordera affected not only tree species distribution, but also their stem BAI 

trends across the floodplain promoting different responses to the incresing 

temperatures over the last decades. Species located at the flooded zones of the 

forest (Q. robur and F. angustifolia) presented higher BAI than the one at the 

adjacent non-flooded zone (Q. canariensis). Despite Q. robur seemed to better 

perform in the wet zone and F. angustifolia at the mid-flooded one, it is also in 

these zones were they have experienced their growth decline over the last 

decades. In this mid-flooding conditions F. angustifolia's growth was enhanced 

by spring GWL and summer precipitation, while constrained by summer 

temperatures. This might be explained because individuals from this mid-

flooded zone are not adapted to lower water availability (as they might be in 

the wet zone) and, thus, they are more dependend on the annual water 

availability conditions. Some authors reported the absence of growth trends for 

F. angustifolia, but similar BAI that we found in Roureda de Tordera (10 - 20 cm2 

year-1; González-Muñoz et al., 2015). Others highlighted the role of 

precipitation, soil moisture, and GWL on tree growth increases (García-Suárez 

et al., 2009; Rieger et al., 2017). This species is already in the center of its 
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distribution area in Roureda de Tordera (Douda et al., 2016; Gérard et al., 2013; 

Rodríguez-González et al., 2017), what can explain why not consistent growth 

trends are found in the forest. 

Contrary to F. angustifolia, Q. robur's growth was more affected by 

environmental conditions. Its BAI showed a strong decline trend in the wet 

zone over the last decades, yet, this growth decline smoothed down as the 

species is located at flooded areas. The lack of growth trend in the extremely-

flooded zones suggest that Q. robur may take advantadge from this extra-water 

availability that supplies the species water requirements. Moreover, in the wet 

zone, BAI was constrained by high temperatures during late spring but 

enhanced by summer precipitation. Similarly, some studies have reported 

positive interactions with summer precipitations while negative summer 

temperatures effects for this species growth (Nechita et al., 2017; Rieger et al., 

2017; Tessier et al., 1994). These results support that Q. robur can cope with 

increasing temperatures only under high water availability conditions. 

Therefore, the extra-water availability provided by groundwater on top of 

rainfall is very likely the explanation of the persistence of this mid-European 

species within this area.  

Although Q. canariensis has been reported to show many drought tolerant 

strategies (Quero et al., 2008), as well as the ability to cope with interannual 

environmental variability (Messaoudène and Tessier, 1997; Pérez-Ramos et al., 

2014), in some areas of its southern distribution it has already been reported a 

growth decline over the last decades (Ajbilou et al., 2006). However, in Roureda 

de Tordera this species is at its northern distribution range edge and no trend 

have been detected on its growth. Nevertheless, annual and summer 

precipitation, and late spring and early summer high GWL enhanced the BAI 

of this species. These results support the well-known high water requirements 

of this species despite being at their northern distribution range edge 

(Marañón and Ojeda, 1998; Tessier et al., 1994; Urbieta et al., 2008; Vila-Viçosa 

et al., 2015). Therefore, Q. canariensis in Roureda de Tordera is located in the 

contiguous dry zones adjacent to wetter zones where Q. robur and F. 
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angustifolia coexist. There, they encounter optimal water availability conditions 

but avoid root hypoxia. 

3.4.2. iWUE trends: species adaptability to changing climate conditions 

We found different iWUE responses to increasing temperatures and 

atmospheric CO2 concentrations during the last decades. Q. canariensis showed 

the highest iWUE increase during its mature period, implying that the ratio 

between assimilation rates and stomatal conductance has increased. Moreover, 

its Ci/Ca trend confirm that the increase of iWUE is due to stomatal control. 

This result concurs with other mediterranean Quercus spp. behaviour with the 

ability to close stomata when environmental conditions are unfavorable for 

transpiration (Damesin et al., 1997). Contrarily, the changes of carbon isotopic 

discrimination in tree-rings of the Q. robur showed an increase of iWUE over 

the last decades only in the wet and mid-flooded zones, while no changes were 

found in the extremely-flooded zone. However, Ci/Ca trends suggested that 

only individuals in the mid-flooded zone regulate their gas-exchange with the 

atmosphere by stomatal control. Those in the wet zone regulate simultaneosly 

stomatal conductance and the rate of CO2 assimilation. Quercus spp. are 

reported to regulate both photosyntetic activity and stomatal conductance 

(scenario Ci/Ca = constant) or do not change Ci/Ca ratio along time (scenario 

Ca-Ci = constant) (Frank et al., 2015; Saurer et al., 2014). Some authors suggest 

that they might close stomata under drough conditions at their southern 

distribution limits (Martínez-Sancho et al., 2018). Our results emphasize that 

global CO2 concentration rise, but especially the changing climate, are already 

influencing gas-exchange of Q. robur forests at their southernmost distribution 

range edge. Accordingly, Q. robur iWUE was influenced by summer water 

availability supply (i.e. precipitation and GWL). Some authors have also 

reported Q. robur sensitivity to summer rainfalls (García-Suárez et al., 2009; 

Santini et al., 1994). The present optimal environmental conditions in the mid-

flooded zone supported by iWUE analyses, are likely to shift into the 

extremely-flooded zone given the scenario projections of temperature and 

precipitation in the Mediterranean region. 
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Figure 3.9 Ci/Ca trends for mature Q. canariensis (mean values in open circles). Significant trends was 

found at the dry zone for Q. canariensis (y = -0.002x + 5.42, r2 = 0.46, p = 0.016). Different gas-

exchange scenarios are shown in dashed lines (cnt means constant).  

 

Strikingly, F. angustifolia showed no iWUE trends along time. Yet, carbon 

discrimination was correlated with high GWL and higher iWUE was found in 

the extremely-flooded zone, suggesting some kind of limitation. F. angustifolia 

is typical from riparian areas, hence its presence in areas with high water 

availability and seasonal floodings is frequent (Jaeger et al., 2009), and 

supports the absence of differences in iWUE trends across the flooding 

gradient of the study site. In non-flooded areas from the Iberian Peninsula F. 

angustifolia iWUE has been reported to be > 90 µmol mol-1 (González-Muñoz et 

al., 2015), lower values at Roureda de Tordera could be explained by the higher 

water availability in the area. We hypothesize that higher carbon isotopic 

discrimination of F. angustifolia in the extremely-flooded zone is a consequence 

of an intrinsic mechanism to face the stress linked to root-hypoxia periods. 

Ci/Ca trends at study site showed stomatal control on gas-exchange by F. 

angustifola at flooded areas. Gas-exchange in the extremely-flooded zone, 

seemed to change from a strong stomatal closure to a control of both 

photosyntetic activity and stomatal conductance during the last years. Then, 
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flooded periods might have been shortened due to climate change. In this 

sense, some studies have reported important increases in iWUE during 

hypoxia for grasslands, although others reported no changes (Pezeshki and 

Delaune, 1993). Our results offer novelty on F. angustifolia growth constraints 

in these flooded areas, and therefore more research is needed to better enlight 

it.  

 

Figure 3.10 Ci/Ca trends for mature Q. robur and F. angustifolia (mean values in open circles). Significant 

trends was found at the wet zone for F. angustifolia (y = 0.002x - 2.57, r2 = 0.56, p = 0.005). Different gas-

exchange scenarios are shown in dashed lines (cnt means constant).  

Flooding can be beneficial or detrimental to forest seeding survival and 

individuals growth depending on its frequency and duration. It can supply soil 

nutrients and water but also create a physiological stress due to soil hypoxia 

over large flooding periods (Anderson and Mitsch 2008, Urbieta et al 2008). 
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Most of the studies about soil hypoxia effects on plants are conducted in 

seedlings germination during shorter flooding periods than those found in 

Roureda de Tordera. In our study area, shorter flooding periods (i.e. mid-flooded 

zone) were positive for Q. robur growth and thus, this groundwater supplied 

the transpiration demands of the species over the last decades. In this zone Q. 

robur showed tolerance to short periods of root hypoxia as it has been reported 

for some authores (Alaoui-Sossé et al., 2005; Colin-Belgrand et al., 1991; Dreyer, 

1994, Rémy et al., 2003; Schmull and Thomas, 2000; Bourgeade et al 2017, 

Copini et al 2016). Nevertheless, negative correlation between Q. robur growth 

and groundwater recharge during the dormant period in the extremely-

flooded zone, together with its low BAI trend, and the only presence of few 

individuals there, suggest constrictions root-hypoxia for Q. robur, but some 

advantage for F. angustifolia recruitment (Becker et al., 1996; Tessier et al 1997). 

In other areas where Q. robur cohabits with F. angustifolia, long exposition to 

hypoxia stress gave advantadge to F. angustifila germination seeds (Janik et al 

2016). F. angustifolia has high tolerance to flooding hypoxia (Jaeger et al 2009) 

and its seeds do not tolerate dry conditions (Drvodelic et al 2016). Despite 

higher GWL constrained growth rates of F. angustifolia in the extremely-

flooded zones, the high presence of this species in the flooded areas of Roureda 

de Tordera suggest its better mechanisms to overcome the stress induced by 

waterlogging (for example enhancing iWUE). Altogether, long flooding 

periods can be detrimental for Q. robur, decreasing the probability of seed 

germination and/or hampering root developpment. Nevertheless, the acess to 

groundwater may facilitate the survival of this species at its southern 

distribution range edge. Little is known about hypoxia effects on Q. canariensis 

but, since is one of the Meditterranean oaks with more water requirements, 

there are some studies confirming that this species is able to tolerate short 

periods of hypoxia stress in seeds survival and root growth (~30days, Perez-

Ramos et al 2009, Urbieta et al 2008). However, the low probability of floodings 

in the zones of the floodplain habited by Q. canariensis may not compromise 

this species survival at its northern range edge.  
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3.4.3. Future viability of range edge forests  

The presence of European species such as Q. robur in our region is already 

constrained by the Mediterranean climate conditions. Roureda de Tordera 

constitutes a microrefugia of this species where it finds favourable habitat 

conditions (Dobrowski 2010). Our results suggest that global change might 

have been already modifying tree growth rates over the last decades and this 

may change the distribution of these species along the water availability 

gradient in the future. A new climate scenario, with lower water availability 

and flooding periods at Roureda de Tordera, is likely to promote the expansion 

of Q. canariensis to the current wet zones, while Q. robur and F. angustifolia 

could become restricted to the zones where flooding would still occur. From a 

wider perspective, our results show that Q. robur populations at their 

southernmost distribution range edge are already affected by increasing 

temperatures. Their survival may be endangered if water availabilty is reduced 

in the future. In agreement, some models of future species distribution have 

already suggested a shift of Q. robur distribution to higher latitudes (Dyderski 

et al 2017), where tree growth might be promoted by increasing temperatures 

(Huang et al 2017). This, may also imply a shift of its southern distribution 

edge to higher latitudes, while other species more adapted to water scarcity, 

such as Q. canariensis, may be stabilshed in the area. Furthermore, Q. canariensis 

at the mid-southern limit of distribution has been already reported to reduce 

seed production, arising regeneration problems due to drought (Perez-Ramos 

et al 2015, Urbieta et al 2011). Some studies also highlighted future dificulties 

for F. angustifolia habitat in our region (Temunovic et al 2013). The study and 

conservation of these areas where current and future distribution of species 

overlap is of crucial importance to understand climate change damages on 

species distribution (Temunivic et al 2013, Huang et al 2017). In the 

Mediterranean Basin, many studies have already reported how species and 

biomes have shifted towards the poles or higher altitudes as a result of past 

climate warming events (Peñuelas et al., 2002, Jump et al 2006, Mariotti 2010, 

Collins et al. 2013), restricting the climatic niche of the temperate species 

growing in the region (Gazol et al. 2015). The intensity and length of future 

climate change-induced droughts will be decisive for the performance and 
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survival of these species at their distribution range edge in such singular 

forests. 
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CHAPTER 4 

Linking  foliar traits and foliar dynamics to water 

availability. The idiosincratic tree species 

responses in a Mediterranean riparian forest. 

 

 

 

Climate change is already affecting tree species performance all around the world. 

However, little is known abou the effects that climate change can have on riparian 

vegetation. Riparian trees are inhabiting the wettest areas of the catchment, and 

thus they may not present ecophysiological mechanisms to cope with future drier 

conditions. In this work we aimed to evaluate tree species in a mixed 

Mediterranean riparian forest during two years with different environmental 

conditions (one wet and one dry). For that, we evaluated tree canopy dynamics 

(i.e. temporal leaf litterfall) and foliar chemical and morphological traits (i.e. iWUE, 

CN ratios, leaf area, etc). Moreover, we conducted oxygen and deuterium isotopic 

analyses to determine water sources (soil or groundwater) of riparian trees 

transpiration. Our results showed that all riparian trees obtained more than 80% of 

the water transpired from the soil compartement, being specially remarkable 

during summer. Autochthonous species reduced their leaf biomass production 

during the dry year. Yet, only P. nigra was able to increase its iWUE during 

drought conditions. The invasive N-fixing species R. pseudoacacia, distributed all 

across the riparian forest, showed high plasticity to adapt to environmental 

conditions. This species modified its water sources depending on the 

environmental conditions and its location on the riparian area. Moreover, R. 

pseudoacacia was able to produce more leaf biomass during the dry year, as well as 

increase its iWUE. Overall, our results highlight the extreme sensitivity of riparian 

tree species to water availability, and arise the risk of these autouchthonous species 

to be substitute by invasive species more adapted to drought periods. 

 
With permission of: D. Nadal-Sala, D. Sperlich, F. Sabater and S. Sabater, who are co-

authors of this study. 
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4.1. Introduction 

Riparian areas are considered hot spots in terms of exchange dynamics of 

carbon (C), nitrogen (N), and water due to the connection of the stream with 

the entire catchment (Hill, 1996; Hoover et al., 2011; Pert et al., 2010; Qualls and 

Haines, 1992). Thus, riparian areas are intermediate ecosystems between 

streams and uplands ones, where shallow groundwater levels facilitate the 

establishment of species with high water availability demand (Huxman et al., 

2005; Pielech et al., 2015; Zhang et al., 2005). These species may benefit of high 

soil water contents, reachable shallow groundwater or even stream water 

depending on its water requirements, root system or location at the riparian 

site (Dawson and Ehleringer, 1991a; Sánchez-Pérez et al., 2008; Singer et al., 

2013).  

In arid and semi-arid regions, such us the Mediterranean Basin, riparian areas 

are characterized by particularly steep gradients in water availability 

decreasing from the near stream edge to the hillslope (Chang et al., 2014; 

Poblador et al., 2017). This results in a highly diverse tree species distribution 

with different water requirements along this gradient. In turn, the species 

occupying the different riparian zones will determine the timing, quantity and 

quality of organic matter (i.e. leaf litter fall) to the forest floor and the adjacent 

stream, determining their biogeochemical processes  and foodwebs (Hoover et 

al., 2011; Sanpera-Calbet et al., 2016; Vitousek, 1984).   

Mediterranean regions are characterized by mild winters and dry and warm 

summers. Climate change projections at these regions suggest an increase of 

temperatures and decrease of summer precipitation (IPCC, 2013), also 

exacerbating seasonal and inter-annual variability of both variables. In up-land 

Mediterranean forests, climate change effects have been widely studied, and 

drought has reported to induce tree mortalities and forest decline (Jump et al., 

2006; O’Neill et al., 2008; Peñuelas and Boada, 2003). However, little is still 

known about how these changes in water availability can affect species that are 

not well adapted to water scarcity, such as riparian tree species. The 

consequent decrease of water availability in an environment with high 
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evaporative demand is likely to affect riparian vegetation reducing its 

compositional heterogeneity and motivating cascade effects for the ecosystem 

functioning (Hoover et al., 2011). Climate change may induce species shifts, 

increasing drought-tolerant species abundance, and promoting the 

establishment of allocthonous and/or invasive species (Follstad Shah and 

Dahm, 2008; Kominoski et al., 2013; Lite and Stromberg, 2005). For instance, the 

replacement of native riparian vegetation by Eucalyptus in Portugal has 

decreased the heterogeneity of litter inputs to the soil and stream, shifted the 

fall period to summer and lowered groundwater levels (Graça et al., 2002). The 

intrinsic heterogeneity of water availability in Mediterranean riparian areas, 

together with differences in physiology and rooting systems among co-

occurring riparian tree species makes it difficult to predict the response of 

riparian forest communities to (local and regional) changes in water resources 

arising from meteorological drought or alterations in groundwater levels  

(Perry et al., 2012). 

Traits  associated with plant morphology, production, and physiology can 

show adaptations to environmental stressors such as drought. Leaves, together 

with fine roots, are one of the most dynamic part of the plants, especially for 

deciduous trees (Menzel, 2002). Accordingly, plant phenology period is one of 

the most sensitive indicator of how plant species respond to favorable or stress 

conditions (Fernandes et al., 2014; Traiser et al., 2005), phenologic leaf fall is 

directly related to air temperature and photoperiod (Menzel, 2002). Thus, 

changes on environmental conditions have the capacity to modulate leaf litter 

quantity and quality, altering also nutrient (C and N) cycle dynamics. For 

instance, annual riparian inputs are related to precipitation (Benfield, 1997), 

and summer drought or physical perturbations (i.e. windstorms) can cause an 

incomplete nutrient remobilization and an increase in quality of litter inputs 

(Sanpera-Calbet et al., 2016). Moreover, environmental conditions are 

identified to determine morphological leaf traits of different species across 

biomes (Poorter et al., 2009; Wright et al., 2004). In regions where water is not 

limiting tree species exhibit higher leaf area and less succulent leaf structures, 

as strategies to reduce evaporative loses are less critical (Ogaya and Peñuelas, 
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2007; Wright et al., 2017). Nevertheless, changes on environmental conditions 

at local scales can have effects on species morphological leaf traits,  indicating 

its plasticity to overcome adverse conditions (Quero et al., 2006). For instance, 

species with plasticity to drought situation can produce leaves with higher 

specific leaf mass area (LMA), leaf thickness and leaf density, and thus, more 

resistant to water scarcity (Coble and Cavaleri, 2015; Niinemets, 2001; Ogaya 

and Peñuelas, 2006). Leaves stomatal closure is another plant mechanism to 

avoid water losses and overcome drought periods. The consequent decrease in 

13C discrimination during transpiration, recorded in leaves and wood, is used 

as a proxy to estimate species water use efficiency (iWUE) of plants in drier 

sites or during drier years  (Ogaya and Peñuelas, 2006; Peñuelas et al., 2008). 

Tree species responses to dry periods in up-lands  forests are widely studied, 

but still little is known about the capacity of riparian tree species adaptability  

where, to our best knowledge, most of the morphological studies have focused 

on shade tolerance responses to light exposition (Legner et al., 2013). 

Comparing all these physiological parameters among co-occurring native and 

invasive species in riparian areas is much-needed information about their 

different responses and resilience under potential water stressful conditions, a 

relevant issue in Mediterranean regions (González-Muñoz et al., 2015; Perry et 

al., 2012).   

The  aim of this study was to evaluate the sensitivity of four co-occurring tree 

species to water availability variability in a riparian mixed forest in the NE 

Iberian Peninsula. The forest is composed by one native N-fixing species (Alnus 

glutinosa), two natives non-fixing species (Populus nigra and Fraxinus excelsior), 

and the invasive N-fixing species (Robinia pseudoacacia). Specifically, we aimed 

(i) to evaluate riparian tree species responses to changes on water availability, 

and (ii) to identify the main water sources of these species. Therefore, we 

investigated how canopy structure and dynamics changed with changing 

water availability by monitoring and quantifying leaf litter inputs to the forest 

soil of the four tree species during two vegetative years (one with wet and 

another with dry conditions), and identifying the environmental drivers of 

peak falls (i.e. physic perturbations, drought stress responses or phenologic 
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fall). We also measured leaves morphological traits for both years and 

calculated iWUE from leaves and wood. In addition, we analyzed water 

sources contribution to xylem water for all tree species through isotopic 

composition. We hypothesized that those species typically located at the 

stream edge zones (i.e. A. glutinosa and P. nigra) would have higher water 

demands and, thus, would be more sensible to changes in water availability, 

than those located at the hillslope edge (F. excelsior) or adapted to drier 

conditions (R. pseudoacacia). We expected A. glutinosa and P. nigra to be more 

sensible to water scarcity contributing with higher relative leaf litterfall 

amounts during drier periods of the year (i.e. summer) and during drier years 

(i.e. the year 2012). Accordingly, we expected higher leaf traits plasticity to 

drier annual conditions for F. excelsior and R. pseudoacacia (i.e. lower LMA, and 

higher leaf density, iWUE, and nutrient reabsorption efficiency before 

senescence). Finally, we expected that those species at the near-stream edge (A. 

glutinosa, P. nigra and some individuals of R. pseudoacacia) would use soil water 

but even more groundwater, while those farer from the stream edge (F. 

excelsior and R. pseudoacacia) would feed mainly from soil water.  

4.2. Materials and methods 

4.2.1. Study site 

Font del Regàs is a subhumid Mediterranean catchment located in the Montseny 

Natural Park, NE Spain (41º50’N, 2º30’E). The catchment area is 14.2 km2 and 

its altitude ranges from 475 m to 1500 m above the sea level (a.s.l.). Evergreen 

oak (Quercus ilex) and European beech (Fagus sylvatica) forests cover the 54% 

and the 38% of the catchment, respectively (ICC, 2010). The riparian zone 

covers 6% of the catchment area and it consists mainly of two non-fixing 

species, european ash (F. excelsior) and black poplar (P. nigra), and two N-fixing 

species alder (A. glutinosa) and black locust (R. pseudoacacia). The latter one is a 

non-native invasive species that has widely spread in the NE and NW of the 

Iberian Peninsula (Sanz-Elorza 2004). Long-term annual precipitation averages 

925 ± 151 mm and mean annual temperature is 12.1 ± 2.5 ºC (mean ± SD, period 

1940-2000, Catalan Metereologic Service). During the study period, mean 
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annual precipitation and mean annual temperature were 1078 mm and 13.3± 

5.9ºC, and, 872 mm and 13.1± 6.9ºC, for the wet and the dry year respectively. 

Total inorganic N deposition oscillates between 15-30 kg N ha-1 yr-1 (period 

1983-2007; Àvila et al. 2010).  

We selected a well-developed riparian stand (30x20 m) that flanked the stream 

at the valley bottom of the catchment (475 m a.s.l.). The riparian stand 

consisted of R. pseudoacacia, P. nigra, A. glutinosa and F. excelsior (74%, 13%, 

10%, and 3% of the plot total basal area, respectively). The riparian soil (pH ~ 7) 

was sandy-loam and had a 5-cm deep organic layer followed by a 30-cm deep 

A-horizon. Groundwater table at the near-stream edge (<2 m from the stream) 

oscillated from 0.5 to 0.8 m below the soil surface (b.s.s.), while groundwater 

table at the hillslope edge (~25 m from the stream channel) oscillated from 2 to 

4 m b.s.s.. 

4.2.2. Environmental conditions and water availability monitoring  

Meteorological data were monitored in a meteorological station, located at ca. 

800 m distance from the study site. Air temperature, relative humidity, solar 

radiation, photosynthetic active radiation (PAR), precipitation, and wind’s 

speed  sensors were installed at a height of 3 m and measured at 30-s intervals. 

Data were stored as 15-min average in a data-logger (CR1000 Data-logger and 

AM16/32 Multiplexers, Campbell Scientific, Inc., Logan, UT, USA). Vapour 

pressure deficit (VPD) was obtained from air temperature and relative 

humidity. Every two weeks, leaf area index (LAI ) across the riparian plot was 

inferred from field PAR measurements carried out with a Sunfleck Par 

Ceptometer Model SF-80 (Decagon Devices, USA) using Norman and Jarvis 

equation (1975).  

Soil water content (in cm3 cm-3) and groundwater level (in m b.s.s.) fluctuations 

were monitored across the riparian area during the study period. Soil water 

content was measured for the upper 30-cm of soil every 15-min using 

frequency domain reflectometers (TDR sensors, CS616, Campbell Scientific, 

Logan, USA) at different distances from the stream channel (1.5, 4, and 14 m). 

Wells were installed at different distances from the stream channel across the 
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study plot (1.5, 2.5, 5, 17, and 25 m distance) to assess groundwater level 

fluctuations. Wells were PVC tubes (32 mm Ø) uniformly perforated along 

their length and placed at 1 to 3 m b.s.s. at the near-stream edge and hillslope 

edge, respectively. At each location, groundwater level was monitored every 

15-min using water pressure transducers (HOBO U20-001-04) and measured 

every two weeks with a water level sensor (Eijelkamp 11.03.30). 

4.2.3. Leaf litter production 

The temporal patterns of leaf litter inputs were measured throughout the 

vegetative years 2011 and 2012 by using collector baskets of 1-mm mesh, which 

allow rapid drainage of rainwater and reduce weight loss by leaching. We 

placed 30 baskets (1 m2  each) covering 5% of the riparian plot. Baskets were 

placed 1 m above soil and water surface at different distances from the stream 

edge (0, 4, 7, 10, 16 and 18m). Twice a month, leaf litter was collected and 

separated by tree species. At the laboratory, leaf litter was oven-dried (60º, 48-

72h) until constant mass and weighted (González, 2012). For each species and 

sampling date, we determined the dry weight of leaf litter (DW, in g m-2). 

4.2.4. Leaf morphological traits and chemical analyses   

In summer 2011 and 2012 fully developed sunlit leaves of all species were 

sampled from the top canopy. Branches from individuals of each species (N=6) 

were sampled using a pruning pole and a tree climber. After sampling 30  

leaves per tree we measured immediately after the field work in the laboratory 

leaf area (LA, in cm2), leaf fresh weight (FW, in g), and leaf thickness (LT, in 

µm). LA was measured by scanning fresh sampled leaves (EPSON 

EXPRESSION 10000 XL) and analyzing the images afterwards by using ImageJ 

program (National Institutes of Health, Image processing in analysis in Java), 

pixel data obtained was converted to cm2. LT was measured using a 

penatometre. Leaf dry weight (DW, in g) was measured after being oven-dried 

for 48-72h at 60º C. LMA (mg cm-2) was obtained from the quotient DW/LA. 

Leaf density (LD, in mg cm-3) was obtained from the quotient between 

LMA/LT. Succulence (S) is the % of water in leaves and was obtained from the 

difference between FW/DW.  
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Leaf N concentrations (in % dry weight and mg cm -2) and foliar 15N and 13C 

were analyzed for each tree species. Therefore, a composite of leaves sampled 

per each individual was ground and analyzed in an Elemental Analyser Flash 

1112 (Carlo Erba, Milano, Italy) coupled to an IRMS Delta C isotope ratio mass 

spectrometer with a CONFLO III interface (Thermo Finnigan MAT, Bremen, 

Germany). Analyses were carried out at the Scientific Technical Service of the 

University of Barcelona. Values are expressed per thousand (‰) on the relative 

-scale and referred to international standards following the equation:  

δZ = (Rsample - Rstandard) - 1   (Eq. 4.1) 

where Z is the heavy isotope of either N or C, and R is the ratio of heavier to 

lighter isotope for the sample and standard (13C/12C or 15N/14N). For δ 13C the 

international standard V-PDB (Vienna Pee Dee Belemnite) was used. For δ15N 

the international secondary standards of known 15N/14N ratios (IAEA N1 and 

IAEA N2 ammonium sulphate and IAEA NO3 potassium nitrate) relative to N2 

in air were used. 

From these analyzes we used C and N concentrations to calculate CN ratios 

and N leaf concentrations. Moreover, we used foliar δ 13C to calculate intrinsic 

WUE (iWUE) according to the equations (McCarroll and Loader, 2004): 

𝑐𝑖 =  𝑐 𝑎   
δ 13Cplant  − δ 13Cair  + a 

− (b−a)
    (Eq.4.2)  

  iWUE = A/g = ca [1 - (Ci/Ca)] x (0.625)                           (Eq.4.3) 

where a is the discrimination against 13CO2 during diffusion through the 

stomata (±4.4 ‰), b is the net discrimination due to carboxylation (±27 ‰), and 

ci and ca are intercellular and ambient CO2 concentrations (Farquhar et al., 

1982). A is the rate of CO2 assimilation and g is the stomatal conductance. Data 

of 13Cair, Ci and Ca were obtained from McCarroll and Loader (2004) which 

used the high precision records of atmospheric 13C from Antarctic ice cores 

(Francey et al., 1999), and the atmospheric CO2 concentration (ppm) from 

Robertson et al. (2001).  
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4.2.5. Long-term WUE changes recorded in wood 

For each species, increment wood cores were taken from trees at breast height 

(~1.3 m) in winter 2011/12 using a 12-mm increment borer. Two cores were 

taken from each sampled individual and tree-rings were dated following 

standard procedures (Gutiérrez et al., 2004). We analyzed climatic data from 

Viladrau meteorological station (~15 km from the studied area) and identified 

dry and wet years within the period. We carefully sepeared tree-rings per year 

from five individuals of each species. We ground late wood of tree-rings 

created during typical dry and wet years (13 and 12 years respectfully). 

Ground rings were analyzed for δ 13C and calculated iWUE from the results 

following the same procedures than for leaves analyzes (Loader et al. 2003).   

4.2.6. Determining the source of plant water uptake 

During root water uptake and sap transfer there is no fractionation of oxygen 

(18O) nor deuterium (2H) and thus it is widely used to determine water sources 

by vegetation (Dawson and Ehringer, 1991; Wang et al 2010). In spring (end of 

May) and summer (begging of August) of 2013 samples of xylem,  soil and 

groundwater were collected and analyzed for isotopic compositions (18O and 

2H) in order to determine water sources of the riparian trees. All samples were 

collected between 12 and 3 pm. For that, 5 individuals of A. glutinosa, P. nigra, 

and F. excelsior were sampled. In the case of R. pseudoacacia, that is established 

across the riparian plot, 15 individuals were sampled (5 at each riparian area: 

near-stream edge, intermediate zone, and hillslope edge). For each individual, 

one twig was cut and the bark and phloem were removed to prevent 

interference from the isotopes in the water of the leaves. The twigs were 

transferred to borosilicate glass vials with PTFE/silicone septa tops (National 

Scientific Company, Rockwood, USA) and sealed with parafilm. The samples 

of soil were extracted with a soil corer layer across the riparian plot (N=9) and 

stored in glass vials divided into two categories: shallow soil water (0-30 cm) 

and deep soil water (30-60 cm). Groundwater samples were obtained by 

pumping from wells across the riparian plot (N=9). All water samples were 

immediately filtered (Whatman GF/F, 0.7 μm pore Ø), and sealed in glass vials 

without air to avoid exchange with the atmosphere. All samples were kept 
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cold until processing and analyses. Water from xylem and soil samples was 

extracted by cryogenic vacuum distillation following West et al. (2006) and 

Barbeta et al (2015). The isotopic compositions (18O and 2H) of the distilled 

water and groundwater samples were determined using isotope ratio infrared 

spectroscopy (IRIS) with a Picarro L2120-i Analyzer (Picarro Inc., Santa Clara, 

USA). The isotope ratios in this study are expressed as: 

18O and 2H = [(Rsample - Rstandard) - 1]   (Eq. 4.4) 

where Rsample and Rstandard are the heavy/light isotope ratios (2H/H and 

18O/16O) of the sample and the standard (VSMOW, Vienna Standard Mean 

Ocean Water), respectively. The water extractions and isotopic analyses were 

conducted at the Department of Crop and Forest Sciences (University of 

Lleida, Catalonia, Spain) and the Scientific Technical Service of the University 

of Lleida, respectively.  

We determined the relative contribution of the three different water sources in 

our riparian trees’ water supplies by analyzing our data with the siar (stable-

isotope analysis in R) package in R (Parnell et al., 2010). The package allowed 

us to estimate the most likely proportion of plant water taken up 

simultaneously from each source through Bayesian mixing models. We applied 

these models to our data to infer the relative contribution of each water source 

(i.e. shallow soil water, deep soil water, and groundwater) to the xylem water, 

producing simulations of plausible contributing values from each source using 

Markov chain Monte Carlo (MCMC) methods. Our model inputs were the 

isotopic composition (18O and 2H) and their standard errors for each 

potential source and the isotopic compositions of the xylem water, which were 

assigned as the target values. We set the TEF (trophic enrichment factor) to 0, 

because of the absence of fractionation during water uptake from soil by roots 

(Dawson and Ehleringer, 1991), and set concentration dependence to 0. We ran 

500 000 iterations and discarded the first 50 000. We ran a model for the 

isotopic values from each sampled tree in each season with the isotopic values 

from the soil water of the corresponding season.  
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Afterwards, mean relative contribution per species and season was used to 

estimate water volume extracted from each source per species during the study 

period. From the sap flow density values reported in Nadal-Sala et al. (2017), 

two daily transpiration values were calculated for each tree species: spring and 

summer daily tree transpiration values. Daily transpiration was corrected by 

the height of the sampled twigs (~12m) and the day of the year when the 

sampling was performed. We calculated mean daily sap flow from a 10-days 

mobile mean centered in the day in which water was uptaken for each tree 

species to take into consideration daily variability in sap flow values. Based on 

the allometric equations described in Nadal-Sala et al. (2017) between sapwood 

area and DBH, we obtained actual specific tree sapwood area for each tree 

species in each riparian zone. Then, we multiplied specific mean daily sap flow 

for actual tree sapwood area to obtain specific tree daily transpiration both 

spring and summer. 

4.2.7. Leaf litter fall C and N analyses 

For each year and species, a composite of samples collected during the three 

different peak of leaf litter fall (i.e. physical perturbation, drought stress, and 

end of the phenologic period) was analyzed for C and N content with a gas 

chromatograph coupled to a TCD detector after a 1000 ºC combustion at the 

Scientific Technical Service of the University of Barcelona. Afterwards we 

calculated N resorption efficiency (NRE) for each species as the difference in N 

concentration between the green and the abscised leaves expressed as 

percentage of the N concentration in green leaves. We calculate NRE for the 

three different types of abscised leaves: physic perturbation, drought stress and 

phenologic fall. 

4.2.8. Data analysis 

All the statistical analyses were carried out with the R statistical software (R 

Development Core Team, 2016, version 2.15.1; packages lme, ggplot2, and 

siar). We used a metric Euclidean multidimensional scaling (MDS) analysis to 

identify differences in environmental conditions driving leaf litter-fall. 

Afterwards, we run a cluster analysis to assign two categories of the main 
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drivers of leaf dropping (phenology or physiology) to each leaf litterfall 

campaign, based on the environmental variables and the day of the year. By 

using only the campaigns outside the senescent period, we calculated the 

Spearman's correlation coefficient between each tree species, leaf litterfall and 

the different environmental conditions . 

Differences between years and among riparian species for leaves 

morphological traits, leaves N concentrations, and leaves WUE were assessed 

by using a linear model ANOVA test. For each model, differences were tested 

with post-hoc Tukey contrasts. In all cases, residuals were tested for normality 

using a Shapiro-Wilk test and homogeneity of variance was examined visually 

by plotting the predicted and residual values. When necessary, we normalized 

data using log or square-root transformations to meet model assumptions. In 

all analyses, results were considered significant when p-value was < 0.05. The 

same procedure was used to confirm differences between 18O and 2H from 

the three water sources and, after siar results, the mean distribution of the 

MCMC simulation of each source for each individual sampled was also 

compared between seasons and among riparian tree species. 

We modeled differences in water use efficiency recorded in tree rings wood by 

using mixed models as follows: as we searched to model differences in water 

use efficiency among tree species, we selected tree species as fixed factor for 

our model. In addition, as we wanted to compare the differences in WUE 

between dry and wet years, we also selected year as a fixed factor in our 

model. We potentially had two autocorrelation structures within our data. A 

spatial autocorrelation structure inside the individual factor, which we 

included in the random part of the mixed model, and a temporal 

autocorrelation structure inside the tree ring year factor, which was included 

initially as a random factor nested in the individual factor. Based in the AIC 

criteria (Fuentes et al., 2018; Paredes et al., 2015), we selected the most 

parsimonious model from all the possible models including all the factors 

noted before and their interactions. We then calculated the R2 for the most 

parsimonious model according to Nakagawa and Schielzeth (2013) to have an 
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estimate of the variability of the data supported by both fixed and random 

parts of our most parsimonious model.  

 

Figure 4.1 (a) Mensual precipitation (in mm) and mean temperature (in ºC) in Font del Regàs, (b) Soil 

Water Content (%) and (c) groundwater table elevations (cm b.s.s.) at different near-stream., 

intermediate and hillslope zones in 2011 and 2012. 
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4.3. Results 

4.3.1. Environmental conditions 

Our measurements were conducted during a year with wet conditions (2011) 

and a year with dry conditions (2012). Annual precipitation was 20% higher 

during wet year than during dry one (annual precipitation of 1078 mm and 872 

mm, respectively). Moreover, seasonal variation between both years was 

remarkable (Fig. 4.1a). Summer precipitation in 2011 was 4-fold the 

precipitation in 2012 (220 and 46 mm, respectively) and summer temperatures 

were lower during 2011 than during 2012 (21.1ºC and 23.3ºC, respectively) (Fig. 

4.1a). Soil water content presented a fast response to precipitation events and 

differed significantly between near-stream, and intermediate and hillslope 

riparian zones. The soil water contents in summer 2012 were more than 0.10 

cm3 cm-3 lower than in 2011 (Fig. 4.1b). Groundwater levels showed no high 

seasonal variation. However, summer groundwater level during summer 2012 

were 20 cm higher than during the wet 2011 (Fig. 4.1c).  

Table 4.1 Leaf litter fall (g DW m-2) of four riparian tree species in the years 2011 and 2012. R. 

pseudoacacia is shown by riparian zones. 

  A. glutinosa P. nigra F. excelsior R. pseudoacacia 

  
   

Near-stream Intermediate Hillslope 

2011 
      

Physiology 31.70 40.12 17.79 38.92 63.19 64.05 

Phenology 21.03 53.68 9.07 77.60 100.57 124.30 

Annual 52.73 93.80 26.87 116.52 163.76 188.35 

2012 
      

Physiology 14.49 15.97 2.62 60.98 61.11 82.75 

Phenology 24.21 49.20 18.69 95.18 101.49 108.18 

Annual 38.71 65.17 21.31 156.16 162.61 190.93 

 

4.3.2. Leaf and wood riparian tree species production 

R. pseudoacacia was the main species contributing to leaf litter fall in our study 

site (~40%). The native riparian species A. glutinosa, P. nigra, and F. excelsior 

contributed to ~20, 15 and 8% respectively (Table 4.1). In terms of stem BAI P. 

nigra species was the most productive species one (> 38 cm2 year-1) while F. 

excelsior was the lowest (< 6 cm2 year-1). A. glutinosa and R. pseudoacacia had 
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similar wood production (10 and 13 cm2 year-1, respectively) (Table 4.2). Due to 

the young age of the individuals, correlations between tree-rings width and 

climatic data were not performed. 

Table 4.2  Wood production and WUE for wet and dry years registered in tree rings of  four riparian tree 

species (A. glutinosa, P. nigra, F. excelsior, and R. pseudoacacia). Values are mean ± standard error from 

sampled trees. Capital letters indicate significant differences among species growth (P-value < 0.05). 

 

A. glutinosa P. nigra F. excelsior R. pseudoacacia 

Wood production  

cm2 year-1 9.72 ± 2.00AB 37.98 ± 8.55C 5.81 ± 1.39B 12.65 ± 1.63A 

WUE     

Wet years 63.06 ± 1.92A 71.00 ± 1.40B 78.63 ± 2.73C 86.64 ± 2.47D 

Dry years 62.90 ± 1.00A 71.40 ± 1.86B 76.53 ± 2.24C 83.37 ± 2.99D 

 

During the dry year, native species reduced their leaf litter production in a 20 - 

30%, while R. pseudoacacia maintained its leaf litter production at the hillslope 

edge and increased it + 30% at the near-stream edge. Nevertheless, the relative 

amount of physiological leaf litter fall (i.e. drought stress) to annual one was 

not higher during the dry year with respect to the wet one (Table 4.1). R. 

pseudoacacia was the only species that had higher contribution of leaf litter fall 

during drought stress period of 2012 (~40% of annual leaf litter fall) than the 

one of 2011 (~30% of annual leaf litter fall) (Fig. 4.2a). LAI in the study plot had 

a maximum of 4.2 and 4.7 m2 m-2 during 2011 and 2012, respectively (Fig. 4.2b). 

We did not find clear patterns relating environmental conditions with leaf litter 

fall during the physiological fall (i.e. drought stress) for the dry and the wet 

year (Table 4.3). Nevertheless, accounting for both vegetative years, the leaf 

litter of all species that was shed before the phenologic fall (i.e. before the end 

of the growing season) were mainly positively influenced by air temperature 

and VPD. Water availability was negatively correlated with leaf fall of A. 

glutinosa only when groundwater level was at its minimum. Contrary, for P. 

nigra and F. excelsior water availability had a bigger influence. Windspeed was 
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correlating positively with P. nigra litter fall, which is also the tallest of all 

species with the most exposed crow, and negatively with F. excelsior. Leaf fall 

of R. pseudoacacia was mainly influenced positively by air temperature and 

negatively by soil water content. Correlations of soil water content with R. 

pseudoacacia leaf fall were stronger at the hillslope than at the intermediate or 

near-stream riparian zones, where also minimum groundwater level was 

important. 

 

Figure 4.2 For years 2011 and 2012, (a) Leaf litter fall (in g DW m-2 d-1) from of A. glutinosa (dashed black), P. 

nigra (dashed grey), F. excelsior (grey line), and R. pseudoacacia (black line) for the years 2011 and 2012, and 

(b) Leaf area index (LAI, in m2 m-2) of the entire riparian study site. 
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Leaf N content differed among litter fall types and species (Fig. 4.3). Fresh and 

senesced leaves from the two N-fixing species, A. glutinosa and R. pseudoacacia, 

had significantly higher N content than the ones of P. nigra and F. excelsior. F. 

excelsior presented the lowest capacity to N-reabsorption before drought fall 

(~5%) but increased it during phenologic fall (~26%). A. glutinosa and P. nigra 

reabsorpted ~30% of N during physiologic fall, but it differed between both 

species before phenologic fall (<20% and ~40% for A. glutinosa and P. nigra, 

respectively). R. pseudoacacia reabsorpted ~40% of N before both types of fall. 

 

Figure 4.3 Nitrogen content of leaves of four riparian tree species (A. glutinosa, P. nigra, F. excelsior, 

and R. pseudoacacia). For each species nitrogen is measured for fresh and different litter fall (i.e. 

physical perturbation, drought, and phenology). Values are mean ± standard error. Small letters indicate 

differences among leaf type within species. 
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Table 4.3 Spearman correlations of environmental variables influencing leaf litterfall from riparian tree 

species during non phenological fall period. Leaf litterfall is considered as relative annual contribution. 

Meteorological data is calculated as mean value between sampling dates. All correlations (r2) are shown 

for all sampling dates, year 2011, and year 2012 (p<0.05; n = 19, 11, and 8, respectfully). 

Species Varible r2     
    leaf litter 2011 2012 

A. glutinosa Air Tº 0.472 - - 

 
VP 0.511 - - 

 
AirSatP 0.505 0.721 - 

 
Soil Tº 0.685 - - 

  MinGWL -0.708 - -0.708 

P. nigra Air Tº - - 0.714 

 
AirSatP - - 0.714 

 
WindMax - - 0.786 

 
SWC - -0.714 - 

 
GWL - -0.770 - 

 
MinGWL - -0.770 - 

  Tº ac - -0.721 - 

F.excelsior Air Tº 0.477 - - 

 
VP 0.713 - - 

 
AirSatP 0.508 0.705 - 

 
WindSeep -0.632 - -0.810 

 
WindMax -0.512 - - 

 
Precip - - -0.874 

 
SWC -0.577 - -1.000 

 
Soil Tº - - -1.000 

 
GWL - -0.689 - 

 
MinSWC - - -1.000 

 
MinGWL - -0.689 - 

  Tº ac -0.601 - -0.810 

R. pseudoacacia 
   Near-stream Air Tº 0.610 0.661 - 

 
VP 0.583 - - 

 
AirSatP 0.643 0.745 - 

 
VPD 0.515 0.721 - 

 
SWC -0.657 -0.714 - 

Intermediate Air Tº 0.631 0.721 - 

 
VP 0.678 - - 

 
AirSatP 0.649 0.770 - 

 
SWC -0.615 - - 

 
Soil Tº 0.608 - - 

Hillslope Air Tº 0.660 0.717 - 

 
VP 0.611 0.650 - 

 
AirSatP 0.686 0.766 - 

 
VPD 0.541 - - 

 
SWC -0.680 - - 

 
GWL -0.529 - - 

  MinGWL -0.535 - - 
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Figure 4.4 For each riparian tree species (a) leaf dry weight (in g), (b) leaf mass area (in mg cm-2), (c) 

leaf CN ratio, and (d) water use efficiency. Data are means and standard errors for years 2011 (in grey) 

and 2012 (in black). Asterisks indicate significant differences among zones (ANOVA, p < 0.05). 

4.3.3. Foliar morphological traits and iWUE 

Despite significant differences of foliar morphological traits were found among 

species, few differences were found between years for each species (Table B.3, 

Table B.4). All riparian trees had similar leaf water content, but it tended to be 

lower in the dry year. Nevertheless, fresh and dry leaf weight differed among 

species and only for P. nigra leaves had significantly higher dry weight during 

the dry year (Fig. 4.4a). Although morphological traits did not differ 

significantly between years, leaves of A. glutinosa, P. nigra, and F. excelsior 

tended to have a higher leaf area during the dry year. Nevertheless, A. 

glutinosa and F. excelsior had a lower leaf thickness and P. nigra and R. 

pseudoacacia had a higher leaf density (Fig. 4.3b). The lowest CN ratios were 

found in leaves of R. pseudoacacia and the highest in P. nigra, which had 

significantly lower CN ratios during the dry year (Fig. 4.3c).  

Foliar iWUE differed among species, being the from the less efficient to the 

latest one: A. glutinosa, P. nigra, F. excelsior, and R. pseudoacacia. Despite all 

isotopic leaf composition indicated higher iWUE for the dry year that for the 
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wet one, differences were only significant for P. nigra and R. pseudoacacia (Fig. 

4d).  

4.3.4. Water use sources 

Isotopic signal of 18O and 2H differed (p < 0.001) between the three water 

sources compartments (i.e. shallow soil water, deep soil water, and 

groundwater), but they did not present differences between seasons within 

each compartment (i.e. spring and summer). The isotopic signature of our 

water  sources is similar to that reported for Mediterranean areas (for 2H: soil 

water = -43 ‰, stream = -46 ‰,  and groundwater = -31 ‰ for soil; Evaristo et 

al., 2015). Similarities between the groundwater signature in our riparian plot 

(18O = -7.55 ± 0.25‰, 2H = -43.41 ± 1.43‰) and the adjacent stream one (18O = 

-7.45 ± 0.05‰, 2H = -42.87 ± 0.03‰), indicated high connectivity between both 

compartments. However, groundwater signature was different from that in the 

shallow soil compartment (18O = -5.18 ± 1.05‰, 2H = -34.03 ± 3.68‰ for the 

shallow soil; 18O = -5.89 ± 1.06‰, 2H = -37.32 ± 4.61‰ for the deep soil), 

which was similar to precipitation (18O = -4.04 ± 1.62‰, 2H = -23.80 ± 10.82‰) 

and soil lixiviates (18O = -4.39 ± 1.65‰, 2H = -23.20 ± 13.38‰), suggesting that 

soil water may come from precipitation water enriched by evaporation (Oshun 

et al., 2016; Sargeant and Singer, 2016) or groundwater by capillarity. The 

mixing model suggested that the four riparian tree species take up  water from 

the three water sources simultaneously (Fig. 4.5, Table B.5). Deep soil water 

was the main contributor in % to total water transpired. During spring season 

the phreatophitic species, A. glutinosa and P. nigra, together with R. pseudoacacia 

at the near-stream zone, took up significantly higher proportion of water from 

the groundwater table (73 ± 5, 69 ± 6 and 43 ± 13 % of the water uptake per 

species, respectively). Contrary, the contribution of this compartment during 

summer was reduced and no significant differences among species were 

found. F. excelsior was mainly depending on deep soil water during spring, and 

despite increasing dependence of shallow ground water during summer these 

seasonal differences were not significant. R. pseudoacacia’s water uptake 

behavior was different depending on the riparian zone where it was present. 

For all riparian zones the contribution of shallow soil water during summer 
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was significantly reduced from that of spring season. In general, the 

contribution of groundwater-uptake by R. pseudoacacia decreased from the 

near-stream zone (43 ± 13 %) to the hillslope (19 ± 5%) during spring, but 

increased from 14 ± 3 % to 35 ± 5% during summer. During summer, the 

contribution of deep soil water increased for all species, being statistically 

different between seasons for A. glutinosa, P. nigra and R. pseudoacacia at near-

stream zone.  

 

Figure 4.5 Percentage of water obtained from shallow soil water (white), deep soil water (light grey) and 

groundwater (dark grey) by four riparian tree species (A. glutinosa, P. nigra, F. excelsior, and R. 

pseudoacacia) during (a) spring and (b) summer. Values are mean from SIAR results and error bars are 

standard errors of the means. 

In terms of volume, the lowest quantities of water were extracted from shallow 

soil water for spring and summer, while major volumes were extracted from 

groundwater during spring and deep soil water during summer (Table 4.4). P. 
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nigra was the species the highest and F. excelsior the lowest volumes of water 

uptake. 

Table 4.4 Volume of water transpired (L d-1 tree-1) from three water sources (shallow soil water, deep soil water 

and groundwater). Values are calculated for each riparian tree species during spring and summer season. 

 

A. glutinosa P. nigra F. excelsior R. pseudoacaia 

    

Near-stream Intermediate Hillslope 

Spring 
      Shallow Soil Water 0.36 1.89 0.47 0.81 1.76 2.13 

Deep Soil Water 0.82 8.04 2.41 0.85 2.10 2.20 

Groundwater 3.13 17.32 0.13 1.27 1.11 1.04 

Summer 
      Shallow Soil Water 0.41 1.44 0.75 0.20 0.65 1.06 

Deep Soil Water 5.54 34.27 1.61 3.19 4.38 3.64 

Groundwater 1.08 2.45 0.30 0.56 1.65 2.51 
 

4.4. Discussion 

4.4.1. Riparian tree species dependence on water availability 

Tree species were distributed differently across the riparian site of Font del 

Regàs. The two phreatophitic species, A. glutinosa and P. nigra, were mostly 

found near the stream, likely due their higher water requirements (Singer et al., 

2014; McVean 1956) while F. excelsior was found at the hillslope zone. The 

spatial distribution of the invasive N-fixing R. pseudoacacia contrasted with that 

of the three natives ones. R. pseudoacacia was distributed all across the riparian 

plot but higher densities were found at the hillslope edge. This species spatial 

distribution is supported by our results of water sources. The significant 

differences among the three water sources identified (i.e. shallow soil water, 

deep soil water and groundwater) allowed us to estimate water sources that 

supply trees transpiration in our plot. On annual trends, deep soil water is the 

main water source used by riparian tree species in Font del Regàs, as it has been 

found in other riparian studies (Bertrand et al., 2014). Nevertheless, species 

change the main sources between seasons. Both phreatophic species, A. 

glutinosa and P. nigra, used water mostly from groundwater during spring 

while in summer deep soil was the main source for both of them. Some studies 

already suggested that riparian tree species in Font del Regàs might use high 
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quantities of groundwater to explain stream discharge decreases during the 

vegetative period (Bernal et al., 2015)and to support tree transpiration rates 

(Nadal-Sala et al., 2017). Despite A. glutinosa has been reported to be able to 

uptake water directly from the stream (Dawson and Ehleringer, 1991b), under 

anoxic environments in the roots A. glutinosa can present lower growth rates 

and individuals density (Rodríguez-González et al., 2010). This may explain a 

more shallow root system that uses higher volumes of soil water than from 

groundwater during summer. P. nigra has been reported to take up water from 

both soil and groundwater sources in other riparian areas when groundwater 

table was reachable (Sargeant and Singer, 2016; Singer et al., 2013; Snyder and 

Williams, 2000). Despite the fact that the main water source for F. excelsior was 

deep soil water, the higher importance of water-uptake from groundwater and 

shallow soil water during summer and a higher variability among individuals, 

suggest that F. excelsior is sensible to summer drought. In concordance, some 

authors have reported that root system from F. excelsior is located at the first 

soil layers and that water in vadose zone is its main source (Sánchez-Pérez et 

al., 2008; Sargeant and Singer, 2016; Singer et al., 2013). Contrary to native 

species, R. pseudoacacia present more equitative dependance on water sources 

across all riparian zones during summer, even deep soil water was also the 

main water source during summer. The switched pattern on groundwater 

uptake is particularily noteworthy: While higher dependence is found in 

individuals at the near-stream edge during spring, it is higher in individuals at 

the hillslope edge during summer. This is explained by the capacity of this 

species to develop a deep root system (> 8m) to reach groundwater (Bunger 

and Thomson, 1938; Mórics et al,2016) and can explain the capacity to maintain 

transpiration rates across the riparian plot despite reductions in water 

availability (Nadal-Sala et al.,2017).          

In accordance with our analyses of the trees’ water sources, the correlations 

between leaf litter falls during summer and environmental conditions confirms 

that phreatophitic species at our riparian plot were more dependent on air 

temperature and minimum groundwater level - except for P. nigra which also 

induced leaf litter fall at lower soil water contents. For both, F. excelsior and R. 
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pseudoacacia, low soil water contents and groundwater levels increased their 

leaf litter falls, showing these species dependence on water availability. 

Moreover, minimum groundwater level was also an important factor for R. 

pseudoacacia at the hillslope edge, so this species may be also sensible at this 

riparian zone. 

4.4.2. Riparian tree species responses to changes in water availability 

Environmental conditions differed between summer 2011 and 2012. Summer 

2012 was drier than 2011 being reflected in the responses on riparian tree 

species. For instance, leaf litter production of native species during the dry 

year were reduced in > 20% in terms of biomass (g DW m -2). This reduction 

was especially high for phreatophitic species (~30%), which are mainly situated 

at the near-stream edge. However, R. pseudoacacia at the near-stream edge 

increased its leaf production by more than 30% during the dry year, while no 

differences were detected in the other individuals (differences < 2%). These 

changes in leaf productivity showed a clear dependence on water availability 

for native riparian tree species, underlining the low tolerance of R. pseudoacacia 

to low water availability (Vítková et al., 2015) and its shade intolerance 

behavior (Motta et al., 2009). Thus, the lower leaf litter production of native 

species situated at the near-stream edge might have allowed the arrival of 

enough radiation to stimulate leaf production of R. pseudoacacia individuals 

located at this riparian zone. This pattern is not repeated at other riparian 

zones as F. excelsior individuals density is low.  

Contrasting with native species strategy of reduction of leaf litter production, 

the temporal patterns of leaf litter fall suggested that R. pseudoaciacia is able to 

lose higher quantities of leaves when drought stress conditions increase. 

(Medina-Villar et al., 2015b) already reported peaks of leaf litter fall for R. 

pseudoacacia with respect to native species during summer droughts in central 

Spain, but lower leaf production for both coexisting species Fraxinus 

angustifolia and R. pseudoacacia between 2012 and 2011 (decrease of 33 and 24% 

respectively). Nevertheless, F. excelsior have been also reported to be sensible to 
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decreases in water availability across biomes (Tsai et al., 2016; Vitasse et al., 

2009). 

Contrary to our expectations, morphological traits from riparian species did 

not differ between years except for P. nigra which had a significantly higher 

leaf density and thus also LMA and leaf density in the drier year 2012. This can 

be attributed to (i) low differences among climatic years or (ii) low adaptation 

to drought situations for riparian tree species... This results confirms the 

sensitivity of this species to drought environmental conditions (De La Riva et 

al., 2016; Lang et al., 2016; Niinemets, 2001; Ogaya and Peñuelas, 2007). 

Although not significantly different, all native species presented higher leaf 

area during the dry year 2012. Higher leaf area may respond to the decrease in 

leaf productivity, and confirm that transpiration of riparian tree species in our 

study plot were limited by radiation rather than by lower water availability 

situations (Nadal-Sala et al., 2017). Moreover, most of the studies found in the 

bibliography about morphological leaf traits changes in riparian species were 

focused on light limitation and reporting higher leaf area in sun exposed leaves 

(Legner et al., 2013).  

iWUE seemed to respond to species water availability demand, being higher as 

less dependence on it. Thus, lower iWUE were found for A. glutinosa and P. 

nigra, while the highest were found for the invasive R. pseudoacacia. Moreover, 

leaves from P. nigra and R. pseudoacacia during the dry year were found to have 

higher iWUE than during the wet one, but no significant differences in wood, 

probably due to the young age or the higher variability among years than 

among. The increase in iWUE of P. nigra showed its high sensitivity to 

groundwater decrease and confirms the capacity to acclimate to water 

limitation to supply evaporative demand shown by some Populus spp. (Lang et 

al., 2016; Scott et al., 2008). Despite we found no significant differences in leaf 

iWUE for A. glutinosa and F. excelsior, dry years tended to increase iWUE. 

F.excelsior has been reported to present stronger stomatal control than co-

ocurring species when soil water availability is difficult (Lemoine et al., 2001). 



78                                                                                                                       Chapter 4   

 

Changes on species litter production and litter fall dynamics can alter the 

composition of the organic matter (i.e. leaves) that reach the forest soil and 

stream, affecting the functioning of both terrestrial and aquatic ecosystems 

(Medina-Villar et al., 2015a). For instance, higher leaf N content was found for 

N-fixing species while lower for P. nigra, and thus, an increase in R. 

pseudoacacia leaf litter production may increase leaf N inputs to stream and 

forest floor. Higher leaf litter falls during summer may have a contrasting 

effect as both N-fixing species have higher NRE during drought stress fall than 

during senescent fall. Differences in NRE can be explained as a strategy to keep 

N for the rest of the phenologic period, while they can fix N atmospheric for 

the following vegetative period. Similarly, N-fixing species as R. pseudoacacia 

has been already reported to reabsorb higher N than native species (Sürmen et 

al., 2014) and be more effective during summer drought fall than phenologic 

fall (González-Muñoz et al., 2011).  

4.4.3. R. pseudoacacia future perspectives 

Species coexisting in the same area usually present a combination of strategies 

for the resource use to achieve the optimum plant functioning (de la Riva et al., 

2017; Peñuelas et al., 2008). In our study plot, the different water availability 

dependence determine species tree distribution across the riparian area. For 

instance, A. glutinosa, P. nigra and riparian mixed forests are found in areas 

with well developed soils, precipitation rates ~1000 mm year-1, and mean 

annual temperatures ~13ºC (Aguiar et al., 2013). Yet, F. excelsior has been 

reported to be more sensible to water availability than temperature variations 

(Tsai et al., 2016; Vitasse et al., 2009; Walentowski et al., 2017), having its niche 

in areas with precipitation rates of 650-1500 mm year-1 (Aguiar et al., 2013). 

Thus, bibliography suggests these native species are already at their limit 

environmental conditions in Font del Regàs (precitpitation rates 925 ± 151 mm), 

and  R. pseudoacacia may be favored. In contrast to native species, R. 

pseudoacacia has been reported to be a highly drought tolerant, by using 

strategies such as reducing transpiration rates, decrease leaf size, or increase 

iWUE (González-Muñoz et al., 2015; Mantovani et al., 2014; Vítková et al., 

2015). 
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In Font del Regàs, R. pseudoacacia presented different mechanisms to avoid 

drought stress (higher rates of leaf litter fall during summer, production of 

leaves with slightly lower area or higher WUE than natives ones, and also 

during the dry year than the wet one) at the same time that took advantage 

from the decrease in native species leaf productivity. These different 

mechanisms among co-occurring species highlight R. pseudoacacia advantages 

respect to native species, especially at areas with less groundwater level such 

as hillslope, and thus in contrast to F. excelsior. Concordantly, Nadal-Sala et al. 

(2017) found a soil water content threshold at which F. excelsior drastically 

reduced its transpiration. Some studies have indicated that although the R. 

pseudoacacia may have marked drought sensitivity, the higher efficiency 

drought adaptations of native species did not suppose any advantages for 

them (Werner et al., 2010; Gonzalez-Muñoz et al., 2015). Moreover, R. 

pseudoacacia is often considered an intermediate species during a successional 

process that may end with the establishment of autochthons species able to 

tolerate the perturbation. Thus, despite having already been to be naturalized 

across the globe, a complete invasion is difficult to predict (Vítková et al., 2015; 

Weber, 2003).  

All in all, our study highlights the necessity to compare different physiological 

parameters to better understand consequences of  water availability variability 

among co-occurring riparian species. In Font del Regàs, native riparian tree 

species seems to be highly water availability dependant and R. pseudoacacia 

seems to better performed in drier conditions. Thus, future drier climate 

conditions projected in the Mediterranean area (IPCC, 2013) may strengthen 

the establishment of this species and its substitution of native species.  
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CHAPTER 5 

Soil water content drives spatiotemporal patterns 

of CO2 and N2O emissions from a Mediterranean 

riparian forest soil 
 

 

 

 

Riparian zones play a fundamental role in regulating the amount of carbon (C) and 

nitrogen (N) that is exported from catchments. However, C and N removal via soil 

gaseous pathways can influence local budgets of greenhouse gases (GHG) 

emissions and contribute to climate change. Over a year, we quantified soil 

effluxes of carbon dioxide (CO2) and nitrous oxide (N2O) from a Mediterranean 

riparian forest in order to understand the role of these ecosystems on catchment 

GHG emissions. In addition, we evaluated the main soil microbial processes that 

produce GHG (mineralization, nitrification, and denitrification) and how changes 

in soil properties can modify the GHG production over time and space. 

Mediterranean riparian soils emitted larger amounts of CO2 (1.2 – 10 g C m-2 d-1) 

than N2O (0.001 – 0.2 mg N m-2 d-1) to the atmosphere attributed to high respiration 

and low denitrification rates. Both CO2 and N2O emissions showed a marked (but 

antagonistic) spatial gradient as a result of variations in soil water content across 

the riparian zone. Deep groundwater tables fueled large soil CO2 effluxes near the 

hillslope, while N2O emissions were higher in the wet zones adjacent to the stream 

channel. However, both CO2 and N2O emissions peaked after spring rewetting 

events, when optimal conditions of soil water content, temperature, and N 

availability favor microbial respiration, nitrification, and denitrification. Overall, 

our results highlight the role of water availability on riparian soil biogeochemistry 

and GHG emissions and suggest that climate change alterations in hydrologic 

regimes can affect the microbial processes that produce GHG as well as the 

contribution of these systems to regional and global biogeochemical cycles.   

 

 
Original Work: Poblador, S., A. Lupon, S. Sabaté and F. Sabater. 2017. Soil water content 

drives spatiotemporal patterns of CO2 and N2O emissions from a Mediterranean riparian 

forest soil. Biogeosciences 14:4195–4208. 
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5.1. Introduction 

Riparian zones are hotspots of nitrogen (N) transformations across the 

landscape, providing a natural filter for nitrate (NO3-) transported from 

surrounding lands via runoff and subsurface flow paths (Hill, 1996; Vidon et 

al., 2010). Although interest in riparian zones has primarily been motivated by 

the benefits of these ecotones as effective N sinks, enhanced microbial activity 

in riparian landscapes can play a key role on atmospheric pollution. For 

instance, riparian zones can account by 70% of global (natural processes and 

human activities) terrestrial emissions of nitrous oxide (N2O) to the 

atmosphere, a powerful greenhouse gas (GHG) with 298 times the global 

warning potential of carbon dioxide (CO2) (Audet et al., 2014; Groffman et al., 

2000; Hefting et al., 2003). Moreover, riparian soils can significantly contribute 

to global CO2 emissions because they can hold high rates of heterotrophic and 

autotrophic respiration (Chang et al., 2014). Soil respiration is the main natural 

carbon (C) efflux to the atmosphere, contributing to 20% of the global emission 

of CO2 (Kim and Verma, 1990; Raich et al., 2002; Rastogi et al., 2002). Finally, 

riparian zones can support large methane (CH4) fluxes that account for the 15 – 

40 % of global emissions (Audet et al., 2014; Segers, 1998). However, there are 

still many uncertainties regarding the magnitude and spatio-temporal 

variability of soils GHG emissions in riparian zones, reaching contradictory 

results concerning the potential role of riparian zones as sinks or sources of C 

and N (Bruland et al., 2006; Groffman et al., 1992; Harms et al., 2009; Walker et 

al., 2002).  

Understanding the processes regulating GHG emissions from riparian soils is 

essential to quantify the role of riparian zones in the global C and N cycles. 

Multiple environmental variables, such as soil temperature, soil water content, 

and both C and N availability have been identified as key factors influencing 

the rate and variability of soil microbial activities that produce GHG (Chang et 

al., 2014; Hefting et al., 2003; Mander et al., 2008; McGlynn and Seibert, 2003). 

Among them, riparian hydrology seems to play a fundamental role on GHG 

production because it controls the substrate subsides and, most importantly, 

the redox conditions of riparian soils (Jacinthe et al., 2015; Vidon, 2017b). 
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Under saturated conditions, anaerobic processes such as methanogenesis (i.e. 

the transformation of CO2 to CH4) and denitrification (i.e. the transformation of 

NO3- to N gas (N2) or N2O) are the primary processes involved in the C and N 

cycles (Clément et al., 2002). Conversely, in dry soils, aerobic transformations 

involved in the oxidation of the organic matter (i.e. respiration, mineralization, 

nitrification, methane oxidation) dominate the riparian biogeochemistry 

(Harms and Grimm, 2008). From such observations, some one would expect 

that there is a strong correlation between soil wetness and the relative 

importance of CO2, N2O and CH4 riparian soil emissions to the total GHG 

fluxes. However, there are still relatively few studies that analyze the direct 

influence of soil water content on several GHG effluxes simultaneously (but 

see Harms and Grimm, 2008; Jacinthe et al., 2015), and even less that combine 

such analyses with other environmental factors and soil processes. Thus, it is 

still unclear under which circumstances soil water content (rather than 

temperature or substrate availability) is the primary control factor of the 

riparian functionality.  

Mediterranean systems are a unique natural laboratory to understand the close 

link between spatio-temporal variations in hydrology and riparian 

biogeochemistry because they are characterized by a marked spatial gradient 

of soil water content, that can range from <10% in the hillslope edge to > 80% 

close to the stream (Chang et al., 2014; Lupon et al., 2016a). Moreover, 

Mediterranean regions are subjected to seasonal alterations of precipitation 

and temperature regimes that might affect riparian hydrology as well as 

microbial activity in the riparian soils (Bernal et al., 2007; Bruland et al., 2006; 

Harms and Grimm, 2008; Harms et al., 2009). Increments in GHG emissions in 

riparian zones might occur following storms or flood events because sharp 

increments in soil water content enhance nitrification, denitrification, 

respiration, and methanogenesis rates (Casals et al., 2011; Jacinthe et al., 2015; 

Werner et al., 2014). However, because recent studies have shown that high 

temperatures and relatively moist soils can sustain large rates of C respiration 

and N mineralization in summer in the near-stream zone (Chang et al., 2014; 

Lupon et al., 2016a), the contribution of such microbial pulses to annual CO2 
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and N2O production in Mediterranean riparian soils is still under debate. 

Moreover, improved understanding of interactions among hydrology, 

microbial processes, and gas emissions within Mediterranean riparian zones is 

not only fundamental to understand the temporal pattern of riparian 

biogeochemistry, buy also necessary to estimate the contribution of these 

ecosystems to atmospheric GHG budgets at local and global scale. 

In this study, soil properties, soil N processes, and CO2 and N2O soil emissions 

were measured over a year across a Mediterranean riparian forest that 

exhibited a strong gradient in soil water content (Fig. 5.1a). We did not 

measure CH4 emissions because previous studies reported extremely low 

values in dry systems (-0.06 – 0.42 mg C m-2 d-1; Batson et al., 2015; Gómez-

Gener et al., 2015). Specifically, we aimed (i) to evaluate the spatio-temporal 

patterns of CO2 and N2O emissions in Mediterranean riparian soils, (ii) to 

analyze under which conditions soil water content rules microbial processes 

and GHG over other physicochemical variables, and (iii) to provide some 

reliable estimates of GHG emissions from Mediterranean riparian soils. We 

hypothesized that the magnitude and the relative contribution of N2O and CO2 

to total GHG emission strongly depend on soil water content and redox 

conditions rather than other variables during all year long (see conceptual 

approach in Fig. 5.1b). In the near-stream zone, we expected that saturated 

anoxic soils would enhance denitrification but constrain both respiration and 

nitrification. Thus, we predicted higher N2O than CO2 emissions in this zone. 

In the intermediate zone, we expected that wet (but not saturated) soils would 

enhance aerobic processes such as respiration, N mineralization or nitrification, 

and thus, we predicted high CO2 emissions compared to N2O. Finally, we 

expect that dry soils would deplete (or even inhibit) the soil microbial activity 

near the hillslope edge, and therefore, we predicted low GHG emissions in this 

zone. Because Mediterranean regions are subjected to strong intra-annual 

variations in soil water content, we expected that this general behavior would 

be maximized in summer, when only near-stream soils would keep wet. 

Conversely, we expected that all microbial processes would be enhanced short-
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after rainfall events, and thus, simultaneous pulses of CO2 and N2O emissions 

would occur in spring and fall. 

5.2. Materials and methods  

5.2.1. Study site 

The research was conducted in a riparian forest of Font del Regàs, a forested 

headwater catchment (14.2 km2, 500 – 1500 m above the sea level (a.s.l.)) 

located in the Montseny Natural Park, NE Spain (41º50’N, 2º30’E) (Fig. 5.1a). 

The climate is sub-humid Mediterranean; with mean temperature ranging 

from 5ºC in February to 25ºC in August. In 2013, annual precipitation (1020 

mm) was higher than long-term average (925 ± 151 mm), with most of rain 

falling in spring (500 mm) (Fig. 5.2a). Total inorganic N deposition oscillates 

between 15 – 30 kg N ha-1 yr-1 (period 1983 – 2007; Àvila and Rodà, 2012). 

We selected a riparian site (~600 m2, ~30 m wide) that flanked a 3rd order 

stream close to the catchment outlet (536 m a.s.l., 5.3 km from headwaters). The 

riparian site was divided into three zones characterized by different species 

compositions (Fig. 5.1a). The near-stream zone was located adjacent to the 

stream (0 – 4 m from the stream edge) and was composed of Alnus glutinosa 

(45% of basal area) and Populus nigra (33% of basal area). The intermediate 

zone (4 – 7 m from the stream edge) was composed by P. nigra and Robinia 

pseudoacacia (29% and 71% of basal area respectively). Finally, the hillslope 

zone (7 – 30 m from the stream edge) bordered upland forests and was 

composed by R. pseudoacacia (93% of basal area) and Fraxinus excelsior (7% of 

basal area). The three riparian zones had sandy-loam soils (bulk density = 0.9 – 

1.1 g cm-3), with a 5-cm deep organic layer followed by a 30-cm deep A-

horizon. The top soil layer (0 – 10 cm depth) was mainly composed by sands 

(~90%) and silts (~7%) at the near-stream zone, whereas gravels (~16%) and 

sands (~80%) were the dominant particle sizes at the intermediate and hillslope 

zones. During the study period, groundwater level averaged -54 ± 14 cm below 

the soil surface (b.s.s.) at the near-stream zone, and decreased to -125 ± 4 and -

358 ± 26 cm b.s.s. at the intermediate and hillslope zones, respectively (Fig. 5.1a 

and Fig. 5.2b). 
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Figure 5.1 (a) Plot layout for the studied Mediterranean riparian forest showing the three riparian zones and the 

location of the chambers (n=5 for each riparian zone) (b) Conceptual approach of the influence of riparian 

hydrology on soil microbial processes across a Mediterranean riparian zone. Soil water content decreases from 

the near-stream to the hillslope zones due to changes in groundwater table, increasing unsaturated soil column 

and oxic conditions. Anaerobic processes (denitrification) occur under anoxic conditions while aerobic processes 

(respiration) are optimized under a moderate range of soil water content. 
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Figure 5.2 Temporal pattern of (a) mean monthly precipitation and (b) biweekly groundwater level at the studied 

riparian site during the year 2013. Circles are mean values of groundwater level at the near-stream (white), 

intermediate (grey), and hillslope (black) zones. Precipitation data was obtained from a meteorological station 

located at ca. 300 m from the studied riparian site. At each riparian zone, groundwater level was measured in 3 

PVC piezometers (32-mm diameter, 1–3 m long) with a water level sensor (Eijkelkamp 11.03.30). 

5.2.2. Field sampling 

We delimited five plots (1 x 1 m) within each riparian zone (near-stream, 

intermediate and hillslope) (Fig. 5.1a). During the year 2013, soil 

physicochemical properties, soil N processes, and gas emissions were 

measured in each plot every 2 – 3 months in order to cover a wide range of soil 

water content and temperature conditions. On each sampling month, one soil 

sample (0 – 10 cm depth, including O- and A- horizons) was collected 

randomly from each plot to analyze soil physicochemical properties. Soil 

samples were taken with a 5-cm diameter core sampler and placed gently into 

plastic bags after carefully removing the litter layer. Close to each soil sample, 

we performed in situ soil incubations to measure soil net N mineralization and 
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net nitrification rates (Eno, 1960a). For this purpose, a second soil core (0 – 10 

cm depth) was taken, placed in a polyethylene bag, and buried at the same 

depth. Soil incubations were buried 4 days and then removed from the soil.  

Gas emissions and denitrification rates were measured simultaneously and 

during four consecutive days (i.e. during the entire soil incubation period) in 

order to facilitate the direct comparison between microbial rates and gas fluxes. 

Soil CO2 effluxes were measured with a SRC-1 soil chamber attached to an 

EGM-4 portable infrared gas analyzer (IRGA) (PP Systems, Amesbury, MA). 

The EGM-4 has a measurement range of 0 – 2000 ppm (µmol mol-1), with an 

accuracy of 1% and a linearity of 1% throughout the range. Every field day, 

CO2 measurements started at 12 p.m. and were conducted consecutively at the 

15 plots starting for the near stream zone. At each plot, the SCR-1 soil chamber 

was placed over the top soil for a 120 s incubation. Before each measurement, 

we carefully removed the litter layer to ensure no leaks. Furthermore, we 

aerated the SCR-1 between samples to ensure the accuracy of the instrument as 

well as to avoid contamination between samples. For each plot, CO2 emissions 

rates were calculated from the best fit linear regression of the CO2 accumulated 

in the head-space with incubation time (Fig. C.1). CO2 fluxes on an areal basis 

(FCO2, in μmol m-2 h-1) were calculated following Healy et al. (1996): 

    𝐹𝑔 =  
𝑑𝑔

𝑑𝑡
 ×  

𝑉 𝑃0 

𝑆 𝑅𝑇0
        (Eq.5.1) 

where dg/dt is the rate of change in gas concentration (in μmol mol-1 h-1) in the 

chamber, V is chamber volume (in m3), P0 is initial pressure (in Pa), S is the soil 

surface area (in m2), R is the gas constant (8.314 Pa m3 K-1 mol-1), and T0 is the 

initial chamber temperature (in °K). For budgeting, moles of CO2 and N2O 

were converted to grams of C and N, respectively.  

In situ denitrification rates and N2O emissions were measured using closed 

cylinder (0.37 L) and open cylinder (0.314 m2) chambers, respectively. For 

denitrification analyses, an intact soil core (0 – 10 cm depth) was introduced in 

the chamber, closed with a rubber serum stopper, amended with acetone-free 

acetylene to inhibit the transformation of N2O to N2 (10% v/v atmosphere), and 
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placed at the same depth. For N2O analysis, chambers were placed directly on 

the soil and no special treatment was carried out. Gas samples for both 

denitrification and N2O chambers were taken at the same time (0h, 1h, 2h, and 

4h of incubation) with a 20-mL syringe and stored in evacuated tubes. All soil 

and gas samples were kept at < 4ºC until laboratory analysis (< 24 h after 

collection). 

Soil physical properties were measured within each plot simultaneously to gas 

emissions. Volumetric soil water content (%) (5 replicates per plot) and soil 

temperature (ºC) (1 replicate per plot) were measured at 10-cm depth by using 

a time-domain reflectometer sensor (HH2 Delta-T Devices Moisture Meter) 

and a temperature sensor (CRISON 25), respectively. Soil pH and reduction 

potential (Eh, mV) (1 replicate per plot) were measured at 0 – 10 cm depth by 

water extraction (1:2.5 v/v) using a Thermo-Scientific ORION sensor (STAR 

9107BNMD). Although Eh measures performed by water extraction may not be 

as accurate as other field techniques, these values have been previously used as 

a good proxy of the soil redox potential (Yu and Rinklebe, 2013).  

5.2.3. Laboratory analyses 

Pre-incubation soil samples were oven dried at 60ºC, sieved, and the fraction < 

2 mm was used for measuring soil chemical properties. The relative soil 

organic matter content (%) was measured by loss on ignition (450ºC, 4 h). Total 

soil C and N contents were determined on a gas chromatograph coupled to a 

TCD detector after combustion at 1000ºC at the Scientific Technical Service of 

the University of Barcelona.  

To estimate microbial N processes, we extracted 5 g of pre- and post- 

incubation field-moist soil samples with 50 ml of 2 M KCl (1g : 10ml, ww : v; 1 

h shacking at 110 r.p.m. and 20ºC). The supernatant was filtered (Whatman 

GF/F 0.7 μm pore diameter) and analyzed for ammonium (NH4+) and nitrate 

(NO3-). NH4+ was analyzed by the salicilate-nitropruside method (Baethgen and 

Alley, 1989) using a spectrophotometer (PharmaSpec UV-1700, SHIMADZU). 

NO3- was analyzed by the cadmium reduction method (Keeney and Nelson, 

1982) using a Technicon Autoanalyzer (Technicon, 1987). For each pair of 
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samples, net N mineralization and net nitrification were calculated as the 

differences between pre- and post-incubations values of inorganic N (NH4+ and 

NO3-) and NO3-, respectively (Eno, 1960a). Pre-incubation NH4+ and NO3- 

concentrations were further used to calculate the availability of dissolved 

inorganic nitrogen in riparian soils. 

To estimate denitrification and natural N2O emissions, we analyzed the N2O of 

all gas samples using a gas chromatograph (Agilent Technologies, 7820A GC 

System) that was calibrated using certified standards (4.66 ppm N2O; , 

AirLiquide). Both denitrification and N2O emissions rates were calculated 

similarly to CO2 fluxes (Fig. S1). In addition, we measured the denitrification 

enzyme activity (DEA) for 3 soil cores of each riparian zone to determine the 

factors limiting denitrification. For each soil core, four sub-samples (20 g of 

fresh soil) were placed into 125-ml glass jars containing different treatments. 

The first jar (DEAMQ) contained Milli-Q water (20 ml) to test anaerobiosis 

limitation. The second jar (DEAC) was amended with glucose solution (4 g 

glucose kg soil-1) to test C limitation. The third jar (DEANO3) was amended with 

nitrate solution (72.22mg KNO3 kg soil-1) to test N limitation. Finally, the fourth 

jar (DEAC+NO3) was amended with both nitrate and glucose solutions (4 g 

glucose kg soil-1 and 72.22mg KNO3 kg soil-1) to test simultaneously C and N 

limitation. All jars were capped with rubber serum stoppers, made anaerobic 

by flushing N2, and amended with acetone-free acetylene (10% v/v) (Smith and 

Tiedje, 1979). Gas samples were collected after 4 h and 8 h of incubation and 

analyzed following the same procedure of field DNT samples. DEA rates were 

calculated similarly to denitrification rates.  

5.2.4. Statistical analysis 

Statistical analyses were carried out using the package lmer and pls of R 2.15.1 

statistical software (R Core Team, 2012). We performed linear mixed-model 

analysis of variance (ANOVA) to test differences in soil properties, microbial N 

processes, and gas emissions across riparian zones and seasons. We used 

riparian zone and season as fixed effects, and plot (nested within riparian 

zones) as a random effect. When multiple samples were taken within a plot 

(soil physical properties, denitrification, and gas emissions), the ANOVA was 
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performed on plot means, with n = 75 (5 plots x 3 zones x 5 dates). For each 

model, post-hoc Tukey contrasts were used to test which zones or seasons 

differed from each other. In all cases, residuals were tested for normality using 

a Shapiro-Wilk test, and homogeneity of variance was examined visually by 

plotting the predicted and residual values. In those cases that the normality 

assumption was unmet, data was log transformed. In all analyses, differences 

were considered significant when p < 0.05. 

We used partial least squares regression (PLS) to explore how soil properties, C 

and N availability, groundwater level, and soil N processes predict variation in 

CO2 and N2O emissions. PLS identifies the relationship between independent 

(X) and dependent (Y) data matrices through a linear, multivariate model; and 

produces latent variables (PLS components) representing the combination of X 

variables that best describe the distribution of observations in ‘Y space’ 

(Eriksson et al., 2006). We determined the goodness of fit (R2Y) and the 

predictive ability (Q2Y) of the model by comparing modeled and actual Y 

observations through a cross-validation process. Each model was refined by 

iteratively removing variables that had non-significant coefficients in order to 

minimize the model overfitting (i.e. low Q2Y values) as well as the 

multicollinearity of the explanatory variables (i.e. variance inflation factor 

(VIF) < 5). Furthermore, we identified the importance of each X variable by 

using variable importance on the projection (VIP) scores, calculated as the sum 

of square of the PLS weights across all components. VIP values > 1 indicate 

variables that are most important to the overall model (Eriksson et al., 2006). In 

all PLS models, data was ranked and centered prior analysis. 

5.3. Results 

5.3.1. Spatial pattern of soil properties, microbial rates, and gas emissions 

During the study period, all riparian zones had similar mean soil temperature 

(11 – 12ºC), pH (6 – 7) and redox potential (170 – 185 mV) (Table 5.1). However, 

soil water content exhibited strong differences across riparian zones (Table 5.2), 

with the near-stream zone holding wetter soils than the intermediate and the 

hillslope zones (Table 5.1). There were significant differences in most of soil 
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chemical properties (Table 5.1, Table 5.2). Both organic matter and soil C and N 

content were 2-fold lower in the near-stream zone than in the intermediate and 

hillslope zones, though all zones exhibited similar C:N ratios (CN = 14). 

Moreover, inorganic N concentrations (NH4+ and NO3-) were from 2- to 5-fold 

lower for the near-stream zone than for the other two zones. 

Table 5.1 Mean annual values (± standard deviation) of soil water content (volumetric), soil temperature, soil pH, 

soil redox capacity (Eh), soil organic matter, soil molar C:N ratio, soil carbon (C) and nitrogen (N) content, and 

soil ammonium (NH4
+) and nitrate (NO3

-) concentrations for the three riparian zones. For each variable, different 

letters indicate statistical significant differences between riparian zones (post-hoc Tukey HSD test, p < 0.05). 

  Near-stream Intermediate Hillslope 

Soil water content (%) 29.58 ± 7.55 A 19.36 ± 6.00 B 19.81 ± 6.24 B 

Temperature (ºC) 11.37 ± 5.39  A 11.82 ± 5.90 A 12.01 ± 6.34 A 

Eh 170 ± 111 A 184 ± 103 B 184 ± 95 C 

pH 6.66 ± 0.42 A 6.31 ± 0.50 A 6.68 ± 0.53 A 

Organic matter (%) 4.41 ± 0.71 A 7.98 ± 2.88 B 9.53 ± 1.99 C 

C:N ratio 14.25 ± 3.64 A 14.09 ± 1.78 A 13.63 ± 1.18 A 

C (mg kg-1) 2004 ± 1038 A 4007 ± 1785 B 4923 ± 1428 B 

N (mg kg-1) 160 ± 44 A 330 ± 135 B 418 ± 107 C 

NH4
+ (mg N kg-1) 1.88 ± 1.21 A 5.58 ± 3.48 B 3.90 ± 2.07 B 

NO3
- (mg N kg-1) 0.75 ± 0.58 A 4.66 ± 4.25 B 5.30 ± 4.20 B 

 

On annual basis, net N mineralization averaged 0.14 ± 0.40, 0.39 ± 1.23, and 0.22 

± 1.03 mg N kg-1 d-1 at the near-stream, intermediate, and hillslope zones, 

respectively. Mean annual net nitrification rates were close to net N 

mineralization, averaging 0.17 ± 0.38, 0.25 ± 0.69, and 0.28 ± 0.73 mg N kg-1 d-1 at 

the near-stream, intermediate, and hillslope zones, respectively. There were no 

significant differences in mean annual net N mineralization and net 

nitrification rates among riparian zones (in both cases: mixed-model ANOVA 

test, F > F0.05, p > 0.05). Mean annual denitrification was higher at the near-

stream zone (2.69 ± 5.30 mg N kg-1 d-1) than at the intermediate (0.72 ± 1.85 mg 

N kg-1 d-1) and hillslope (0.76 ± 1.59 mg N kg-1 d-1) zones (mixed-model 

ANOVA test, F = 4.33, p = 0.038). However, potential denitrification rates were 

lower in the near-stream zone (0.3 – 0.6 mg N kg-1 d-1) compared to 
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intermediate (1.0 – 2.4 mg N kg-1 d-1) and hillslope (1.3 – 3.8 mg N kg-1 d-1) 

zones (Table 5.3).  

Table 5.2 Results from the mixed-model analysis of variance (ANOVA) showing the effects of riparian zones and 

seasons on soil water content, soil temperature, soil pH, soil redox capacity (Eh), soil organic matter, soil molar 

C:N ratio, soil carbon (C) and nitrogen (N) content, and soil ammonium (NH4
+) and nitrate (NO3

-) concentrations. 

Plot was treated as a random effect in the model whereas riparian zones, seasons and their interactions were 

considered fixed effects. Values are F-values and the p-values are shown in brackets. P-values < 0.05 are 

shown in bold.  

 Riparian Zone Seasons Zone × Seasons 

Soil water content 18.6 [< 0.001] 100 [< 0.001] 13.6 [< 0.001] 

Temperature 0.33 [0.721 ] 2117 [< 0.001] 0.42 [0.906] 

pH 1.97 [0.182] 2.43 [0.060] 2.73 [0.052] 

Eh 1.34 [0.247] 3.53 [0.062] 1.88 [0.084] 

Organic matter 27.8 [< 0.001] 2.77 [0.053] 1.62 [0.144] 

C:N ratio 0.99 [0.400] 10.9 [< 0.001] 1.72 [1.118] 

C 27.1 [< 0.001] 1.86 [0.132] 0.77 [0.630] 

N 39.7 [< 0.001] 1.22 [0.311] 0.63 [0.746] 

NH4
+ 12.4 [0.001] 2.71 [0.051] 1.52 [0.176] 

NO3
- 22.4 [< 0.001] 5.63 [< 0.001] 4.09 [< 0.001] 

Zone = near-stream, intermediate, hillslope.  
Season = February, April, June, August and November. 

 

 

Table 5.3 Mean values (± standard deviation) of potential denitrification rates (in mg N kg-1 d-1) after anoxia 

(DEAMQ), carbon addition (DEAC), nitrogen addition (DEANO3) and carbon and nitrogen addition (DEAC+NO3) 

treatments for the three riparian zones during the study period. For each zone, different letters indicate statistical 

significant differences between treatments (post-hoc Tukey HSD test, n = 15, p < 0.01). 

Potential Denitrification Rates (mg N kg-1 d-1) 

  DEAMQ DEAC DEANO3 DEA C+NO3 

Near-stream 0.31 ± 0.41A 0.26 ±0.27A 0.42 ± 0.42A 0.63 ± 0.85A 

Intermediate 1.01 ± 1.12A 1.88 ± 1.59A 2.28 ± 3.57A 2.40 ± 2.45A 

Hillslope 1.34 ± 1.33A 2.35 ± 1.97AB 1.73 ± 1.43AB 3.82 ± 2.78B 
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Natural CO2 and N2O emissions differed among riparian zones, yet they 

showed opposite spatial patterns. Near-stream zone exhibited lower CO2 

emissions (318 ± 195 mg C m-2 h-1) compared to the intermediate (472 ± 298 mg 

C m-2 h-1) and hillslope (458 ± 308 mg C m-2 h-1) zones (mixed-model ANOVA 

test, F = 7.08, p = 0.009). Conversely, near-stream zone showed higher N2O 

emissions (0.035 ± 0.022 mg N m-2 h-1) than the other two zones (intermediate = 

0.032 ± 0.025 mg N m-2 h-1; hillslope = 0.022 ± 0.012 mg N m-2 h-1 ) (mixed-model 

ANOVA test, F = 7.31, p = 0.008). 

5.3.2. Temporal pattern of soil properties, microbial rates, and gas emissions 

During the study period, there was a marked seasonality in most of soil 

physical properties, except for pH and Eh, which did not show any temporal 

pattern (Table 5.2). Soil water content exhibited a marked seasonality, though it 

differed among riparian zones (Table 5.2, ‚zone x season‛). In the intermediate 

and hillslope zones, soil water content was maxima in November and minima 

in August, while the near-stream soils were wetter during both spring (April-

June) and autumn (November) (Fig. 5.3a). Conversely, soil temperature 

showed similar seasonality but opposite values in all riparian zones (Table 5.2), 

with a maxima in summer (August) and minima in winter (February) (Fig. 

5.3b). Soil chemical properties (soil organic matter and both soil C and N 

content) did not show any seasonal trend, but all riparian zones exhibited 

lower C:N ratios in February compared to the other seasons (Fig. 5.3c). There 

was no seasonality in soil NH4+ concentrations at any riparian zone (Table 5.2). 

However, soil NO3- concentrations showed a marked temporal pattern, yet it 

differed among riparian zones (Table 5.2, ‚zone x season‛). The highest soil 

NO3- concentrations occurred in February at both the near-stream and hillslope 

zones, but in June-August at the intermediate zone (Fig. 5.3d). 
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Figure 5.3 Temporal pattern of (a) soil water content, (b) soil temperature, (c) soil C:N molar ratio, and (d) soil 

nitrate concentration at 10-cm depth. Data is shown for the near-stream (white), intermediate (grey), and 

hillslope (black) zones during the study period. Circles are mean values and error bars are standard deviations. 

Soil N processes showed similar seasonal patterns in all riparian zones (in all 

cases: Fdate < F0.05, Finteraction > F0.05). Both net N mineralization and net 

nitrification rates were higher in April than February, June, and November 

(Fig. 5.4a and 5.4b), while denitrification rates were higher in April and June 

compared to the rest of the year (Fig. 5.4c). In April, both net N mineralization 

and net nitrification rates differed across riparian zone, with higher rates in the 

intermediate zone than in the near-stream one. Net N mineralization rates also 

differed in August, when the intermediate zone exhibited 2-fold higher rates 

than the other two zones. Finally, denitrification was higher at the near-stream 

than at the other two zones in both June and August.  

Natural gas emissions showed a clear seasonal pattern (in both cases: mixed-

model ANOVA test, Fdate < F0.05, p < 0.001), yet it differed between CO2 and N2O 

emissions. In all zones, CO2 emissions were maxima in June and minima in 

February (Fig. 5.5a), while highest N2O emission rates occurred in April and 

lowest in both February and August (Fig. 5.5b). In spring (April and June), CO2 

emissions were higher at the intermediate and hillslope zones compared to the 
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near-stream one (Fig. 5.5a). Moreover, the near-stream zone showed higher 

N2O emissions than the hillslope zone in February, April, and June (Fig. 5.5b).  

 

 

Figure 5.4 Temporal pattern of (a) soil net N mineralization, (b) net nitrification and (c) denitrification rates at the 

near-stream (white), intermediate (grey), and hillslope (black) zones during the study period. Bars are mean 

values for each section and error bars are standard errors. For each season, different letters indicate significant 

differences among sections (mixed-model ANOVA, p < 0.05). 
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Figure 5.5 Temporal pattern of soil (a) CO2 and (b) N2O emissions at the near-stream (white), intermediate 

(grey), and hillslope (black) zones during the study period. Bars are mean values for each section and error bars 

are standard errors. For each season, different letters indicate significant differences among sections (mixed-

model ANOVA, p < 0.05). 

5.3.3. Relationship between soil properties, microbial processes, and gas 

emissions 

PLS models extracted two components that explained the 71% and the 40% of 

the variance in CO2 and N2O emissions, respectively (Table 5.4). The model 

predictability was high for CO2 (Q2Y = 0.66), but weak for N2O (Q2Y = 0.34). 

Moreover, PLS models identified few variables as key predictors of GHG 

emissions (VIF < 2, VIP > 0.8), yet these variables differed between CO2 and 

N2O emissions (Table 4). Soil temperature (PLS coefficient [coef] = +0.60), and 

soil water content (coef = -0.24) explained most of the variation in CO2 
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emissions (Table 5.4, Fig. C.2a). Conversely, variations in N2O emissions were 

primarily related to changes in denitrification rates (coef = +0.45), soil water 

content (coef = +0.21) and, to less extent, groundwater level (coef = -0.16) (Table 

5.4, Fig. C.2b). 

 

Table 5.4  Summary of the partial least squares (PLS) models produced for CO2 and N2O emissions at the 

riparian site (n = 75). Values are the coefficients from PLS models which describe the relationship (direction and 

relative strength) between explanatory variables and gas emissions. The variance inflation factor (VIF) of each 

explanatory variable, indicative of collinearity, are shown in brackets. Bold values indicate the most influencing 

variables (variable importance in the projection (VIP) >1.0). 

 X-variable Acronym CO2 N2O 

Soil Properties Soil water content (%) SWC -0.235 [1.72] 0.205 [1.32] 

 Groundwater level (cm b.s.s.) GWL --- -0.157 [1.24] 

  Temperature (C) Tsoil 0.599 [1.45] --- 

 pH pH --- --- 

 Redox potential (mV) Eh --- --- 

 Bulk density (g cm-1) BD --- --- 

 Coarse texture (%) % Sand --- --- 

 Organic matter (%) SOM --- --- 

Total Carbon  C --- --- 

Total Nitrogen  N --- --- 

Molar C:N ratio C:N ratio --- --- 

Ammonium NH4
+ 0.167 [1.61] --- 

Nitrate NO3
- 0.066 [1.80] -0.060 [1.47] 

Soil N 
processes 

Net N Mineralization 
NNM --- --- 

 Net Nitrification NN --- --- 

 Denitrification DNT --- 0.449 [1.09] 

R2Y   0.71 0.40 

Q2Y   0.66 0.34 

Acronym is used in Figure C.2 for PLS loading plots. 
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5.4. Discussion 

This study emphasized the role of soil water content as a main driver of 

riparian biogeochemistry and GHG emissions. By analyzing soil microbial 

processes and GHG emissions over a year in a Mediterranean riparian forest, 

we clearly demonstrate that soil water content has a major role in driving soil 

microbial processes, the spatio-temporal patters of CO2 and N2O emissions and 

the overall role of Mediterranean riparian soils in the global C and N cycles. 

5.4.1. Microbial processes regulating GHG emissions 

Mean daily emissions of CO2 found in the present study (1.2 – 10 g C m-2 d-1) 

were generally high, especially during spring and summer months. These soil 

CO2 emissions were higher than those reported for temperate riparian regions 

(0.2 – 4.8 g C m-2 d-1(Batson et al., 2015; Bond-Lamberty and Thomson, 2010; 

Mander et al., 2008), although similar values have been reported in some dry 

forested wetlands of Europe and North America (Harms and Grimm, 2008; 

Oertel et al., 2016). These substantially high CO2 emissions observed in Font del 

Regàs may be attributed to high microbial respiration rates associated with 

relatively moist and organic matter enriched soils (Mitsch and Gosselink, 2007; 

Pacific et al., 2008; Stern, 2006). In agreement, previous studies have reported 

that microbial heterotrophic respiration can be an important contributor (> 

60%) to CO2 soil effluxes in water-limited riparian zones (Harms and Grimm, 

2012; McLain and Martens, 2006). However, the absence of a relationship 

between soil N processes and CO2 emissions suggests that soil C and N cycles 

are decoupled in Mediterranean riparian forests, and thus, soil N 

mineralization may be not a good descriptor of bulk organic matter 

mineralization. Moreover, plant roots respiration and methane oxidation can 

increase the CO2 emissions in riparian soils with deep groundwater tables such 

as in Font del Regàs (Chang et al., 2014).  

Conversely, N2O emissions of our riparian site (0.001 – 0.2 mg N m-2 d-1) were 

relatively low during the whole year. Similar N2O emissions were reported in 

other water-limited riparian forests that are rarely flooded (-0.9 – 0.39 mg m-2 d-

1; Bernal et al., 2003; Harms and Grimm, 2012; Vidon et al., 2016), yet these 
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values were, on average, much lower than those found in temperate riparian 

regions (0 – 54 mg N m-2 d-1; Burgin and Groffman, 2012; Hefting et al., 2003; 

Mander et al., 2008). In Font del Regàs, most N2O was produced by 

denitrification, as we found an intimate link between this microbial process 

and N2O emissions. Additionally, other processes such as nitrification or 

nitrate ammonification can contribute to N2O emissions (Baggs, 2008; Hefting 

et al., 2003). However, it seems unlikely that nitrification could account for the 

observed N2O emissions because no relationship was found between net 

nitrification rates and N2O emissions. Likewise relatively oxic conditions (Eh > 

100) and low C:N ratios (C:N < 20) in Font del Regàs suggest low nitrate 

ammonification in riparian soils (Schmidt et al., 2011). Currently, the influence 

of soil denitrification on N2O emissions in riparian zones is still under debate 

(Giles et al., 2012). Nonetheless, our results suggest that performing 

simultaneous measurements of different soil N can contribute to disentangling 

the mechanisms underlying net N2O emissions in riparian areas.  

5.4.2. Effects of soil water content on soil CO2 effluxes 

As expected, we found higher soil CO2 effluxes at the intermediate and 

hillslope zones than at the near-stream zone. This spatial pattern was negative 

and strongly related to soil water content (Table 4), suggesting that, as soils 

become less moist and more aerated, oxidizing aerobic respiration increases, 

ultimately stimulating CO2 production in the top soil layer (Muller et al., 2015). 

In agreement, other aerobic processes, such as N mineralization were also 

higher in the intermediate and hillslope zones. Moreover, deep groundwater 

tables in the hillslope zone can increase the volume of aerated soil, which can 

increase the area-specific soil CO2 emissions near the hillslope edge (Chang et 

al., 2014). Increasing CO2 emissions from wet to dry zones has been reported in 

other wetlands and riparian forests (Batson et al., 2015; Morse et al., 2012; Welti 

et al., 2012), pinpointing a close linkage between riparian hydrology and 

spatial variations in microbial respiration rates.. 

Nonetheless, the intra-annual variations of soil CO2 emissions were strongly 

dependent on soil temperature (Table 4). Probably, cold temperatures (< 4ºC) 

limited soil respiration during winter, while warmer conditions (> 15ºC) 
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stimulated this process in June and August (Emmett et al., 2004; Suseela et al., 

2012; Teiter and Mander, 2005). However, lower CO2 emissions than expected 

for temperature dynamics were reported in summer at the intermediate and 

hillslope zones, likely because extreme soil dryness (soil water content < 20%) 

limited respiration rates during such period (Chang et al., 2014; Goulden et al., 

2004; Wickland et al., 2010). Although the mechanisms by which soil dryness 

may affect microbial C demand are still poorly understood, suppressed 

microbial respiration in summer can be attributed to a disconnection between 

microbes and resources (Belnap et al., 2005; Davidson et al., 2006), decreases in 

photosynthetic and exo-enzimatic activities (Stark and Firestone, 1995; 

Williams et al., 2000), or a relocation of the invested energy on growth (Allison 

et al., 2010). Altogether, these results suggest that soil water content may be as 

important as soil temperature to understand soil CO2 effluxes, and therefore, 

future warmer conditions may not fuel higher CO2 emissions, at least in those 

regions experiencing severe water limitation.  

5.4.3. Effects of soil water content on soil N2O effluxes 

As occurred for CO2 emissions, N2O fluxes showed a clear spatial pattern 

associated with changes in soil water content across the riparian zone. In the 

near-stream zone, relatively wet conditions (SWC = 30 – 40%) likely promoted 

denitrification rates, while dry soils (SWC = 10 – 25%) could limit both 

nitrification and denitrification in the intermediate and hillslope zones (Linn 

and Doran, 1984; Pinay et al., 2007a). Such spatial pattern differed from those 

found in non-water limited riparian forests, where higher N2O emissions 

occurred in the hillslope edge as a result of high resource supply (DeSimone et 

al., 2010; Dhondt et al., 2004; Hedin et al., 1998). These results suggest that 

riparian hydrology is the primary mechanisms controlling denitrification but, 

once water is unlimited, substrate availability controls the magnitude of 

denitrification rates. This former idea is supported by our potential 

denitrification results, which showed that, after adding water, denitrification 

rates were similar to those observed in the field for the near-stream zone, but 

increase by 3-4 fold in the other two zones. Moreover, N2:N2O ratios estimated 

from acetylene method suggest that there was a spatial pattern in 
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denitrification efficiency as well. During the study period, N2:N2O ratios were 

always higher at the near-stream (21.50 ± 40.32) than at the intermediate and 

hillslope zones (5.90 ± 16.02 and 4.23 ± 8.31, respectively), yet all values were 

much lower than those reported for temperate riparian forests (184 – 844; 

Mander et al., 2014). All together, these results support the idea that saturated 

soils favored the complete denitrification process to N2 and can potentially 

emit less N2O compared to less saturated soils (Giles et al., 2012).  

Intra-annual variation in N2O emission was also related to riparian hydrology 

because high rates of N2O effluxes occurred in April, when large precipitation 

events (400 mm) raised the groundwater level and increased soil water content 

at the whole riparian plot. Such pulses of N2O emissions short-after rewetting 

events can reflect the microbial use of the NO3- that has been accumulated 

during dry antecedent periods (Chang et al., 2014; Hefting et al., 2004; Pinay et 

al., 2007a). In agreement, the PLS model showed a negative relation between 

soil water content and NO3- concentrations. Moreover, our results further 

suggest that rewetting events promote a fast N cycle because all microbial N 

processes were maxima in April. Nevertheless, we also expected a fast N cycle 

as well as large N2O emissions following rains in November because, similarly 

to spring, environmental conditions (i.e. high soil water content and 

increments in soil NO3- concentrations during the antecedent dry summer) 

should enhance microbial activity. Likely, low rates of N transformations 

during fall may be attributed to an increase in microbial N demand following 

large C inputs from litterfall (Guckland et al., 2010). Moreover, leaf litter from 

R. pseudoacacia, the main tree species in our study site, holds a high lignin 

content (Castro-Díez et al., 2009; Yavitt et al., 1997), which might enrich the 

riparian soil with phenolic compounds and ultimately limit the use of N by 

microbes (Bardon et al., 2014). These results suggest that the response of N 

cycling to changes in water availability is more complex and less predictable 

than C cycling, likely because N processes depend on the interplay of 

additional ecosystem factors not included in this study.  
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5.4.4. Riparian soils as hot spots of GHG effluxes  

There are several studies that attempt to upscale riparian GHG emissions at 

catchment scale, yet there are still fundamental uncertainties regarding the 

magnitude and sources of GHG emissions (Hagedorn, 2010; Pinay et al., 2015; 

Vidon and Hill, 2006).  When accounting for all GHG (CO2 + N2O), our study 

suggest that our riparian soils can emit between 438 – 3650 g C m-2 yr-1. 

Assuming that GHG emissions (CO2 + N2O) from upland evergreen oak and 

beech soils (54% and 38% of the catchment, respectively) are similar to other 

Mediterranean regions (oak: 19 – 1240 g C m-2 yr-1; Asensio et al., 2007; Barba et 

al., 2016; Inclán et al., 2014); beech: 214 – 1182 g C m-2 yr-1; Guidolotti et al., 

2013; Kesik et al., 2005), then riparian soils (6% of the catchment area) can 

contribute between 16 – 22% to the total catchment soil GHG emissions. 

Although these estimates are rough (i.e. we assumed that riparian soils emit 

the same rate of GHG that our study site), our results clearly pinpoint that 

riparian soils can be potential hot spots of GHG emissions within 

Mediterranean catchments. These findings contrast with the common 

knowledge that water limited soils are powerless GHG sources to the 

atmosphere (Bernal et al., 2007; Vidon et al., 2016) and stress the importance of 

simultaneously consider several GHG emissions (i.e. CO2, N2O, CH4) to get a 

whole picture of the role of riparian soils in climate change. 

5.5. Conclusions 

Mediterranean riparian zones are dynamic systems that undergo spatial and 

temporal shifts in biogeochemical processes due to changes in both soil water 

content and substrate availability. In a first attempt to simultaneously quantify 

CO2 and N2O emissions from Mediterranean riparian soils, we showed that 

most of GHG emissions occur in form of CO2, even in the wet soils located near 

the stream. In addition, our results clearly illustrate a strong linkage between 

riparian hydrology and the microbial processes that produce GHG. Deep 

groundwater tables fueled large respiration rates in the relatively dry soils near 

the hillslope, while denitrification mostly occurred in the wet zones located 

near the stream channel. As occurred at spatial scale, riparian soil water 
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content was a primarily control of the temporal patterns of CO2 and N2O 

emissions. Soil dryness diminished respiration rates during summer, while a 

fast soil N cycling promoted high N2O emissions after a rewetting event in 

spring. Overall, our study highlights that future variations in catchment 

hydrology due to climate change can potentially affect the riparian 

functionality in Mediterranean zones, as well as their contribution to regional 

and global C and N cycles.  
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CHAPTER 6 

Riparian forest transpiration under the current and 

projected Mediterranean climate: effects on soil 

water and nitrate uptake 
 

 

 

 

Riparian vegetation plays a key role in riparian area functioning by controlling 

water and nitrate (N-NO3-) transfers to streams. We investigated how spatial 

heterogeneity modifies the influence of vegetation transpiration on soil water and 

N-NO3- balances in the vadose soil of a Mediterranean riparian forest. Based on 

field data, we used the HYDRUS-1D model to simulate water flow and N-NO3- 

transport in three riparian zones (i.e. near-stream, intermediate, and hillslope). We 

investigated spatio-temporal water and N-NO3- patterns across the riparian area 

over a 3-year period and for future years using an IPCC/CMIP5 2015-2100 climate 

projection for the Mediterranean region. Potential evapotranspiration was 

partitioned between evaporation and transpiration, and several scenarios were 

created to test model sensitivity to the transpiration rate. N-NO3- removal was 

considered to come only from plant uptake (i.e. denitrification was not 

considered). For the three riparian zones, the model successfully predicted field 

soil moisture (θ). The near-stream zone exchanged larger volumes of water and 

supported higher θ (0.38 ± 0.01 cm3cm-3) and transpiration rates (666 ± 75 mm) than 

the other two riparian zones. Total water fluxes, θ, and transpiration rates 

decreased near the intermediate (θ=0.25 ± 0.04 cm3cm-3, 536 ± 46 mm transpired) 

and hillslope zones (θ=0.17 ± 0.04 cm3cm-3, 406 ± 26 mm transpired), suggesting 

that water availability was restricted due to deeper groundwater. Transpiration 

strongly decreased θ and soil N-NO3- in the hillslope and intermediate zones. Our 

climate projections highlight the importance of groundwater availability and 

indicate that soil N-NO3- concentrations increased due to changes in plant-root 

uptake. Lower water availability in the hillslope zone may reduce the effectiveness 

of N-NO3- removal in the riparian area, increasing the risk of excess N-NO3- 

leaching into the stream. 

 
Original Work: Poblador, S., Z. Thomas, P. Guentin-Rousseau, S. Sabaté and F. Sabater. 

2018. Riparian forest transpiration under the current and projected Mediterranean climate: 

effects on soil water and nitrate uptake. Ecohydrology (under review) 
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6.1. Introduction 

Riparian areas are considered key ecosystems because of their great ability to 

regulate stream discharge and reduce nitrogen (N) loads from uplands to 

streams via vegetation N uptake and microbial denitrification in saturated soils 

(Clément et al., 2002, 2003; Hill, 1996). Among riparian forms of plant life, trees 

have the highest transpiration rates (Huxman et al., 2005; Zhang et al., 2001, 

2005), which have strong effects on soil moisture (θ) and daily groundwater 

fluctuations (Barnard et al., 2010; Bosch et al., 2014; Ghazavi et al., 2011; 

Gribovszki et al., 2010). These transpiration rates ultimately influence annual 

water balances in riparian areas and exchanges with adjacent streams 

(Hernandez-Santana et al., 2011; Medici et al., 2008). Consequently, forested 

riparian areas can remove more nitrate (N-NO3-) via root uptake from 

unsaturated and saturated zones than grasslands (Connor et al., 2013; Hefting 

et al., 2005; Mayer et al., 2005; Osborne and Kovacic, 1993). Vegetation has 

especially strong effects on hydrological and biogeochemical processes in arid 

and semiarid regions, where water availability is lower and groundwater tends 

to be deeper (Butturini et al., 2003b; Lupon et al., 2016c; Sabater and Bernal, 

2011; Williams and Scott, 2009). Because of lower water availability in these 

regions, soil is rarely anoxic, and thus denitrification is negligible (Bernal et al., 

2007; Poblador et al., 2017). Hence, root uptake can influence N retention under 

these climate conditions. 

Climate change and human activities (e.g. water extraction, riparian forest 

exploitation, land use changes) impact riparian areas and related ecosystem 

services, affecting not only water budgets but the ability of riparian areas to act 

as N filters (Radtke et al., 2013; Sala et al., 2000a; Tylianakis et al., 2008). 

Climate-change scenarios project an increase in mean annual temperature and 

a decrease in summer rainfall in the Mediterranean region (IPCC, 2013). An 

increase in temperature might initially stimulate transpiration rates in riparian 

areas by increasing atmospheric evaporative demand, but transpiration can 

also be restricted when θ decreases and groundwater falls below the rooting 

zone (Jung et al., 2010; Oliveira et al., 2011; Williams and Scott, 2009). Shifts in 

plant species due to changes in water availability have already occurred in the 



Water and nitrogen fluxes modelitaztion                                                              107 

 

Mediterranean region and can be exacerbated by aridification. The most 

vulnerable species are those adapted to a relatively narrow range of 

environmental conditions (O’Neill et al., 2008; Peñuelas and Boada, 2003), such 

as those present in riparian areas (Grady et al., 2011; Hultine et al., 2013). Some 

studies have reported higher tree N-NO3- uptake from soils when soil 

temperatures increase (Rennenberg et al., 2009). However, changes in 

transpiration rates due to changes in climate or shifts in tree species can 

decrease N uptake capacity in riparian areas, increasing N losses from soils 

into streams and influencing downstream water quality (Gerber and 

Brookshire, 2014; Lupon et al., 2016a).  

Because seasonal and inter-annual variability in climate conditions can affect 

riparian ecosystems and their water and N budgets, an increasing amount of 

research focuses on modeling fluxes in these areas to better understand their 

functioning and predict cascade effects. Combining modeling and field 

experiments can provide essential information to investigate interactions 

between climate and both the water and N cycles (Chen et al., 2016; Weiler and 

McDonnell, 2004). Models that predict N transport and transformation rely on 

a good understanding of hydrology (Connor et al., 2013; Ranalli and Macalady, 

2010), of which θ is one of the most widely studied variables. Soil water is the 

main component of the hydrological cycle available to plants, and its dynamics 

depend on interactions between the soil, vegetation, and the atmosphere.  

Catchment modeling typically considers riparian areas as homogeneous, even 

though this is not always the case (Ford et al., 2008; Tromp-van Meerveld and 

McDonnell, 2006). Little is known about how spatial patterns of soil 

characteristics (such as θ, soil texture, soil thickness, and groundwater level 

(GWL)) can regulate the influence of vegetation on water and N fluxes 

(Angstmann et al., 2013; Meixner et al., 2016; Ocampo et al., 2006). For instance, 

θ in riparian areas in the Mediterranean region has high spatial variability due 

to shallow groundwater in the near-stream zone and deeper groundwater in 

the hillslope zone. In areas where groundwater lies more than 1 m deep, the 

biogeochemistry of the unsaturated zone is clearly disconnected from that of 

the saturated zone (Jacinthe and Dick, 1997; Vidon, 2017). Understanding this 
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spatial heterogeneity is crucial to conceptualize the functioning of riparian 

areas and to evaluate potential effects of climate change on them (Hassler et al., 

2017; Schume et al., 2004; Tromp-van Meerveld and McDonnell, 2006).  

This study investigates how spatial heterogeneity modifies the influence of tree 

transpiration on soil water and N-NO3- balances in the soil profile of a 

Mediterranean forest. Water flow and N-NO3- transport were simulated based 

on field data at the riparian zone scale. Root uptake of water and N-NO3- was 

predicted over a 3-year period (2012-2014), and then over a projected climatic 

period (2015-2100) following the Intergovernmental Panel on Climate Change 

projection for the Mediterranean region (IPCC 2013). Since transpiration has 

been identified as the main component of water balances (Thomas et al., 2012), 

we hypothesized that it and N-NO3- uptake would drive water and N-NO3- 

balances in the riparian area studied. We expected that shallow groundwater 

in the near-stream zone would have high transpiration rates and large water 

fluxes, while deeper groundwater in the hillslope zone would restrict all water 

fluxes. Nevertheless, we expected stronger effects of transpiration on θ 

dynamics and annual water balances in the hillslope zone, due to lower soil 

water availability for plants. Based on expected differences in spatial 

transpiration rates, higher root uptake of N-NO3-, and thus higher N retention, 

was expected in the near-stream zone than in the hillslope zone. Finally, we 

predicted the influence of projected climate change on water and N-NO3- 

balances in riparian zones. We hypothesized that future drier conditions 

would cause θ to decrease and N-NO3- concentration to increase in the soil 

profile due to lower root-uptake rates.  

6.2. Materials and Methods  

6.2.1. Study site 

Font del Regàs is a subhumid Mediterranean forested catchment in the 

Montseny Natural Park, NE Spain (41º50’N, 2º30’E). The catchment is 

dominated by biotitic granite (ICC, 2010). The catchment covers 14.2 km2 and 

ranges in elevation from 475-1500 m above sea level. The riparian area covers 

6% of the catchment. 
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Figure 6.1 Diagram of riparian zones at the study site. Arrows represent water and nitrogen fluxes in the 

HYDRUS-1D model: (R) rainfall, (I) infiltration, (E) evaporation, (T) transpiration, (D) drainage, and (C) 

capillarity. For nitrate fluxes, evaporation does not exist, while transpiration represents uptake by 

vegetation. 

We selected a well-developed riparian stand (~600 m2, ~25 m wide) that 

flanked the stream at the valley bottom of the catchment. The riparian soil (pH 

~7) was sandy and had a 5 cm organic layer followed by a 30 cm A-horizon. 

We established three riparian zones based on the observed spatial segregation 

of riparian tree species and GWL (Fig. 6.1). The near-stream zone (0-4 m from 

the stream edge), where GWL laid 0.41-0.60 m below the soil surface (b.s.s.), 

occupied 16% of the riparian plot and was composed of Alnus glutinosa, 

Populus nigra and Robinia pseudoacacia (45%, 33%, and 22% of the zone’s basal 

area (BA), respectively). The intermediate zone (4-7 m from the stream edge), 

where GWL ranged from 1.20-1.35 m b.s.s., occupied 12% of the riparian plot 

and was composed of P. nigra and R. pseudoacacia (29% and 71% of the zone’s 

BA, respectively). The hillslope zone (7-25 m from the stream edge), with GWL 

> 2.20 m b.s.s., was the largest (72% of the riparian plot) and was composed of 

Fraxinus excelsior and R. pseudoacacia (7% and 93% of the zone’s BA, 

respectively). Mean (± 1standard deviation) of porosity in the near-stream soil 

profile was 0.56 ± 0.05%, and that of its bulk density was 1.17 ± 0.14 g cm -3. 

Intermediate and hillslope zone soil profiles had similar porosities (0.50 ± 
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0.07% and 0.50 ± 0.05%, respectively) and bulk densities (1.31 ± 0.19 g cm -3 and 

1.32 ± 0.18 g cm-3, respectively) (Boumghar, 2012).  

During the study, which encompassed three vegetative periods (2012, 2013, 

and 2014), mean annual rainfall (572 ± 134 mm) and mean annual temperature 

(13.3 ± 0.9 ºC) fell within their long-term annual means for this region (period 

1940-2000; Catalan Meteorological Service). Total inorganic N deposition 

ranges from 15-30 kg N ha-1 yr-1 (period 1983-2007; Àvila and Rodà, 2012). 

6.2.2. Soil and groundwater field measurements 

We monitored θ (i.e. volumetric soil water content (cm3 cm-3)), GWL 

fluctuations and groundwater N-NO3- across the riparian area from March 

2012 to October 2014. θ in the topsoil (upper 30 cm) was measured every 15 

min using frequency domain reflectometers (CS616, Campbell Scientific, 

Logan, USA) at 1.5, 4, and 14 m from the stream edge. 

A grid of wells was installed at multiple locations inside the plot (1.5, 5, and 17 

m from the stream edge) to monitor GWL fluctuations and groundwater 

dynamics and quality. Wells were PVC tubes (32 mm Ø) uniformly screened 

along their length and sunk 1, 1.5 and 3 m b.s.s. deep in near-stream, 

intermediate, and hillslope zones, respectively. At each riparian zone, GWL 

was measured every 15 min by water pressure transducers (HOBO U20-001-04, 

Onset, Bourne, Mass., USA). Stream water and groundwater were sampled 

every two weeks and stored in pre-acid-washed polyethylene bottles 

previously rinsed with sampled water. Sampling also included water from a 

rainfall collector from the nearby meteorological station. All water samples 

were filtered (Whatman GF/F, 0.7 μm pore Ø) and kept cold (< 4ºC) until 

laboratory analysis (< 24 h after collection). N-NO3- concentration was 

quantified with the cadmium reduction method (Keeney and Nelson, 1982) 

using a Technicon Autoanalyzer (Technicon, 1976). 

6.2.3. Modeling method 

To analyze the complex interaction among soil, vegetation, and the atmosphere 

(Fig. 6.1), we developed a modeling approach based on a vertical 1D flow 
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domain representing each riparian zone. Preliminary hydraulic head results 

from the study plot revealed parallel groundwater fluxes to the stream most of 

the year, while lateral fluxes occurred only during drier summer periods, when 

stream water entered the near-stream zone. We used the HYDRUS-1D model 

(Simunek et al., 2006; Šimůnek et al., 2008) to simulate water flow and N-NO3- 

transport in variably unsaturated media. The model simulates water flux by 

adapting Richards equation (Eq. 6.1), assuming that air and thermal gradients 

can be ignored in the liquid flow process. A sink term represented in Richards 

equation was used to represent root uptake by trees (Richards, 1934):  

𝜕𝜃

𝜕𝑡
 =  

𝜕

𝜕𝑧
  𝐾(ℎ)  

𝜕ℎ

𝜕𝑧
 + 𝑐𝑜𝑠 𝛼   − 𝑆  (Eq. 6.1) 

where θ is volumetric soil moisture *L3 L-3], K(h) is unsaturated hydraulic 

conductivity [L T-1], h is the soil water pressure head, z is the vertical 

coordinate, α is the angle between the direction and the vertical axis (α = 0º for 

vertical flow, α = 90º for horizontal flow), and S is the sink term for root water 

uptake [L3 L-3 T-1]. The Feddes model was applied to capture the relationship 

between the pressure head and water uptake limitation (Feddes et al., 1974). 

Soil hydraulic properties and retention curve parameters were assessed using 

the Van Genunchten empirical model (Van Genunchten, 1980). 

6.2.4. Modeling set-up and boundary conditions 

According to our study site configuration, a 1D model with a flow domain 

thickness of 2.5 m was defined for each riparian zone (i.e. near-stream, 

intermediate, and hillslope). The thickness of unsaturated soil depended on the 

GWL in each riparian zone. Each application of the model to a riparian zone 

included (i) inverse modeling to define soil parameters, (ii) model validation 

using field data, and (iii) simulation of the studied period (2012-2014). First, the 

model’s soil hydraulic properties  residual θ (θr), saturation θ (θs), and 

hydraulic conductivity (Ks)  for each riparian zone were predicted using 

inverse modeling. Initial values of these parameters were defined from 

previous field data on particle size distribution and bulk density profiles 

(Boumghar, 2012) using the Rosetta module (Schaap et al., 2002), which is 

included in the HYDRUS-1D software package. In the inverse modeling, our 
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observations of topsoil θ in spring 2012 were defined as the objective function. 

An inverse solution was obtained after 2, 4, and 5 iterations of the near-stream, 

intermediate, and hillslope models, respectively. Field θ data for 2012 and 2013 

were used to evaluate prediction accuracy, excluding data from summers to 

avoid incorporating plant transpiration effects, which strongly influence θ 

(Table 6.1). 

Table 6.1 Soil hydraulic properties for the near-stream, intermediate and hillslope riparian zones. 

Residual soil moisture (θr), saturation soil moisture (θs), α and n (parameters describing the shape of the 

soil water retention curve and hydraulic conductivity, respectively), the tortuosity parameter (I), and 

saturated hydraulic conductivity (Ks) estimated from inverse modeling. The table also shows goodness 

of fit (root mean squared error (RMSE) and Nash-Sutcliffe model efficiency (Nash)) between observed 

and predicted θ.  

 Near-stream Intermediate Hillslope 

Soil hydraulic properties 

θr (cm3 cm-3) 0.01 0.16 0.10 

θs (cm3 cm-3) 0.565 0.560 0.480 

α (1 cm-1) 0.043 0.048 0.048 

n (-) 1.493 1.694 1.713 

I (cm cm-1) 0.5 0.5 0.5 

Ks (cm day-1) 800 200 200 

Model goodness of fit 

RMSE  0.007 0.018 0.025 

Nash  0.739 0.879 0.765 

 

Subsurface and surface boundary conditions were specified for each riparian 

zone. Subsurface boundary conditions were pressure head measurements 

calculated from GWL field data for each riparian zone. During the study 

period, mean GWL (± 1 SD) measured in the field was 0.61 ± 0.03 m b.s.s. in the 

near-stream zone and decreased to 1.29 ± 0.05 and 2.23 ± 0.07 m b.s.s. in the 

intermediate and hillslope zones, respectively (Fig. 6.2a). Daily meteorological 

data were recorded at a meteorological station located ca. 800 m from the study 

site. Daily potential evapotranspiration (PET) (mm d-1) was calculated using 

the Penman-Monteith equation following Allen et al. (1998). Surface boundary 

conditions (i.e. rainfall and PET) were the same in all riparian zones. Rainfall 

was used in HYDRUS-1D to estimate infiltration rates.  
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Figure 6.2 Boundary conditions used for simulations. (a) Precipitation (mm) as a surface water flow 

boundary condition and groundwater level (m below the soil surface, b.s.s.) as subsurface water flow 

boundary conditions. (b) Nitrate concentrations (mg N-NO3
- l-1) in precipitation and groundwater used for 

solute transport surface and subsurface boundary conditions, respectively. Nitrate concentrations where 

measured every two weeks and were applied to each day of the associated two-week period. 

Groundwater data are shown for near-stream, intermediate, and hillslope riparian zones. 

For N-NO3- boundary conditions, discontinuously measured field data of 

rainfall were the same for all three zones, while groundwater N-NO3- 

concentration differed among zones. Field data for N-NO3- concentration in 

rainfall and groundwater collected every two weeks were applied to each day 

of the associated two-week period and used as boundary conditions (Fig. 6.2b). 

Predicted N-NO3- transport was neither calibrated nor validated, since N-NO3- 

uptake is a function of water uptake. 
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6.2.5. Transpiration rates: water and N-NO3
- flux simulations 

After estimating and validating the soil hydraulic parameters, we introduced 

tree water uptake, with root distribution concentrated in each unsaturated soil 

column. All root systems reached the groundwater table and had maximum 

root depth density in the middle of the unsaturated soil profile. The partition 

between evaporation and transpiration was estimated for each riparian zone. 

We evaluated the influence of transpiration on θ by testing transpiration 

partitioning rates equal to 20%, 50%, 60%, 70% and 80% of PET. For each 

riparian zone and transpiration rate, we simulated water flow to determine the 

adjusted transpiration rate by comparing observed and predicted θ in the 

topsoil.  

For the best-fit model of transpiration partitioning in each riparian zone, N-

NO3- transport and N uptake by tree roots was simulated assuming that N-

NO3- concentrations in the fluxes equaled those in soil water. All uptake was 

considered passive (i.e. no discrimination in uptake and not a dissimilatory N 

process) and that the proportional decrease in soil N-NO3- concentration 

equaled the proportional increase in root water uptake (Šimůnek and 

Hopmans, 2009).  

6.2.6. Goodness of fit 

For each riparian zone, we evaluated the goodness of fit between observed and 

predicted θ data using the root mean squared error (RMSE) and Nash-Sutcliffe 

model efficiency coefficient (Nash). 

𝑅𝑀𝑆𝐸 =   
  𝜃𝑖𝑝𝑟𝑒𝑑 −𝜃𝑖𝑝𝑟𝑒𝑑  2𝑁

𝑖=1

𝑁
   (Eq. 6.2) 

𝑁𝑎𝑠ℎ = 1 − 
  𝜃𝑖𝑝𝑟𝑒𝑑 −𝜃𝑖𝑜𝑏𝑠  2𝑁

𝑖=1

  𝜃𝑖𝑝𝑟𝑒𝑑 −𝜃𝑖
 𝑜𝑏𝑠  

2𝑁
𝑖=1

   (Eq. 6.3) 

where θpred is predicted θ, θobs is observed field θ, 𝜃𝑜𝑏𝑠 is mean observed θ 

over the simulation period, and N is the number of observations in the period 

(time series). RMSE values closer to 0 indicate higher correlation between 

observed and predicted values. The Nash-Sutcliffe coefficient is used to 
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evaluate the predictive power of the model. A Nash=1 indicates a perfect 

match between observed and predicted data, whereas a Nash=0 indicates that 

the mean of observed data has the same predictive power as the model.  

6.2.7. Water and N-NO3- mass balances 

Water and N-NO3- balances in the soil profile of each riparian zone were 

calculated from model predictions of daily fluxes. Each year was divided in 

two periods: (i) the vegetative period (April-October) and (ii) the dormant 

period (November-March). Water balances were calculated as: 

∆𝑊𝑠 = 𝐼 − 𝐸 − 𝑇 + 𝐶 − 𝐷    (Eq. 6.4) 

where ΔWs is water storage, I is infiltration, E is evaporation, T is 

transpiration, C is capillarity from groundwater, and D is drainage into the 

groundwater. All fluxes in the model are expressed in mm. Soil N-NO3- mass 

balances (ΔNO3-) were calculated like water balances (Eq. 6.4), but evaporation 

(E) was excluded, and transpiration (T) was considered as plant root uptake 

(U). All other water fluxes from Eq. 6.4 were multiplied by predicted soil N-

NO3- concentrations (mg l-1) to obtain the N-NO3- mass balance for each 

riparian zone. 

6.2.8. Evaluation of the influence of climate change on soil water-vegetation 

interactions 

To explore how climate change may influence soil water-vegetation 

interactions in our study site, we ran the HYDRUS-1D model under projected 

climate change conditions for each riparian zone. IPCC scenarios for the 

Mediterranean zone predict a 2ºC increase in air temperature and a 5% 

decrease in precipitation by 2100 (IPCC, 2013). We based our climate 

projections on Representative Concentration Pathways 2.6, 4.5, and 8.5. Data 

were downloaded from the Earth System Grid Federation website (https://esgf-

node.llnl.gov/projects/esgf-llnl/). We extracted 4-pixel data around our study 

area from CMPI5 long-term simulations (Fig. D.1). Daily data obtained for 

precipitation (PR in the database) and latent heat fluxes (HFLS) were summed 

annually (2015-2100) to run our projections. 
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For the climate projection simulations, for each model application, we used 

projected rainfall and PET (with specific transpiration partitioning) as surface 

boundary conditions and specific GWL as subsurface boundary conditions. For 

all riparian zones, we simulated both (i) keeping this transpiration partitioning 

constant and (ii) using a transpiration partitioning 20 percentage points lower 

throughout the projected period, as described for models simulating climate 

change scenarios for vegetation (Luo et al., 2008). Little is known about the 

influence of climate change on GWL and ecosystems that depend on GWL 

across biomes (Klove et al, 2014). Therefore, to test the sensitivity of model 

projections to GWL, we examined two possible scenarios: (i) steady GWL 

during the period and (ii) GWL depletion due to climate change. For the steady 

GWL scenarios, the GWL predicted at the end of the current period (October 

2014) was kept constant through to 2100. Pascual et al. (2015) predicted a 30% 

decrease in summer stream discharge in the headwaters of our catchment by 

2100. Since groundwater recharges the stream in summer, we assumed that 

GWL would decrease by the same rate. We thus simulated a decrease in GWL 

of 3 mm year-1 to reach a GWL 30% lower by 2100. For N-NO3- boundary 

conditions, surface inputs and subsurface concentrations were calculated as a 

function of projected rainfall using field-data correlations from the period 

studied. We used model predictions to evaluate the influence of this projected 

climate on θ and soil N-NO3- in the riparian zones. 

 

6.3. Results 

6.3.1. Soil properties and transpiration rates in the riparian zones 

Predicted saturated hydraulic conductivity (Ks) from the inverse solution was 

four times as high in the near-stream zone as in the intermediate and hillslope 

zones (Table 6.1). The near-stream zone also had higher water storage capacity 

(θs - θr) than the intermediate and hillslope zones: 0.56, 0.40 and 0.38 cm3 cm-3, 

respectively. Soil hydraulic properties were predicted accurately for all 

riparian zones (RMSE < 0.03 and Nash > 0.74). 
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Figure 6.3 Observed (dots) and predicted (lines) soil moisture (in cm3 cm-3) in the near-stream, 

intermediate, and hillslope riparian zones. 

 

Predicted θ had low sensitivity (i.e. variability in Nash and RMSE) to 

transpiration rates (i.e. 20%, 50%, 60%, 70%, and 80% of PET) in the near-

stream and hillslope zones but high sensitivity in the intermediate zone (Table 

D.1). Nevertheless, the transpiration rate yielding the most accurate prediction 

of observed θ differed among riparian zones. The most accurate transpiration 

rate was highest in the near-stream zone (80% of PET; Nash=0.52, RMSE=0.01) 

and lower in the intermediate (70% of PET; Nash=0.82, RMSE=0.02) and 

hillslope (60% of PET; Nash = 0.57, RMSE = 0.03) zones (Fig. 6.3, Table D.1). 

Actual transpiration is the effective transpiration simulated by the model from 

potential value. For all zones, differences between annual potential and actual 

transpiration increased as transpiration rate increased (i.e. from 20-80% of PET) 

and were larger in the hillslope than in the intermediate and near-stream 

zones. In the near-stream zone, annual potential transpiration lay within 1 mm 

of actual transpiration. In the intermediate and hillslope zones, differences 

ranged from 0-74 and 0-210 mm, respectively (Table D.1). 
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Figure 6.4 Dynamics of predicted soil moisture (θ, in %) in (a) near-stream, (b) intermediate, and (c) 

hillslope riparian zones from March 2012 to October 2014. Dashed blocks represent vegetative periods. 

Mean groundwater level (GWL) was approximately 0.6, 1.20, and 2.20 m below the soil surface (b.s.s.) 

of the near-stream, intermediate, and hillslope zones, respectively. 

6.3.4. Spatial and temporal patterns of θ and soil N-NO3
- concentration 

In each riparian zone, the variability in predicted θ in the soil profile 

throughout the year depended on the GWL used in the boundary conditions 

(Fig. 6.4). θ varied least in the near-stream riparian zone (0.38 ± 0.01 cm3 cm-3) 

(Fig. 6.3), which had the highest θ and annual transpiration rates (589-729 mm) 

(Fig. 6.4a, Table D.1). In contrast, θ varied more (0.25 ± 0.04 cm3 cm-3) in the 

intermediate zone, where annual transpiration ranged from 515-591 mm (Fig. 

6.4b, Table D.1). In the hillslope zone, annual transpiration rates (380-416 mm) 

and θ (0.18 ± 0.03 cm3 cm-3) were the lowest (Fig. 6.4c, Table D.1). The 

intermediate and hillslope zones had distinct vertical θ profiles, with the 

highest θ near GWL and the lowest θ near areas with the highest root density. 

In all riparian zones, θ responded quickly to rainfall events, which occurred 
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mainly in autumn and early spring. During heavy rainfall events, such as that 

in early March 2013, θ briefly (< 1 day) reached saturation throughout the 

entire soil profile.  

Groundwater N-NO3- data used as boundary conditions had higher mean 

concentrations in the intermediate zone (2.67 ± 0.18 mg N-NO3- l-1) than in the 

near-stream and hillslope zones (0.48 ± 0.13 and 1.42 ± 0.39 mg N-NO3- l-1, 

respectively) throughout the period studied (Fig. 6.2b). In saturated soil 

profiles, soil N-NO3- concentrations were defined by groundwater N-NO3- 

concentrations in each riparian zone (Fig. 6.5). Mean predicted soil N-NO3- 

concentrations in the topsoil were highest in the hillslope zone (1.82 ± 1.24 mg 

N-NO3- l-1) and lower but similar in the near-stream and intermediate zones 

(0.85 ± 0.62 and 0.69 ± 0.60 mg N-NO3- l-1, respectively). In the intermediate and 

hillslope zones, soil N-NO3- decreased during the vegetative period (spring 

and beginning of summer) in unsaturated soil profiles, resulting in lower soil 

N-NO3- concentrations (< 1 mg N-NO3- l-1) as root density increased. 

Conversely, mid-summer soil N-NO3- concentrations in both zones increased 

until the end of the vegetative period (Fig. 6.5b, 6.5c). Large inputs of N-NO3- 

through infiltration and higher N-NO3- concentrations in the groundwater 

occurred during rainfall events, especially in the intermediate zone.  

6.3.5. Predicted water and N-NO3
- fluxes: mass balance 

The near-stream zone had the largest predicted water fluxes (i.e. infiltration, 

evaporation, transpiration, capillarity, and drainage) (Table 6.2). Nevertheless, 

all surface fluxes (i.e. infiltration, evaporation, and transpiration) represented a 

relatively larger percentage of predicted water fluxes in the hillslope zone than 

in the near-stream and intermediate zones (Fig. 6.6). Transpiration was the 

main water outflow flux in all zones. Mean transpiration was lowest in the 

hillslope zone (406 ± 26 mm) and highest in the near-stream zone (666 ± 75 

mm). Nevertheless, it represented 35% and 25% of predicted water fluxes in 

the hillslope and near-stream zones, respectively. Evaporation represented a 

similar percentage (13-16%) of predicted water fluxes in the zones. 
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Figure 6.5  Dynamics of predicted nitrate concentration (mg N-NO3
- l-1) in (a) near-stream, (b) 

intermediate, and (c) hillslope riparian zones from March 2012 to October 2014. Dashed blocks 

represent vegetative periods. Mean groundwater level (GWL) was approximately 0.6, 1.20, and 2.20 m 

below the soil surface (b.s.s.) of the near-stream, intermediate, and hillslope zones, respectively. 

Groundwater recharge due to drainage represented 14% and 13% of predicted 

water fluxes in the near-stream and hillslope zones, respectively, but only 6% 

of those in the intermediate zone. When considering input fluxes, infiltration 

and capillarity had similar percentages (23% and 27% of all fluxes, 

respectively) in the intermediate zone. Conversely, capillarity and infiltration 

were the largest water inputs (33% and 28% of all fluxes, respectively) in the 

near-stream and hillslope zones, respectively. Vegetative periods had higher 

evaporation and infiltration fluxes than dormant periods. Capillarity was 

generally higher, and drainage lower, during vegetative periods than dormant 

periods. Annual water balances were negative for all riparian zones, being 

larger in the hillslope zone (ΔWs = -317 mm year-1) than in the near-stream (-55 

mm year-1) and intermediate (-23 mm year-1) zones.  
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Table 6.2 Mean (± 1 standard deviation) water fluxes (all in mm) predicted by the HYDRUS-1D model 

for near-stream, intermediate, and hillslope riparian zones for the three years studied. Results are 

presented separately for the dormant period, the vegetative period, and the entire year. Infiltration and 

capillarity are input fluxes, while evaporation, transpiration, and drainage are output fluxes. 

Riparian zone Infiltration Evaporation Transpiration Capillarity Drainage 

Near-stream      

Dormant 136 ± 48 209 ± 113 0 204 ± 105 143 ± 51 

Vegetative 286 ± 54 139 ± 22 666 ± 75 699 ± 97 223 ± 59 

Annual 422 ± 47 348 ± 93 666 ± 75 903 ± 51 366 ± 41 

Intermediate      

Dormant 136 ± 48 129 ± 61 0 66 ± 17 87 ± 66 

Vegetative 286 ± 55 116 ± 17 563 ± 46 417 ± 32 22 ± 23 

Annual 412 ± 45 245 ± 77 563 ± 46 483 ± 14 109 ± 58 

Hillslope      

Dormant 88 ± 55 75 ± 18 0 45 ± 20 103 ± 97 

Vegetative 238 ± 59 115 ± 4 406 ± 26 55 ± 12 46 ± 4 

Annual 326 ± 61 190 ± 17 406 ± 26 100 ± 13 149 ± 94 

 

 

Figure 6.6 Predicted annual water balances in near-stream, intermediate, and hillslope riparian zones. 

Histograms represent volumes (mm), and arrows represent fluxes. The latter are expressed as 

percentage of total mass in each riparian zone. Infiltration (I) and capillarity (C) are input fluxes; 

evaporation (E), transpiration (T), and drainage (D) are output fluxes. 
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N-NO3- fluxes were largest in the intermediate zone and smallest in the 

hillslope zone (Table 6.3). The largest flux of N-NO3- in all zones (56-78% of all 

fluxes) was infiltration, which was also the main input of N-NO3- (Fig. 6.7). 

Capillarity represented low percentages (8-9%) of N-NO3- fluxes but was 

largest in the intermediate zone (21%). Relative N-NO3- losses due to drainage 

into groundwater decreased from the near-stream to the hillslope zone. 

Conversely, transpiration uptake was a larger outflow in the hillslope than in 

the near-stream zone. Nevertheless, the intermediate zone had the highest N-

NO3- removal, due to root uptake. The annual mass balances indicated that all 

riparian zones accumulated N-NO3- in the soil profile. The intermediate zone 

accumulated more N-NO3- in the unsaturated soil column (ΔNO3- = 1.22 g N-

NO3- m-2) than the near-stream (1.02 g N-NO3- m-2) and hillslope (1.16 g N-NO3- 

m-2) zones. Since N-NO3- uptake is associated with water uptake, water fluxes 

during vegetative periods mobilized more N-NO3- than those during dormant 

periods. Still, N-NO3- outputs during dormant periods due to drainage in the 

intermediate and hillslope zones were 90% smaller than those during 

vegetative periods. 

Table 6.3 Mean (± 1 standard deviation) nitrate (N-NO3
-) fluxes (mg N-NO3

-
 m-2) predicted by the 

HYDRUS-1D model for near-stream, intermediate and hillslope riparian zones for the three years 

studied. Results are presented separately for the dormant period, the vegetative period, and the entire 

year. Infiltration and capillarity are input fluxes, while plant-root uptake and drainage are output fluxes. 

Riparian zone Infiltration Uptake Capillarity Drainage 

Near-stream     

Dormant 105 ± 76 0.00 24 ± 5 58 ± 51 

Vegetative 1180 ± 1556 188 ± 72 114 ± 19 159 ± 113 

Annual 1285 ± 1572 188 ± 72 138 ± 17 217 ± 116 

Intermediate     

Dormant 105 ± 76 0 133 ± 173 205 ± 231 
Vegetative 

1172 ± 1556 297 ± 128 339 ± 63 23 ± 32 

Annual 1277 ± 1572 297 ± 128 472 ± 220 228 ± 216 

Hillslope     

Dormant 105 ± 76 0 121 ± 157 102 ± 158 

Vegetative 1134 ± 1554 116 ± 42 19 ± 11 1 ± 0 

Annual 1239 ± 1570 116 ± 42 140 ± 153 103 ± 158 
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Figure 6.7 Predicted annual nitrate (N-NO3-) mass balances in near-stream, intermediate, and hillslope 

riparian zones. Histograms represent mass (mg N-NO3- m-2), and arrows represent fluxes. The latter 

are expressed as percentage of total mass in each riparian zone. Infiltration (I) and capillarity (C) are 

input fluxes; plant-root uptake (T) and drainage (D) are output fluxes. 

 

6.3.6. Influence of climate change scenarios on soil-water-vegetation 

interactions 

According to our projections, the main changes in θ and soil N-NO3- were 

driven by long-term transpiration rates and GWL assumptions across the 

riparian area. No trends in θ or soil N-NO3- in the topsoil were predicted when 

transpiration partitioning was kept constant (data not shown). In contrast, the 

20 percentage points decrease in transpiration percentage yielded a ~1 mg l-1 

increase in soil N- NO3- concentration (Fig. 6.8). Steady GWL scenarios yielded 

no differences in θ of the soil profile over time, while GWL depletion scenarios 

yielded drier soil conditions throughout the soil profile by 2100, almost 

disconnecting the rooting zone from the groundwater table in the hillslope 

zone (Fig. 6.9). In the near-stream zone, θ was similar throughout the soil 
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profile from the beginning (2015) to the end (2100) of the period. In the 

intermediate and hillslope zones, θ decreased by a smaller amount in the 

topsoil (< 0.05 cm3 cm-3) and by a larger amount in the deeper profile (~ 0.2 cm3 

cm-3) from the beginning to the end of the period. No notable differences in 

predicted θ were observed among the IPCC scenarios. 

 

Figure 6.8 (a) Transpiration (mm), (b) topsoil (upper 30 cm) nitrate (mg N-NO3- l-1) predicted using a 

HYDRUS-1D model climate change projection. Predictions shown are based on IPCC Representative 

Concentration Pathway 4.5 projections for the Mediterranean region including all steady and depleted 

groundwater scenarios. Results are shown for near-stream, intermediate, and hillslope riparian zones in 

Font del Regàs, Spain. 
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Figure 6.9 Predicted soil water content (cm3 cm-3) throughout the soil profile of the near-stream, 

intermediate, and hillslope riparian zones in Font del Regàs, Spain. Predictions shown are based on 

IPCC Representative Concentration Pathway 4.5 projections for the Mediterranean region and two 

groundwater level (GWL) scenarios (steady or depleted). Results are shown for 2015, 2060, and 2100. 

6.4. Discussion 

Dividing the riparian area into three zones (i.e. near-stream, intermediate, and 

hillslope) allowed us to identify its spatial heterogeneity. Although HYDRUS-

1D models do not quantify lateral fluxes between riparian zones, and thus 
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water fluxes between the riparian area and the stream, they are a powerful tool 

to evaluate interactions among saturated and unsaturated soil profiles, 

vegetation, and the atmosphere (Doble and Crosbie, 2017; Simunek et al., 

2006). Water fluxes in riparian areas depend strongly on soil properties, water 

availability, and the thickness of unsaturated soil (i.e. distance from the GWL) 

(Soylu et al., 2011). At our site, the near-stream zone had higher soil porosity, 

water storage capacity, and hydraulic conductivity than the other two zones, 

which had similar soil properties. Soil properties usually differ over short 

distances in riparian areas, where zones near the stream bed have higher 

hydraulic conductivities than those near the hillslope (Butturini et al., 2003). 

6.4.1. Water balances and vegetation regulation 

Predictions obtained by combining our dataset of field measurements with 

HYDRUS-1D simulation suggest that transpiration of riparian vegetation 

represents 60-80% of PET in the forested site. Predicted transpiration (432-666 

mm year-1) was higher than the one estimated from sap-flow measurements by 

Nadal-Sala et al. (2017) (211 mm, ~20% of PET). Nevertheless, in that study, 

field transpiration measurements accounted for the main tree species, but not 

the understory (i.e. grass, bushes, and small trees) species, whose collective 

transpiration may have a large influence on total ecosystem fluxes, 

contributing up to 30% of transpiration in riparian ecosystems (Roberts, 1983; 

Scott et al., 2008; Yepez et al., 2003). For instance, Hedera helix is attached to 

most of the trees in our study site, and its transpiration can reach 100 mm year-

1 (Hoelscher et al., 2015). The transpiration predicted in the present study is 

similar to those reported for arid and semiarid areas (400-600 mm year-1; 

Sabater and Bernal 2011; Scott et al., 2008) and those estimated by mass-balance 

calculations at the catchment scale in the same study area (350-450 mm year-1; 

Lupon et al., 2016a).  

Partitioning between evaporation and transpiration depends on the regional 

climate and vegetation, due to the incoming solar radiation that drives 

evaporative demand, but also on soil water availability (Calder, 1998). The 

spatial heterogeneity of θ in the Mediterranean riparian forest studied allowed 

us to evaluate interactions between transpiration and θ. As expected, predicted 
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transpiration rates decreased from the near-stream to the hillslope zone along 

the gradient of soil water availability. Similar spatial differences in 

transpiration rates are described for semiarid riparian areas (Ford et al., 2008, 

Baird and Maddock 2005) and non-riparian hillslope zones (Tromp-van 

Meervel and McDonnel, 2006), with differences in soil water availability across 

the area. However, temperate riparian areas with permanent shallow 

groundwater usually have homogeneous transpiration rates (Bosch et al., 2014; 

Cermák and Prax, 2001). Thus, soil hydraulic properties (i.e. higher water 

storage capacity and hydraulic conductivity) and shallower GWL (~0.6 m 

b.s.s.) in the near-stream zone in Font del Regàs resulted in the highest water 

fluxes in the unsaturated soil column, with large water fluxes from the 

groundwater that ultimately promoted higher transpiration rates. Actual and 

potential transpiration rates did not differ in this zone, suggesting that the 

vegetation could supply all vapor pressure deficit, and thus transpiration there 

is not water-limited (Bosch et al., 2014; Clausnitzer et al., 2011; Schume et al., 

2004). This strong connection with the groundwater is also supported by the 

small variations observed in θ, which remained high throughout the year. 

Soil hydraulic properties were similar in the intermediate and hillslope 

riparian zones, but the thickness of the unsaturated zone differed (~1.3 and 2.2 

m, respectively). Larger differences between actual and potential transpiration 

suggested restricted water supply in response to evaporative demand due to 

lower water availability in the hillslope zone (Bosch et al., 2014; Ford et al., 

2005). Despite the lower transpiration in the hillslope, it had more relative 

importance due to the zone’s lower soil water availability and low inflow 

through capillarity, which was restricted by lower GWL (supplying only 25% 

of transpired water). Surface fluxes represented a larger percentage of the total 

water balance, indicating disconnection from the groundwater. The 

intermediate zone is a transitional zone whose connectivity with the 

groundwater varies throughout the year. The larger percentage of capillarity 

fluxes (supplying 53% of the transpired water) and lower drainage in this zone 

than in the hillslope zone suggests that transpiration is not as restricted as in 

the hillslope zone due to greater groundwater availability. In both of these 
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zones, however, transpiration had a large influence on θ throughout the 

vegetative period and in the unsaturated soil profile (mainly where root 

density was higher). This has been observed in other riparian zones (Bosch et 

al., 2014; Schume et al., 2004). The influence of transpiration on the decrease in 

θ was larger under extreme conditions, such as in summer, when transpiration 

is higher (Nadal-Sala et al., 2017), in drier years, and in the hillslope zone. This 

is consistent with isotopic analyses in the field. Isotopic analysis of sap from 

our study site revealed that during summer up to 80% of water transpired by 

trees can come from the soil (Chapter 4). Other studies have observed trees 

obtaining 30-90% of their water requirements from the soil (Brooks et al., 2010; 

Sánchez-Pérez et al., 2008; Snyder and Williams, 2000). 

In all riparian zones, exchanges between groundwater and surface water (i.e. 

larger infiltration and drainage fluxes) increased during dormant periods. 

During vegetative periods, however, transpiration was the main flux, and 

capillarity was necessary to supply the water demand. All riparian zones had 

negative water balances, which increased from the near-stream to the hillslope 

zone (-55 to -317 mm). These vegetative-period effects on unsaturated soil 

profiles can decrease GWL, decreasing inputs from groundwater to streams 

and thus decreasing stream discharge (Barnard et al., 2010; Connor et al., 2013; 

Lupon et al., 2016c; Moore and Heilman, 2011). 

6.4.2. Vegetation N-NO3
- uptake 

We evaluated the influence of plant-root uptake on N-NO3- removal in a 

riparian forest in a Mediterranean climate. We did not consider the 

denitrification and microbial processes that can occur in riparian soils. 

Although microbial denitrification is considered the main N-NO3- removal 

process in riparian areas (Hill, 1996; Pinay et al., 2007), it contributes little in 

Mediterranean areas due to drier conditions and non-anoxic soil limitations 

(Bernal et al., 2007, Poblador et al., 2017). Denitrification measured in Font del 

Regàs was low (< 4 µg N kg soil-1 d-1; Poblador et al., 2017) compared to that 

measured in temperate regions (up to 2 mg N kg soil-1 d-1; Clément et al., 2002). 

As a riparian area with low human impact, our study site did not have high 

groundwater N-NO3- concentrations (0.39-2.67 mg N-NO3- l-1). Concentrations 



Water and nitrogen fluxes modelitaztion                                                              129 

 

were similar to those in Mediterranean forested catchments (0.15-3.20 mg N-

NO3- l-1; Butturini et al., 2003, 2005) and far lower than those in catchments 

with > 70% of land in agriculture, whose concentrations can reach 15-35 mg N-

NO3- l-1 (Clément et al., 2003; Hefting et al., 2005). Although the model was not 

calibrated for N-NO3- mass balances, its predicted soil N-NO3- concentrations 

were similar to field measurements from other studies at the site (0.09-2.34 mg 

N-NO3- l-1; Lupon et al., 2016b, Poblador et al., 2017).  

In all riparian zones, infiltration was the main (> 90%) N-NO3- input by mass. 

This inflow occurred mainly through high infiltration during rainfall events 

and was evident among temporal patterns and when comparing wet and dry 

years. Large inputs during rainfall events influenced soil concentrations not 

only due to infiltration, but also through higher groundwater concentrations 

due to inputs from the catchment. Other studies of forested Mediterranean 

catchments also reported higher N-NO3- concentrations in streams and 

groundwater after rainfall events (Bernal et al., 2002; Butturini et al., 2003, 

2005). Rainfall events can enhance soil nitrification processes (Lupon et al., 

2016b) and can also leach N-NO3- that accumulated in the topsoil into 

groundwater and streams as a result of high net nitrification in riparian areas 

(Bernal et al., 2003; Hefting et al., 2005; Lupon et al., 2016b). For instance, 

Bernal et al. (2002) reported concentrations of 14-115 mg N-NO3- l-1 in soil 

leaches after rainfall events and that one heavy storm provided 80% of the N-

NO3- that reached the stream. In the intermediate zone, infiltration had less 

influence on N-NO3- inflow due to higher groundwater N-NO3- concentrations, 

which facilitated higher inflow of N-NO3- through capillarity. Differences in 

groundwater N-NO3- concentrations among riparian zones result from a flow 

path configuration that is parallel with stream flow (unpublished data). Flow 

path analysis is a relevant measure of catchment vulnerability to pollutant 

transport or removal for different degrees of human disturbance. Differences 

observed among sites are strongly influenced by topography and 

geomorphology, highlighting the need for worldwide analysis to address 

catchment behavior (Meixner et al., 2016). At the local scale, near-stream 

groundwater may be influenced more by an exchange with stream water that 
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is regulated by groundwater-stream interactions and surface inputs, while the 

hillslope may receive N-NO3- fluxes from the upland-connected groundwater 

and surface inputs. This indicates the importance of hydrological and 

biogeochemical connectivity between streams and adjacent forested riparian 

zones (Laudon et al., 2016; Lupon et al., 2016a; Petrone et al., 2007; Pittroff et 

al., 2017).  

Accordingly to distinctly higher N-NO3- inflow in the unsaturated soil profile, 

the intermediate zone mobilized more N-NO3- than the near-stream and 

hillslope zones. Although transpiration was higher in the near-stream zone, it 

had greater influence on the water balance in the hillslope zone. More N-NO3- 

was removed from unsaturated soil in the intermediate zone via plant-root 

uptake due to high concentrations in the groundwater. In the near-stream 

zone, where the GWL is shallower, drainage has slightly more influence on N-

NO3- removal from unsaturated soil than vegetation uptake. Plant-root uptake 

was the main sink for N-NO3- from the intermediate and hillslope zones. High 

correlation between plant-root N-NO3- uptake and N-NO3- concentrations 

leached into the stream has been reported (Schade et al., 2005), highlighting the 

influence of vegetation on N retention. Riparian areas similar to Font del Regàs 

(~25 m wide) can remove > 75% of N-NO3- via plant uptake before it is 

exported to the stream (Mayer et al., 2005). Although some authors have 

reported ~30% reductions via plant N-NO3- uptake when groundwater is deep 

(Hefting et al., 2004; Mayer et al., 2005), based mainly on groundwater 

concentrations, others have highlighted the considerable ability of plant uptake 

to reduce N-NO3- in unsaturated soils in a variety of conditions (Gerber and 

Brookshire, 2014). 

Temporal patterns of soil N-NO3- concentration depended on vegetative 

periods in the intermediate and hillslope zones, decreasing soil N-NO3- 

concentrations when transpiration peaked. In contrast, the near-stream zone 

had low N-NO3- concentrations throughout the year due to a stronger 

connection between saturated and unsaturated soil. Denitrification, four times 

as high in the near-stream zone as in the other riparian zones (Poblador et al., 

2017), could also have removed N. Despite plant uptake, annual mass balances 
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suggest a ~ 1 g N-NO3- m-2 increase in all riparian soils. This might lead to N-

enrichment of riparian soil, because soil denitrification rates at the site ranged 

from 0.41-4.93 mg N m-2 (Poblador et al., 2017). Ranalli and Macalady (2010) 

observed an increase in N-NO3- removal during the vegetative period, 

decreasing N-NO3- concentrations to nearly zero. However, some authors do 

not consider N uptake by deciduous vegetation as N removal, since N returns 

to the soil at the end of the vegetative period in the form of leaf litter that can 

be mineralized and leached into the groundwater and the stream (Hefting et 

al., 2005).  

6.4.3. Influence of climate change 

The modeled climate projection predictions are based on assumptions of 

transpiration rates and GWL, and no differences were observed among IPCC 

scenarios. No differences in θ or soil N-NO3- were predicted when we assumed 

constant transpiration partitioning over time (i.e. 80%, 70%, and 60% of PET in 

the near-stream, intermediate, and hillslope zones, respectively). Several 

factors can influence future transpiration rates. For certain species, higher 

temperatures can increase their transpiration rates when water availability is 

not limiting, and other species may have highly adaptive strategies (i.e. 

increase in water use efficiency or rooting depth) or they can be replaced by 

other species with lower water requirements (Moore and Heillman, 2011; 

Schenk, 2008). For instance, Nadal-Sala et al. (2017) observed high transpiration 

for most tree species at the study site when water availability was not limiting. 

However, F. excelsior individuals in the hillslope zone already showed 

transpiration restrictions due to a decrease in soil water availability during 

summer. Consequently, we also ran the model assuming that climate change 

decreased transpiration rates by 20% (Luo et al., 2008). In this case, θ decreased 

in all riparian zones, and the resulting increase in soil N-NO3- was caused by 

lower plant-root uptake. In this assumption of decreased transpiration, the 

final soil N-NO3- was higher in the hillslope zone due to lower transpiration.  

A potential decrease in GWL may also decrease θ throughout the entire soil 

profile. The GWL depletion projected may strongly decrease transpiration 

rates, especially in the hillslope zone, where disconnection between 
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groundwater and root systems can severely decrease the ability of vegetation 

to regulate soil N-NO3- removal and increase soil N-NO3- concentrations. 

Similar to our results, some authors have reported lower plant-root N-NO3- 

uptake under drier conditions due to lower transpiration rates and reduced N-

NO3- mobility in drier soil (Rennenberg et al., 2009). This increase in soil N-

NO3- can be exacerbated by acceleration of soil N processes due to higher 

temperatures (Brookshire et al., 2011). Climate projections in the same area, 

however, suggested that nitrification would not be enhanced by higher 

temperatures, since limited water availability would prevent it (Lupon et al., 

2015). Nonetheless, more sporadic rainfall events predicted in the climate 

change scenarios may promote the inflow of N at regular intervals (Lupon et 

al., 2016b).  

Spatial variation in the influence of climate change was also evident at our 

study site, decreasing vegetation regulation of soil N-NO3- removal as water 

availability decreased. This indicates possible reduction in the effectiveness of 

riparian zones at removing N, due not only to lower rates of vegetation uptake, 

but also because of a decrease in their effective areas (i.e. near-stream and 

intermediate zones in our riparian plot). For N-NO3- balances, our results 

suggest that lower plant-root uptake can increase soil N-NO3- concentrations. 

This decrease in uptake can cause N saturation, which can leach into the 

stream (Brookshire et al., 2011), especially in semiarid areas where microbial 

denitrification is low, changing the riparian area from an N sink to an N 

source. 

6.5. Conclusions  

Mediterranean riparian areas are systems with high spatial heterogeneity in 

water availability and soil properties over short distances (~25 m wide), mainly 

due to large differences in soil and bedrock materials and the GWL from near-

stream to hillslope edges. This spatial heterogeneity helps to better understand 

transpiration as a key process for water fluxes in these areas. Vegetation 

transpiration is a main driver of riparian water fluxes, which have a large 

influence on θ. However, transpiration is strongly limited by soil water 
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availability, which is lower at the hillslope edge in riparian areas. Even though 

N-NO3- mass balances depend strongly on N-NO3- inputs (i.e. groundwater N-

NO3- concentration), plant-root uptake plays a key role in N retention and 

turnover in Mediterranean riparian areas, especially in zones where the GWL 

is deeper and dry conditions lead to almost zero denitrification. Preliminary 

climate change projections suggest that drier future conditions may decrease 

riparian plant transpiration and N uptake. This may be detected, especially at 

hillslope edge, and reduce N removal area. Therefore, future N-NO3- plant 

uptake in Mediterranean riparian areas might not be sufficient to prevent an 

increase in soil N-NO3- concentrations, which increases the risk of N leaching 

from riparian areas into streams. These spatial differences highlight the 

importance of considering spatial heterogeneity of riparian hillslopes when 

modeling Mediterranean catchments. More research is needed to understand 

the extent to which GWLs, and thus the species that depend on them, will 

change due to climate change. 
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CHAPTER 7 

The influence of the invasive nitrogen-fixing 

Robinia pseudoacacia on soil nitrogen availability 

in a mixed Mediterranean riparian forest 
 

 

 

 

 

 

 

 

 

 

 

This study investigates the influence of the invasive nitrogen (N)-fixing R. 

pseudoacacia on leaf litter N inputs and soil N availability in a mixed riparian forest 

plot in NE Spain. We measured annual leaf litter N inputs, decomposition rates, 

soil N processes, and soil N concentrations at three sections (near-stream, 

intermediate, and hillslope) across a riparian plot. Moreover, we explored changes 

in soil N availability associated with the arrival of R. pseudoacacia by means of an 

empirical forest floor model. Leaf litter N content was higher for R. pseudoacacia 

than for non-fixing species. The contribution of R. pseudoacacia to annual leaf litter 

N inputs increased from the near-stream to the hillslope section. However, soil N 

processing rates and soil N availability were similar among sections. Simulations 

suggest that soil N availability was higher at the near-stream than at the hillslope 

section before the arrival of R. pseudoacacia. This pattern smoothed down as R. 

pseudoacacia spread across the riparian plot over time. The spreading of R. 

pseudoacacia across the riparian plot contributed to homogenize soil N availability 

over time. An integrated spatio-temporal view of the invasive process is needed to 

assess its impact on soil N biogeochemistry. 

 

 

 
With permission of: A.Lupon, E. Marti, F. Sabater, S. Sabater and S. Bernal, who are co-

authors of this study. 



136 Chapter 7 

7.1. Introduction 

Riparian ecosystems are biogeochemical hot spots, with a high potential to 

reduce nitrogen (N) loads arriving from adjacent terrestrial lands via biological 

N assimilation and denitrification (Follstad Shah and Dahm, 2008; Hill, 1996). 

Nonetheless, the buffer capacity of riparian ecosystems can be altered by 

human activities that affect riparian hydrology and biogeochemistry such as 

water extraction, changes in land uses, forest exploitation, and intentionally or 

unintentionally introduction of exotic species (Asaeda et al., 2015; Castro-Díez 

et al., 2009; Radtke et al., 2013; Sala et al., 2000b; Tylianakis et al., 2008). In the 

Iberian Peninsula, riparian zones are upon the most severely threatened 

terrestrial ecosystems and, in most cases, native vegetation has been either 

substituted by tree plantations or altered by the establishment of invasive 

species (Sanz Elorza et al., 2004). However, the extent to which these changes 

in vegetation can affect the N cycle in riparian zones, and ultimately modify 

forest N retention, is still poorly understood. 

Black locust (Robinia pseudoacacia) is one of the most widespread invasive 

species in the Iberian Peninsula, occupying extensive riparian areas in the 

northern and eastern part of the Mediterranean region (Sanz Elorza et al., 

2004). This N-fixing species is the second most abundant deciduous tree in the 

world (Boring and Swank, 1984) and an extremely successful invader given its 

ability to grow in a broad range of soils types and climatic conditions (De 

Marco et al., 2012). Similar to other N-fixing species, R. pseudoacacia produces 

large quantities of leaf litter with high N content, which can accelerate leaf 

litter decomposition and increase soil N availability (Malcolm et al., 2008; Rice 

et al., 2004). Riparian zones have traditionally been considered effective N 

sinks, despite being already N enriched ecosystems. Therefore, the presence of 

R. pseudoacacia in riparian zones could decrease the ability of these ecosystems 

to reduce N loads or even enhance the export of N to adjacent aquatic 

ecosystems (Aber et al., 1998; Buzhdygan et al., 2016; Follstad Shah and Dahm, 

2008). 
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The influence of invasive tree species on soil N cycling does not exclusively 

depend on the characteristics of the invasive species itself, but also on the 

intrinsic properties of the ecosystem that colonizes (Castro-Díez et al., 2009; 

Wolfe and Klironomos, 2005). For instance, leaf litter from R. pseudoacacia can 

increase soil N availability in N limited forests by enhancing soil N 

mineralization and nitrification (Rascher et al., 2012; Rice et al., 2004). 

However, its potential to influence soil N cycling in more N enriched 

ecosystems such as riparian zones remains elusive. Some studies reported 

increases in soil N availability in riparian zones invaded by R. pseudoacacia 

(Akamatsu et al., 2011; Buzhdygan et al., 2016; Medina-Villar et al., 2015b; 

Staska et al., 2014), while others suggested that changes are minimal (Castro-

Díez et al., 2009; González-Muñoz et al., 2013). Moreover, the influence of 

invasive species on ecosystem functioning depends on the time elapsed since 

its establishment. During the first stages of invasion, litter of endogenous 

species still dominated soil organic matter, and thus, changes on soil nutrient 

availability may be small. Conversely, long time after the invasion starts, 

increases in nutrient availability can be reflected both in soils and in the 

biomass content (Castro-Díez et al., 2009; Vilà et al., 2011). Yet, it is still under 

debate how much time is needed to observe a noticeable impact of invasive N-

fixing species on nutrient cycling in riparian forests, what is ultimately crucial 

for sound and integrated forest management strategies. 

The aim of this study was to investigate the influence of R. pseudoacacia on soil 

N availability in a riparian forest plot in the NE Iberian Peninsula. The native 

forest was initially composed by one N-fixing (Alnus glutinosa) and two non-

fixing (Populus nigra and Fraxinus excelsior) species. R. pseudoacacia appeared at 

least 25 years before our study was conducted. We quantified leaf litter N 

inputs and decomposition rates for the four tree species, as well as soil N 

concentrations and cycling (net N mineralization and net nitrification) across 

the riparian plot. We expected higher leaf litter quality (lower C:N ratios) and 

faster decomposition rates for R. pseudoacacia than for the non-fixing species. 

Further, we expected differences in soil N processing rates and N availability 

associated with the spatial distribution of individuals of R. pseudoacacia within 



138                                                                                                                Chapter 7   

 

the plot. Finally, we developed a simple forest floor model to test weather 

differences in the density of R. pseudoacacia over the invasion process could 

influence soil N availability, from a pre-invasion stage with only native species 

to a final stage with a complete replacement of native species by R. 

pseudoacacia.  

7.2. Materials and methods 

7.2.1. Study site 

Font del Regàs is a subhumid Mediterranean catchment located in the Montseny 

Natural Park, NE Spain (41º50’N, 2º30’E). During the study period, mean 

annual precipitation (975 ± 146 mm; mean ± SD) and mean annual temperature 

(14.6 ± 6.7 ºC) fall within the long-term annual average for this region (period 

1940-2000; Catalan Metereologic Service). Total inorganic N deposition oscillates 

between 15-30 kg N ha-1 yr-1 (period 1983-2007; Àvila and Rodà 2012). 

 

Figure 7.1 Basal area of riparian trees (in m2 ha-1) from the headwaters to the valley bottom of the Font 

del Regàs catchment. The study plot was the downstream most site. Leaf litter of native species from 

riparian plots free of R. pseudoacacia were collected at 1840 to 2250 m downstream of headwaters. 

Adapted from Bernal et al. 2015. 
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The catchment area is 14.2 km2 and its altitude ranges from ~ 475 m to 1500 m 

above the sea level (a.s.l.). The riparian zone covers 6% of the catchment area 

and it consists mainly of three non-fixing species (F. excelsior, P. nigra and 

Platanus x hispanica) and two N-fixing species (A. glutinosa and R. pseudoacacia). 

The relative contribution of R. pseudoacacia to the total basal area of riparian 

trees increases from headwaters (0%) to the valley bottom of the catchment 

(74%; 820 ind ha-1) (Fig. 7.1). At the valley bottom, the riparian soil (pH ~ 7) is 

sandy-loam with a 5 cm deep organic layer followed by a 30 cm deep A-

horizon (Lupon et al., 2016a). 

We selected a well-developed riparian stand (delimiting a sampling plot of 30 

m x 25 m) invaded by R. pseudoacacia that flanked the stream at the valley 

bottom of the catchment (475 m a.s.l.). The riparian plot consisted of R. 

pseudoacacia, P. nigra, A. glutinosa and F. excelsior (74%, 13%, 10%, and 3% of the 

plot total basal area (BA), respectively). Individuals of F. excelsior were ca. 45 

years old, while individuals of R. pseudoacacia, A. glutinosa, and P. nigra were 

younger (ca. 25 years old). R. pseudoacacia was present across the riparian plot, 

yet its density increased from the stream to the hillslope edge. The three native 

tree species followed a clear spatial segregation depending on their water 

requirements (Singer et al., 2013). Based on this spatial segregation, we 

established three sections across the riparian plot. The near-stream section (0-4 

m from the stream edge) occupied 16 % of the riparian plot and it was 

composed by A. glutinosa, P. nigra, and R. pseudoacacia (45%, 33%, and 22% of 

the section’s BA). The intermediate section (4-7 m from the stream edge) 

occupied 12% of the riparian plot and it was composed by P. nigra and R. 

pseudoacacia (29% and 71% of the section’s BA). The hillslope section (7-25 m 

from the stream edge) was the largest (72% of the riparian plot) and it was 

composed by F. excelsior and R. pseudoacacia (7% and 93% of the section’s BA) 

(Fig. 7.2a).  
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Figure 7.2. Contribution of R. pseudoacacia (black), A. glutinosa (hatched white), P. nigra (hatched 

grey), and F. excelsior (grey) to (a) the total basal areal of riparian trees (in m2 ha-1), (b) leaf litter 

inputs to the forest floor (in g dw m-2), and (c) annual leaf N inputs to the forest floor (in g N m-2) for 

each section.  
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7.2.2. Soil physicochemical properties and N cycling rates 

From March 2010 to February 2011 (18 sampling dates), 4 soil samples (0-10 cm 

depth, including O- and A- horizons) were collected randomly from each 

section every 2-4 weeks to analyze soil physicochemical properties. Soil 

samples were taken with a 5-cm diameter core sampler and placed gently into 

plastic bags after carefully removing the litter layer. Before laboratory analyses, 

soil samples were carefully homogenized. Close to each soil sample, we 

performed in situ soil incubations to measure net N mineralization and net 

nitrification rates (NNM and NN, respectively; both in mg N kg soil-1 day-1). 

For this purpose, a second soil core (0-10 cm depth) was taken, placed in a 

polyethylene bag, and buried at the same depth for 12-15 days (Eno 1960).  

Finally, volumetric soil moisture (in %) and soil temperature (in ºC) at 10-cm 

depth were measured at each location by using a TDR sensor (HH2 Delta-T 

Devices Moisture Meter) and a temperature sensor (CRISON 25), respectively.  

Pre-incubation soil samples were sieved and the fraction < 2 mm was used for 

measuring the relative content of organic matter (SOM), carbon (C) and N (all 

in %) following standard procedures (Page et al. 1982). In addition, we 

extracted 5 g of field-moist soil for both pre- and post-soil incubation samples 

with 50 ml of 2 M KCl (1 h shacking at 110 r.p.m. and 20ºC). The supernatant 

was filtered (Whatman GF/F 0.7 μm pore diameter) and analyzed for 

ammonium (NH4+) and nitrate (NO3-) following standard procedures (Page et 

al., 1982). At each sampling point, NNM and NN rates were calculated by 

subtracting pre-incubation mineral N (NH4+ + NO3-) and NO3- from post-

incubation values (Eno 1960). Then, we calculated the nitrification fraction (i.e., 

NN/NNM) as a proxy of the fraction of NH4+ that was used by nitrifiers (Pardo 

et al. 2006). More details about field and laboratory analyses can be found in 

Lupon et al. (2016). 

7.2.3. Annual leaf litter production and decomposition rates 

From 2011 to 2012 (i.e. two vegetative years), we quantified the temporal and 

spatial pattern of leaf litter inputs to the forest floor by using collector baskets 

of 1-mm mesh, which allow rapid drainage of rainwater and reduce weight 
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loss by leaching. We placed 10 baskets (1 m2 each) along each section (n = 30 in 

total), covering 5% of the plot area. Twice a month, leaf litter was collected 

from each basket and separated by tree species. At the laboratory, dry weight 

of leaf litter (DW, in g m-2) was measured after oven-drying leaf samples (60ºC, 

48-72 h) until constant mass. For each tree species, a composite of samples 

collected during the peak of leaf litter fall in autumn 2012 was analyzed for C 

and N content following the same procedure than soil samples. We calculated 

mean annual leaf litter inputs (in g DW m-2 year-1) to the riparian forest floor by 

summing up the leaf litter trapped in the collectors over the whole year. The N 

inputs to the forest floor were calculated by multiplying mean leaf litter DW by 

the mean relative N content for each tree species separately. Values were 

referred to the total surface covered by the collector baskets, both for each 

section separately and for the whole riparian area.  

For each tree species, leaf litter decomposition rates (k, in year-1) were 

measured from January to December 2011 by using the in situ litterbag 

technique. Five litter bags per species were collected at day 7, 14, 28, 56, 143, 

and 368. After collection, litter content was dried and weighted. For each tree 

species, the loss of weight was adjusted to an exponential decay model to 

calculate the decomposition rate (Olson, 1963). 

7.2.4. Description of the forest floor model and lead litter fall scenarios 

To evaluate the potential contribution of R. pseudoacacia to soil N availability, 

we used a simple empirical model based on first order kinetics (Olson 1963). 

The model was tree species specific, and thus, allowed to calculate the 

contribution of each tree species to N availability in the forest floor on an 

annual basis. We approximated the input/output fluxes to and from the forest 

floor with a single pool model for each riparian section and tree species similar 

to Bernal et al. (2012). For each riparian section, changes in leaf litter in the 

forest floor pool over time (dLi/dt) were described by: 

      (Eq. 7.1) dLi/dt = fi (t) – ki Li, 
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where L is the amount of leaf litter in the forest floor (in g DW m-2), k is the 

decomposition rate (in year-1), and f(t) is the input of leaf litter to the forest 

floor at each time step (t) (in g DW m-2 year-1) for each species (i). We assumed 

that the forest floor was at steady state, so that the stock of leaf litter (L) was 

constant over time and the input of leaf litter equaled the outputs: 

      (Eq. 7.2) 

Then, we calculated the annual input of NO3- to the soil based on 

stoichiometric principles. For each species (i), the potential input of N to the 

mineral soil was calculated by multiplying its leaf litter N content by its fi. 

Finally, for each tree species and section, we partitioned the mineralized N 

pool into NH4+ and NO3- by using the average NN/NNM measured at each 

section during the study period.  

We evaluated the potential influence of R. pseudoacacia on soil N availability by 

considering three different scenarios. In the Pre-invasion scenario, R. 

pseudoacacia was absent and only native species (A. glutinosa, P. nigra, F. 

excelsior) were present. The Mid-invasion scenario was referred to the present 

situation, as a process of establishment and spread of R. pseudoacacia. The 

Replacement scenario simulated the total substitution of native species by R. 

pseudoacacia. For the Mid-invasion scenario, fi was measured from the leaf litter 

collected during the study period. To infer fi for the Pre-invasion and 

Replacement scenarios, we calculated the Leaf Area Index (LAI, in m2 m-2) for 

each species at each riparian section with:  

   LAIi = fi(t) / LMAi   (Eq. 7.3) 

where LMAi is the area specific leaf dry weight (in mg cm-2) (Poorter et al 2009, 

Gutschick and Wiegel 1988) (Table 7.1, E.1). We assumed no changes in total 

stand LAI between scenarios because the forest had already a closed crown 

(Michelot et al., 2011). For the Pre-invasion scenario, we considered that each 

native species contributed to total stand LAI in the same proportion than in the 

Mid-invasion scenario. The Replacement scenario was monospecific (only R. 

pseudoacacia) and thus LAI for this species equaled the total LAI (Table E.1). For 

ki Li,= fi (t) 
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each scenario, we used Eq.3 to calculate fi(t) at each riparian section. The 

potential NO3- available was calculated using the N content in leaf litter and 

the nitrification factor, as described above. Note that for the Mid-invasion and 

Replacement scenarios, leaf litter N contents were those measured in the study 

riparian plot. For the Pre-invasion scenario, we used the N content in leaf litter 

collected from riparian plots free of R. pseudoacacia (Fig. 7.1, Table E.1). In order 

to calculate the model uncertainties, we considered standard deviation of fi, 

specific leaf litter N content, and soil N processes to estimate variability in leaf 

N inputs and soil N available for all scenarios and sections.  

Table 7.1 Leaf and soil parameters used in the forest soil model and invasion scenarios: acronym, units 

and description.   

Acronym  Units Description 

L g DW m-2 Stock of leaf litter in the forest floor 

k  year-1 Leaf litter decomposition rate 

f  g DW m-2 year-1 Leaf litter input to the forest floor 

N % Leaf nitrogen content per dry weight 

NN/NNM --- Nitrification fraction: proxy of NH4
+  used by nitrifiers 

LAI m2 m-2 Leaf area index:  m2 leafs in the crown per m2 soil 

LMA mg cm-2 Leaf mass area: specific leaf dry weight per specific leaf area 

 

7.2.5. Statistical data analysis 

All the statistical analyses were carried out with the R 2.15.1 statistical software 

(packages lme and multcomp) (R-project 2012). We analyzed differences in leaf 

litter properties (N content, C:N ratio, and k) among the tree species using one-

way ANOVA tests followed by Tukey HSD post-hoc tests (Zar 2010). Moreover, 

we explore differences in soil physicochemical properties (moisture, 

temperature, SOM, and C:N ratio) and microbial N processing rates (NNM, 

NN, and NN/NNM) among riparian sections by using a linear mixed-model 

ANOVA test. We used sections as fixed effect and time as random effect. For 

each model, differences between sections were tested with post-hoc Tukey 

contrasts. Finally, differences in simulated leaf litter N inputs and soil N 

availability among scenarios were also analyzed for each riparian section 

separately by using one-way ANOVA tests followed by Tukey HSD post-hoc 

tests (Zar, 2010). In all cases, residuals were tested for normality using a 
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Shapiro-Wilk test and homogeneity of variance was examined visually by 

plotting the predicted and residual values. When necessary, we normalized 

data using log or square-root transformations to meet parametric assumptions. 

In all analyses, results were considered significant when p-value was < 0.05.  

7.3. Results 

7.3.1. Annual leaf litter production and decomposition 

During the study period, total annual leaf litter input was 313 ± 21 g DW m-2. R. 

pseudoacacia was the major contributor to annual leaf litter production (52%), 

followed by P. nigra (25%), A. glutinosa (15%), and F. excelsior (7%) (Table 2). 

Leaf litter inputs provided 6.4 g N m-2 to the forest floor, being R. pseudoacacia 

and F. excelsior the highest (61%) and lowest (8%) contributors to leaf litter N, 

respectively (Table 2).  

Leaf litter N content was higher for N-fixing species (2.39% and 2.20% for R. 

pseudoacacia and A. glutinosa, respectively) than for P. nigra (1.22%). Leaf litter C 

and N contents differed between species (Table 2): P. nigra showed the highest 

C:N ratio and the lowest N content, while R. pseudoacacia exhibited the highest 

N content. Leaf litter k differed among species: F. excelsior decomposed the 

fastest (0.69 years-1), while P. nigra was the slowest (0.25 years-1). Leaf litter k 

was 0.29 and 0.56 years-1, for R. pseudoacacia and A. glutinosa respectively (Table 

2). 

7.3.2. Spatial patterns of leaf litter inputs and soil N availability 

Leaf litter inputs were heterogeneously distributed across the riparian plot. 

Most of the leaf litter entered to the forest floor at the near-stream section 

(44%), while the intermediate and hillslope sections received 32% and 24% of 

total leaf litter, respectively. The contribution of each species to leaf litter 

inputs varied among riparian sections following the spatial distribution of tree 

species (Fig. 7.2b). At the near-stream section, P. nigra and A. glutinosa 

contributed 42% and 24% to leaf litter inputs, respectively. At the intermediate 

section, the contribution of these two species decreased to 26% and 7%, 

respectively. F. excelsior contributed by 12% to leaf litter inputs at the hillslope 
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sections, while its contribution was < 10% at the near-stream and intermediate 

sections. The contribution of R. pseudoacacia to leaf litter inputs was the highest 

at the hillslope section (81%), where it was the dominant tree species (Fig. 7.2a, 

b). The relative contribution of each tree species to the forest floor N inputs 

was similar to those observed for specific leaf litter inputs. Yet, N-fixing species 

contributed to N input to a major extend than to leaf litter inputs, especially R. 

pseudoacacia (Fig. 7.2c). 

Table 7.2 C:N molar ratio, N content, decomposition rate (k), and annual inputs of leaf litter and N 

contained in leaf litter for the four studied riparian tree species. The annual inputs of leaf litter (DW) and 

N in leaf litter are shown by soil surface area. For leaf litter characteristics, values are mean ± standard 

deviations.  For the amount of N in leaf litter, the variance represents the standard deviation of N 

content in leaves. For each leaf litter characteristic, different letters indicate statistical significant 

differences between species (Tukey HSD, p-value < 0.05). For each variable, n = 17, 13, 17 and 19 for 

R. pseudoacacia, A. glutinosa, P. nigra and F. excelsior, respectively. 

  R. pseudoacacia A. glutinosa P. nigra F. excelsior 

Leaf litter characteristics 

C:N 23.21 ± 0.24 A 26.20 ± 8.47 A 45.49 ± 12.48 B 25.51 ± 2.00 A 

N (%) 2.39 ± 0.24 A 2.20 ± 0.39 AB 1.22 ± 0.33 C 2.04 ± 0.17 B 

k (year -1) 0.29 ± 0.03 A 0.56 ± 0.21 AB 0.25 ± 0.17 A 0.69 ± 0.18 B 

     Annual leaf litter input 

g DW m-2 year-1 163.01 ± 12.71 45.72 ± 9.91 79.49 ± 20.25 24.09 ± 3.93 

g N m-2 year-1 3.90 ± 0.03 1.01 ± 0.04 0.97 ± 0.07 0.49 ± 0.01 

 

During the study period, there were no differences in soil temperature, SOM, 

and mineral N content among the three riparian sections. Both intermediate 

and hillslope sections presented low soil moisture (intermediate = 21.74 ± 

7.63%, hillslope = 20.57 ± 6.57%) and low C:N ratios (intermediate = 11.95 ± 

0.36, hillslope = 11.93 ± 0.37) compared to the near-stream section (water 

content = 26.38 ± 8.71%, C:N ratio= 15.58 ± 2.00). Soil N processes (NNM and 

NN) as well as the nitrification factor (NN/NNM) were similar among the 

three riparian sections (Table 7.3).  
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Table 7.3 Soil volumetric moisture, soil temperature, soil organic matter (SOM), soil C:N molar ratio, soil 

N content (total N, NH4
+ and NO3

-), net N mineralization (NNM), net nitrification (NN) and nitrification 

fraction (NN/NNM) for the three riparian sections during the study period. Values are mean ± standard 

deviations. Different letters indicate significant differences between sections (Tukey HSD, General 

Linear Hypothesis Testing, p-value < 0.05). For each variable, n = 67, 68, and 64 for the near-stream, 

intermediate, and hillslope sections, respectively.  

  Near-stream Intermediate Hillslope 

Soil Properties  

   Moisture (%) 26.38 ± 8.71A 21.74 ± 7.63B 20.57 ± 6.57B 

Temperature (ºC) 12.9 ± 6.9 A 13.1 ± 6.8 A 13.1 ± 6.9 A 

SOM (%) 11.17 ± 3.75A 11.62 ± 3.39A 10.67 ± 3.31A 

C:N 15.58 ± 2.00A 11.95 ± 0.36B 11.93 ± 0.37B 

Total N (%) 0.37 ± 0.04 A 0.36 ± 0.09 A 0.35 ± 0.06 A 

NH4
+ (mg N kg-1) 10.6 ± 7.5 A 10.3 ± 6.7 A 8.9 ± 6.9 A 

NO3
- (mg N kg-1) 6.8 ± 4.3 A 8.6 ± 5.1 A 7.5 ± 3.9 A 

Microbial Processes   

   NNM (mg N kg-1 d-1) 1.30 ± 0.75A 1.23 ± 0.70A 1.08 ± 0.50A 

NN (mg N kg-1 d-1) 1.04 ± 0.47A 0.94 ± 0.37A 1.08 ± 0.40A 

NN/NNM 1.07 ± 0.76A 0.89 ± 0.41A 1.16 ± 0.58A 

 

7.3.3. Changes in leaf litter inputs and soil N availability under different forest 

scenarios 

According to our simulations, total leaf litter inputs to the forest floor differed 

among the scenarios considered. At plot scale, leaf litter N inputs decreased 

from Pre-invasion to Mid-invasion (-11%) and to Replacement scenarios (-13%) 

(Table E.2).  Similarly, the three riparian sections showed higher leaf litter N 

inputs at the Pre-invasion scenario than at both the Mid-invasion and 

Replacement scenarios (ANOVA; p < 0.05) (Fig. 7.3, Table E.2).  

Yet, simulated declines in leaf litter N inputs from the Pre-invasion to the 

Replacement scenarios were more pronounced for the near-stream section 

(from 8 to 6.8 g N m-2 year-1, respectively) than for the intermediate (from 6.6 to 

5.8 g N m-2 year-1) and hillslope (from 5.6 to 4.9 g N m-2 year-1) sections. 

Regarding soil N availability, the riparian plot showed a 13% decrease from 

the Pre-Invasion to the Replacement scenario. The most marked declines 

occurred at the near stream section, were soil N availability decrease by 15% 

between the Pre-invasion and Replacement scenarios. Yet, there were no 
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statistically significant differences in simulated soil N availability between the 

Pre-invasion and the other two scenarios for any of the three riparian sections 

(ANOVA; p > 0.05) (Fig. 7.3, Table E.2).   

 

Figure 7.3  Contribution of each riparian tree species to annual leaf litter N input to the forest floor (top 

panels) and corresponding soil nitrate input (bottom panels) for the three scenarios considered: riparian 

plot free of R. pseudoacacia (Pre-invasion), present situation (Mid-invasion), and only presence of R. 

pseudoacacia after exclusion of all native species (Replacement). The simulations are shown separately 

for each riparian section. Letters indicate differences among scenarios within each riparian section 

(ANOVA, p < 0.05). 

7.4. Discussion 

This study aimed to investigate the influence of the N-fixing invasive species 

R. pseudoacacia on the soil N cycling and soil N availability in a mixed 

Mediterranean riparian forest. The study plot was within the Natural Park of 

the Montseny Mountains, and thus, had a relatively low human influence. 

Nevertheless, the fact that individuals of R. pseudoacacia, A. glutinosa, and P. 

nigra had the same age (~25 years old; Poblador, unpublished data) suggests 

that the introduction of R. pseudoacacia in the study plot was either 

intentionally or at least facilitated by the clear cutting of the riparian forest at 

the valley bottom of the catchment. After 25 years from its arrival, the presence 

of R. pseudoacacia was conspicuous across the study plot, and contributed to > 

75% of the total basal area of riparian trees. Moreover, its leaf litter N content 
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was high (2.4%), especially compared to the two non-fixing native species (< 

2.0%). Consequently, R. pseudoacacia was responsible for > 60% of the N 

entering to the riparian forest floor via leaf litter (39 kg N ha-1 year-1). This 

value is similar to those reported for other riparian forests with similar R. 

pseudoacacia densities (15.3 - 47.86 kg N ha-1 year-1; (Boring and Swank, 1984; 

Buzhdygan et al., 2016; Medina-Villar et al., 2015b), though far from the 200 kg 

N ha-1 year-1 measured for other N-fixing species as Alnus rubra (Binkley et al., 

1994).   

Given the potential of R. pseudoacacia to fix N from the atmosphere, one would 

expect increases in leaf litter N inputs associated with the spread of this 

species. However, our model simulations suggested that the introduction and 

spread of R. pseudoacacia contributed to decrease leaf litter N inputs compared 

to the Pre-invasion conditions. This pattern could be a consequence of the low 

leaf mass area of R. pseudoacacia (6.2 mg cm-2) compared to the other three 

native species (7.7 - 11.3 mg cm-2). This difference could have caused an overall 

decrease in leaf litter mass inputs from the Pre-invasion to the Mid-invasion 

and Replacement scenarios, and the consequent decrease in N inputs. In the 

same way, Gonzalez-Muñoz et al. (2013) pinpointed the low leaf litter mass 

produced by R. pseudoacacia individuals compared to native species with 

similar basal area in another Mediterranean riparian forest in Spain. The same 

study reported lower N availability in riparian soils under the presence of R. 

pseudoacacia. Similarly, our simulations suggested decreases in soil N 

availability between the Pre-invasion and Replacement scenarios, though 

differences were small (~15%) and not statistically significant. The capacity of 

R. pseudoacacia to fix N is the highest during intermediate succession stages, 

while both N fixation and soil N stocks decrease as tree stands mature 

(Benesperi et al., 2012; Boring and Swank, 1984; Motta et al., 2009). Thus, it is 

likely that soil N availability in the study plot could decrease to a larger extend 

in the future if individuals of R. pseudoacacia get older and fix less atmospheric 

N. 

We found that R. pseudoacacia was not equally distributed across the riparian 

plot; individuals tended to aggregate in the intermediate and hillslope sections, 
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while the basal area of this species was low at the near-stream edge. However, 

leaf litter inputs of R. pseudoacacia were evenly distributed throughout the plot, 

and thus, the contribution of this species to leaf litter N inputs to the forest 

floor was similar among the three sections. When considering all the species 

together, we observed that leaf litter N inputs increased from the hillslope to 

the near-stream section, likely because the later section included (i) P. nigra, the 

species with the highest production of leaf litter, and (ii) the two N-fixing 

species with the highest N content in leaf litter. The spatial pattern exhibited by 

leaf litter N inputs was not resembled by soil N processes. In fact, we found no 

differences in soil N mineralization and nitrification rates nor in soil inorganic 

N content among the three riparian sections despite the substantial differences 

in species composition. Concordantly, Castro-Díez et al. (2009, 2012) reported 

no differences in the potential N mineralization nor in the mineral N content of 

riparian soils below native and exotic N-fixing trees. In our case, similar soil N 

availability across the riparian plot could result from a generalized N 

enrichment of soils by root and nodule exudates at the intermediate and 

hillslope sections where R. pseudoacacia predominated (Janzen, 1990; Tateno et 

al., 2007; Uselman et al., 1999; Vítková et al., 2015). Yet, this explanation would 

contradict other studies suggesting that leaves of some Acacia N-fixing species 

slow down decomposition and mineralization because of high concentration of 

lignin or polyphenols (Castro-Díez et al., 2009; Knops et al., 2002; Yelenik et al., 

2007). Alternatively, the lower than expected soil N content in the near-stream 

section could be attributed to higher denitrification rates (Poblador et al., 2017) 

or to hydrological N losses towards the stream (Berthold, 2005; Buzhdygan et 

al., 2016; Lupon et al., 2016a; Williard et al., 2005). Another factor that could 

contribute to hold down soil N at the near-stream section could be the slow 

decomposition exhibited by P. nigra, one of the species contributing the most to 

leaf litter in this section. Low decomposition rates could be related to the 

content of lignin, which is high in P. nigra (33- 47%) leaves compared to R. 

pseudoacacia (15-30%), A. glutinosa (4-19%) and Fraxinus spss (6-22%) (Alonso et 

al., 2010; Chauvet, 1987; Ferreira and Graça, 2016; Jacob et al., 2010; Medina-

Villar et al., 2015a). 
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The consequences of invasive N-fixing species on the soil N cycle of invaded 

ecosystems remains elusive. In N poor ecosystems, previous studies usually 

show increases in soil N processes and the availability of mineral N forms with 

the establishment of invasive N-fixing species (Hellmann et al., 2011; Malcolm 

et al., 2008; Vítková et al., 2015). Yet, studies conducted in more N enriched 

ecosystems such as riparian soils have shown either increases (Akamatsu et al., 

2011; Medina-Villar et al., 2015b) or no changes (Castro-Díez et al., 2009; 

González-Muñoz et al., 2013) in soil N availability. In our case, results 

suggested that the introduction of R. pseudoacacia contributed to homogenize 

soil N availability across the riparian plot by increasing soil N concentrations 

at the intermediate and hillslope sections. First, we found similar soil N 

mineralization and nitrification despite the three sections had different species 

composition and leaf litter inputs. Second, our results suggest that leaves of 

non-fixing native species were already enriched in N because leaves of F. 

excelsior exhibited higher N content (2.04%) in Font del Regàs than in non-

invaded riparian forests (0.8 - 1.5 %) (Alonso et al., 2010; Langenbruch et al., 

2012; Medina-Villar et al., 2015a) as well as in other  individuals of the same 

species located upstream of the invaded plots (1.8 %, Table S1). Similarly, 

Hellmann et al. (2011) also reported an increase in foliar N content of native 

species when the N-fixing species Acacia longifolia was present. Our results 

suggest that 25 years was time enough for  R. pseudoacacia, to enrich with 

atmospheric N riparian forest floor sections that were originally out of the 

influence of N-fixing species. Yet, further studies would be needed for 

assessing whether this invasive species will further expand in Font del Regàs, 

and the extent to which it  will contribute to increase riparian soil N stocks. 

Some authors consider R. pseudoacacia as an intermediate successional species 

that would finally be substituted by autochthons species, while other studies 

show that R. pseudoacacia has been naturalized in many regions of climates 

across the globe (Vítková et al., 2015; Weber, 2003). Our study highlights that 

the impact of invasive tree species such as R. pseudoacacia on soil N 

biogeochemistry needs to be assessed from both a temporal and spatial 

perspective. 
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8.1.Introduction 

It is well recognized that riparian zones are hotspots of N processes in 

catchments due to their role in reducing N loads arriving from uplands and 

adjacent agricultural fields, just before they could reach the stream. The role of 

riparian vegetation for N removal could become more important in regions 

where denitrification rates are particularly weak, as the Mediterranean one 

(Bernal et al., 2007). In this section we discuss the sensitivity of riparian trees to 

water availability and the implication of Mediterranean riparian forest in 

processing N. We also discuss how global change may influence the 

Mediterranean riparian processes. For that, we compared our results with a 

review of studies carried out in riparian zones across the globe determining 

water sources of riparian vegetation (Table F.1), soil denitrification rates (Table 

F.2), and  soil CO2 and N2O emissions (Table F.3 and F.4, respectively). 

There is increasing published information on climate effects on tree growth 

and performance, however too little focus has been addressed to the riparian 

vegetation case. Even though, it is well recognized its relevance on many 

aspects such as N removal, floods control, and stream biogeochemistry control 

(Clément et al., 2003; Lupon et al., 2016c; Schade et al., 2005). In this 

dissertation we have combined ecophysiology and soil biogeochemistry 

knowledge to achieve our goals. Moreover, we have applied empirical and 

modeling approaches in order to examine in detail how water availability 

modifies tree’s performance and soil biogeochemistry. Furthermore, we 

inferred how climate change would affect riparian trees and soil 

compartments, and to what extend riparian soil might switch from a N sink to 

a source. 

The results presented in this thesis show how water availability governs both 

compartments separately (vegetation and soil) and the interaction between 

them in Mediterranean riparian zones. In this general discussion three issues 

are evaluated: (i) riparian trees dependence on water availability, (ii) the 

influence of water availability on riparian soil N cycle and (iii) how the global 

change  might affect the Mediterranean riparian forest. 
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8.2. Riparian trees dependence on water availability 

To our best knowledge, until now research has been mainly focused on how 

tree species from uplands deal with water scarcity (Jump et al., 2006; Martínez-

Sancho et al., 2018), but little is known about the effects of  water availability 

on riparian tree species. However, we found some hints that suggest that 

riparian trees are already suffering from climate variations, and they are likely 

to experience difficulties to cope with future climate conditions.  

We studied different riparian tree species from two riparian forests that where, 

in turn, experiencing different conditions of water availability. On one hand, 

the Roureda de Tordera, located at the depositional zone of the Tordera Basin, 

exhibits a flooding gradient that allows higher water availability in the area 

than other zones along the fluvial gradient. On the other hand, Font del Regàs, 

located at the transfer zone of the Tordera Basin, presents higher water 

availability at the near-stream edge than at the  hillslope edge. Despite being in 

the Mediterranean region, both forests are submitted to sub-humid conditions 

that can counterbalance the inherent high temperatures and summer droughts 

of this region.  

Our results demonstrate that tree species at Mediterranean riparian zones are 

extremely dependent on high water availability, and hence drought episodes 

affect their physiological activity. In particular, our results suggest that 

drought periods affect especially those riparian tree species with high water 

requirements either because they are usually established in wet regions (Q. 

robur) or in the wet areas of the riparian forest (A. angustifolia and P. nigra). 

Thus, these species do not present physiological trait adaptations to cope with 

water scarcity. For instance, Q. robur  close stomata and reduces its growth rate 

to cope with the effects of increasing temperatures at the forest zones with 

relatively low water availability, demonstrating that this species is being 

affected by water scarcity at Mediterranean climate conditions. At the specific 

wet zone of the Roureda de Tordera, future projected drier conditions in the area 

would result in a substitution of Q. robur by Q. canariensis, which is now 

established at the adjacent dry zones. Likewise, riparian tree species at Font del 
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Regàs showed water limitations during the dry year in comparison with the 

wet one. All autochthonous tree species (A. glutinosa, P. nigra, and F. excelsior) 

reduced leaf biomass production during the dry year, although we barely 

detected other physiological responses to drier conditions on leaves 

morphological traits nor on wood production. Yet, P. nigra leaves showed 

higher iWUE during the dry year than during the wet one. In the case of F. 

excelsior this species constrains its transpiration when soil water content is too 

low (Nadal-Sala et al., 2017). This response concurs with the similar behavior 

found for F. angustifolia across forest zones at Roureda de Tordera. Fraxinus spp 

are well known riparian tree species usually observed at relative long distance 

from the river channel to avoid flooding condition (Magdaleno et al., 2014). 

Their shallow root system avoid to submerge its roots into the groundwater 

table (Singer et al., 2013) although it also affected by extremely low soil water 

content. The low response of A. glutinosa to drier conditions may reflect either 

its low response capacity to cope with water scarcity either its ability to uptake 

enough water in both situations. In fact, soil water content remains quite 

constant along the year at the near-stream zone, where this species grows. We 

hypothesized that, at the specific site of Font del Regàs, the low physiological 

response capacity under water stress shown by these autochthonous riparian 

tree species may lead to their replacement by the invasive R. pseudoacacia if dry 

conditions persist. This invasive N-fixing species is already present across all 

the riparian forest at this section of the catchment, and took advantage from 

autochthonous vegetation during the dry year producing higher leaf biomass. 

Moreover, this species exhibited different physiological responses that 

highlight its capacity to adapt to relatively dry conditions, such as higher 

iWUE, capacity to loss leaves during summer drought and to reabsorb 

nutrients before leaf litter fall. 

It has been traditionally believed that riparian trees, and particularly, those 

considered of phreatophytic species, use always soil water when soil water 

availability is not scarce. Nevertheless, groundwater uptake becomes 

important during prolonged droughts, provided that their roots reach the 

saturated soil (Dawson and Pate 1996). Isotopic studies of sap and water 
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sources (Dawson and Ehleringer, 1991) have demonstrated how those species 

habiting at regions with a pronounced dry season are more dependent on 

groundwater availability. In these cases, groundwater source can represent up 

to 49% and almost 100% of transpired water in upland and riparian forests 

respectively (Barbeta and Peñuelas, 2017). However, water sources in Font del 

Regàs revealed that those trees located at the near-stream edge transpired 

higher amounts of water from groundwater during spring (~70 % of transpired 

water) while it was higher from soil during summer (>80%). This fact might be 

explained by trees with relatively short root systems, but reaching the 

capillarity fringe of the water table at the near-stream zone (Bleam et al., 2012; 

Devi et al., 2017). Thus they get to be disconnected from water table at small 

decreases of groundwater level. An inverse pattern, but less marked, was 

found for those tree individuals of F. excelsior and R. pseudoacacia located at the 

hillslope edge. In this case, they slightly increase the relative contribution of 

groundwater from the transpired water during spring (10-20%) compared to 

the relative contribution in summer (20-30%). In that case, the root systems of 

those trees living at the hillslope edge would be better adapted to drier 

periods, as well as to higher water availability variation range. Therefore, these 

trees may have developed deeper root systems to reach the water table under 

extremely dry conditions. In this sense, Snyder and Williams (2000) already 

suggested that the root system of some species would be adapted to water 

availability conditions of the specific site. They compared three riparian 

reaches within the same catchment under different stream water regimes: 

perennial, intermittent and ephemeral streams. They found that species at the 

ephemeral streams were more dependent on groundwater than those species 

living in the perennial ones probably due to deeper root systems.  

We suggest that our different results about water sources of riparian 

transpiration may be attributable to the high annual precipitation in Font del 

Regàs (900 mm year-1) that would have prevented riparian trees of developing 

deep root systems to deal with water stress conditions. To our best knowledge, 

most of the studies reporting strong influence of groundwater during summer 

riparian trees' transpiration have been conducted in arid regions. This  could 
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justify this pattern, rather comparable to upland forests. There are few studies 

that have carried out sap water isotopic  analyses in wet riparian zones. The 

few present in the literature, together with those combining oxygen and 

deuterium isotopic analyses on tree-rings wood, suggest that riparian tree 

species growing in wet zones are already experiencing drought stress during 

dry years. For instance, Sargeant and Singer (2016) reported BAI difficulties for 

P. nigra within wet regions during dry years, highlighting its difficulty to 

uptake water from the saturated soil, despite its deep root system. In this 

context, we have compiled data from different studies performed in  riparian 

areas all around the world. The study sites were plotted by aridity index 

continuum (i.e. AI=P/PET), which are covering Mediterranean, arid, and 

humid environmental conditions (Table F.1). In each site we obtained the % of 

water transpired from groundwater source, which is plotted in Figure 8.1.  

Here, Font del Regàs is located close to other temperate conditions, what 

justifies the seasonal pattern found on the water sources of our riparian forest.  

Figure 8.1 Relationship between the relative contribution of groundwater to riparian transpiration to 

annual and the aridity index (P / PET) for a set of riparian worldwide (n=16). The Font del Regàs 

forest (present study) is indicated with a gray circle. More information and references of the study 

sites are presented in Supplement (Table F.1). 
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These results imply that transpiration from groundwater and unsaturated soil 

layers by riparian vegetation may depend on the interaction between site 

conditions and species assemblage.  

Based on the idea that root system reach until the capillarity fringe zone at Font 

del Regàs, we have developed a model for each riparian zone (near-stream, 

intermediate, and hillslope), to test both vegetation transpiration accounts from 

the total water fluxes of the forest, as well as the spatial heterogeneity within 

the riparian forest (Chapter 6). First, we corroborate the importance of 

transpiration on water balances from the riparian soil compartment, 

accounting for 25 - 35% of the fluxes. Second, we found that transpiration had a 

high impact during summer soil water content, decreasing it as it is the first 

water source for transpiration during this season. Third, climate change 

projections did not differed much among IPCC scenarios (RCP 2.6, RCP 4.5, 

and RCP 8.5) in terms soil water content, despite applying a decrease in plant 

transpiration as projected by some authors (Luo et al., 2008). Yet, groundwater 

level assumptions appeared to be the key for riparian forest survival. Strong 

decreases of groundwater table could drive to drier soil conditions. This would 

worsen the effects of increasing temperatures on riparian vegetation or even 

worse if disconnecting the groundwater table from the root systems. Thus, 

groundwater availability may be critical in transient and chronic drought, and 

it is important to increase our knowledge about the effects that climate change 

projections could have on groundwater tables to better infer the effects on 

riparian vegetation. 

8.3. Soil N removal in Mediterranean riparian zones: The major role 

of vegetation N uptake 

Riparian zones are considered hot spots of N removal processes within the 

catchment reducing N loads arriving from the uplands and before reaching the 

stream (McClain et al., 2003; Vidon et al., 2010). Denitrification is considered 

the main biological N-removal process occurring at the riparian areas when 

soil water content, anoxic conditions and organic carbon accumulation happen 

to meet, facilitating this anaerobic process (Hill et al., 2000; Pinay et al., 2015). 
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However, we found very low denitrification rates in the riparian soil at Font del 

Regàs (< 4 µg N-N2O kg soil-1 d-1) compared with those reported for humid-

temperate zones (up to 2 mg N-N2O kg soil-1 d-1; Clément et al., 2002) but 

similar to the ones reported from other Mediterranean zones (0.7g N-N2O kg-1 

day-1; Pinay et al., 2015; Hefting et al., 2004) (Fig. 8.2). Some studies comparing 

denitrification rates at different latitudes have highlighted the importance of 

soil moisture (and thus the associated soil anoxia), on top of temperature and 

nitrate concentration, as the main variable controlling microbial denitrification 

in alluvial soils (Pinay et al., 2007). In Font del Regàs, riparian hydrology is also 

the main factor controlling microbial denitrification across the riparian area 

and along the year. The spatial variability of soil water content in Font del Regàs 

promoted higher denitrification rates at the near-stream zones than at the 

hillslope ones (30-40% and 10-25% of soil water content, respectively). These 

results contrast with non-water limited riparian forests, where higher substrate 

availability (C and N) at the hillslope edge enhanced denitrification activity 

(DeSimone et al., 2010; Dhondt et al., 2004). This would concurs with Font del 

Regàs if no anoxia limitation would happen, as our potential denitrification 

analyses showed higher denitrification rates at the intermediate and hillslope 

zones under similar anoxia conditions. We did not measure denitrification 

rates at the groundwater compartment, which us usually considered the main 

and faster path from uplands to the stream. However, we assumed that this 

process was negligible as dissolved organic carbon (DOC) was very low (DOC 

concentrations = 1.32 ± 1.43 mg C l-1; groundwater depth = 0.6 - 3 m), and 

because of the barely anoxic conditions measured on the groundwater (D.O. = 

4.52 ± 2.24  mg O2 l-1) (Mean values across the riparian zone for the period 2010-

2013; unpublished data).  

Although Mediterranean riparian soils may not act as hotspots of 

denitrification processes, riparian vegetation uptake plays a relevant role on 

annual soil N removal rates  in arid and semi-arid zones (Ranalli and 

Macalady, 2010; Gerber and Brookshire, 2014). Indeed, in temperate riparian 

zones it is commonly accepted that vegetation N uptake is a dominant soil N 

removal process during summer (Haycock et al., 1993; Clément et al., 2003). 
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Our vegetation uptake simulations (Chapter 6) showed a remarkable decrease 

of soil N concentrations during vegetative periods and had special importance 

at the intermediate and hillslope zones.  

 

Figure 8.2 Relationship between denitrification rates and the aridity index (P / PET) for a set of riparian 

worldwide (n=20). The Font del Regàs forest (present study) is indicated with a gray circle. More 

information and references of the study sites are in the Supplement (Table F.2). 

 

The exhaustive measurements of N fluxes over three vegetative periods (2010-

2013) in Font del Regàs allow us to perform a N mass balance of this 

Mediterranean riparian forest (Fig. 8.3). Thus, we used the annual mass 

balance of Font del Regàs to infer the capacity of the Mediterranean riparian 

forests to reduce N loads reaching the stream. N-emissions to the atmosphere 

considered natural soil N2O emissions and N2 from soil denitrification 

(Chapter 5). Annual tree uptake and leaf litterfall input to the soil was 

estimated from annual leaf production related to specific leaf N concentration 

of fresh leaves (tree uptake) and senescent leaves (leaf litterfall) (Chapters 4 

and 7). Groundwater N flux was calculated from daily groundwater N 

concentration data and the hydraulic conductivity on saturated soil 

(unpublished data). Annual dry and deposition N was obtain from Avila and 
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Rodà (2012) for the Montseny mountains, but was of similar magnitude of N 

precipitation analyses at the meteorological station nearby the studied forest. 

For subsurface leaching, we used data from inorganic N available in the soil 

captured by ion exchange resins (Lupon et al., 2016). Despite this measurement 

can subestimate leaching fluxes, it is comparable with the values found in 

others forests (Bernal et al., 2005). No differences were found between 

inorganic N available in the soil at the hillslope and at the near-stream edge, 

and thus the sub-surface leaching was considered a loss of the system. 

Altogether, our results suggest that on annual basis riparian vegetation do not 

retain enough N, and thus, together with the low denitrification rates, 

Mediterranean riparian forests may act as source of N to the stream instead of 

sinks.  

Figure 8.3 Estimated annual nitrogen (N) fluxes at the riparian forest of Font del Regàs. Rainfall, leaf 

litter inputs, tree uptake, surface leaching and groundwater fluxes are calculated as the mean annual 

values from 2011-2012. N2O emission flux is calculated from the field measurements carried out in 

2013. 

However, this annual N-source behavior of Mediterranean riparian zones can 

be different along the year. For instance, soil N processes are enhanced by high 

temperatures and water availability during early spring. Denitrification can 

rapidly increase once waterlogging conditions are set in riparian zones (Fig. 
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8.4a). These hot moments can be relevant on the global denitrification 

processes in these soils, but the rates are still low compared with the ones in 

wetter regions. Vegetation N uptake is the main removal process during spring 

and summer, but part of the N removed returns to the soil compartment at the 

end of the vegetative period via leaf litterfall (Fig. 8.4b). Both graphs of Fig. 4 

showed that despite soil processes are highly influenced by temperature and 

vegetation by the vegetative period itself, water availability is extremely 

governing the temporal and annual capacity of soil N retention of the riparian 

forest. Studies at catchment scale in Font del Regàs have also questioned the 

paper of Mediterranean riparian zones as N buffers despite its capacity to 

provoke stream hydrological retention during the vegetative periods (Lupon et 

al 2016).  

The idea of intensive sampling to better understand fluxes and processes at 

plot scale is of essential importance to obtain reliable modeled projections of 

global change effects on natural ecosystems. Our results in Chapter 6 suggest 

that projected climate conditions scenarios by IPCC (RCP 2.6, RCP 4.5, and 

RCP 8.5) could reduce the vegetative control of Mediterranean riparian forests, 

and, thus, increase soil N concentrations. These changes would be a 

consequence of (i) a reduction of transpiration rates to cope with drought 

conditions, and (ii) a possible disconnection between root systems and 

groundwater table, what would also restrict capillarity fluxes to recharge 

unsaturated soil profile. In the same way, Mayer et al. (2005) reported that 

relatively small riparian areas (such as Font del Regàs) are able to remove 

through plant uptake more than 75% of nitrate before it is exported to the 

stream, but this capacity is reduced when groundwater decrease to depths 

unreachable by root systems (Mayer et al., 2005; Hefting et al., 2004). 

Nevertheless, the soil N removal term when considering N uptake by 

deciduous vegetation is often questioned. The leaf litter fall at the end of the 

vegetative period reintroduce part of this previously uptaken N to the soil, 

which can be mineralized and leached into the groundwater and the stream 

(Hefting et al., 2005). 
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Figure 8.4 (a) Temporal patterns of soil nitrogen (N) processes: net mineralization (NNM), net 

nitrification (NN), and N gas emissions through denitrification and N2O natural emissions (DNT+N2O). 

(b) Temporal patterns of vegetation N fluxes: uptake and leaf litter fall. 

8.4. Global change implications in Mediterranean riparian forests: 

final considerations 

Both studied riparian forests have a remarkable spatial gradient of water 

availability across relatively small distance areas. This gradient of soil water 

availability and flooding conditions influences riparian tree species 
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distribution, tree species physiology and soil biogeochemistry processes. 

Therefore, we can affirm that space matters in semi-arid riparian zones being 

mainly driven by water availability. Thus, we should not consider these 

riparian areas as uniform zones, despite  they have been traditionally assumed 

uniform for many temperate riparian systems. Moreover, our global change 

projections (Chapter 6) suggested that the possible disconnection between the 

vegetation uptake zone and the groundwater table alters vegetation 

transpiration and reduces the effective riparian soil N removal. Similarly, some 

authors also predict the contraction of mesic riparian vegetation corridors if 

water table declines under very low discharges, and as a consequence, soil 

moisture decreases at larger geomorphic surfaces (Rood et al., 2003; Auble et 

al., 2005). 

8.4.1. Are Mediterranean riparian soils sources of greenhouse gases?  

Riparian zones are the wettest areas in Mediterranean catchments, and thus, 

potential hotspots of soil microbial activity. Soil microbial processes can have 

gases as end-product, and some of them are considered greenhouse gases that 

contribute to climate warming (such as CO2, N2O, and CH4). Soil respiration is 

predominantly an aerobic process that accounts by 20% of global CO2 

emissions. Yet, shallow groundwater tables and high soil water contents at 

riparian zones facilitate anaerobic microbial processes on top of aerobics ones. 

For instance, riparian zones can account by 70% of global N2O emissions due to 

incomplete nitrification and denitrification processes under barely oxic 

conditions (Kim and Verma, 1990; Raich et al., 2002; Rastogi et al., 2002), and 

by 15-40% of the global CH4 emissions, as a result of methanogenesis (Audet et 

al 2014; Segers 1998).  

In contrast, the soil gas emissions measured in Font del Regàs showed large 

annual CO2 emissions (1.2 – 10 g C m-2 d-1)  but very low annual N2O emissions 

(0.001 – 0.2 mg N m-2 d-1). We compared our results with studies reporting soil 

CO2 and N2O emissions (n=11 and n=20, respectively) across different biomes 

(Fig. 8.5). Mediterranean regions emitted higher amounts of CO2 compared to 

arid and temperate regions, where they could be limited by low water 

availability and anoxic conditions, respectively (Fig. 8.5a). However, the wide 
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range of precipitation comprised within Mediterranean region bring about 

higher variability on soil CO2 emission rates. Conversely, soil N2O emissions 

were much higher at temperate zones than at arid and Mediterranean regions, 

due to extended soil anoxic conditions in this region (Fig. 8.5b). Similar to this 

latitudinal gradient of gas emissions, but at smaller scale, we found a spatio-

temporal decoupling between N2O and CO2 following soil water availability 

variations in Font del Regàs. Large amounts of CO2 were emitted from the 

hillslope and intermediate riparian zones, while N2O soil emissions increased 

from the hillslope zone to the near-stream zone. Our results suggest that 

Mediterranean forest soils can act as a source of C to the atmosphere, but at the 

same time as a sink of N. This perception contrasts with the well-established 

idea that riparian soils are able to remove high amounts of N via 

denitrification, and produce N2O when the process is incomplete (Mander et 

al., 2008; Vidon 2017). Thus, Mediterranean riparian zones act as upland forests 

producing high amounts of CO2 due to soil respiration (Barba et al., 2014). 

Furthermore, warmer conditions expected by climate change can enhance CO2 

emissions at riparian zones whenever there would be a suitable soil water 

availability-although such emissions could be constricted under very low soil 

moisture (Chang et al., 2014).  

 

Figure 8.5 Greenhouse gas emissions from riparian forest soils worldwide: (a) CO2 (n=11) and (b) N2O 

(n=20). More information and references of the study sites are in the Supplement (Table F.3 and F.4). 
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8.4.2. Mediterranean riparian areas: sink or source of N in the future? 

Riparian soils have been considered sinks of N due to both, the high 

concentrations that usually arrive from the catchment, and the high rate of N 

processes endorsed by the high water availability in riparian areas. Our results 

demonstrate that riparian soils in Font del Regàs are water limited (i.e. anoxic 

conditions limitation) for denitrification activity: Nevertheless, the highest 

mineralization and nitrification rates from the catchment soils had been 

measured in riparian soils (Lupon et al., 2016). Therefore, riparian zones are 

considered hot spots of net nitrification rates which can be strengthened by 

short-periods of elevated temperature and water availability, and lead to 

increase in stream N loads (Lupon et al., 2016; Lupon et al., 2017). Climate 

change projections show no changes in mineralization and nitrification rates in 

this area, as the benefits of higher temperatures would be negatively 

counterbalanced by lower soil water availability (Lupon et al., 2015). 

Global change can promote changes of vegetation species, due to natural or 

human induced disturbances, promoting cascade effects on the ecosystem 

functioning. For instance, the presence of riparian vegetation with the ability to 

fix atmospheric N2 through bacteria symbioses in Font del Regàs (A. glutinosa 

and R. pseudoacacia) can influence soil N availability. In some cases, 

disturbances caused by deforestation activities can facilitate the entrance and 

spread of invasive species which can substitute the native ones. Some studies 

have indicated that although new invader species could have clear drought 

sensitivity, better adaptations to drought of native species do not suppose any 

advantages for them (Werner et al., 2010; Castro-Diez et al., 2009). In Font del 

Regàs, the invasive N-fixing species R. pseudoacacia is spread across all the 

riparian area cohabiting with native tree species. Our results in chapter 7 

demonstrated that its presence in Font del Regàs may have homogenized soil N 

availability across the whole riparian area. Yet, a complete invasion by R. 

pseudoacacia in Font del Regàs, would reduce total soil N stocks. Therefore, the 

substitution of non-fixing species by N-fixing ones, and vice versa, can also 

alter the capacity of riparian soils to retain or export N to streams. 
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The riparian vegetation acts as a source of soil N, through leaf litterfall, but it 

can also retain N via uptake. Indeed, high correlation between plant uptake 

and N concentration leached into the stream has been reported by some 

authors, highlighting the influence of vegetation on N retention (Schade et al., 

2005). Our plant uptake simulations also support the role of riparian vegetation 

on soil N removal (Chapter 6). However, global change can cause water stress 

to riparian vegetation due to an increase of the evaporative demand and a 

reduction of water resources. As a consequence, riparian vegetation can 

decrease transpiration rates or even be substituted by other species, with less 

transpiration and N-uptake rates. Our simulations of reduced transpiration, 

and thus N uptake, under climate change conditions suggest that soil N would 

increase during subsequent years and the effective N removal areas could be 

restricted to zones adjacent to the stream channel. In addition, higher 

frequency and intensity of extreme rainfall and flooding events, also expected 

by climate change projections, might increase the arrival of N loads via surface 

(leaching) and subsurface (groundwater coming from the watershed). Low 

processing rates of Mediterranean riparian forests would not be able to reduce 

the export of N loads to the stream. 

Overall, N retention in Mediterranean riparian soils would be mainly due to 

vegetation uptake. Yet, future climate projections may exacerbate water 

scarcity problems, inhibiting denitrification rates and reducing vegetation 

uptake. Therefore, these results suggest that Mediterranean riparian soils 

would become a potential source of N to adjacent aquatic systems in the future. 
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CHAPTER 9 
General conclusions 
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Conclusions of this thesis are listed by chapters below: 

 

CHAPTER 3 

* Q. canariensis, at its northern distribution range, showed no effects of 

increasing temperature over the last decades on its growth. However, iWUE 

significantly increased over such period by stomatal control. 

* In the southernmost limit of distribution range of Q. robur, this species is 

found from the wet to the extremely flooded zones in the studied area. The 

increasing temperature over the last decades only affected negatively 

individual’s growth at the wet zone, confirming their high needs of water 

availability. Nevertheless, Q. robur increased its iWUE at the wet and mid-

flooded zones by stomatal control. 

* F. angustifolia is currently co-habiting with Q. robur. The increasing 

temperature over the last decades caused only a decreased of growth trends at 

the mid-flooded zone. Both, higher iWUE and stomatal control at the 

extremely-flooded zone indicate root anoxia symptoms in this  zone. 

* In Mediterranean regions, the presence of a mid-European species as Q. robur 

will be certainly endangered if climate conditions become drier than the 

present ones. These worsening conditions would be a combination of 

increasing temperature, less  precipitation and groundwater availability 

decline.  

 

CHAPTER 4 

* The studied native riparian tree species (A. glutinosa, P. nigra, and F. excelsior) 

responded to the environmental conditions of the dry year through lower leaf 

biomass production in comparison to the wet one. 
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* Few physiological control mechanisms were found for native species to cope

with drier conditions. Among them, P. nigra and F. excelsior released few 

amounts of leaves during low summer soil water content periods, and P. nigra 

increased its iWUE in the dry year. Despite A. glutinosa was affected by drier 

conditions, it did not show any physiological control mechanism.   

* The invasive R. pseudoacacia produced higher leaf biomass than native species

during the dry year, evidencing its higher competitive ability to cope with 

drought.  

* R. pseudoacacia coped with drier annual conditions through its high plasticity,

being able to release leaves during summer, better performing leaf N 

reabsorption before leaf fall, and showing higher iWUE when compared to 

natives’ species. 

* Riparian tree species are mainly uptaking water from the deep soil layer.

Phreatophitic species, A. glutinosa and P. nigra, used mainly groundwater 

specially during spring. However, they depend on soil water during summer, 

when groundwater level decreases away from the roots. R. pseudoacacia is able 

to increase its use of groundwater at the hillslope zone during summer 

drought, likely supported by a deep root system that reaches the groundwater 

table. F. excelsior presented no differences on its water sources behavior among 

seasons. 

CHAPTER 5 

* Greenhouse gas emissions from the riparian soil occurred mostly as CO2

across all the riparian zones. The highest CO2 emissions occurred near the 

hillslope, since deep groundwater tables promoted large respiration rates in 

those relatively dry soils. 

* Denitrification rates were very low and they mainly occurred in the wet

zones located near the stream channel. Soil N2O emissions were also negligible 

and occurred mainly at the near-stream zone. 
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* Mediterranean riparian zones are dynamic systems that show high spatio-

temporal shifts of biogeochemical processes driven by changes in both soil 

water content and substrate availability. After spring rewetting events, both 

CO2 and N2O emissions peaked, supported by optimal conditions of soil water 

content, temperature, and N availability that promote microbial respiration, 

nitrification, and denitrification activities. 

* Future variations of catchment hydrology due to climate change are expected 

to affect the riparian functionality in Mediterranean areas, as well as their 

contribution to regional and global C and N cycles. 

 

CHAPTER 6 

* Mediterranean riparian areas are ecosystems with high water availability and 

with  high spatial heterogeneity of soil properties throughout short distances 

(~25 m wide), mainly due to large differences in soil granulometry and in 

groundwater level from near-stream to hillslope edges.  

* Plant transpiration is the main water flux across the riparian zones (25 to 35% 

of water fluxes), forcing a clear decrease of soil water content during summer 

drought. Moreover, transpiration rates decreases from the near-stream to the 

hillslope edge, following soil water content availability. 

* Plant-root N uptake plays the main role for N retention and turnover, in 

Mediterranean riparian systems particularly in zones where the groundwater 

level is deeper and dry conditions are leading to almost zero denitrification.  

* Projected climate change scenarios, with increasing temperature and less 

precipitation can cause a strong groundwater availability depletion. This 

would constrain transpiration rates and plant-root N uptake. These effects 

would be stronger at the hillslope edge, reducing the effective riparian N 

removal area to shorter distances from the stream channel. This fact would 

increase soil N availability and N leaching risk from riparian areas into the 

stream. 
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CHAPTER 7 

* Leaf litter N content of the invasive and N-fixing R. pseudoacacia species was

higher than N leaf litter content of native non-fixing species, but similar to A. 

glutinosa. 

* R. pseudoacacia contribution to annual leaf litter N inputs increased from the

near-stream to the hillslope zones. Nevertheless, no differences were found on 

soil N processing rates nor on soil N availability among riparian zones. 

* The spreading of R. pseudoacacia across the riparian forest contributed to

homogenize soil N availability.  Nevertheless, it would decrease the total soil 

N availability of the forest floor in case of a complete invasion scenario. The 

results obtained from these simulations highlighted the importance of an 

integrated spatio-temporal perception of the invasive process in order to assess 

its impact on soil N biogeochemistry. 



174                                                                                                                Chapter 9 

 

  



References                                                                                                      175 

 

References 

  



176                                                                                                                References 

 

2012, R. C. T.: Team RDC.R: A Language And Environment For Statistical 

Computing., n.d. 

Aber, J. D., McDowell, W. H., Nadelhoffer, K., Magill, A., Berntson, G., Kamakea, 

M., McNulty, S. G., Currie, W. S., Rustad, L. E. and Fernandez, I.: Nitrogen 

saturation in temperate forest ecosystems, Bioscience, 48(11), 921–934, 1998. 

Aguiar, F. C., Cerdeira, J. O., Martins, M. J. and Ferreira, M. T.: Riparian forests of 

Southwest Europe: Are functional trait and species composition assemblages 

constrained by environment?, J. Veg. Sci., 24(4), 628–638, doi:10.1111/jvs.12009, 

2013. 

Ajbilou, R., Marañón, T. and Arroyo, J.: Ecological and biogeographical analyses of 

Mediterranean forests of northern Morocco, Acta Oecologica, 29(1), 104–113, 

doi:10.1016/j.actao.2005.08.006, 2006. 

Akamatsu, F., Ide, K., Shimano, K. and Toda, H.: Nitrogen stocks in a riparian area 

invaded by N-fixing black locust (Robinia pseudoacacia L.), Landsc. Ecol. Eng., 

7(1), 109–115, doi:10.1007/s11355-010-0125-0, 2011. 

Allen, R. G., Pereira, L. S., Raes, D., Smith, M. and Ab, W.: Crop 

evapotranspiration. Guidelines for computing crop water requirements., FAO 

Irrig. Drain. Pap., 56, doi:10.1016/j.eja.2010.12.001, 1998. 

Allison, S. D., Wallenstein, M. D. and Bradford, M. A.: Soil-carbon response to 

warming dependent on microbial physiology, Nat. Geosci., 3(5), 336–340, 

doi:10.1038/ngeo846, 2010. 

Alongi, D. M., Pfitzner, J., Trott, L. A., Tirendi, F., Dixon, P. and Klumpp, D. W.: 

Rapid sediment accumulation and microbial mineralization in forests of the 

mangrove Kandelia candel in the Jiulongjiang Estuary, China, Estuar. Coast. Shelf 

Sci., 63(4), 605–618, doi:10.1016/j.ecss.2005.01.004, 2005. 

Alonso, A., González-Muñoz, N. and Castro-Díez, P.: Comparison of leaf 

decomposition and macroinvertebrate colonization between exotic and native trees 

in a freshwater ecosystem, Ecol. Res., 25(3), 647–653, doi:10.1007/s11284-010-0698-y, 

2010. 

Angstmann, J. L., Ewers, B. E., Barber, J. and Kwon, H.: Testing transpiration 

controls by quantifying spatial variability along a boreal black spruce forest 

drainage gradient, Ecohydrology, 6, 783–793, doi:10.1002/eco.1300, 2013. 

Asaeda, T., Rashid, M. H. and Abu Bakar, R.: Dynamic modelling of soil nitrogen 

budget and vegetation colonitzation in sediment bars of a regulated river, River 



References                                                                                                      177 

 

Res. Appl., 31, 470–484, doi:10.1002/rra.2802 DYNAMIC, 2015. 

Asensio, D., Peñuelas, J., Ogaya, R. and Llusià, J.: Seasonal soil and leaf CO2 

exchange rates in a Mediterranean holm oak forest and their responses to drought 

conditions, Atmos. Environ., 41, 2447–2455, doi:10.1016/j.atmosenv.2006.05.008, 

2007. 

Audet, J., Hoffmann, C. C., Andersen, P. M., Baattrup-Pedersen, A., Johansen, J. R., 

Larsen, S. E., Kjaergaard, C. and Elsgaard, L.: Nitrous oxide fluxes in undisturbed 

riparian wetlands located in agricultural catchments: Emission, uptake and 

controlling factors, Soil Biol. Biochem., 68, 291–299, 

doi:10.1016/j.soilbio.2013.10.011, 2014. 

Àvila, A. and Rodà, F.: Changes in atmospheric deposition and streamwater 

chemistry over 25 years in undisturbed catchments in a Mediterranean mountain 

environment, Sci. Total Environ., 434, 18–27, doi:10.1016/j.scitotenv.2011.11.062, 

2012. 

Baethgen, W. E. and Alley, M. M.: A manual colorimetric procedure for measuring 

ammonium nitrogen in soil and plant Kjeldahl digests, Commun. Soil Sci. Plant 

Anal., 20(9–10), 961–969, doi:10.1080/00103628909368129, 1989. 

Baggs, E. M.: A review of stable isotope techniques for N2O source partitioning in 

soils: recent progress, remaining challenges and future considerations, Rapid 

Commun. Mass Spectrom., 22, 1664–1672, doi:10.1002/rcm, 2008. 

Balboa-Murias, M. A., Rojo, A., Álvarez, J. G. and Merino, A.: Original article 

Carbon and nutrient stocks in mature Quercus robur L . stands in NW Spain, Ann. 

For. Sci., 63, 557–565, doi:10.1051/forest:2006038, 2006. 

Barba, J., Curiel Yuste, J., Poyatos, R., Janssens, I. A. and Lloret, F.: Strong resilience 

of soil respiration components to drought-induced die-off resulting in forest 

secondary succession, Oecologia, 182(1), 27–41, doi:10.1007/s00442-016-3567-8, 

2016. 

Barbeta, A. and Peñuelas, J.: Relative contribution of groundwater to plant 

transpiration estimated with stable isotopes, Sci. Rep., 7(1), 1–10, 

doi:10.1038/s41598-017-09643-x, 2017. 

Bardon, C., Piola, F., Bellvert, F., Haichar, F. el Z., Comte, G., Meiffren, G., 

Pommier, T., Puijalon, S., Tsafack, N. and Poly, F.: Evidence for biological 

denitrification inhibition (BDI) by plant secondary metabolites, New Phytol., 

204(3), 620–630, doi:10.1111/nph.12944, 2014. 



178                                                                                                                References 

 

Barnard, H. ., Graham, C. B., Van Verseveld, W. J., Brooks, J. R., Bond, B. J. and 

McDonnell, J. .: Mechanistic assessment of hillslope transpiration controls of diel 

subsurface flow: a steady-state irrigation approach, Ecohydrology, 3, 133–142, 

doi:10.1002/eco.114 Mechanistic, 2010. 

Batson, J., Noe, G. B., Hupp, C. R., Krauss, K. W., Rybicki, N. B. and Schenk, E. R.: 

Soil greenhouse gas emissions and carbon budgeting in a short-hydroperiod 

floodplain wetland, J. Geophys. Res. G Biogeosciences, 120(1), 77–95, 

doi:10.1002/2014JG002817, 2015. 

Becker, M., Nieminen, T. M. and Geremia, F.: Short-term variations and long-term 

changes in oak productivity in northeastern France. The role of climate and 

atmospheric CO2, Ann. des Sci. For., 51(5), 477–492, doi:10.1051/forest:19940504, 

1994. 

Belnap, J., Welter, J. R., Grimm, N. B., Barger, N. and Ludwig, J. a: Linkages 

between Microbial and Hydrologic Processes in Arid and Semiarid Watersheds 

LINKAGES BETWEEN MICROBIAL AND HYDROLOGIC PROCESSES IN ARID 

AND SEMIARID WATERSHEDS, Ecol. Soc. Am., 86(2), 298–307, 2005. 

Benesperi, R., Giuliani, C., Zanetti, S., Gennai, M., Mariotti Lippi, M., Guidi, T., 

Nascimbene, J. and Foggi, B.: Forest plant diversity is threatened by Robinia 

pseudoacacia (black-locust) invasion, Biodivers. Conserv., 21(14), 3555–3568, 

doi:10.1007/s10531-012-0380-5, 2012. 

Benfield, E. F.: Comparison of litterfall input to streams., J.N.Am.Benthol. Soc., 16, 

104–108, 1997. 

Bernal, S., Butturini, A. and Sabater, F.: Variability of DOC and nitrate responses to 

storms in a small Mediterranean forested catchment, Hydrol. Earth Syst. Sci., 6(6), 

1031–1041, doi:10.5194/hess-6-1031-2002, 2002. 

Bernal, S., Butturini, A., Nin, E., Sabater, F. and Sabater, S.: Leaf litter dynamics and 

nitrous oxide emission in a Mediterranean riparian forest: implications for soil 

nitrogen dynamics., J. Environ. Qual., 32(1), 191–197 [online] Available from: 

http://www.ncbi.nlm.nih.gov/pubmed/12549558, 2003. 

Bernal, S., Sabater, F., Butturini, A., Nin, E. and Sabater, S.: Factors limiting 

denitrification in a Mediterranean riparian forest, Soil Biol. Biochem., 39(10), 2685–

2688, doi:10.1016/j.soilbio.2007.04.027, 2007. 

Bernal, S., Hedin, L. O., Likens, G. E., Gerber, S. and Buso, D. C.: Complex response 

of the forest nitrogen cycle to climate change, Proc. Natl. Acad. Sci., 109(9), 3406–

3411, doi:10.1073/pnas.1121448109, 2012. 



References                                                                                                      179 

 

Bernal, S., Lupon, A., Ribot, M., Sabater, F. and Martí, E.: Riparian and in-stream 

controls on nutrient concentrations and fluxes in a headwater forested stream, 

Biogeosciences, 12(6), 1941–1954, doi:10.5194/bg-12-1941-2015, 2015. 

Berthold, D.: Soil chemical and biological changes through the N 2 fixation of black 

locust ( Robinia pseudoacacia L .) - A contribution to the research of tree 

neophytes, Georg. Göttingen, 2005. 

Bertrand, G., Masini, J., Goldscheider, N., Meeks, J., Lavastre, V., Celle-Jeanton, H., 

Gobat, J. M. and Hunkeler, D.: Determination of spatiotemporal variability of tree 

water uptake using stable isotopes (δ18O, δ2H) in an alluvial system supplied by a 

high-altitude watershed, Pfyn forest, Switzerland, Ecohydrology, 7(2), 319–333, 

doi:10.1002/eco.1347, 2014. 

Binkley, D., Cromack, K. and Backer, D. D.: Nitrogen fixation by red alder: Biology, 

rates, and controls, Biol. Manag. Red Alder, (January 1994), 57–72, 1994. 

Boada, M., Mayo, S. and Maneja, R., Eds.: Els sistemes socioecològics de la conca de 

La Tordera, Institució Catalana d’Història Natural, Barcelona., 2008. 

Bolós, J. and Vigo, O.: Flora dels Països Catalans, Editorial Barcino., 1984. 

Bond-Lamberty, B. and Thomson, A.: Temperature-associated increases in the 

global soil respiration record., Nature, 464(7288), 579–582, doi:10.1038/nature08930, 

2010. 

Boring, L. R. and Swank, W. T.: The role of black locust (Robinia pseudoacacia) in a 

forest succession, J. Ecol., 72, 749–766, 1984. 

Bosch, D. D., Marshall, L. K. and Teskey, R.: Forest transpiration from sap flux 

density measurements in a Southeastern Coastal Plain riparian buffer system, 

Agric. For. Meteorol., 187, 72–82, doi:10.1016/j.agrformet.2013.12.002, 2014. 

Boumghar, A.: Étude et évaluation du comportement de quatre espèces de forêts 

reveraines aux cours d’eau (Alnus glutinosa L., Robinia pseudoacacia L., Populus 

nigra L., et Fraxinus excelsior L.) quant aux conditions de stress hydrique, Univ. 

Barcelona, (Master Thesis), 2012. 

Breda, N., Cochard, H., Dreyer, E. and Granier,  a: Field Comparison of 

Transpiration, Stomatal Conductance and Vulnerability To Cavitation of Quercus-

petraea and Quercus-robur Under Water-stress, Ann. Des Sci. For., 50(6), 571–582, 

doi:10.1051/forest:19930606, 1993. 

Briones, M. J. I., Ostle, N. J., McNamara, N. P. and Poskitt, J.: Functional shifts of 



180                                                                                                                References 

 

grassland soil communities in response to soil warming, Soil Biol. Biochem., 41(2), 

315–322, doi:10.1016/j.soilbio.2008.11.003, 2009. 

Brooks, J. R., Barnard, H. R., Coulombe, R. and McDonnell, J. J.: Ecohydrologic 

separation of water between trees and streams in a Mediterranean climate, Nat. 

Geosci., 3, 100–104, doi:10.1038/ngeo722, 2010. 

Bruland, G. L., Richardson, C. J. and Whalen, S. C.: Spatial variability of 

denitrification potential and related soil properties in created, restored, and paired 

natural wetlands, Wetlands, 26(4), 1042–1056, doi:10.1672/0277-

5212(2006)26[1042:SVODPA]2.0.CO;2, 2006. 

Burgin, A. J. and Groffman, P. M.: Soil O2 controls denitrification rates and N2O 

yield in a riparian wetland, J. Geophys. Res. Biogeosciences, 117(1), 1–10, 

doi:10.1029/2011JG001799, 2012. 

Butturini, A., Bernal, S., Hellin, C., Nin, E., Rivero, L., Sabater, S. and Sabater, F.: 

Influences of the stream groundwater hydrology on nitrate concentration in 

unsaturated riparian area bounded by an intermittent Mediterranean stream, 

Water Resour. Res., 39(4), 1–13, doi:10.1029/2001WR001260, 2003a. 

Butturini, A., Bernal, S., Hellin, C., Nin, E., Rivero, L., Sabater, S. and Sabater, F.: 

Influences of the stream groundwater hydrology on nitrate concentration in 

unsaturated riparian area bounded by an intermittent Mediterranean stream, 

Water Resour. Res., 39(4), doi:10.1029/2001WR001260, 2003b. 

Butturini, A., Bernal, S. and Sabater, F.: Modeling storm events to investigate the 

influence of the stream-catchment interface zone on stream biogeochemistry, 

Water Resour. Res., 41(8), 1–12, doi:10.1029/2004WR003842, 2005. 

Buzhdygan, O. Y., Rudenko, S. S., Kazanci, C. and Patten, B. C.: Effect of invasive 

black locust (Robinia pseudoacacia L.) on nitrogen cycle in floodplain ecosystem, 

Ecol. Modell., 319, 170–177, doi:10.1016/j.ecolmodel.2015.07.025, 2016. 

Calder, I. R.: Water use by forests, limits and controls., Tree Physiol., 18(18), 625–

631, doi:10.1093/treephys/18.8-9.625, 1998. 

Casals, P., Lopez-Sangil, L., Carrara, A., Gimeno, C. and Nogués, S.: Autotrophic 

and heterotrophic contributions to short-term soil CO2 efflux following simulated 

summer precipitation pulses in a Mediterranean dehesa, Global Biogeochem. 

Cycles, 25(3), 1–12, doi:10.1029/2010GB003973, 2011. 

Castro-Díez, P., González-Muñoz, N., Alonso, A., Gallardo, A. and Poorter, L.: 

Effects of exotic invasive trees on nitrogen cycling: A case study in Central Spain, 



References                                                                                                      181 

 

Biol. Invasions, 11(8), 1973–1986, doi:10.1007/s10530-008-9374-3, 2009. 

Castro-Díez, P., Fierro-Brunnenmeister, N., González-Muñoz, N. and Gallardo, A.: 

Effects of exotic and native tree leaf litter on soil properties of two contrasting sites 

in the Iberian Peninsula, Plant Soil, 350(1–2), 179–191, doi:10.1007/s11104-011-0893-

9, 2012. 

Cermák, J. and Prax, A.: Water balance of a Southern Moravian floodplain forest 

under natural and modified soil water regimes and its ecological consequences, 

Ann. For. Sci., 58(1), 15–29, doi:10.1051/forest:2001100, 2001. 

Chang, C. T., Sabaté, S., Sperlich, D., Poblador, S., Sabater, F. and Gracia, C.: Does 

soil moisture overrule temperature dependence of soil respiration in 

Mediterranean riparian forests?, Biogeosciences, 11(21), 6173–6185, doi:10.5194/bg-

11-6173-2014, 2014. 

Chauvet, E.: Changes in the chemical composition of alder, poplar and willow 

leaves during decomposition in a river, Hydrobiologia, 148(1), 35–44, 

doi:https://doi.org/10.1007/BF00018164, 1987. 

Chen, C., Cleverly, J., Zhang, L., Yu, Q. and Eamus, D.: Modelling Seasonal and 

Inter-annual Variations in Carbon and Water Fluxes in an Arid-Zone Acacia 

Savanna Woodland, 1981–2012, Ecosystems, 19, 625–644, doi:10.1007/s10021-015-

9956-8, 2016. 

Clausnitzer, F., Köstner, B., Schwärzel, K. and Bernhofer, C.: Relationships between 

canopy transpiration, atmospheric conditions and soil water availability-Analyses 

of long-term sap-flow measurements in an old Norway spruce forest at the Ore 

Mountains/Germany, Agric. For. Meteorol., 151, 1023–1034, 

doi:10.1016/j.agrformet.2011.04.007, 2011. 

Clément, J.-C., Pinay, G. and Marmonier, P.: Seasonal dynamics of denitrification 

along topohydrosequences in three different riparian wetlands, J. Environ. Qual., 

31, 1025–1037, doi:10.2134/jeq2002.1025, 2002. 

Clément, J. C., Holmes, R. M., Peterson, B. J. and Pinay, G.: Isotopic investigation of 

denitrification in a riparian ecosystem in western France, J. Appl. Ecol., 40, 1035–

1048, doi:10.1111/j.1365-2664.2003.00854.x, 2003. 

Coble, A. P. and Cavaleri, M. A.: Light acclimation optimizes leaf functional traits 

despite height-related constraints in a canopy shading experiment, Oecologia, 

177(4), 1131–1143, doi:10.1007/s00442-015-3219-4, 2015. 

Connor, S., Nelson, P. N., Armour, J. D. and Hénault, C.: Hydrology of a forested 



182                                                                                                                References 

 

riparian zone in an agricultural landscape of the humid tropics, Agric. Ecosyst. 

Environ., 180, 111–122, doi:10.1016/j.agee.2011.12.006, 2013. 

Damesin, C., Rambal, S. and Joffre, R.: Between-tree variations in leaf δ13C of 

Quercus pubescens and Quercus ilex among mediterranean habitats with different 

water availability, Oecologia, 111(1), 26–35, doi:10.1007/s004420050204, 1997. 

Davidson, E. A., Janssens, I. A. and Lou, Y.: On the variability of respiration in 

terrestrial ecosystems: Moving beyond Q10, Glob. Chang. Biol., 12(2), 154–164, 

doi:10.1111/j.1365-2486.2005.01065.x, 2006. 

Dawson, T. E. and Ehleringer, J. R.: Streamside trees that do not use stream water, 

Nature, 350, 1991a. 

Dawson, T. E. and Ehleringer, J. R.: Streamside trees that do not use stream water, 

Nature, 350(6316), 335–337, 1991b. 

DeSimone, J., Macrae, M. L. and Bourbonniere, R. a.: Spatial variability in surface 

N2O fluxes across a riparian zone and relationships with soil environmental 

conditions and nutrient supply, Agric. Ecosyst. Environ., 138(1–2), 1–9, 

doi:10.1016/j.agee.2010.03.007, 2010. 

Dhondt, K., Boeckx, P., Hofman, G. and Cleemput, O.: Temporal and spatial 

patterns of denitrification enzyme activity and nitrous oxide fluxes in three 

adjacent vegetated riparian buffer zones, Biol. Fertil. Soils, 40(4), 243–251, 

doi:10.1007/s00374-004-0773-z, 2004. 

Doble, R. C. and Crosbie, R. S.: Review: Current and emerging methods for 

catchment-scale modelling of recharge and evapotranspiration from shallow 

groundwater, Hydrogeol. J., 25, 3–23, doi:10.1007/s10040-016-1470-3, 2017. 

Doody, C. N. and O’Reilly, C.: Drying and soaking pretreatments affect 

germination in pedunculate oak, Ann. For. Sci., 65, doi:10.1051/forest:2008027, 

2008. 

Douda, J., Boublík, K., Slezák, M., Biurrun, I., Nociar, J., Havrdová, A., Doudová, J., 

Aćić, S., Brisse, H., Brunet, J., Chytrý, M., Claessens, H., Csiky, J., Didukh, Y., 

Dimopoulos, P., Dullinger, S., Fitzpatrick, Ú., Guisan, A., Horchler, P. J., Hrivnák, 

R., Jandt, U., Kacki, Z., Kevey, B., Landucci, F., Lecomte, H., Lenoir, J., Paal, J., 

Paternoster, D., Pauli, H., Pielech, R., Rodwell, J. S., Roelandt, B., Svenning, J. C., 

Šibík, J., Šilc, U., Škvorc, Ž., Tsiripidis, I., Tzonev, R. T., Wohlgemuth, T. and 

Zimmermann, N. E.: Vegetation classification and biogeography of European 

floodplain forests and alder carrs, Appl. Veg. Sci., 19(1), 147–163, 

doi:10.1111/avsc.12201, 2016. 



References                                                                                                      183 

 

Dyderski, M. K., Paź, S., Frelich, L. E. and Jagodziński, A. M.: How much does 

climate change threaten European forest tree species distributions?, Glob. Chang. 

Biol., 24(3), 1150–1163, doi:10.1111/gcb.13925, 2018. 

Ellenberg, H.: Nitrogen as Soil Factor, Especially for Central European Plant 

Populations, Oecologia Plant., 12(1), 1–22, 1977. 

Emmett, B. A., Beier, C., Estiarte, M., Tietema, A., Kristensen, H. L., Williams, D., 

Peñuelas, J., Schmidt, I. and Sowerby, A.: The response of soil processes to climate 

change: Results from manipulation studies of shrublands across an environmental 

gradient, Ecosystems, 7(6), 625–637, doi:10.1007/s10021-004-0220-x, 2004. 

Eno, C. F.: Nitrate production in the field by incubating the soil in polyethylene 

bags, Soil Sci. Soc. Am. J., 24, 227–279, 1960a. 

Eno, C. F.: Nitrate production in the field by incubating the soil in polyethylene 

bags, Soil Sicence Soc. Am., 24(4), 277–279, 1960b. 

Eno, C. F.: Nitrate production in the field by incubating the soil in polyethylene 

bags., Soil Sci. Soc. Am. J., 24, 277–279, 1960c. 

Eriksson, L.; Byrne, T.; Johansson, E.; Trygg, J.; Vikström, C.: Multi- and 

Megavariate Data Analysis. Basic principles and applications., 2006. 

Evaristo, J., Jasechko, S. and McDonnell, J. J.: Global separation of plant 

transpiration from groundwater and streamflow, Nature, 525(7567), 91–94, 

doi:10.1038/nature14983, 2015. 

Fang, Y., Koba, K., Makabe, A., Takahashi, C., Zhu, W., Hayashi, T., Hokari, A. A., 

Urakawa, R., Bai, E., Houlton, B. Z., Xi, D., Zhang, S., Matsushita, K., Tu, Y., Liu, 

D., Zhu, F., Wang, Z., Zhou, G., Chen, D., Makita, T., Toda, H., Liu, X., Chen, Q., 

Zhang, D., Li, Y. and Yoh, M.: Microbial denitrification dominates nitrate losses 

from forest ecosystems, Proc. Natl. Acad. Sci., 112(5), 1470–1474, 

doi:10.1073/pnas.1416776112, 2015. 

Farquhar, G., O’Leary, M. and Berry, J.: On the Relationship Between Carbon 

Isotope Discrimination and the Intercellular Carbon Dioxide Concentration in 

Leaves, Aust. J. Plant Physiol., 9(2), 121, doi:10.1071/PP9820121, 1982. 

Feddes, R. A., Bresler, E. and Neuman, S. P.: Field test of a modified numerical 

model for water uptake by root systems, Water Resour. Res., 10(6), 1199–1206, 

doi:10.1029/WR010i006p01199, 1974. 

Fernandes, P., Antunes, C., Correia, O. and Máguas, C.: Do climatic and habitat 



184                                                                                                                References 

 

conditions affect the reproductive success of an invasive tree species? An 

assessment of the phenology of Acacia longifolia in Portugal, Plant Ecol., 216(2), 

343–355, doi:10.1007/s11258-014-0441-9, 2014. 

Ferreira, V. and Graça, M. A. S.: Effects of whole-stream nitrogen enrichment and 

litter species mixing on litter decomposition and associated fungi, Limnologica, 58, 

69–77, doi:10.1016/j.limno.2016.03.002, 2016. 

Follstad Shah, J. J. and Dahm, C. N.: Flood regime and leaf fall determine soil 

inorganic nitrogen dynamics in semiarid riparian forests, Ecol. Appl., 18(3), 771–

788, doi:10.1890/07-0447.1, 2008. 

Ford, C. R., Goranson, C. E., Mitchell, R. J., Will, R. E. and Teskey, R. O.: Modeling 

canopy transpiration using time series analysis: A case study illustrating the effect 

of soil moisture deficit on Pinus taeda, Agric. For. Meteorol., 130, 163–175, 

doi:10.1016/j.agrformet.2005.03.004, 2005. 

Ford, C. R., Mitchell, R. J. and Teskey, R. O.: Water table depth affects productivity, 

water use, and the response to nitrogen addition in a savanna system, Can. J. For. 

Res., 38, 2118–2127, doi:10.1139/X08-061, 2008. 

Francey, R. J., Allison, C. E., Etheridge, D. M., Trudinger, C. M., Enting, I. G., 

Leuenberger, M., Langenfelds, R. L., Michel, E. and Steele, L. P.: A 1000-year high 

precision record of δ 13 C in atmospheric CO 2, Tellus B Chem. Phys. Meteorol., 

51(2), 170–193, doi:10.3402/tellusb.v51i2.16269, 1999. 

Frank, D. C., Poulter, B., Saurer, M., Esper, J., Huntingford, C., Helle, G., Treydte, 

K., Zimmermann, N. E., Schleser, G. H., Ahlström, A., Ciais, P., Friedlingstein, P., 

Levis, S., Lomas, M., Sitch, S., Viovy, N., Andreu-Hayles, L., Bednarz, Z., 

Berninger, F., Boettger, T., D’alessandro, C. M., Daux, V., Filot, M., Grabner, M., 

Gutierrez, E., Haupt, M., Hilasvuori, E., Jungner, H., Kalela-Brundin, M., Krapiec, 

M., Leuenberger, M., Loader, N. J., Marah, H., Masson-Delmotte, V., Pazdur, A., 

Pawelczyk, S., Pierre, M., Planells, O., Pukiene, R., Reynolds-Henne, C. E., Rinne, 

K. T., Saracino, A., Sonninen, E., Stievenard, M., Switsur, V. R., Szczepanek, M., 

Szychowska-Krapiec, E., Todaro, L., Waterhouse, J. S. and Weigl, M.: Water-use 

efficiency and transpiration across European forests during the Anthropocene, Nat. 

Clim. Chang., 5(6), 579–583, doi:10.1038/nclimate2614, 2015. 

Fuentes, L., Duguy, B. and Nadal-Sala, D.: Short-term effects of spring prescribed 

burning on the understory vegetation of a Pinus halepensis forest in Northeastern 

Spain, Sci. Total Environ., 610–611, 720–731, doi:10.1016/j.scitotenv.2017.08.050, 

2018. 

García-Suárez, A. M., Butler, C. J. and Baillie, M. G. L.: Climate signal in tree-ring 



References                                                                                                      185 

 

chronologies in a temperate climate: A multi-species approach, 

Dendrochronologia, 27(3), 183–198, doi:10.1016/j.dendro.2009.05.003, 2009. 

Gérard, P. R., Temunović, M., Sannier, J., Bertolino, P., Dufour, J., Frascaria-

Lacoste, N. and Fernández-Manjarrés, J. F.: Chilled but not frosty: Understanding 

the role of climate in the hybridization between the Mediterranean Fraxinus 

angustifolia Vahl and the temperate Fraxinus excelsior L. (Oleaceae) ash trees, J. 

Biogeogr., 40(5), 835–846, doi:10.1111/jbi.12021, 2013. 

Gerber, S. and Brookshire, E. N. J.: Scaling of Physical Constraints at the Root-Soil 

Interface to Macroscopic Patterns of Nutrient Retention in Ecosystems, Am. Nat., 

183(3), 418–430, doi:10.1086/674907, 2014. 

Ghazavi, R., Thomas, Z., Hamon, Y. and Merot, P.: Soil water movement under a 

bottomland hedgerow during contrasting meteorological conditions, Hydrol. 

Process., 25, 1431–1442, doi:10.1002/hyp.7909, 2011. 

Giles, M., Morley, N., Baggs, E. M. and Daniell, T. J.: Soil nitrate reducing processes 

- Drivers, mechanisms for spatial variation, and significance for nitrous oxide 

production, Front. Microbiol., 3(DEC), 1–16, doi:10.3389/fmicb.2012.00407, 2012. 

Gómez-Gener, L., Obrador, B., von Schiller, D., Marcé, R., Casas-Ruiz, J. P., Proia, 

L., Acuña, V., Catalán, N., Muñoz, I. and Koschorreck, M.: Hot spots for carbon 

emissions from Mediterranean fluvial networks during summer drought, 

Biogeochemistry, 125(3), 409–426, doi:10.1007/s10533-015-0139-7, 2015. 

González-Muñoz, N., Castro-Díez, P. and Fierro-Brunnenmeister, N.: 

Establishment success of coexisting native and exotic trees under an experimental 

gradient of irradiance and soil moisture, Environ. Manage., 48(4), 764–773, 

doi:10.1007/s00267-011-9731-3, 2011. 

González-Muñoz, N., Castro-Díez, P. and Parker, I. M.: Differences in nitrogen use 

strategies between native and exotic tree species: Predicting impacts on invaded 

ecosystems, Plant Soil, 363(1–2), 319–329, doi:10.1007/s11104-012-1329-x, 2013. 

González-Muñoz, N., Linares, J. C., Castro-Díez, P. and Sass-Klaassen, U.: 

Contrasting secondary growth and water-use efficiency patterns in native and 

exotic trees co-occurring in inner Spain riparian forests, For. Syst., 24(1), 1–10, 

doi:10.5424/fs/2015241-06586, 2015. 

González, E.: Seasonal patterns of litterfall in the floodplain forest of a large 

Mediterranean river, Limnetica, 31(1), 173–186, 2012. 

Goulden, M. L., Miller, S. D., Da Rocha, H. R., Menton, M. C., De Freitas, H. C., De 



186                                                                                                                References 

 

Silva Figueira, A. M. and Dias de Sousa, C. A.: Diel and Seasonal Patterns of 

Tropical Forest CO2 Exchange, Ecol. Appl., 14(4), 42–54, doi:10.1890/02-6008, 2004. 

Graça, M. A. S., Pozo, J., Canhoto, C. and Elosegi, A.: Effects of Eucalyptus 

Plantations on Detritus, Decomposers, and Detritivores in Streams, Sci. World J., 

2(May), 1173–1185, doi:10.1100/tsw.2002.193, 2002. 

Grace, J., Berninger, F. and Nagy, L.: Impacts of climate change on the tree line, 

Ann. Bot., 90(4), 537–544, doi:10.1093/aob/mcf222, 2002. 

Grady, K. C., Ferrier, S. M., Kolb, T. E., Hart, S. C., Allan, G. J. and Whitham, T. G.: 

Genetic variation in productivity of foundation riparian species at the edge of their 

distribution: Implications for restoration and assisted migration in a warming 

climate, Glob. Chang. Biol., 17, 3724–3735, doi:10.1111/j.1365-2486.2011.02524.x, 

2011. 

Green, T. R., Taniguchi, M., Kooi, H., Gurdak, J. J., Allen, D. M., Hiscock, K. M., 

Treidel, H. and Aureli, A.: Beneath the surface of global change: Impacts of climate 

change on groundwater, J. Hydrol., 405(3–4), 532–560, 

doi:10.1016/j.jhydrol.2011.05.002, 2011. 

Gribovszki, Z., Szillágyi, J. and Kalicz, P.: Diurnal fluctuations in shallow 

groundwater levels and streamflow rates and their interpretation - A review, J. 

Hydrol., 385, 371–383, doi:10.1016/j.jhydrol.2010.02.001, 2010. 

Groffman, P. M., Gold, A. J. and Simmons, R. C.: Nitrate dynamics in riparian 

forests: Microbial studies, J. Environ. Qual., 21(4), 666–671, 

doi:10.2134/jeq1992.00472425002100040022x, 1992. 

Groffman, P. M., Gold, A. J. and Jacinthe, P.-A. a: Nitrous oxide production in 

riparian zones and groundwater, Chemosph. - Glob. Chang. Sci., 2, 291–299, 

doi:10.1023/A:1009719923861, 2000. 

Guckland, A., Corre, M. D. and Flessa, H.: Variability of soil N cycling and N2O 

emission in a mixed deciduous forest with different abundance of beech, Plant Soil, 

336(1–2), 25–38, doi:10.1007/s11104-010-0437-8, 2010. 

Guidolotti, G., Rey, A., D’Andrea, E., Matteuci, G. and De Angelis, P.: Effect of 

environmental variables and stand structure on ecosystem respiration components 

in a Mediterranean beech forest, Tree Physiol., 0, 1–13, doi:10.1093/treephys/tpt065, 

2013. 

Hagedorn, F.: Hot spots and hot moments for greenhouse gas emissions from soils, 

Swiss Fed. Inst. For. Snow Landsc. Res., (1), 2010. 



References                                                                                                      187 

 

Hao, X. M., Li, Y. and Deng, H. J.: Assessment of hydraulic redistribution on desert 

riparian forests in an extremely arid area, Environ. Monit. Assess., 185(12), 10027–

10038, doi:10.1007/s10661-013-3310-4, 2013. 

Harms, T. K. and Grimm, N. B.: Hot spots and hot moments of carbon and 

nitrogen dynamics in a semiarid riparian zone, J. Geophys. Res., 113(G1), 1–14, 

doi:10.1029/2007JG000588, 2008. 

Harms, T. K. and Grimm, N. B.: Responses of trace gases to hydrologic pulses in 

desert floodplains, J. Geophys. Res. Biogeosciences, 117(1), 1–14, 

doi:10.1029/2011JG001775, 2012. 

Harms, T. K., Wentz, E. A. and Grimm, N. B.: Spatial heterogeneity of 

denitrification in semi-arid floodplains, Ecosystems, 12(1), 129–143, 

doi:10.1007/s10021-008-9212-6, 2009. 

Hassler, S. K., Weiler, M. and Blume, T.: Tree-, stand- and site-specific controls on 

landscape-scale patterns of transpiration, Hydrol. Earth Syst. Sci. Discuss., 

doi:10.5194/hess-2017-47, 2017. 

Healy, R. W., Striegl, R. G., Russell, T. F., Hutchinson, G. L. and Livingston, G. P.: 

Numerical Evaluation of Static-Chamber Measurements of Soil - Atmosphere Gas 

Exchange : Identification of Physical Processes, Soil Sci. Soc. Am. J., 60(3), 740–747, 

doi:10.2136/sssaj1996.03615995006000030009x, 1996. 

Hedin, L. O., Fischer, J. C. Von, Ostrom, N. E., Kennedy, B. P., Brown, M. G., 

Robertson, G. P., Ecology, S. and Mar, N.: Thermodynamic Constraints on 

Nitrogen Transformations and Other Biogeochemical Processes at Soil-Stream 

Interfaces, , 79(2), 684–703, 1998. 

Hefting, M. M., Bobbink, R. and de Caluwe, H.: Nitrous oxide emission and 

denitrification in chronically nitrate-loaded riparian buffer zones., J. Environ. 

Qual., 32(4), 1194–203 [online] Available from: 

http://www.ncbi.nlm.nih.gov/pubmed/12931872, 2003. 

Hefting, M. M., Clément, J.-C., Dowrick, D., Cosandey, A. C., Bernal, S., Cimpian, 

C., Tatur, A., Burt, T. P. and Pinay, G.: Water table elevations controls on soil 

nitrogen cycling in riparian wetlands along a European climatic gradient, 

Biogeochemistry, 67, 113–134, doi:10.1023/B:BIOG.0000015320.69868.33, 2004. 

Hefting, M. M., Clement, J. C., Bienkowski, P., Dowrick, D., Guenat, C., Butturini, 

A., Topa, S., Pinay, G. and Verhoeven, J. T. A.: The role of vegetation and litter in 

the nitrogen dynamics of riparian buffer zones in Europe, Ecol. Eng., 24, 465–482, 

doi:10.1016/j.ecoleng.2005.01.003, 2005. 



188                                                                                                                References 

 

Hellmann, C., Sutter, R., Rascher, K. G., Máguas, C., Correia, O. and Werner, C.: 

Impact of an exotic N2-fixing Acacia on composition and N status of a native 

Mediterranean community, Acta Oecologica, 37(1), 43–50, 

doi:10.1016/j.actao.2010.11.005, 2011. 

Hernandez-Santana, V., Asbjornsen, H., Sauer, T., Isenhart, T., Schilling, K. and 

Schultz, R.: Enhanced transpiration by riparian buffer trees in response to 

advection in a humid temperate agricultural landscape, For. Ecol. Manage., 261, 

1415–1427, doi:10.1016/j.foreco.2011.01.027, 2011. 

Hill, A. R.: Nitrate Removal in Stream Riparian Zones, J. Environ. Qual., 25, 743–

755, doi:10.2134/jeq1996.00472425002500040014x, 1996. 

Hill, A. R., Devito, K. J., Campagnolo, S. and Sanmugadas, K.: Subsurface 

denitrification in a forest riparianzone: Interactions between hydrology and 

supplies ofnitrate and organic carbon, Biogeochemistry, 51, 193–223, 

doi:10.1023/a:1006476514038, 2000. 

Hirota, M., Senga, Y., Seike, Y., Nohara, S. and Kunii, H.: Fluxes of carbon dioxide, 

methane and nitrous oxide in two contrastive fringing zones of coastal lagoon, 

Lake Nakaumi, Japan, Chemosphere, 68(3), 597–603, 

doi:10.1016/j.chemosphere.2007.01.002, 2007. 

Hobson, K. A. and Wassenaar, L. I.: Stable isotope ecology: An introduction, 

Oecologia, 120(3), 312–313, doi:10.1007/s004420050864, 1999. 

Hoelscher, M. T., Nehls, T., Jänicke, B. and Wessolek, G.: Quantifying cooling 

effects of facade greening: Shading, transpiration and insulation, Energy Build., 

114, 283–290, doi:10.1016/j.enbuild.2015.06.047, 2015. 

Hoover, T. M., Pinto, X. and Richardson, J. S.: Riparian canopy type, management 

history, and successional stage control fluxes of plant litter to streams, Can. J. For. 

Res., 41(7), 1394–1404, doi:10.1139/x11-067, 2011. 

Huang, W., Fonti, P., Larsen, J. B., Ræbild, A., Callesen, I., Pedersen, N. B. and 

Hansen, J. K.: Projecting tree-growth responses into future climate: A study case 

from a Danish-wide common garden, Agric. For. Meteorol., 247(October), 240–251, 

doi:10.1016/j.agrformet.2017.07.016, 2017. 

Hultine, K. R., Burtch, K. G. and Ehleringer, J. R.: Gender specific patterns of 

carbon uptake and water use in a dominant riparian tree species exposed to a 

warming climate, Glob. Chang. Biol., 19, 3390–3405, doi:10.1111/gcb.12230, 2013. 

Huxman, T. E., Wilcox, B. P., Breshears, D. D., Scott, R. L., Snyder, K. A., Small, E. 



References                                                                                                      189 

 

E., Hultine, K., Pockman, W. T. and Jackson, R. B.: Ecohydrological implications of 

woody plant encroachment, Ecology, 86(2), 308–319, 2005. 

Inclán, R., Uribe, C., Sánchez, L., Sánchez, D. M., Clavero, Á., Fernández, A. M., 

Morante, R. and Blanco, A.: N2O and CH4 fluxes in undisturbed and burned holm 

oak, scots pine and pyrenean oak forests in central Spain, , (September), 

doi:10.1007/s10533-010-9520-8, 2014. 

Jacinthe, P. a., Vidon, P., Fisher, K., Liu, X. and Baker, M. E.: Soil Methane and 

Carbon Dioxide Fluxes from Cropland and Riparian Buffers in Different 

Hydrogeomorphic Settings, J. Environ. Qual., 44(0), 1080–1090, 

doi:10.2134/jeq2015.01.0014, 2015. 

Jacinthe, P. A. and Dick, W. A.: Soil management and nitrous oxide emissions from 

cultivated fields in southern Ohio, Soil Tillage Res., 41, 221–235, doi:10.1016/S0167-

1987(96)01094-X, 1997. 

Jack Brookshire, E. N., Gerber, S., Webster, J. R., Vose, J. M. and Swank, W. T.: 

Direct effects of temperature on forest nitrogen cycling revealed through analysis 

of long-term watershed records, Glob. Chang. Biol., 17, 297–308, doi:10.1111/j.1365-

2486.2010.02245.x, 2011. 

Jacob, M., Viedenz, K., Polle, A. and Thomas, F. M.: Leaf litter decomposition in 

temperate deciduous forest stands with a decreasing fraction of beech (Fagus 

sylvatica), Oecologia, 164(4), 1083–1094, doi:10.1007/s00442-010-1699-9, 2010. 

Jaeger, C., Gessler, A., Biller, S., Rennenberg, H. and Kreuzwieser, J.: Differences in 

C metabolism of ash species and provenances as a consequence of root oxygen 

deprivation by waterlogging, J. Exp. Bot., 60(15), 4335–4345, doi:10.1093/jxb/erp268, 

2009. 

Janík, D., Adam, D., Hort, L., Kr{l, K., Šamonil, P., Unar, P. and Vrška, T.: Patterns 

of Fraxinus angustifolia in an alluvial old-growth forest after declines in flooding 

events, Eur. J. For. Res., 135(2), 215–228, doi:10.1007/s10342-015-0925-8, 2016. 

Janzen, H. H.: Deposition of nitrogen into the rhizosphere by wheat roots, Soil Biol. 

Biochem., 22(8), 1155–1160, doi:10.1016/0038-0717(90)90043-Y, 1990. 

Johnson, S. E. and Abrams, M. D.: Age class, longevity and growth rate 

relationships: Protracted growth increases in old trees in the eastern United States, 

Tree Physiol., 29(11), 1317–1328, doi:10.1093/treephys/tpp068, 2009. 

Jump, A. S., Hunt, J. M. and Pen ̈uelas, J.: Rapid climate change-related growth 

decline at the southern range edge of Fagus sylvatica, Glob. Chang. Biol., 12(11), 



190                                                                                                                References 

 

2163–2174, doi:10.1111/j.1365-2486.2006.01250.x, 2006. 

Jung, M., Reichstein, M., Ciais, P., Seneviratne, S. I., Sheffield, J., Goulden, M. L., 

Bonan, G., Cescatti, A., Chen, J., de Jeu, R., Dolman, A. J., Eugster, W., Gerten, D., 

Gianelle, D., Gobron, N., Heinke, J., Kimball, J., Law, B. E., Montagnani, L., Mu, Q., 

Mueller, B., Oleson, K., Papale, D., Richardson, A. D., Roupsard, O., Running, S., 

Tomelleri, E., Viovy, N., Weber, U., Williams, C., Wood, E., Zaehle, S. and Zhang, 

K.: Recent decline in the global land evapotranspiration trend due to limited 

moisture supply, Nature, 467, 951–954, doi:10.1038/nature09396, 2010. 

Kazda, M., Salzer, J. and Reiter, I.: Photosynthetic capacity in relation to nitrogen in 

the canopy of a Quercus robur, Fraxinus angustifolia and Tilia cordata flood plain 

forest, Tree Physiol., 20(15), 1029–1037, doi:10.1093/treephys/20.15.1029, 2000. 

Keeney, D. R.; Nelson, D. W.: Nitrogen-inorganic forms., in Agronomy 

Monography 9, ASA and SSSA., pp. 643–698, Madison., 1982. 

Kesik, M., Ambus, P., Baritz, R., Brüggemann, N., Butterbach-Bahl, K., Damm, M., 

Guyzer, J., Horváth, L., Kiese, R., Kitzler, B., Leip, A., LI, C., Pihlatie, M. and 

Pilegaard, K.: Inventories of N 2 O and NO emissions from European forest soils, , 

353–375, 2005. 

Kim, J. and Verma, S. B.: Components of surface energy balance in a temperate 

grassland ecosystem, Boundary-Layer Meteorol., 51(4), 401–417, 1990. 

Kløve, B., Ala-aho, P., Bertrand, G., Boukalova, Z., Ertürk, A., Goldscheider, N., 

Ilmonen, J., Karakaya, N., Kupfersberger, H., Kvœrner, J., Lundberg, A., Mileusnić, 

M., Moszczynska, A., Muotka, T., Preda, E., Rossi, P., Siergieiev, D., Šimek, J., 

Wachniew, P., Angheluta, V. and Widerlund, A.: Groundwater dependent 

ecosystems. Part I: Hydroecological status and trends, Environ. Sci. Policy, 14(7), 

770–781, doi:10.1016/j.envsci.2011.04.002, 2011. 

Kløve, B., Ala-Aho, P., Bertrand, G., Gurdak, J. J., Kupfersberger, H., Kværner, J., 

Muotka, T., Mykrä, H., Preda, E., Rossi, P., Uvo, C. B., Velasco, E. and Pulido-

Velazquez, M.: Climate change impacts on groundwater and dependent 

ecosystems, J. Hydrol., 518(PB), 250–266, doi:10.1016/j.jhydrol.2013.06.037, 2014. 

Knops, J. M. H., Bradley, K. L. and Wedin, D. A.: Mechanisms of plant species 

impacts on ecosystem nitrogen cycling, Ecol. Lett., 5(3), 454–466, doi:10.1046/j.1461-

0248.2002.00332.x, 2002. 

Kominoski, J. S., Shah, J. J. F., Canhoto, C., Fischer, D. G., Giling, D. P., González, 

E., Griffiths, N. A., Larrañaga, A., LeRoy, C. J., Mineau, M. M., McElarney, Y. R., 

Shirley, S. M., Swan, C. M. and Tiegs, S. D.: Forecasting functional implications of 



References                                                                                                      191 

 

global changes in riparian plant communities, Front. Ecol. Environ., 11(8), 423–432, 

doi:10.1890/120056, 2013. 

de la Riva, E. G., Marañón, T., Violle, C., Villar, R. and Pérez-Ramos, I. M.: 

Biogeochemical and Ecomorphological Niche Segregation of Mediterranean 

Woody Species along a Local Gradient, Front. Plant Sci., 8(July), 1–9, 

doi:10.3389/fpls.2017.01242, 2017. 

De La Riva, E. G., Olmo, M., Poorter, H., Ubera, J. L. and Villar, R.: Leaf mass per 

area (LMA) and its relationship with leaf structure and anatomy in 34 

mediterranean woody species along a water availability gradient, PLoS One, 11(2), 

1–18, doi:10.1371/journal.pone.0148788, 2016. 

Lang, P., Ahlborn, J., Schäfer, P., Wommelsdorf, T., Jeschke, M., Zhang, X. and 

Thomas, F. M.: Growth and water use of Populus euphratica trees and stands with 

different water supply along the Tarim River, NW China, For. Ecol. Manage., 380, 

139–148, doi:10.1016/j.foreco.2016.08.049, 2016. 

Langenbruch, C., Helfrich, M. and Flessa, H.: Effects of beech (Fagus sylvatica), ash 

(Fraxinus excelsior) and lime (Tilia spec.) on soil chemical properties in a mixed 

deciduous forest, Plant Soil, 352(1–2), 389–403, doi:10.1007/s11104-011-1004-7, 2012. 

Laudon, H., Kuglerová, L., Sponseller, R. A., Futter, M., Nordin, A., Bishop, K., 

Lundmark, T., Egnell, G. and Ågren, A. M.: The role of biogeochemical hotspots, 

landscape heterogeneity, and hydrological connectivity for minimizing forestry 

effects on water quality, Ambio, 45, 152–162, doi:10.1007/s13280-015-0751-8, 2016. 

Legner, N., Fleck, S. and Leuschner, C.: Low light acclimation in five temperate 

broad-leaved tree species of different successional status: The significance of a 

shade canopy, Ann. For. Sci., 70(6), 557–570, doi:10.1007/s13595-013-0298-4, 2013. 

Lemoine, D., Peltier, J.-P. and Marigo, G.: Comparative studies of the water 

relations and the hydraulic characteristics in Fraxinus excelsior, Acer 

pseudoplatanus and A. opalus trees under soil water contrasted conditions, Ann. 

For. Sci., 58(7), 723–731, doi:10.1051/forest:2001159, 2001. 

Li, W., Yan, M., Qingfeng, Z. and Xingchang, Z.: Groundwater use by plants in a 

semi-arid coal-mining area at the Mu Us Desert frontier, Environ. Earth Sci., 69(3), 

1015–1024, doi:10.1007/s12665-012-2023-2, 2013. 

Linares, J. C. and Tíscar, P. A.: Climate change impacts and vulnerability of the 

southern populations of Pinus nigra subsp. salzmannii, Tree Physiol., 30(7), 795–

806, doi:10.1093/treephys/tpq052, 2010. 



192                                                                                                                References 

 

Linn, D. M. and Doran, J. W.: Effect of Water-Filled Pore Space on Carbon Dioxide 

and Nitrous Oxide Production in Tilled and Nontilled Soils, Soil Sci. Soc. Am. J., 

48(1961), 1267–1272, doi:10.2136/sssaj1984.03615995004800060013x, 1984. 

Lite, S. J. and Stromberg, J. C.: Surface water and ground-water thresholds for 

maintaining Populus-Salix forests, San Pedro River, Arizona, Biol. Conserv., 125(2), 

153–167, doi:10.1016/j.biocon.2005.01.020, 2005. 

Liu, B., Guan, H., Zhao, W., Yang, Y. and Li, S.: Groundwater facilitated water-use 

efficiency along a gradient of groundwater depth in arid northwestern China, 

Agric. For. Meteorol., 233, 235–241, doi:10.1016/j.agrformet.2016.12.003, 2017. 

Liu, S., Chen, Y., Chen, Y., Friedman, J. M., Hati, J. H. A. and Fang, G.: Use of 2H 

and 18O stable isotopes to investigate water sources for different ages of Populus 

euphratica along the lower Heihe River, Ecol. Res., 30(4), 581–587, 

doi:10.1007/s11284-015-1270-6, 2015. 

Loader, N. J., Robertson, I. and McCarroll, D.: Comparison of stable carbon isotope 

ratios in the whole wood, cellulose and lignin of oak tree-rings, Palaeogeogr. 

Palaeoclimatol. Palaeoecol., 196(3–4), 395–407, doi:10.1016/S0031-0182(03)00466-8, 

2003. 

Luo, Y., Gerten, D., Le Maire, G., Parton, W. J., Weng, E., Zhou, X., Keough, C., 

Beier, C., Ciais, P., Cramer, W., Dukes, J. S., Emmett, B., Hanson, P. J., Knapp, A., 

Linder, S., Nepstad, D. and Rustad, L.: Modeled interactive effects of precipitation, 

temperature, and [CO2] on ecosystem carbon and water dynamics in different 

climatic zones, Glob. Chang. Biol., 14, 1986–1999, doi:10.1111/j.1365-

2486.2008.01629.x, 2008. 

Lupon, A., Gerber, S., Sabater, F. and Bernal, S.: Climate response of the soil 

nitrogen cycle in three forest types of a headwater Mediterranean catchment, J. 

Geophys. Res. Biogeosciences, 120, 859–875, doi:10.1002/2014JG002791.Received, 

2015. 

Lupon, A., Sabater, F., Miñarro, A. and Bernal, S.: Contribution of pulses of soil 

nitrogen mineralization and nitrification to soil nitrogen availability in three 

Mediterranean forests, Environ. J. Soil Sci., 67, 303–313, 

doi:10.1016/j.aqpro.2013.07.003, 2016a. 

Lupon, A., Martí, E., Sabater, F. and Bernal, S.: Green light: Gross primary 

production influences seasonal stream N export by controlling fine-scale N 

dynamics, Ecology, 97(1), 133–144, doi:10.1890/14-2296.1, 2016b. 

Lupon, A., Bernal, S., Poblador, S., Martí, E. and Sabater, F.: The influence of 



References                                                                                                      193 

 

riparian evapotranspiration on stream hydrology and nitrogen retention in a 

subhumid Mediterranean catchment, Hydrol. Earth Syst. Sci., 20, 3831–3842, 

doi:10.5194/hess-20-3831-2016, 2016c. 

Magdaleno, F., Blanco-Garrido, F., Bonada, N. and Herrera-Grao, T.: How are 

riparian plants distributed along the riverbank topographic gradient in 

Mediterranean rivers? Application to minimally altered river stretches in Southern 

Spain, Limnetica, 33(1), 121–138, doi:10.1007/s10750-012-1304-9, 2014. 

Malcolm, G. M., Bush, D. S. and Rice, S. K.: Soil nitrogen conditions approach 

preinvasion levels following restoration of nitrogen-fixing black locust (robinia 

pseudoacacia) stands in a pine-oak Ecosystem, Restor. Ecol., 16(1), 70–78, 

doi:10.1111/j.1526-100X.2007.00263.x, 2008. 

Mander, Ü., Well, R., Weymann, D., Soosaar, K., Maddison, M., Kanal, A., Lõhmus, 

K., Truu, J., Augustin, J. and Tournebize, J.: Isotopologue Ratios of N 2 O and N 2 

Measurements Underpin the Importance of Denitri fi cation in Di ff erently N ‑ 

Loaded Riparian Alder Forests, Environ. Sci. Technol., 48, 11910–11918, 

doi:dx.doi.org/10.1021/es501727h, 2014. 

Mander, Ü. ,̈ Lõhmus, K., Teiter, S., Mauring, T., Nurk, K. and Augustin, J.: 

Gaseous fluxes in the nitrogen and carbon budgets of subsurface flow constructed 

wetlands, Sci. Total Environ., 404(2–3), 343–353, doi:10.1016/j.scitotenv.2008.03.014, 

2008. 

Mantovani, D., Veste, M. and Freese, D.: Black locust (Robinia pseudoacacia L.) 

ecophysiological and morphological adaptations to drought and their consequence 

on biomass production and water-use efficiency, New Zeal. J. For. Sci., 44(1), 1–11, 

doi:10.1186/s40490-014-0029-0, 2014. 

Marañón, T. and Ojeda, J. F.: Ecology and history of a wooded landscape in 

suthern Spain, Ecol. Hist. Eur. For., 1998. 

De Marco, A., Spaccini, R., Vittozzi, P., Esposito, F., Berg, B. and Virzo De Santo, 

A.: Decomposition of black locust and black pine leaf litter in two coeval forest 

stands on Mount Vesuvius and dynamics of organic components assessed through 

proximate analysis and NMR spectroscopy, Soil Biol. Biochem., 51, 1–15, 

doi:10.1016/j.soilbio.2012.03.025, 2012. 

Martí, E., Schade, J. D. and Grimm, N. B.: Flood frequency and stream-riparian 

linkages in arid lands, in Stream and Ground Waters, edited by J. B. Jones and J. 

Mulholland, pp. 111–135., 2000. 

Martínez-Sancho, E., Dorado-Liñán, I., Gutiérrez Merino, E., Matiu, M., Helle, G., 



194                                                                                                                References 

 

Heinrich, I. and Menzel, A.: Increased water-use efficiency translates into 

contrasting growth patterns of Scots pine and sessile oak at their southern 

distribution limits, Glob. Chang. Biol., 24(3), 1012–1028, doi:10.1111/gcb.13937, 

2018. 

Martnez-Vilalta, J., Poyatos, R., Aguade, D., Retana, J. and Mencuccini, M.: A new 

look at water transport regulation in plants, New Phytol., 204(1), 105–115, 

doi:10.1111/nph.12912, 2014. 

Mayer, P. M., Reynolds, S. K. and Canfield, T. J.: Riparian buffer width, vegetative 

cover, and nitrogen removal effectiveness: a review of current science and 

regulations., Epa/600/R-05/118, 1–40 [online] Available from: 

http://nepis.epa.gov/Exe/ZyPDF.cgi/2000O182.PDF?Dockey=2000O182.PDF, 2005. 

McCarroll, D. and Loader, N. J.: Stable isotopes in tree rings, Quat. Sci. Rev., 23(7–

8), 771–801, doi:10.1016/j.quascirev.2003.06.017, 2004. 

McClain, M. E., Boyer, E. W., Dent, C. L., Gergel, S. E., Grimm, N. B., Groffman, P. 

M., Hart, S. C., Harvey, J. W., Johnston, C. a., Mayorga, E., McDowell, W. H. and 

Pinay, G.: Biogeochemical Hot Spots and Hot Moments at the Interface of 

Terrestrial and Aquatic Ecosystems, Ecosystems, 6(4), 301–312, doi:10.1007/s10021-

003-0161-9, 2003. 

McGlynn, B. L. and Seibert, J.: Distributed assessment of contributing area and 

riparian buffering along stream networks, Water Resour. Res., 39(4), 1–7, 

doi:10.1029/2002WR001521, 2003. 

McLain, J. E. T. and Martens, D. A.: N2O production by heterotrophic N 

transformations in a semiarid soil, Appl. Soil Ecol., 32(2), 253–263, 

doi:10.1016/j.apsoil.2005.06.005, 2006. 

Medici, C., Butturini, A., Bernal, S., Vázquez, E., Sabater, F., Vélez, J. I. and Francés, 

F.: Modelling the non-linear hydrological behaviour of a small Mediterranean 

forested catchment, Hydrol. Process., 22, 3814–3828, doi:10.1002/hyp, 2008. 

Medina-Villar, S., Alonso, Á., Vázquez De Aldana, B. R., Pérez-Corona, E. and 

Castro-Díez, P.: Decomposition and biological colonization of native and exotic leaf 

litter in a Central Spain stream, Limnetica, 34(2), 293–310, 2015a. 

Medina-Villar, S., Castro-Díez, P., Alonso, A., Cabra-Rivas, I., Parker, I. M. and 

Pérez-Corona, E.: Do the invasive trees, Ailanthus altissima and Robinia 

pseudoacacia, alter litterfall dynamics and soil properties of riparian ecosystems in 

Central Spain?, Plant Soil, 396(1–2), 311–324, doi:10.1007/s11104-015-2592-4, 2015b. 



References                                                                                                      195 

 

Meixner, T., Manning, A. H., Stonestrom, D. A., Allen, D. M., Ajami, H., Blasch, K. 

W., Brookfield, A. E., Castro, C. L., Clark, J. F., Gochis, D. J., Flint, A. L., Neff, K. L., 

Niraula, R., Rodell, M., Scanlon, B. R., Singha, K. and Walvoord, M. A.: 

Implications of projected climate change for groundwater recharge in the western 

United States, J. Hydrol., 534, 124–138, doi:10.1016/j.jhydrol.2015.12.027, 2016. 

Menzel, A.: Phenology: Its Importance To the Global Change Community, Clim. 

Change, (54), 379–385, doi:10.1023/A:1016125215496, 2002. 

Messaoudène, M. and Tessier, L.: Relations cerne-climat dans des peuplements de 

Quercus afares willd et Quercus canariensis Pomel en Algerie, Ann. des Sci. For., 

54(4), 347–358, 1997. 

Michelot, A., Eglin, T., Dufrěne, E., Lelarge-Trouverie, C. and Damesin, C.: 

Comparison of seasonal variations in water-use efficiency calculated from the 

carbon isotope composition of tree rings and flux data in a temperate forest, Plant, 

Cell Environ., 34(2), 230–244, doi:10.1111/j.1365-3040.2010.02238.x, 2011. 

Mitsch, W. J. . and Gosselink, J. G.: Wetlands, 4th editio., edited by I. J. Wiley & 

Sons., 2007. 

Moore, G. W. and Heilman, J. L.: Ecohydrology Bearing - Invited Commentary 

Transformation ecosystem change and ecohydology: ushering in a new era for 

watershed management, Ecohydrology, 4, 351–358, doi:10.1002/eco.232, 2011. 

Morse, J. L. ., Ardon, M. and Benhartdt, E. S.: Greenhouse gas fluxes in 

southeastern U.S. coastal plain wetlands under contrasting land uses, Ecol. Appl., 

22(1), 264–280, doi:10.1890/11-0527.1, 2012. 

Motta, R., Nola, P. and Berretti, R.: The rise and fall of the black locust (Robinia 

pseudoacacia L.) in the ‚Siro Negri‛ Forest Reserve (Lombardy, Italy): lessons 

learned and future uncertainties, Ann. For. Sci., 66(4), 410–410, 

doi:10.1051/forest/2009012, 2009. 

Muller, D., Warneke, T., Rixen, T., Muller, M., Jamahari, S., Denis, N., Mujahid, A. 

and Notholt, J.: Lateral carbon fluxes and CO2 outgassing from a tropical peat-

draining river, Biogeosciences, 12, 5967–5979, doi:10.5194/bg-12-5967-2015, 2015. 

Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B. and Kent, J.: 

Biodiversity hotspots for conservation priorities, Nature, 403(6772), 853–858, 

doi:10.1038/35002501, 2000. 

Nadal-Sala, D., Sabaté, S., Sánchez-Costa, E., Poblador, S., Sabater, F. and Gracia, 

C.: Growth and water use performance of four co-occurring riparian tree species in 



196                                                                                                                References 

 

a Mediterranean riparian forest, For. Ecol. Manage., 396, 132–142, 

doi:10.1016/j.foreco.2017.04.021, 2017. 

Naiman, R. J., Décamps, H. and McClain, M. E.: Riparia — Ecology, Conservation 

and Management of Streamside Communities, in Aquatic Conservation: Marine 

and Freshwater Ecosystems, vol. 17, edited by E. A. Press, pp. 657–657, London., 

2005. 

Nakagawa, S. and Schielzeth, H.: A general and simple method for obtaining R2 

from generalized linear mixed-effects models, Methods Ecol. Evol., 4(2), 133–142, 

doi:10.1111/j.2041-210x.2012.00261.x, 2013. 

Nardini, A. and Tyree, M. T.: Root and shoot hydraulic conductance of seven 

Quercus species, Ann. For. Sci., 56(5), 371–377, doi:10.1051/forest:19990502, 1999. 

Nechita, C., Popa, I. and Eggertsson, Ó.: Climate response of oak (Quercus spp.), 

an evidence of a bioclimatic boundary induced by the Carpathians, Sci. Total 

Environ., 599–600, 1598–1607, doi:10.1016/j.scitotenv.2017.05.118, 2017. 

Niinemets, Ü.: Global-scale climatic controls of leaf dry mass per area, density and 

thickness in trees and shrubs, Ecology, 82(2), 453–469, 2001. 

O’Grady, A. P., Eamus, D., Cook, P. G. and Lamontagne, S.: Groundwater use by 

riparian vegetation in the wet-dry tropics of northern Australia, Aust. J. Bot., 54(2), 

145–154, doi:10.1071/BT04164, 2006. 

O’Neill, G. A., Hamann, A. and Wang, T.: Accounting for population variation 

improves estimates of the impact of climate change on species’ growth and 

distribution, J. Appl. Ecol., 45, 1040–1049, doi:10.1111/j.1365-2664.2008.01472.x, 

2008. 

Ocampo, C. J., Sivapalan, M. and Oldham, C.: Hydrological connectivity of upland-

riparian zones in agricultural catchments: Implications for runoff generation and 

nitrate transport, J. Hydrol., 331, 643–658, doi:10.1016/j.jhydrol.2006.06.010, 2006. 

Oertel, C., Matschullat, J., Zurba, K., Zimmermann, F. and Erasmi, S.: Greenhouse 

gas emissions from soils - A review, Chemie der Erde - Geochemistry, 76, 327–352, 

doi:10.1016/j.chemer.2016.04.002, 2016. 

Ogaya, R. and Peñuelas, J.: Contrasting foliar responses to drought in Quercus ilex 

and Phillyrea latifolia, Biol. Plant., 50(3), 373–382, doi:10.1007/s10535-006-0052-y, 

2006. 

Ogaya, R. and Peñuelas, J.: Leaf mass per area ratio in Quercus ilex leaves under a 



References                                                                                                      197 

 

wide range of climatic conditions. The importance of low temperatures, Acta 

Oecologica, 31(2), 168–173, doi:10.1016/j.actao.2006.07.004, 2007. 

Oliveira, P. J. C., Davin, E. L., Levis, S. and Seneviratne, S. I.: Vegetation-mediated 

impacts of trends in global radiation on land hydrology: A global sensitivity study, 

Glob. Chang. Biol., 17, 3453–3467, doi:10.1111/j.1365-2486.2011.02506.x, 2011. 

Olson, J. S.: Energy Storage and the Balance of Producers and Decomposers in 

Ecological Systems, Ecology, 44(2), 322–331, doi:10.2307/1932179, 1963. 

Osborne, L. L. and Kovacic, D. A.: Riparian vegetated buffer strips in water-quality 

restoration and stream management, Freshw. Biol., 29(2), 243–258, 

doi:10.1111/j.1365-2427.1993.tb00761.x, 1993. 

Oshun, J., Dietrich, W. E., Dawson, T. E. and Fung, I.: Dynamic, structured 

heterogeneity of water isotopes inside hillslopes, Water Resour. Res., 52(1), 164–

189, doi:10.1002/2015WR017485, 2016. 

Pacific, V. J., McGlynn, B. L., Riveros-Iregui, D. A., Welsch, D. L. and Epstein, H. E.: 

Variability in soil respiration across riparian-hillslope transitions, Biogeochemistry, 

91(1), 51–70, doi:10.1007/s10533-008-9258-8, 2008. 

Page, A. L., Miller, R. H. and Keeney, D. R.: Methods of Soil Analysis. Part 2: 

Chemical and Microbiological Properties., edited by I. SSSA and ASA and W. 

Madison., 1982. 

Paredes, D., Cayuela, L., Gurr, G. M. and Campos, M.: Is ground cover vegetation 

an effective biological control enhancement strategy against Olive Pests?, PLoS 

One, 10(2), 1–13, doi:10.1371/journal.pone.0117265, 2015. 

Pastor, A., Riera, J. L., Peipoch, M., Cañas, L., Ribot, M., Gacia, E., Martí, E. and 

Sabater, F.: Temporal variability of nitrogen stable isotopes in primary uptake 

xompartments in four streams differing in human impacts, Environ. Sci. Technol., 

48, 6612–6619, 2014. 

Pedersen, B. S.: The role of stress in the mortality of Midwestern oaks as indicated 

by growth prior to death, Ecology, 79(1), 79–93, doi:10.2307/176866, 1998. 

Peñuelas, J. and Boada, M.: A global change-induced biome shift in the Montseny 

mountains (NE Spain), Glob. Chang. Biol., 9, 131–140, doi:10.1046/j.1365-

2486.2003.00566.x, 2003. 

Peñuelas, J., Hunt, J. M., Ogaya, R. and Jump, A. S.: Twentieth century changes of 

tree-ring δ13C at the southern range-edge of Fagus sylvatica: Increasing water-use 



198                                                                                                                References 

 

efficiency does not avoid the growth decline induced by warming at low altitudes, 

Glob. Chang. Biol., 14(5), 1076–1088, doi:10.1111/j.1365-2486.2008.01563.x, 2008. 

Pérez-Ramos, I. M., Aponte, C., García, L. V., Padilla-Díaz, C. M., Marañón, T. and 

Delzon, S.: Why Is seed production so variable among individuals? A ten-year 

study with oaks reveals the importance of soil environment, PLoS One, 9(12), 1–19, 

doi:10.1371/journal.pone.0115371, 2014. 

Perry, L. G., Andersen, D. C., Reynolds, L. V., Nelson, S. M. and Shafroth, P. B.: 

Vulnerability of riparian ecosystems to elevated CO2 and climate change in arid 

and semiarid western North America, Glob. Chang. Biol., 18(3), 821–842, 

doi:10.1111/j.1365-2486.2011.02588.x, 2012. 

Pert, P. L., Butler, J. R. A., Brodie, J. E., Bruce, C., Honzák, M., Metcalfe, D., 

Mitchell, D. and Wong, G.: A catchment-based approach to mapping hydrological 

ecosystem services using riparian habitat: A case study from the Wet Tropics, 

Australia, Ecol. Complex., 7(3), 378–388, doi:10.1016/j.ecocom.2010.05.002, 2010. 

Pezeshki, S. R. and Delaune, R. D.: Effects of Soil Hypoxia and Salinity on Gas-

Exchange and Growth of Spartina-Patens, Mar. Ecol. Ser., 96(1), 75–81, 

doi:10.3354/meps096075, 1993. 

Phipps, R. L. and Whiton, J. C.: Decline in long-term growth trends of white oak., 

Can. J. For. Res., 18, 24–32, 1988. 

Pielech, R., Anioł-Kwiatkowska, J. and Szcześniak, E.: Landscape-scale factors 

driving plant species composition in mountain streamside and spring riparian 

forests, For. Ecol. Manage., 347, 217–227, doi:10.1016/j.foreco.2015.03.038, 2015. 

Pinay, G., Gumiero, B., Tabacchi, E., Gimenez, O., Tabacchi-Planty,  a. M., Hefting, 

M. M., Burt, T. P., Black, V. a., Nilsson, C., Iordache, V., Bureau, F., Vought, L., 

Petts, G. E. and Décamps, H.: Patterns of denitrification rates in European alluvial 

soils under various hydrological regimes, Freshw. Biol., 52(2), 252–266, 

doi:10.1111/j.1365-2427.2006.01680.x, 2007a. 

Pinay, G., Gumiero, B., Tabacchi, E., Gimenez, O., Tabacchi-Planty, A. M., Hefting, 

M. M., Burt, T. P., Black, V. A., Nilsson, C., Iordache, V., Bureau, F., Vought, L., 

Petts, G. E. and Décamps, H.: Patterns of denitrification rates in European alluvial 

soils under various hydrological regimes, Freshw. Biol., 52, 252–266, 

doi:10.1111/j.1365-2427.2006.01680.x, 2007b. 

Pinay, G., Peiffer, S., De Dreuzy, J.-R., Krause, S., Hannah, D. M., Fleckenstein, J. 

H., Sebilo, M., Bishop, K. and Hubert-moy, L.: Upscaling Nitrogen Removal 

Capacity from Local Hotspots to Low Stream Orders ’ Drainage Basins, 



References                                                                                                      199 

 

Ecosystems, 18, 1101–1120, doi:10.1007/s10021-015-9878-5, 2015. 

Poblador, S., Lupon, A., Sabaté, S. and Sabater, F.: Soil water content drives 

spatiotemporal patterns of CO2 and N2O emissions from a Mediterranean riparian 

forest soil, Biogeosciences, 14(18), 4195–4208, doi:10.5194/bg-14-4195-2017, 2017. 

Poblador, S., Sperlich, D., Nadal-Sala, D., Sabater, F. and Sabaté, S.: Riparian tree 

species responses to water availability limitations in a Mediterranean riparian 

forest, n.d. 

Poorter, H., Niinemets, Ü., Poorter, L., Wright, I. J., Villar, R., Niinemets, U., 

Poorter, L., Wright, I. J. and Villar, R.: Causes and consequences of variation in leaf 

mass per area (LMA):a meta-analysis, New Phytol., 182(3), 565–588, 

doi:10.1111/j.1469-8137.2009.02830.x, 2009. 

Qualls, R. G. and Haines, B. L.: Biodegradability of Dissolved Organic Matter in 

Forest Throughfall, Soil Solution, and Stream Water, Soil Sci. Soc. Am. J., 56(2), 578, 

doi:10.2136/sssaj1992.03615995005600020038x, 1992. 

Quero, J. L., Villar, R., Marañón, T. and Zamora, R.: Interactions of drought and 

shade effects on seedlings of four Quercus species: physiological and structural leaf 

responses., New Phytol., 170(4), 819–33, doi:10.1111/j.1469-8137.2006.01713.x, 2006. 

Quero, J. L., Villar, R., Marañón, T., Murillo, A. and Zamora, R.: Respuesta plástica 

a la luz y al agua en cuatro especies mediterráneas del género Quercus (Fagaceae), 

Rev. Chil. Hist. Nat., 81(3), 373–385, doi:10.4067/S0716-078X2008000300006, 2008. 

Radtke, A., Ambraß, S., Zerbe, S., Tonon, G., Fontana, V. and Ammer, C.: 

Traditional coppice forest management drives the invasion of Ailanthus altissima 

and Robinia pseudoacacia into deciduous forests, For. Ecol. Manage., 291, 308–317, 

doi:10.1016/j.foreco.2012.11.022, 2013. 

Raich, J. W., Potter, C. S. and Bhagawati, D.: Interannual variability in global soil 

respiration , 1980 - 94, Glob. Chang. Biol., 8, 800–812, 2002. 

Ranalli, A. J. and Macalady, D. L.: The importance of the riparian zone and in-

stream processes in nitrate attenuation in undisturbed and agricultural watersheds 

- A review of the scientific literature, J. Hydrol., 389, 406–415, 

doi:10.1016/j.jhydrol.2010.05.045, 2010. 

Rascher, K. G., Hellmann, C., Máguas, C. and Werner, C.: Community scale 15N 

isoscapes: Tracing the spatial impact of an exotic N 2-fixing invader, Ecol. Lett., 

15(5), 484–491, doi:10.1111/j.1461-0248.2012.01761.x, 2012. 



200                                                                                                                References 

 

Rastogi, M., Singh, S. and Pathak, H.: Emission of carbon dioxide from soil, Curr. 

Sci., 82(5), 510–517, 2002. 

Rennenberg, H., Dannenmann, M., Gessler, A., Kreuzwieser, J., Simon, J. and 

Papen, H.: Nitrogen balance in forest soils: Nutritional limitation of plants under 

climate change stresses, Plant Biol., 11(SUPPL.1), 4–23, doi:10.1111/j.1438-

8677.2009.00241.x, 2009. 

Rice, S. K., Westerman, B. and Federici, R.: Impacts of the exotic, nitrogen-fixing 

black locust (Robinia pseudoacacia) on nitrogen-cycling in a pine-oak ecosystem, 

Plant Ecol., 174(1), 97–107, doi:10.1023/B:VEGE.0000046049.21900.5a, 2004. 

Richards, L. A.: Capillary conduction of liquids through porous mediums, Physics 

(College. Park. Md)., 1(5), 318–333, doi:doi:10.1063/1.1745010.., 1934. 

Rieger, I., Kowarik, I., Cherubini, P. and Cierjacks, A.: A novel 

dendrochronological approach reveals drivers of carbon sequestration in tree 

species of riparian forests across spatiotemporal scales, Sci. Total Environ., 574, 

1261–1275, doi:10.1016/j.scitotenv.2016.07.174, 2017. 

Roberts, J.: Forest transpiration: A conservative hydrological process?, J. Hydrol., 

66, 133–141, doi:10.1016/0022-1694(83)90181-6, 1983. 

Robertson, I., Waterhouse, J. S., Barker, A. C., Carter, A. H. C. and Switsur, V. R.: 

Oxygen isotope ratios of oak in east England: Implications for reconstructing the 

isotopic composition of precipitation, Earth Planet. Sci. Lett., 191(1–2), 21–31, 

doi:10.1016/S0012-821X(01)00399-5, 2001. 

Rodríguez-González, P. M., Stella, J. C., Campelo, F., Ferreira, M. T. and 

Albuquerque, A.: Subsidy or stress? Tree structure and growth in wetland forests 

along a hydrological gradient in Southern Europe, For. Ecol. Manage., 259(10), 

2015–2025, doi:10.1016/j.foreco.2010.02.012, 2010. 

Rodríguez-González, P. M., Albuquerque, A., Martínez-Almarza, M. and Díaz-

Delgado, R.: Long-term monitoring for conservation management: Lessons from a 

case study integrating remote sensing and field approaches in floodplain forests, J. 

Environ. Manage., 202, 392–402, doi:10.1016/j.jenvman.2017.01.067, 2017. 

Rozas, V.: Dendrochronology of pedunculate oak (Quercus robur L.) in an old-

growth pollarded woodland in northern Spain: establishment patterns and the 

management history, Annu. For. Sci., 62, 13–22, doi:10.1051/forest, 2005. 

Rubino, D. L. and McCarthy, B. C.: Dendroclimatological Analysis of White Oak 

(Quercus alba L., Fagaceae) from an Old-Growth Forest of Southeastern Ohio, 



References                                                                                                      201 

 

USA, J. Torrey Bot. Soc., 127(3), 240–250, 2000. 

Sabater, F. and Bernal, S.: Keeping healthy riparian and aquatic ecosystems in the 

Mediterranean: challenges and solutions through riparian forest management, in 

Water for forests and people in the Mediterrane, edited by M. Boirot, Y. Gracia, 

and C. Palahí, pp. 151–155., 2011. 

Sala, O. E., Chapin, F. S., Armesto, J. J., Berlow, E., Bloomfield, J., Dirzo, R., Huber-

Sanwald, E., Huenneke, L. F., Jackson, R. B., Kinzig, A., Leemans, R., Lodge, D. M., 

Mooney, H. A., Oesterheld, M., LeRoy Poff, N., Sykes, M. T., Walker, B. H., Walker, 

M. and Wall, D. H.: Global biodiversity scenarios for the year 2100, Science (80-. )., 

287, 1770–1774, 2000a. 

Sala, O. E., Chapin, F. S., Armesto, J. J., Berlow, E., Bloomfield, J., Dirzo, R., Huber-

Sanwald, E., Huenneke, L. F., Jackson, R. B., Kinzig, A., Leemans, R., Lodge, D. M., 

Mooney, H. A., Oesterheld, M., LeRoy Poff, N., Sykes, M. T., Walker, B. H., Walker, 

M. and Wall: Global biodiversity scenarios for the year 2100, Sciences (New. York)., 

287, 1770–1774, 2000b. 

Sánchez-Pérez, J. M., Lucot, E., Bariac, T. and Trémolières, M.: Water uptake by 

trees in a riparian hardwood forest ( Rhine floodplain , France ), Hydrol. Process., 

22, 366–375, doi:10.1002/hyp.6604, 2008. 

Sanpera-Calbet, I., Acuña, V., Butturini, A., Marcé, R. and Muñoz, I.: El Niño 

southern oscillation and seasonal drought drive riparian input dynamics in a 

Mediterranean stream, Limnol. Oceanogr., 61(1), 214–226, doi:10.1002/lno.10211, 

2016. 

Santini, A., Bottacci, A. and Gellini, R.: Preliminary dendroecological survey on 

pedunculate oak (Quercus robur L.) stands in Tuscany (Italy), Ann. des Sci. For., 

51(1), 1–10, doi:10.1051/forest:19940101, 1994. 

Sanz Elorza, M., Dana Sánchez, E. and Sobrino Vesperinas, E.: El Atlas de Plantas 

Invasoras de España, Dir. Gen. para la Biodiversidad. Minist. Medio Ambient. 

Madrid, (Ma 643037) [online] Available from: 

http://www.magrama.gob.es/es/biodiversidad/temas/inventarios-

nacionales/c2_atlas_tcm7-21522.pdf, 2004. 

Sargeant, C. I. and Singer, M. B.: Sub-annual variability in historical water source 

use by Mediterranean riparian trees, Ecohydrology, 9(7), 1328–1345, 

doi:10.1002/eco.1730, 2016. 

Saurer, M., Siegwolf, R. T. W. and Schweingruber, F. H.: Carbon isotope 

discrimination indicates improving water-use efficiency of trees in northern 



202                                                                                                                References 

 

Eurasia over the last 100 years, Glob. Chang. Biol., 10(12), 2109–2120, 

doi:10.1111/j.1365-2486.2004.00869.x, 2004. 

Saurer, M., Spahni, R., Frank, D. C., Joos, F., Leuenberger, M., Loader, N. J., 

Mccarroll, D., Gagen, M., Poulter, B., Siegwolf, R. T. W., Andreu-Hayles, L., 

Boettger, T., Dorado Liñán, I., Fairchild, I. J., Friedrich, M., Gutierrez, E., Haupt, 

M., Hilasvuori, E., Heinrich, I., Helle, G., Grudd, H., Jalkanen, R., Levanič, T., 

Linderholm, H. W., Robertson, I., Sonninen, E., Treydte, K., Waterhouse, J. S., 

Woodley, E. J., Wynn, P. M. and Young, G. H. F.: Spatial variability and temporal 

trends in water-use efficiency of European forests, Glob. Chang. Biol., 20(12), 3700–

3712, doi:10.1111/gcb.12717, 2014. 

Schaap, M. G., Leij, F. J. and Van Gencuhten, M. T.: A computer program for 

estimating soil hydraulic parameters with hierarchical pedotransfer functions, J. 

Hydrol., 251, 163–176, 2002. 

Schade, J. D., Welter, J. R., Martí, E. and Grimm, N. B.: Hydrologic exchange and N 

uptake by riparian vegetation in an arid-land stream, J.N.Am.Benthol. Soc., 24(1), 

19–28, 2005. 

Von Schiller, D., Martí, E., Riera, J. L., Ribot, M., Marks, J. C. and Sabater, F.: 

Influence of land use on stream ecosystem function in a Mediterranean catchment, 

Freshw. Biol., 53(12), 2600–2612, doi:10.1111/j.1365-2427.2008.02059.x, 2008. 

Schmidt, M. W. I., Torn, M. S., Abiven, S., Dittmar, T., Guggenberger, G., Janssens, 

I. a., Kleber, M., Kögel-Knabner, I., Lehmann, J., Manning, D. a. C., Nannipieri, P., 

Rasse, D. P., Weiner, S. and Trumbore, S. E.: Persistence of soil organic matter as an 

ecosystem property, Nature, 478(7367), 49–56, doi:10.1038/nature10386, 2011. 

Schume, H., Jost, G. and Hager, H.: Soil water depletion and recharge patterns in 

mixed and pure forest stands of European beech and Norway spruce, J. Hydrol., 

289, 258–274, doi:10.1016/j.jhydrol.2003.11.036, 2004. 

Scott, R. L., Cable, W. L., Huxman, T. E., Nagler, P. L., Hernandez, M. and 

Goodrich, D. C.: Multiyear riparian evapotranspiration and groundwater use for a 

semiarid watershed, J. Arid Environ., 72, 1232–1246, 

doi:10.1016/j.jaridenv.2008.01.001, 2008. 

Segers, R.: Methane production and methane consumption : a review of processes 

underlying wetland methane fluxes, Biogeochemistry, 41, 23–51, 1998. 

Si, J., Feng, Q., Cao, S., Yu, T. and Zhao, C.: Water use sources of desert riparian 

Populus euphratica forests, Environ. Monit. Assess., 186(9), 5469–5477, 

doi:10.1007/s10661-014-3796-4, 2014. 



References                                                                                                      203 

 

Silva, L. C. R., Anand, M. and Leithead, M. D.: Recent widespread tree growth 

decline despite increasing atmospheric CO2, PLoS One, 5(7), 

doi:10.1371/journal.pone.0011543, 2010. 

Silvester, W. B.: Ecological and economic significance of the non-legume 

symbioses, in Proceedings of the 1st International Symposium of Nitrogen 

Fixation., edited by E. Newton and C. J. Nyman, pp. 489–506, Washington State 

University Press, Pullman., 1976. 

Simunek, J., Jacques, D., van Guenchten, M. T. and Mallants, D.: Multicomponent 

geochemical transport using HYDRUS-1D and HP1, J. Am. Water Resour. Assoc., 

1537–1547, 2006. 

Šimůnek, J., van Genunchten, M. T. and Šejna, M.: Modeling Subsurface Water 

Flow and Solute Transport with HYDRUS and Related Numerical Software 

Packages, Numer. Model. Hydrodyn. Water Resour., 95–115, 2008. 

Singer, M. B., Stella, J. C., Dufour, S., Pi??gay, H., Wilson, R. J. S. and Johnstone, L.: 

Contrasting water-uptake and growth responses to drought in co-occurring 

riparian tree species, Ecohydrology, 6(3), 402–412, doi:10.1002/eco.1283, 2013. 

Singer, M. B., Sargeant, C. I., Piégay, H., Riquier, J., Wilson, R. J. S. and Evans, C. 

M.: Floodplain ecohydrology: Climatic, anthropogenic, and local physical controls 

on partitioning of water sources to riparian trees, Water Resour. Res., 50(5), 4490–

4513, doi:10.1002/2014WR015581, 2014. 

Smith, M. S. and Tiedje, J. M.: Phases of desnitrification following oxygen depletion 

in soil, Soil Biol. Biochem., 11(3), 261–267, doi:10.1016/0038-0717(79)90071-3, 1979. 

Smith, S. D., Wellington,  a B., Nachlinger, J. L., Fox, C. a, Applications, E., Feb, N., 

Smith, D. and Fox,  a: Functional Responses of Riparian Vegetation to Streamflow 

Diversion in the Eastern Sierra Nevada FUNCTIONAL RESPONSES OF 

RIPARIAN VEGETATION TO STREAMFLOW DIVERSION IN THE EASTERN 

SIERRA NEVADA ’, , 1(1), 89–97, 1991. 

Snyder, K. A. and Williams, D. G.: Water sources used by riparian trees varies 

among stream types on the San Pedro River, Arizona, Agric. For. Meteorol., 105, 

227–240, doi:10.1016/S0168-1923(00)00193-3, 2000. 

Soylu, M. E., Istanbulluoglu, E., Lenters, J. D. and Wang, T.: Quantifying the 

impact of groundwater depth on evapotranspiration in a semi-arid grassland 

region, Hydrol. Earth Syst. Sci., 15, 787–806, doi:10.5194/hess-15-787-2011, 2011. 

Sperry, J. S., Hacke, U. G., Oren, R. and Comstock, J. P.: Water deficits and 



204                                                                                                                References 

 

hydraulic limits to leaf water supply, Plant, Cell Environ., 25(2), 251–263, 

doi:10.1046/j.0016-8025.2001.00799.x, 2002. 

Stark, J. M. and Firestone, M. K.: Mechanisms for soil moisture effects on activity of 

nitrifying bacteria, Appl. Environ. Microbiol., 61(1), 218–221 [online] Available 

from: papers2://publication/uuid/0BBA43AD-EACB-4300-A741-A11EA89C2422, 

1995. 

Staska, B., Essl, F. and Samimi, C.: Density and age of invasive Robinia 

pseudoacacia modulate its impact on floodplain forests, Basic Appl. Ecol., 15(6), 

551–558, doi:10.1016/j.baae.2014.07.010, 2014. 

Stern, S. N.: The Stern Review on the Economic Effects of climate change, Popul. 

Dev. Rev., 32(December), 793–798, doi:10.2307/20058936, 2006. 

Stocke, V. B. et al: IPCC (2013), Summary for policymakers, in Climate Change 

2013: The Physical Science Basis, 2013. 

Sürmen, B., Güray, H., Kiliç, D. D. and Sürmen, M.: Foliar resorption in nitrogen-

fixing and non-fixing species in a swamp forest in northern Turkey, Rev. Écol 

(Terre Vie), 69, 318–327, 2014. 

Suseela, V., Conant, R. T., Wallenstein, M. D. and Dukes, J. S.: Effects of soil 

moisture on the temperature sensitivity of heterotrophic respiration vary 

seasonally in an old-field climate change experiment, Glob. Chang. Biol., 18(1), 

336–348, doi:10.1111/j.1365-2486.2011.02516.x, 2012. 

Tateno, R., Tokuchi, N., Yamanaka, N., Du, S., Otsuki, K., Shimamura, T., Xue, Z., 

Wang, S. and Hou, Q.: Comparison of litterfall production and leaf litter 

decomposition between an exotic black locust plantation and an indigenous oak 

forest near Yan’an on the Loess Plateau, China, For. Ecol. Manage., 241(1–3), 84–90, 

doi:10.1016/j.foreco.2006.12.026, 2007. 

Teiter, S. and Mander, Ü.: Emission of N2O, N2, CH4, and CO2 from constructed 

wetlands for wastewater treatment and from riparian buffer zones, Ecol. Eng., 

25(5), 528–541, doi:10.1016/j.ecoleng.2005.07.011, 2005. 

Tessier, L., Nola, P. and Serre-Bachet, F.: Deciduous Quercus in the Mediterranean 

region: tree-ring / climate relationships., New Phytol., 126(November 1992), 355–

367, 1994. 

TESSIER, L., NOLA, P. and SERRE‑BACHET, F.: Deciduous Quercus in the 

Mediterranean region: tree‑ring/climate relationships, New Phytol., 126(2), 355–

367, doi:10.1111/j.1469-8137.1994.tb03955.x, 1994. 



References                                                                                                      205 

 

Thomas, Z., Ghazavi, R., Merot, P. and Granier, A.: Modelling and observation of 

hedgerow transpiration effect on water balance components at the hillslope scale in 

Brittany, Hydrol. Process., 26, 4001–4014, doi:10.1002/hyp.9198, 2012. 

Tockner, K. and Stanford, J. A.: Riverine flood plains: present state and future 

trends, Environ. Conserv., 29(3), 308–330, 2002. 

Traiser, C., Klotz, S., Uhl, D. and Mosbrugger, V.: Environmental signals from 

leaves--a physiognomic analysis of European vegetation., New Phytol., 166(2), 465–

484, doi:10.1111/j.1469-8137.2005.01316.x, 2005. 

Tromp-van Meerveld, H. J. and McDonnell, J. J.: On the interrelations between 

topography, soil depth, soil moisture, transpiration rates and species distribution 

at the hillslope scale, Adv. Water Resour., 29, 293–310, 

doi:10.1016/j.advwatres.2005.02.016, 2006. 

Tsai, C. W., Young, T., Warren, P. H. and Maltby, L.: Phenological responses of ash 

(Fraxinus excelsior) and sycamore (Acer pseudoplatanus) to riparian thermal 

conditions, Urban For. Urban Green., 16, 95–102, doi:10.1016/j.ufug.2016.02.001, 

2016. 

Tylianakis, J. M., Didham, R. K., Bascompte, J. and Wardle, D. A.: Global change 

and species interactions in terrestrial ecosystems, Ecol. Lett., 11, 1351–1363, 

doi:10.1111/j.1461-0248.2008.01250.x, 2008. 

Urbieta, I. R., Pérez-Ramos, I. M., Zavala, M. A., Marañón, T. and Kobe, R. K.: Soil 

water content and emergence time control seedling establishment in three co-

occurring Mediterranean oak species, Can. J. For. Res., 38(9), 2382–2393, 

doi:10.1139/X08-089, 2008. 

Uselman, S. M., Qualls, R. G. and Thomas, R. B.: A test of a potential short cut in 

the nitrogen cycle: The role of exudation of symbiotically fixed nitrogen from the 

roots of a N-fixing tree and the effects of increased atmospheric CO2 and 

temperature, Plant Soil, 210(1), 21–32, doi:10.1023/A:1004619509878, 1999. 

Vidon, P., Allan, C., Burns, D., Duval, T. P., Gurwick, N., Inamdar, S., Lowrance, 

R., Okay, J., Scott, D. and Sebestyen, S.: Hot spots and hot moments in riparian 

zones: Potential for improved water quality management, J. Am. Water Resour. 

Assoc., 46(2), 278–298, doi:10.1111/j.1752-1688.2010.00420.x, 2010. 

Vidon, P., Marchese, S., Welsh, M. and McMillan, S.: Impact of Precipitation 

Intensity and Riparian Geomorphic Characteristics on Greenhouse Gas Emissions 

at the Soil-Atmosphere Interface in a Water-Limited Riparian Zone, Water. Air. 

Soil Pollut., 227(8), doi:10.1007/s11270-015-2717-7, 2016. 



206                                                                                                                References 

 

Vidon, P. G.: Not all riparian zones are wetlands: Understanding the limitation of 

the ‚wetland bias‛ problem, Hydrol. Process., 31, 2125–2127, 

doi:10.1002/hyp.11153, 2017. 

Vidon, P. G. and Hill, A. R.: A landscape-based approach to estimate riparian 

hydrological and nitrate removal functions, J. Am. Water Resour. Assoc., 3, 1099–

1112, 2006. 

Vila-Viçosa, C., Vázquez, F. M., Mendes, P., Del Rio, S., Musarella, C., Cano-Ortiz, 

A. and Meireles, C.: Syntaxonomic update on the relict groves of Mirbeck’s oak 

(Quercus canariensis Willd. and Q. marianica C. Vicioso) in southern Iberia, Plant 

Biosyst., 149(3), 512–526, doi:10.1080/11263504.2015.1040484, 2015. 

Vil|, M., Espinar, J. L., Hejda, M., Hulme, P. E., Jarošík, V., Maron, J. L., Pergl, J., 

Schaffner, U., Sun, Y. and Pyšek, P.: Ecological impacts of invasive alien plants: A 

meta-analysis of their effects on species, communities and ecosystems, Ecol. Lett., 

14(7), 702–708, doi:10.1111/j.1461-0248.2011.01628.x, 2011. 

Vitasse, Y., Delzon, S., Dufrêne, E., Pontailler, J. Y., Louvet, J. M., Kremer, A. and 

Michalet, R.: Leaf phenology sensitivity to temperature in European trees: Do 

within-species populations exhibit similar responses?, Agric. For. Meteorol., 149(5), 

735–744, doi:10.1016/j.agrformet.2008.10.019, 2009. 

Vítková, M., Tonika, J. and Müllerová, J.: Black locust-Successful invader of a wide 

range of soil conditions, Sci. Total Environ., 505, 315–328, 

doi:10.1016/j.scitotenv.2014.09.104, 2015. 

Vitousek, P. M.: Litterfall, Nutrient Cycling, and Nutrient Limitation in Tropical 

Forests, Ecology, 65(1), 285–298, 1984. 

Walentowski, H., Falk, W., Mette, T., Kunz, J., Bräuning, A., Meinardus, C., Zang, 

C., Sutcliffe, L. M. E. and Leuschner, C.: Assessing future suitability of tree species 

under climate change by multiple methods: A case study in southern Germany, 

Ann. For. Res., 60(1), 101–126, doi:10.15287/afr.2016.789, 2017. 

Walker, J. T., Geron, C. D., Vose, J. M. and Swank, W. T.: Nitrogen trace gas 

emissions from a riparian ecosystem in southern Appalachia, Chemosphere, 49(10), 

1389–1398, doi:10.1016/S0045-6535(02)00320-X, 2002. 

Wazen, N. and Fady, B.: Geographic distribution of 24 major tree species in the 

Mediterranean and their genetic resources, FAO., 2015. 

Webb, M., Reid, M., Capon, S. J., Thoms, M., Rayburg, S. and James, C.: Are flood 

plain–wetland plant communities determined by seed bank composition or 



References                                                                                                      207 

 

inundation periods?, Sediment Dyn. Hydromorphology Fluv. Syst., (July), 241–248, 

2006. 

Weber, E.: Invasive plant species of the world: a reference guide to environmental 

weeds., Wallingford: CABI Publishing., 2003. 

Weiler, M. and McDonnell, J.: Virtual experiments: A new approach for improving 

process conceptualization in hillslope hydrology, J. Hydrol., 285, 3–18, 

doi:10.1016/S0022-1694(03)00271-3, 2004. 

Welti, N., Bondar-Kunze, E., Singer, G., Tritthart, M., Zechmeister-Boltenstern, S., 

Hein, T. and Pinay, G.: Large-scale controls on potential respiration and 

denitrification in riverine floodplains, Ecol. Eng., 42, 73–84, 

doi:10.1016/j.ecoleng.2012.02.005, 2012. 

Werner, C., Reiser, K., Dannenmann, M., Hutley, L. B., Jacobeit, J. and Butterbach-

Bahl, K.: N2O, NO, N2and CO2 emissions from tropical savanna and grassland of 

northern Australia: An incubation experiment with intact soil cores, 

Biogeosciences, 11, 6047–6065, doi:10.5194/bg-11-6047-2014, 2014. 

West, J. B., Bowen, G. J., Cerling, T. E. and Ehleringer, J. R.: Stable isotopes as one 

of nature’s ecological recorders, Trends Ecol. Evol., 21(7), 408–414, 

doi:10.1016/j.tree.2006.04.002, 2006. 

Wickland, K. P. ;, Neff, J. C. . and Harden, J. W.: The role of soil drainage class in 

carbon dioxide exchange and decomposition in boreal black spruce (Picea mariana) 

forest stands, Can. J. For. Res., 40(11), 2123–2134, 2010. 

Williams, C. J., Shingara, E. A. and Yavitt, J. B.: Phenol oxidase activity in peatlands 

in New York State: Response to summer drought and peat type, Wetlands, 20(2), 

416–421, doi:10.1672/0277-5212(2000)020[0416:POAIPI]2.0.CO;2, 2000. 

Williams, D. G. and Scott, R. L.: Vegetation-hydrology interactions: dynamics of 

riparian plant water use., in Ecology and Conservation of the San Pedro River, 

edited by T. B. Stromberg JC, University of Arizona Press: Tucson., 2009. 

Williard, K. W. J., Dewalle, D. R. and Edwards, P. J.: Influence of bedrock geology 

and tree species compositions on stream nitrate concentrations in mid-appalachian 

forested watersheds, Water, Air, Soil Pollut., 160, 55–76, 2005. 

Wolfe, B. E. and Klironomos, J. N.: Breaking new ground: soil communities and 

exotic plant invasion, Bioscience, 55(6), 477–487, doi:10.1641/0006-

3568(2005)055[0477:BNGSCA]2.0.CO;2, 2005. 



208                                                                                                                References 

 

Wright, I. J., Reich, P. B., Westoby, M., Ackerly, D. D., Baruch, Z., Bongers, F., 

Cavender-Bares, J., Chapin, T., Cornellssen, J. H. C., Diemer, M., Flexas, J., Garnier, 

E., Groom, P. K., Gulias, J., Hikosaka, K., Lamont, B. B., Lee, T., Lee, W., Lusk, C., 

Midgley, J. J., Navas, M. L., Niinemets, Ü., Oleksyn, J., Osada, H., Poorter, H., Pool, 

P., Prior, L., Pyankov, V. I., Roumet, C., Thomas, S. C., Tjoelker, M. G., Veneklaas, 

E. J. and Villar, R.: The worldwide leaf economics spectrum, Nature, 428(6985), 

821–827, doi:10.1038/nature02403, 2004. 

Wright, I. J., Dong, N., Maire, V., Prentice, I. C., Westoby, M., Díaz, S., Gallagher, R. 

V., Jacobs, B. F., Kooyman, R., Law, E. A., Leishman, M. R., Niinemets, Ü., Reich, P. 

B., Sack, L., Villar, R., Wang, H. and Wilf, P.: SI: Global climatic drivers of leaf size, 

Science (80-. )., 357(6354), 917–921, doi:10.1126/science.aal4760, 2017. 

Yavitt, J. B., Williams, C. J. and Wieder, R. K.: Production of methane and carbon 

dioxide in peatland ecosystems across North America: Effects of temperature, 

aeration, and organic chemistry of peat, Geomicrobiol. J., 14(4), 299–316, 1997. 

Yelenik, S. G., Stock, W. D. and Richardson, D. M.: Functional group identity does 

not predict invader impacts: differential effects of nitrogen-fixing exotic plants on 

ecosystem function, Biol. Invasions, 9(2), 117–125, doi:10.1007/s10530-006-0008-3, 

2007. 

Yepez, E. A., Williams, D. G., Scott, R. L. and Lin, G.: Partitioning overstory and 

understory evapotranspiration in a semiarid savanna woodland from the isotopic 

composition of water vapor, Agric. For. Meteorol., 119, 53–68, doi:10.1016/S0168-

1923(03)00116-3, 2003. 

Yu, K. and Rinklebe, J.: Soil Redox Potential and pH Controllers, Methods 

Biochem. Wetl., (10), 107–116, doi:10.2136/sssabookser10.c7, 2013. 

Zar, J. H.: Biostatistical Analysis, Prentice-H., 2010. 

Zhang, L., Dawes, W. R. and Walker, G. R.: Response of mean annual 

evapotranspiration to vegetationchanges at catchment scale, Water Resour. Res., 

37(3), 701–708, 2001. 

Zhang, Y., Munkhtsetseg, E., Kadota, T. and Ohata, T.: An observational study of 

ecohydrology of a sparse grassland at the edge of the Eurasian cryosphere in 

Mongolia, J. Geophys. Res., 110, 1–14, doi:10.1029/2004JD005474, 2005. 

  



Supporting information                                                                                      209 

 

Supporting information 
 

This section comprises supporting information for Chapters 3 to 8 

 

APPENDIX A. Supplementary information of Chapter 3: Living at the edge 

of the species distribution: Effects of temperature increase and flooding 

conditions on growth and iWUE of Quercus robur and Q. canariensis. 

APPENDIX B. Supplementary information of Chapter 4: Linking  foliar 

dynamics and traits to water availability. The idiosincratic tree species 

responses in a Mediterranean riparian forest. 

APPENDIX C. Supplementary information of Chapter 5: Soil water content 

drives spatiotemporal patterns of CO2 and N2O emissions from a 

Mediterranean riparian forest soil. 

APPENDIX D. Supplementary information of Chapter 6: Riparian forest 

transpiration under the current and projected Mediterranean climate: effects 

on soil water and nitrate uptake. 

APPENDIX E. Supplementary information of Chapter 7: The influence of 

the invasive nitrogen-fixing Robinia pseudoacacia on soil nitrogen availability 

in a mixed Mediterranean riparian forest. 

APPENDIX F. Supplementary information of Chapter 8: General discussion. 

 

  



210                                                                                            Supporting 

information 

 

APPENDIX A 

Supplementary information of Chapter 3: Living at the edge of the species 

distribution: Effects of temperature increase and flooding conditions on 

growth and iWUE of Quercus robur and Q. canariensis  

 

 

 

Figure A.1 A) Ombrothermic diagram at c.a. 10km from Tordera (Blanes 1968-2008, Arxiu 

Municipal de l'Ajuntament de Blanes). Mean monthly temperature (ºC) and mean monthly total 

precipitation (mm). B) Mean monthly groundwater level (GWL) in m above see level (a.s.l.) (Data 

obtained from Agència Catalana de l'Aigua: piezometer G-1 Tordera/Maresme, UTMX 476854 

UTMY 4617581). 
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Figure A.2  Pearson correlation values for iWUE of mature Q. canariensis and monthly and annual 

environmental conditions (temperature, precipitation, and groundwater level). Data shown from 

october of previous year to september of current year. Significant correlations are indicated by 

asterisks: ***, p < 0.001; **, p < 0.01; *, p < 0.05). 
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Figure A.3  Pearson correlation values for iWUE of mature Q. robur and monthly and annual 

environmental conditions (temperature, precipitation, and groundwater level). Data shown from 

october of previous year to september of current year. Significant correlations are indicated by 

asterisks: ***, p < 0.001; **, p < 0.01; *, p < 0.05). 
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Figure A.4  Pearson correlation values for iWUE of mature F. angustifolia and monthly and annual 

environmental conditions (temperature, precipitation, and groundwater level). Data shown from 

october of previous year to september of current year. Significant correlations are indicated by 

asterisks: ***, p < 0.001; **, p < 0.01; *, p < 0.05). 
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APPENDIX B 

Supplementary information of Chapter 4: Linking  foliar dynamics and traits 

to water availability. The idiosincratic tree species responses in a 

Mediterranean riparian forest. 

Table B.1 Litter fall (g DW m-2) for all riparian tree species of both studied years. R. pseudoacacia is 

shown by riparian sections.   

 

 

 

 

 

 

 

 

 

 

 

 
Table B.2 Spearman correlations of environmental variables influencing litter fall from riparian tree 

species during non phenological fall period. Litter fall is considered as relative annual contribution. 

Meteorlogical data is calculated as mean value between sampling dates. All correlations (r2) are shown 

for all sampling dates, year 2011, and year 2012 (p<0.05; n = 19, 11, and 8, respectfully). 

Litter Varible r2     

    All 2011 2012 

Fruits WindSeep 0.505 - - 

  WindMax 0.494 - - 

Branches WindSeep 0.585 - - 

  Tº ac 0.517 - - 

Other sps VPD - -0.733 - 

 
WindMax - 0.721 - 

 
Precip 0.582 - - 

 
SWC 0.643 - - 

 
GWL - -0.214 - 

  Tº ac 0.633 - - 
 

 

  Fruits Branches Other sps 

2011 

   Physiology 35.77 41.38 160.25 

Phenology 101.49 79.65 43.43 

Annual 137.25 121.03 203.68 

2012 

   Physiology 55.39 103.16 174.67 

Phenology 17.55 52.36 36.87 

Annual 72.94 155.51 211.54 
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Table B.3 Leaf morphological traits of four riparian tree species for the years 2011 and 2012. Values are means ± standard error. Bold values indicate significant differences 

between years (P-value < 0.05). 

 

A. glutinosa P. nigra F. excelsior R. pseudoacacia 

 

2011 2012 2011 2012 2011 2012 2011 2012 

Fresh weight 0.50 ± 0.04 0.57 ± 0.08 0.72 ± 0.1 0.89 ± 0.07 0.19 ± 0.02 0.18 ± 0.03 0.08 ± 0.01 0.10 ± 0.01 

Dry weight 0.18 ± 0.02 0.22 ± 0.02 0.22 ± 0.03 0.29 ± 0.03 0.07 ± 0.01 0.07 ± 0.01 0.03  ± 0.002 0.03 ± 0.002 

Leaf Area 26.11 ± 2.49 32.20 ± 2.49 24.89 ± 2.94 30.67 ± 2.94 8.29 ± 0.71 10.13 ± 0.71 6.98 ± 0.66 6.73 ± 0.66 

LT 21.10 ± 1.22 26.60 ± 1.22 27.68 ± 0.45 22.52 ± 0.45 18.23 ± 2.64 25.53 ± 2.64 16.49 ± 0.86 15.90 ± 0.86 

LMA 6.93 ± 0.55 6.84 ± 0.55 8.79 ± 0.38 9.50 ± 0.38 8.10 ± 0.55 7.31 ± 0.55 4.10 ± 0.56 4.78 ± 0.56 

LDMC 2.83 ± 0.14 2.56 ± 0.14 3.30 ± 0.03 3.38 ± 0.03 2.89 ± 0.10 2.22 ± 0.10 2.77 ± 0.25 3.01 ± 0.25 

D 0.31 ± 0.01 0.26 ± 0.01 0.32 ± 0.02 0.42 ± 0.02 0.46 ± 0.06 0.36 ± 0.06 0.25 ± 0.02 0.33 ± 0.02 

S 12.53 ± 0.68 10.64 ± 0.68 20.23 ± 0.75 22.23 ± 0.75 15.17 ± 0.46 8.88 ± 0.46 7.73 ± 1.80 9.57 ± 1.80 

WC 64.45 ± 1.64 60.88 ± 1.64 69.72 ± 0.31 67.77 ± 0.31 65.31 ± 1.15 54.76 ± 1.15 67.28 ± 1.42 64.47 ± 1.42 

CN 14.90 ± 1.06 16.06 ± 1.06 21.27 ± 2.13 16.69 ± 2.13 15.38 ± 0.60 15.69 ± 0.60 11.60 ± 0.29 13.80 ± 0.29 

N% 3.31 ± 0.28 3.02 ± 0.28 2.13 ± 0.40 2.67 ± 0.40 3.03 ± 0.11 2.90 ± 0.11 4.16 ± 0.14 3.64 ± 0.14 

N AREA 2.31 ± 0.30 2.05 ± 0.30 1.87 ± 0.37 2.54 ± 0.37 2.43 ± 0.09 2.12 ± 0.10 1.69 ± 0.22 1.73 ± 0.22 

15/14N -1.79 ± 0.25 -1.53 ± 0.25 -0.68 ± 0.58 -2.02 ± 0.58 -0.38 ± 0.30 0.70 ± 0.30 0.10 ± 0.09 -0.42 ± 0.09 

C% 48.52 ± 1.24 48.06 ± 1.24 43.52 ± 4.00 44.45 ± 4.00 46.40 ± 0.62 45.44 ± 0.62 48.01 ± 1.15 49.62 ± 1.15 

C AREA 33.59 ± 2.68 32.89 ± 2.68 38.16 ± 3.56 42.19 ± 3.56 37.58 ± 2.61 33.23 ± 2.61 19.69 ± 2.73 23.67 ± 2.73 

13/12C -30.72 ± 0.44 -29.13 ± 0.44 -30.08 ± 0.42 -28.35 ± 0.42 -29.45 ± 0.54 -28.77 ± 0.54 -28.47 ± 0.33 -27.25 ± 0.33 

WUE 48.87 ± 4.70 66.28 ± 4.70 55.67 ± 4.46 74.67 ± 4.46 62.34 ± 5.68 70.19 ± 5.68 72.73 ± 3.50 86.30 ± 3.50 
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Table B.4 Linear model statistical results for each morphological trait. For each species and year estimate value is given, p-value <0.05 indicate differences between years 

and letters indicate differences among riparian tree species. 

Traits A. glutinosa P. nigra F. excelsior R. pseudoacacia 

  2011 2012 p-value 
 

2011 2012 p-value 
 

2011 2012 p-value 
 

2011 2012 p-value 
 Fresh weight 0.504 0.063 0.983 A 0.219 0.108 0.199 B -0.311 -0.072 1 C -0.422 -0.05 1 D 

Dry weght 0.181 0.041 0.514 A 0.038 0.031 0.023 B -0.113 -0.035 1 C -0.155 -0.033 0.999 D 

Leaf Area 1.926 -0.005 0.433 A 0.246 0.084 0.364 A 0.158 -0.091 0.968 B -0.573 0.202 1 B 

LT 0.023 0.005 0.455 A 0.006 -0.1 0.264 A -0.004 0.003 0.108 A -0.006 -0.005 1 B 

LMA 6.93 -0.087 1 A 1.86 0.8 0.978 B 1.167 -0.702 0.985 AB -2.83 0.766 0.838 C 

LDMC 2.832 -0.275 1 A 0.471 0.351 1 A 0.06 -0.395 0.979 A -0.066 0.516 0.998 A 

D 0.314 -0.055 0.936 A 0.004 0.161 0.31 B 0.15 -0.047 0.557 B -0.068 0.142 0.086 A 

S 12.526 -1.89 1 A 7.707 3.886 1 B 2.645 -4.403 0.884 A -4.8 3.735 0.996 A 

WC 64.453 -3.575 0.991 A 5.271 1.622 1 A 0.856 -6.975 0.427 A 2.831 0.757 0.962 A 

CN 14.902 1.159 0.983 A 6.37 -5.742 0.015 B 0.483 -0.85 1 A -3.301 1.044 0.123 C 

N% 3.313 -0.297 0.981 A -1.186 0.843 0.634 B -0.284 0.165 1 AB 0.845 -0.219 0.175 C 

N AREA 2.308 -0.256 0.993 AB -0.441 0.926 0.4 A 0.127 -0.059 0.988 A -0.615 0.291 1 B 

15/14N -0.1786 0.257 0.998 A 1.105 -1.589 0.027 A 1.407 0.825 0.281 B 1.882 -0.774 0.418 B 

C% 48.518 -0.461 1 A -4.998 1.393 1 B -2.115 -0.508 1 AB -0.505 2.066 0.888 A 

C AREA 33.588 -0.702 1 A 4.575 4.734 0.957 B 3.996 -3.655 0.974 A -13.9 4.685 0.702 C 

13/12C -30.724 1.59 0.101 A 0.641 0.147 0.04 A 1.27 -0.902 0.949 A 2.25 -0.369 0.017 B 

WUE 48.872 17.407 0.083 A 6.799 1.59 0.031 A 13.468 -9.559 0.926 A 23.857 -3.835 0.011 B 
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Table B.5 Linear model statistical results for each morphological trait. For each species and year 

estimate value is given. Capital letters indicate differences among riparian tree species within the 

season. Asterisks indicate significant differences between seasons for each riparian tree species 

(ANOVA, p < 0.05). 

 

Water sources  A. glutinosa P. nigra F. excelsior R. pseudoacacia 

    
Near-stream Intermediate Hillslope 

Shallow Soil Water 
      Spring 0.083A -0.014A 0.072AB 0.193AB * 0.271BC * 0.314C * 

Summer -0.025AB -0.007A 0.152B -0.202AB * -0.233AB * -0.225AB * 

Deep soil water 
      Spring 0.19A * 0.105A * 0.611B 0.01A * 0.232A 0.2A 

Summer 0.598AB * 0.005A * -0.794AB -0.079AB * -0.364AB -0.503B 

Groundwater 
      Spring 0.727A * -0.091A * -0.683B -0.293AC -0.503BC -0.533BC 

Summer -0.573A * 0.001A * 0.642A 0.281A 0.596A 0.728A 
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APPENDIX C  

Supplementary information of Chapter 5: Soil water content drives 

spatiotemporal patterns of CO2 and N2O emissions from a Mediterranean 

riparian forest soil 

 

 

Figure C.1 Concentrations of carbon dioxide (left column) and nitrous oxide (right column) during the 

incubation time for the sampling campaign of June 2013. Data is shown for the near-stream, 

intermediate and hillslope zones separately. For each plot, data is shown as mean ± SD (n = 5) for all 

sampling days of June. The best fit linear model used to calculate gas emissions is shown for each plot.   
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Figure C.2 Loading plot of the (a) CO2 and (b) N2O partial least squares models (PLS) for the 75 

measurements. The graph depicts the correlation structures between the X variables (circles) and gas 

emissions (vectors). Variables situated along the same directional axis correlate with each other. 

Different color in X variables indicates their influence on gas emissions based on the “variable 

importance in the projection (VIP)” scores for each model. In each case, white has VIP scores < 0.8, 

grey has VIP scores < 1.0 and black has VIP scores > 1.0. 
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APPENDIX D  

Supplementary information of Chapter 6: Riparian forest transpiration under 

the current and projected Mediterranean climate: effects on soil water and 

nitrate uptake 
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Table D.1 Summary of HYDRUS-1D model predictions of transpiration for near-stream, intermediate, and hillslope riparian zones as a function of the percentage of 

potential evapotranspiration that is transpiration. Field data is referred to Nadal-Sala et al. (2017). For each model and studied year (2012, 2013, and 2014), the table 

shows potential (introduced in the model) and actual (simulated by the model) transpiration values (mm) and the difference between them (all in mm). RMSE = root 

mean squared error. Nash = Nash-Sutcliffe model efficiency. 

  

    2012 2013 2014 

Zone Transpiration RMSE Nash Potential Actual Difference Potential Actual Difference Potential Actual Difference 

Near-stream Field data 0.008 0.511 168 168 0             

 20% 0.008 0.511 182 182 0 172 172 0 147 147 0 

  50% 0.008 0.516 456 456 0 430 429 1 368 368 0 

  60% 0.008 0.517 547 547 0 516 515 1 441 441 0 

  70% 0.008 0.517 638 638 0 602 601 1 515 515 0 

  80% 0.008 0.518 729 729 0 688 686 1 589 589 0 

Intermediate Field data 0.036 0.166 168 168 0             

 20% 0.036 0.170 182 182 0 172 172 0 147 147 0 

  50% 0.022 0.686 456 452 4 430 430 0 368 368 0 

  60% 0.018 0.801 547 524 23 516 512 4 441 441 0 

  70% 0.017 0.823 638 591 47 602 588 13 515 515 0 

  80% 0.017 0.807 729 656 74 688 665 23 589 589 0 

Hillslope Field data 0.034 0.432 168 168 0             

  20% 0.033 0.445 182 182 0 172 172 0 147 147 0 

  50% 0.030 0.551 456 371 85 430 372 57 368 333 35 

  60% 0.029 0.568 547 416 131 516 424 91 441 380 62 

  70% 0.031 0.533 638 468 170 602 477 125 515 426 89 

  80% 0.033 0.439 729 520 210 688 535 153 589 483 106 
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APPENDIX E  

Supplementary information of Chapter 7: The influence of the invasive 

nitrogen-fixing Robinia pseudoacacia on soil nitrogen availability in a mixed 

Mediterranean riparian forest 

Table E.1 Values of the parameters used in the model scenarios: specific LMA, leaf N and LAI. Specific LMA is 

calculated as mean leaf specific weight (n = 10) for mean leave specific area (n = 30). For leaf N content n = 17, 

13, 17 and 19 for R. pseudoacacia, A. glutinosa, P. nigra and F. excelsior, respectively. LAI was calculated from 

annual leaf litter inputs to the forest floor using LMA values (see Eq. 3). 

  R. pseudoacacia A. glutinosa P. nigra F. excelsior 

Pre-invasion scenario 
    

Leaf k (year-1) --- 0.56 ± 0.21 0.25 ± 0.17 0.69 ± 0.18 

LMAi (mg cm-2)  --- 7.75 11.35 9.45 

Leaf N (%) --- 2.56 ± 0.23 1.36 ± 0.21 1.80 ± 0.18 

f(t)  (g DW m-2) 
    

Near-stream --- 151.1 260.9 9.62 

Intermediate --- 58.73 215.31 77.58 

Hillslope --- 25.99 76.21 188.36 

L (g DW m-2) 
    

Near-stream --- 271.77 1028.49 14 

Intermediate --- 105.63 848.76 112.9 

Hillslope --- 46.75 300.43 274.12 

LAI  (m2 m-2) 
    

Near-stream --- 1.95 2.3 0.1 

Intermediate --- 0.76 1.9 0.82 

Hillslope --- 0.34 0.67 1.99 

NN/NNM 
    

Near-stream --- 1.07 1.07 1.07 

Intermediate --- 0.89 0.89 0.89 

Hillslope --- 1.16 1.16 1.16 

Mid-invasion scenario 

Leaf k (year-1) 0.29 ± 0.03 0.56 ± 0.21 0.25 ± 0.17 0.69 ± 0.18 

LMAi (mg cm-2)  6.21 7.75 11.35 9.45 

Leaf N (%) 2.39 ± 0.24 2.20 ± 0.39 1.22 ± 0.33 2.04 ± 0.17 

f(t)  (g DW m-2) 
    

Near-stream 114.32 87.2 150.55 5.55 

Intermediate 148.5 18.35 67.27 24.24 

Hillslope 161.97 3.41 10.01 24.74 

L (g DW m-2) 
    

Near-stream 399.86 156.83 593.5 8.08 

Intermediate 519.44 33 265.17 35.27 

Hillslope 566.54 6.14 39.46 36.01 

LAI  (m2 m-2) 
    

Near-stream 1.84 1.13 1.33 0.06 
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Intermediate 2.39 0.24 0.59 0.26 

Hillslope 2.61 0.04 0.09 0.26 

NN/NNM 
    

Near-stream 1.07 1.07 1.07 1.07 

Intermediate 0.89 0.89 0.89 0.89 

Hillslope 1.16 1.16 1.16 1.16 

Replacement scenario 
    

Leaf k (year-1) 0.29 ± 0.03 --- --- --- 

LMAi (mg cm-2)  6.21 --- --- --- 

Leaf N (%) 2.39 ± 0.24 --- --- --- 

f(t)  (g DW m-2) 
    

Near-stream 270.29 --- --- --- 

Intermediate 215.98 --- --- --- 

Hillslope 186.46 --- --- --- 

L (g DW m-2) 
    

Near-stream 945.44 --- --- --- 

Intermediate 755.45 --- --- --- 

Hillslope 652.22 --- --- --- 

LAI  (m2 m-2) 
    

Near-stream 4.35 --- --- --- 

Intermediate 3.48 --- --- --- 

Hillslope 3 --- --- --- 

NN/NNM 
    

Near-stream 1.07 --- --- --- 

Intermediate 0.89 --- --- --- 

Hillslope 1.16 --- --- --- 
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Table E.2 Model results of leaf litter N inputs and soil N availability for Pre-invasion, Mid-invasion and Replacement scenarios. Results are shown for all the plot as well as for 

each individual section separately. 

  
Leaf litter N (g N m-2 year-1) Soil NO3

- (g N m-2 year-1)  

R. pseudoacacia A. glutinosa P. nigra F. excelsior R. pseudoacacia A. glutinosa P. nigra F. excelsior 

Near-stream 
  

      Pre-invasion 0 4.04 ± 0.36 3.76 ± 0.53 0.23 ±0.06 0 4.33 ± 2.62 4.02 ± 2.49 0.24 ± 0.16 

Mid-invasion 2.76 ± 0.23 2.07 ± 0.35 2.01 ± 0.49 0.15 ± 0.04 2.95 ± 1.78 2.22 ± 1.39 2.15 ± 1.42 0.16 ± 0.11 

Replacement 6.84 ±0.70 0 0 0 7.32 ± 4.45 0 0 0 

Intermediate 

  
      

Pre-invasion 0 1.84 ± 0.38 3.02 ± 0.41 1.75 ± 0.39 0 1.64 ± 0.73 2.70 ± 1.11 1.56 ± 0.71 

Mid-invasion 3.73 ± 0.37 0.57 ± 0.19 0.96 ± 0.27 0.72 ± 0.23 3.33 ± 1.33 0.51 ±  0.27 0.86 ± 0.42 0.64 ± 0.33 

Replacement 5.81 ± 0.83 0 0 0 5.18  ± 2.15 0 0 0 

Hillslope 
 

 
      

Pre-invasion 0 0.63 ± 0.06 1.11 ± 0.16 3.84 ± 0.56 0 0.73 ± 0.31 1.29 ± 0.58 4.45 ± 2.00 

Mid-invasion 4.18 ± 0.48 0.08 ± 0.01 0.14 ± 0.04 0.63 ± 0.14 4.85 ± 2.12 0.09 ± 0.04 0.17 ± 0.09 0.73 ± 0.35 

Replacement 4.89 ± 0.61 0 0 0 5.68 ± 2.50 0 0 0 
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APPENDIX F  

Supplementary information of Chapter 8: General discussion 
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Table F.1 Precipitation (P), Potential Evapotranspiration (PET), Aridity index (AI), proportion of groundwater used for transpiration (GW use), and riparian species studied for 

different riparian forests located worldwide. 

Climate 
 

P 
 (mm yr-1) 

PET 
(mm yr-1) 

AI 
 

GW use 
(%) 

Species 
 

Source 
 

Arid 35 1305 0.03 91.5 Poplus Hao et al., 2013 

Arid 42 1157 0.04 0.2 Populus euphratica, Tamarix Si et al., 2014 

Arid 42 1157 0.04 53.3 Populus euphratica , Tamarix Si et al., 2014 

Arid 42 1157 0.04 18.1 Populus euphratica, Tamarix Si et al., 2014 

Arid 42 1157 0.04 23.7 Populus euphratica, Tamarix Si et al., 2014 

Arid 42 1157 0.04 12.6 Populus euphratica Liu et al., 2015 

Arid 42 1157 0.04 86 Populus euphratica Liu et al., 2015 

Arid 42 1157 0.04 22.8 Populus euphratica Liu et al., 2015 

Arid 132.33 987 0.134 90 Populus Smith et al., 1991 

Semi-arid 350 1549 0.23 90 Populus, Salix Snyder and Williams, 2000 

Semi-arid 350 1549 0.23 97 Populus, Salix Sydner and Williams, 2000 

Semi-arid 350 1549 0.23 70 Populus, Salix Sydner and Williams, 2000 

Semi-arid 450 998 0.45 88 Populus euphratica Li et al., 2013 

Semi-arid 450 998 0.45 32 Salix Li et al., 2013 

Semi-arid 1200 1981 0.61 90 
 

O’Grady et al., 2006 

Humid 925 1100 0.84 20 
 

Font del Regàs 

Humid 576 650 0.89 50 Populus Sánchez-Pérez et al., 2008 

Humid 576 650 0.89 20 Ash SánchezPérez et al., 2008 

Humid 589 650 0.91 26 Alnus, Populus Bernard et al., 2014 

Humid 589 650 0.91 15 Alnus, Populus Bernard et al., 2014 

Humid 589 650 0.91 5 Alnus, Populus Bernard et al., 2014 

Humid 1200 1281 0.94 20 Betula White and Smith, 1991 

Humid 952 985 0.97 10 Acer Bouling et al., 2017 

Humid 700 655 1.07 50 Populus Sargeant and Singer, 2016 

Humid 700 655 1.07 20 Ash Sargeant and Ssinger, 2016 
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Table F.2 Precipitation (P), Potential Evapotranspiration (PET), Aridity index (AI), and soil denitrification rates 

(DNT) for different riparian forests located worldwide. 

Climate 
 

P 
(mm yr-1) 

PET 
(mm yr-1) 

AI 
 

DNT 
(g N m-2 yr-1) 

Source 
 

Arid 300 1670 0.18 8.44 Harms et al., 2009 

Arid 408 976 0.42 60.00 Pinay et al., 2007 

Arid 585 503 1.16 18.00 Pinay et al., 2007 

Semi-arid 600 677 0.89 0.97 Hefting et al., 2004 

Semi-arid 664 910 0.73 24.00 Pinay et al., 2007 

Semi-arid 671 1000 0.67 120.00 Pinay et al., 2007 

Semi-arid 698 581 1.20 24.00 Pinay et al., 2007 

Semi-arid 761 699 1.09 29.20 Hefting et al., 2004 

Semi-arid 766 666 1.15 204.00 Pinay et al., 2007 

Semi-arid 800 600 1.33 0.97 Hefting et al., 2004 

Semi-arid 875 792 1.10 96.00 Clement et al., 2002 

Semi-arid 875 792 1.10 56.50 Clement et al., 2002 

Semi-arid 875 792 1.10 81.90 Clement et al., 2002 

Semi-arid 880 792 1.11 33.98 Hefting et al., 2004 

Semi-arid 885 908 0.97 7.28 Hefting et al., 2004 

Semi-arid 925 1100 0.84 0.19 Font del Regàs 

Humid 1100 863 1.27 43.69 Hefting et al., 2004 

Humid 1169 783 1.49 180.00 Pinay et al., 2007 

Humid 1284 1270 1.01 21.24 Alongi et al., 2005 

Humid 1743 1062 1.64 1.21 Fang et al., 2015 

Humid 1743 1062 1.64 1.97 Fang et al., 2015 

Humid 1780 1019 1.75 2.23 Fang et al., 2015 
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Table F.3 Precipitation (P), Potential Evapotranspiration (PET), Aridity index (AI), soil respiration (CO2 

emissions) for different riparian forests located worldwide. 

Climate 
 

P 
(mm yr-1) 

PET 
(mm yr-1) 

AI 
CO2 

(g C m-2 yr-1) 
Source 

 

Arid 300 1670 0.18 583.33 Harms and Grimm, 2012 

Arid 350 1521 0.23 329.81 McLain and Martens, 2006 

Arid 350 1521 0.23 313.93 McLain and Marens, 2006 

Arid 350 1521 0.23 302.22 McLain and Martens, 2006 

Semi-arid 555 571 0.97 219 Mander et al., 2008 

Semi-arid 711 571 1.25 620.5 Mander et al., 2008 

Semi-arid 750 1670 0.45 672.59 Harms and Grimm, 2012 

Semi-arid 880 915 0.96 1.19 Pacific et al., 2008 

Semi-arid 880 915 0.96 3.58 Pacific et al., 2008 

Semi-arid 925 1100 0.84 438 Font del Regàs 

Semi-arid 925 1100 0.84 3650 Font del Regàs 

Semi-arid 988 1036 0.95 1569.5 Vidon et al., 2015 

Humid 1084 1097 0.99 1091 Batson et al., 2014 

Humid 1864 996 1.87 33.45 Hirota et al., 2007 

Humid 1864 996 1.87 179.18 Hirota et al., 2007 
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Table F.4 Precipitation (P), Potential Evapotranspiration (PET), Aridity index (AI), and soil natural emissions of 

N2O (N2O) for different riparian forests located worldwide. 

Climate 
 

P 
 (mm yr-1) 

PET  
(mm yr-1) 

AI 
 

N2O  
(gN m-2 yr-1) 

Source 
 

Arid 300 1670 0.18 0.01 Harms and Grimm, 2012 

Arid 350 1521 0.23 0.10 McLain and Martens, 2006 

Arid 350 1521 0.23 0.05 McLain and Martens, 2006 

Arid 350 1521 0.23 0.03 McLain and Martens, 2006 

Semi-arid 555 571 0.97 0.47 Mander et al., 2008 

Semi-arid 711 571 1.25 0.51 Mander et al., 2008 

Semi-arid 750 1670 0.45 0.02 Harms and Grimm, 2012 

Semi-arid 760 578 1.31 -0.39 Audet et al., 2014 

Semi-arid 760 578 1.31 1.07 Audet et al., 2014 

Semi-arid 761 699 1.09 0.30 Hefting et al., 2003 

Semi-arid 761 699 1.09 2.00 Hefting et al., 2003 

Semi-arid 875 792 1.10 1.65 Clement et al., 2002 

Semi-arid 875 792 1.10 1.80 Clement et al., 2002 

Semi-arid 875 792 1.10 1.60 Clement et al., 2002 

Semi-arid 885 908 0.97 0.01 Bernal et al., 2007 

Semi-arid 885 908 0.97 0.15 Bernal et al., 2007 

Semi-arid 925 1100 0.84 0.00 Font del Regàs 

Semi-arid 925 1100 0.84 0.07 Font del Regàs 

Semi-arid 988 1036 0.95 -0.03 Vidon et al., 2015 

Humid 1082 900 1.20 0.00 Burgin and Groffman, 2012 

Humid 1082 900 1.20 7.01 Burgin et al., 2012 

Humid 1084 1097 0.99 3.88 Batson et al., 2014 

Humid 1146 1471 0.78 10.69 Allen et al., 2007 

Humid 1284 1270 1.01 13.30 Alongi et al., 2005 

Humid 1755 1106 1.59 2.45 Walker et al., 2002 

Humid 1864 996 1.87 5.60 Hirota et al., 2007 

Humid 2163 1663 1.30 1.97 Melling et al., 2005 
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Abstract. Riparian zones play a fundamental role in regu-
lating the amount of carbon (C) and nitrogen (N) that is ex-
ported from catchments. However, C and N removal via soil
gaseous pathways can influence local budgets of greenhouse
gas (GHG) emissions and contribute to climate change. Over
a year, we quantified soil effluxes of carbon dioxide (CO2)
and nitrous oxide (N2O) from a Mediterranean riparian for-
est in order to understand the role of these ecosystems on
catchment GHG emissions. In addition, we evaluated the
main soil microbial processes that produce GHG (mineral-
ization, nitrification, and denitrification) and how changes in
soil properties can modify the GHG production over time and
space. Riparian soils emitted larger amounts of CO2 (1.2–
10 gC m−2 d−1) than N2O (0.001–0.2 mgN m−2 d−1) to the
atmosphere attributed to high respiration and low denitrifica-
tion rates. Both CO2 and N2O emissions showed a marked
(but antagonistic) spatial gradient as a result of variations in
soil water content across the riparian zone. Deep groundwa-
ter tables fueled large soil CO2 effluxes near the hillslope,
while N2O emissions were higher in the wet zones adja-
cent to the stream channel. However, both CO2 and N2O
emissions peaked after spring rewetting events, when op-
timal conditions of soil water content, temperature, and N
availability favor microbial respiration, nitrification, and den-
itrification. Overall, our results highlight the role of water
availability on riparian soil biogeochemistry and GHG emis-
sions and suggest that climate change alterations in hydro-
logic regimes can affect the microbial processes that produce

GHG as well as the contribution of these systems to regional
and global biogeochemical cycles.

1 Introduction

Riparian zones are hotspots of nitrogen (N) transformations
across the landscape, providing a natural filter for nitrate
(NO−3 ) transported from surrounding lands via runoff and
subsurface flow paths (Hill, 1996; Vidon et al., 2010). Al-
though interest in riparian zones has primarily been moti-
vated by the benefits of these ecotones as effective N sinks,
enhanced microbial activity in riparian landscapes can play
a key role in atmospheric pollution. For instance, riparian
zones can account by 70 % of global (natural processes and
human activities) terrestrial emissions of nitrous oxide (N2O)
to the atmosphere, a powerful greenhouse gas (GHG) with
298 times the global warming potential of carbon dioxide
(CO2) (Audet et al., 2014; Groffman et al., 2000; Hefting
et al., 2003). Moreover, riparian soils can significantly con-
tribute to global CO2 emissions because they can hold high
rates of heterotrophic and autotrophic respiration (Chang
et al., 2014). Soil respiration is the main natural carbon (C)
efflux to the atmosphere, contributing to 20 % of the global
emission of CO2 (Kim and Verma, 1990; Raich et al., 2002;
Rastogi et al., 2002). Finally, riparian zones can support large
methane (CH4) fluxes that account for the 15–40 % of global
emissions (Audet et al., 2014; Segers, 1998). However, there

Published by Copernicus Publications on behalf of the European Geosciences Union.



4196 S. Poblador et al.: Soil water content drives CO2 and N2O riparian soil emissions

are still many uncertainties regarding the magnitude and spa-
tiotemporal variability of soil GHG emissions in riparian
zones, reaching contradictory results concerning the poten-
tial role of riparian zones as sinks or sources of C and N
(Bruland et al., 2006; Groffman et al., 1992; Harms et al.,
2009; Walker et al., 2002).

Understanding the processes regulating GHG emissions
from riparian soils is essential to quantify the role of riparian
zones in the global C and N cycles. Multiple environmental
variables, such as soil temperature, soil water content, and
both C and N availability, have been identified as key factors
influencing the rate and variability of soil microbial activities
that produce GHG (Chang et al., 2014; Hefting et al., 2003;
Mander et al., 2008; McGlynn and Seibert, 2003). Among
them, riparian hydrology seems to play a fundamental role
on GHG production because it controls the substrate subsides
and, most importantly, the redox conditions of riparian soils
(Jacinthe et al., 2015; Vidon, 2017). Under saturated condi-
tions, anaerobic processes such as methanogenesis (i.e., the
transformation of CO2 to CH4) and denitrification (i.e., the
transformation of NO−3 to N gas (N2) or N2O) are the pri-
mary processes involved in the C and N cycles (Clément
et al., 2002). Conversely, in dry soils, aerobic transforma-
tions involved in the oxidation of the organic matter (i.e.,
respiration, mineralization, nitrification, methane oxidation)
dominate the riparian biogeochemistry (Harms and Grimm,
2008). From such observations, one would expect that there
is a strong correlation between soil wetness and the relative
importance of CO2, N2O, and CH4 riparian soil emissions to
the total GHG fluxes. However, there are still relatively few
studies that analyze the direct influence of soil water content
on several GHG effluxes simultaneously (but see Harms and
Grimm, 2008; Jacinthe et al., 2015), and even less that com-
bine such analyses with other environmental factors and soil
processes. Thus, it is still unclear under which circumstances
soil water content (rather than temperature or substrate avail-
ability) is the primary control factor of the riparian function-
ality.

Mediterranean systems are a unique natural laboratory
to understand the close link between spatiotemporal vari-
ations in hydrology and riparian biogeochemistry because
they are characterized by a marked spatial gradient of soil
water content, that can range from < 10 % in the hillslope
edge to > 80 % close to the stream (Chang et al., 2014;
Lupon et al., 2016). Moreover, Mediterranean regions are
subjected to seasonal alterations of precipitation and temper-
ature regimes that might affect riparian hydrology as well as
microbial activity in the riparian soils (Bernal et al., 2007;
Bruland et al., 2006; Harms and Grimm, 2008; Harms et al.,
2009). Increments in GHG emissions in riparian zones might
occur following storms or flood events because sharp incre-
ments in soil water content enhance nitrification, denitrifi-
cation, respiration, and methanogenesis rates (Casals et al.,
2011; Jacinthe et al., 2015; Werner et al., 2014). However,
recent studies have shown that high temperatures can sus-

tain large respiration and N mineralization rates in riparian
soils (Chang et al., 2014; Lupon et al. 2016), and, hence,
the contribution of rewetting microbial pulses to annual CO2
and N2O production in Mediterranean riparian soils is still
under debate. Moreover, improved understanding of interac-
tions among hydrology, microbial processes, and gas emis-
sions within Mediterranean riparian zones is not only funda-
mental to understand the temporal pattern of riparian biogeo-
chemistry but also necessary to estimate the contribution of
these ecosystems to atmospheric GHG budgets at local and
global scale.

In this study, soil properties, soil N processes, and CO2
and N2O soil emissions were measured over a year across
a Mediterranean riparian forest that exhibited a strong gra-
dient in soil water content (Fig. 1a). We did not measure
CH4 emissions because previous studies reported extremely
low values in dry systems (−0.06–0.42 mgC m−2 d−1; Bat-
son et al., 2015; Gómez-Gener et al., 2015). Specifically, we
aimed (i) to evaluate the spatiotemporal patterns of CO2 and
N2O emissions in Mediterranean riparian soils, (ii) to ana-
lyze under which conditions soil water content rules micro-
bial processes and GHG over other physicochemical vari-
ables, and (iii) to provide some reliable estimates of GHG
emissions from Mediterranean riparian soils. We hypothe-
sized that the magnitude and the relative contribution of N2O
and CO2 to total GHG emission strongly depend on soil wa-
ter content conditions rather than other variables during all
year long (see conceptual approach in Fig. 1b). In the near-
stream zone, we expected that saturated anoxic soils would
enhance denitrification but constrain both respiration and ni-
trification. Thus, we predicted higher N2O than CO2 emis-
sions in this zone. In the intermediate zone, we expected
that wet (but not saturated) soils would enhance aerobic pro-
cesses such as respiration, N mineralization or nitrification,
and thus we predicted high CO2 emissions compared to N2O.
Finally, we expect that dry soils would deplete (or even in-
hibit) the soil microbial activity near the hillslope edge, and
therefore we predicted low GHG emissions in this zone. Be-
cause Mediterranean regions are subjected to strong intra-
annual variations in soil water content, we expected that this
general behavior would be maximized in summer, when only
near-stream soils would keep wet. Conversely, we expected
that all microbial processes would be enhanced shortly af-
ter rainfall events, and thus simultaneous pulses of CO2 and
N2O emissions would occur in spring and fall.

2 Materials and methods

2.1 Study site

The research was conducted in a riparian forest of Font
del Regàs, a forested headwater catchment (14.2 km2, 500–
1500 ma.s.l. (above sea level), located in the Montseny Natu-
ral Park, NE Spain (41◦50′ N, 2◦30′ E) (Fig. 1a). The climate
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Figure 1. (a) Plot layout for the studied Mediterranean riparian for-
est showing the three riparian zones and the location of the cham-
bers (n= 5 for each riparian zone). (b) Conceptual approach of the
influence of riparian hydrology on soil microbial processes across
a Mediterranean riparian zone. Soil water content decreases from
the near-stream to the hillslope zone due to changes in groundwa-
ter table, increasing unsaturated soil column and oxic conditions.
Anaerobic processes (denitrification) occur under anoxic conditions
while aerobic processes (respiration) are optimized under a moder-
ate range of soil water content.

is sub-humid Mediterranean, with mean temperature ranging
from 5 ◦C in February to 25 ◦C in August. In 2013, annual
precipitation (1020 mm) was higher than long-term average
(925±151 mm), with most of rain falling in spring (500 mm)
(Fig. 2a). Total inorganic N deposition oscillates between 15
and 30 kgN ha−1 yr−1 (period 1983–2007; Àvila and Rodà,
2012).

We selected a riparian site (∼ 600 m2, ∼ 30 m wide) that
flanked a third-order stream close to the catchment outlet
(536 ma.s.l., 5.3 km from headwaters). The riparian site was
divided into three zones characterized by different species
compositions (Fig. 1a). The near-stream zone was located
adjacent to the stream (0–4 m from the stream edge) and was
composed of Alnus glutinosa (45 % of basal area) and Pop-
ulus nigra (33 % of basal area). The intermediate zone (4–
7 m from the stream edge) was composed by P. nigra and
Robinia pseudoacacia (29 and 71 % of basal area, respec-
tively). Finally, the hillslope zone (7–30 m from the stream
edge) bordered upland forests and was composed by R. pseu-

Figure 2. Temporal pattern of (a) mean monthly precipitation and
(b) biweekly groundwater level at the studied riparian site during
the year 2013. Circles are mean values of groundwater level at
the near-stream (white), intermediate (grey), and hillslope (black)
zones. Precipitation data were obtained from a meteorological sta-
tion located at ca. 300 m from the studied riparian site. At each ripar-
ian zone, groundwater level was measured in three PVC piezome-
ters (32 mm diameter, 1–3 m long) with a water level sensor (Ei-
jkelkamp 11.03.30).

doacacia (93 % of basal area) and Fraxinus excelsior (7 % of
basal area). The three riparian zones had sandy-loam soils
(bulk density= 0.9–1.1 g cm−3), with a 5 cm deep organic
layer followed by a 30 cm deep A horizon. The top soil layer
(0–10 cm depth) was mainly composed by sands (∼ 90 %)
and silts (∼ 7 %) at the near-stream zone, whereas grav-
els (∼ 16 %) and sands (∼ 80 %) were the dominant parti-
cle sizes at the intermediate and hillslope zones. During the
study period, groundwater level averaged −54±14 cmb.s.s.
(below the soil surface) at the near-stream zone, and de-
creased to −125± 4 and −358± 26 cm b.s.s. at the interme-
diate and hillslope zones, respectively (Figs. 1a and 2b).

2.2 Field sampling

We delimited five plots (1× 1 m) within each riparian zone
(near-stream, intermediate, and hillslope) (Fig. 1a). During
the year 2013, soil physicochemical properties, soil N pro-
cesses, and gas emissions were measured in each plot every
2–3 months in order to cover a wide range of soil water con-
tent and temperature conditions. On each sampling month,
one soil sample (0–10 cm depth, including O and A hori-
zons) was collected randomly from each plot to analyze soil
physicochemical properties. Soil samples were taken with
a 5 cm diameter core sampler and placed gently into plastic
bags after carefully removing the litter layer. Close to each
soil sample, we performed in situ soil incubations to mea-
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sure soil net N mineralization and net nitrification rates (Eno,
1960). For this purpose, a second soil core (0–10 cm depth)
was taken, placed in a polyethylene bag, and buried at the
same depth. Soil incubations were buried for 4 days and then
removed from the soil.

Gas emissions and denitrification rates were measured si-
multaneously and during four consecutive days (i.e., during
the entire soil incubation period) in order to facilitate the di-
rect comparison between microbial rates and gas fluxes. Soil
CO2 effluxes were measured with a SRC-1 soil chamber at-
tached to an EGM-4 portable infrared gas analyzer (IRGA)
(PP Systems, Amesbury, MA). The EGM-4 has a measure-
ment range of 0–2000 ppm (µmolmol−1), with an accuracy
of 1 % and a linearity of 1 % throughout the range. Every
field day, CO2 measurements started at 12:00 and were con-
ducted consecutively at the 15 plots starting for the near
stream zone. At each plot, the SCR-1 soil chamber was
placed over the top soil for a 120 s incubation. Before each
measurement, we carefully removed the litter layer to ensure
no leaks. Furthermore, we aerated the SCR-1 between sam-
ples to ensure the accuracy of the instrument as well as to
avoid contamination between samples. For each plot, CO2
emissions rates were calculated from the best-fit linear re-
gression of the CO2 accumulated in the headspace with in-
cubation time (Fig. S1 in the Supplement). CO2 fluxes on an
areal basis (FCO2 , in µmolm−2 h−1) were calculated follow-
ing Healy et al. (1996):

Fg =
dg

dt
×

V P0

SRT0
, (1)

where dg/dt is the rate of change in gas concentration (in
µmolmol−1 h−1) in the chamber, V is chamber volume (in
m3), P0 is initial pressure (in Pa), S is the soil surface area
(in m2), R is the gas constant (8.314 Pa m3 K−1 mol−1), and
T0 is the initial chamber temperature (in K). For budgeting,
moles of CO2 and N2O were converted to grams of C and N,
respectively.

In situ denitrification rates and N2O emissions were mea-
sured using closed cylinder (0.37 L) and open cylinder
(0.314 m2) chambers, respectively. For denitrification anal-
yses, an intact soil core (0–10 cm depth) was introduced in
the chamber, closed with a rubber serum stopper, amended
with acetone-free acetylene to inhibit the transformation of
N2O to N2 (10 % v/v atmosphere), and placed at the same
depth. For N2O analysis, chambers were placed directly on
the soil and no special treatment was carried out. Gas sam-
ples for both denitrification and N2O chambers were taken at
the same time (0, 1, 2, and 4 h of incubation) with a 20 mL sy-
ringe and stored in evacuated tubes. All soil and gas samples
were kept at < 4 ◦C until laboratory analysis (< 24 h after
collection).

Soil physical properties were measured within each plot
simultaneously to gas emissions. Volumetric soil water con-
tent (%) (five replicates per plot) and soil temperature (◦C)
(one replicate per plot) were measured at 10 cm depth by us-

ing a time-domain reflectometer sensor (HH2 moisture me-
ter, Delta-T Devices) and a temperature sensor (CRISON
25), respectively. Soil pH and reduction potential (Eh, mV)
(1 replicate per plot) were measured at 0–10 cm depth by wa-
ter extraction (1 : 2.5 v/v) using a Thermo Scientific ORION
sensor (STAR 9107BNMD). Although Eh measures per-
formed by water extraction may not be as accurate as other
field techniques, these values have been previously used as
a good proxy of the soil redox potential (Yu and Rinklebe,
2013).

2.3 Laboratory analyses

Pre-incubation soil samples were oven dried at 60 ◦C, sieved,
and the fraction < 2 mm was used for measuring soil chem-
ical properties. The relative soil organic matter content (%)
was measured by loss on ignition (450 ◦C, 4 h). Total soil
C and N contents were determined on a gas chromatograph
coupled to a thermal conductivity detector after combustion
at 1000 ◦C at the Scientific Technical Service of the Univer-
sity of Barcelona.

To estimate microbial N processes, we extracted 5 g
of pre- and post-incubation field-moist soil samples with
50 mL of 2 M KCl (1 g : 10 mL, ww : v; 1 h shacking at
110 rpm and 20 ◦C). The supernatant was filtered (What-
man GF/F 0.7 µm pore diameter) and analyzed for ammo-
nium (NH+4 ) and nitrate (NO−3 ). NH+4 was analyzed by
the salicylate–nitroprusside method (Baethgen and Alley,
1989) using a spectrophotometer (PharmaSpec UV-1700,
Shimadzu). NO−3 was analyzed by the cadmium reduction
method (Keeney and Nelson, 1982) using a Technicon au-
toanalyzer (Technicon, 1987). For each pair of samples, net
N mineralization and net nitrification were calculated as the
differences between pre- and post-incubations values of in-
organic N (NH+4 and NO−3 ) and NO−3 , respectively (Eno,
1960). Pre-incubation NH+4 and NO−3 concentrations were
further used to calculate the availability of dissolved inor-
ganic nitrogen in riparian soils.

To estimate denitrification and natural N2O emissions,
we analyzed the N2O of all gas samples using a gas chro-
matograph (Agilent Technologies, 7820A GC) that was cal-
ibrated using certified standards (4.66 ppmN2O; Air Liq-
uide). Both denitrification and N2O emissions rates were
calculated similarly to CO2 fluxes (Fig. S1). In addition,
we measured the denitrification enzyme activity (DEA) for
three soil cores of each riparian zone to determine the
factors limiting denitrification. For each soil core, four
sub-samples (20 g of fresh soil) were placed into 125 mL
glass jars containing different treatments. The first jar
(DEAMQ) contained Milli-Q water (20 mL) to test anaer-
obiosis limitation. The second jar (DEAC) was amended
with glucose solution (4 g glucose kg soil−1) to test C lim-
itation. The third jar (DEANO3 ) was amended with ni-
trate solution (72.22 mg KNO3 kgsoil−1) to test N limita-
tion. Finally, the fourth jar (DEAC+NO3 ) was amended with
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both nitrate and glucose solutions (4 g glucose kg soil−1 and
72.22 mgKNO3 kgsoil−1) to test simultaneously C and N
limitation. All jars were capped with rubber serum stoppers,
made anaerobic by flushing N2, and amended with acetone-
free acetylene (10 % v/v) (Smith and Tiedje, 1979). Gas
samples were collected after 4 and 8 h of incubation and an-
alyzed following the same procedure of field DNT samples.
DEA rates were calculated similarly to denitrification rates.

2.4 Statistical analysis

Statistical analyses were carried out using the package lmer
and pls of R 2.15.1 statistical software (R Development
Core Team, 2012). We performed linear mixed-model anal-
ysis of variance (ANOVA) to test differences in soil prop-
erties, microbial N processes, and gas emissions across ri-
parian zones and seasons. We used riparian zone and sea-
son as fixed effects and plot (nested within riparian zones) as
a random effect. When multiple samples were taken within
a plot (soil physical properties, denitrification, and gas emis-
sions), the ANOVA was performed on plot means, with n=

75 (5 plots× 3 zones× 5 dates). For each model, post hoc
Tukey contrasts were used to test which zones or seasons
differed from each other. In all cases, residuals were tested
for normality using a Shapiro–Wilk test and homogeneity of
variance was examined visually by plotting the predicted and
residual values. In those cases that the normality assumption
was unmet, data were log transformed. In all analyses, dif-
ferences were considered significant when p < 0.05.

We used partial least squares regression (PLS) to explore
how soil properties, C and N availability, groundwater level,
and soil N processes predict variation in CO2 and N2O emis-
sions. PLS identifies the relationship between independent
(X) and dependent (Y ) data matrices through a linear, mul-
tivariate model and produces latent variables (PLS compo-
nents) representing the combination of X variables that best
describe the distribution of observations in “Y space” (Eriks-
son et al., 2006). We determined the goodness of fit (R2Y )
and the predictive ability (Q2Y ) of the model by compar-
ing modeled and actual Y observations through a cross-
validation process. Each model was refined by iteratively re-
moving variables that had non-significant coefficients in or-
der to minimize the model overfitting (i.e., low Q2Y values)
as well as the multicollinearity of the explanatory variables
(i.e., variance inflation factor (VIF) < 5). Furthermore, we
identified the importance of each X variable by using vari-
able importance on the projection (VIP) scores, calculated as
the sum of square of the PLS weights across all components.
VIP values > 1 indicate variables that are most important to
the overall model (Eriksson et al., 2006). In all PLS models,
data were ranked and centered prior to analysis.

3 Results

3.1 Spatial pattern of soil properties, microbial rates,
and gas emissions

During the study period, all riparian zones had similar mean
soil temperature (11–12 ◦C), pH (6–7), and redox potential
(170–185 mV) (Table 1). However, soil water content exhib-
ited strong differences across riparian zones (Table 2), with
the near-stream zone holding wetter soils than the interme-
diate and the hillslope zones (Table 1). There were signifi-
cant differences in most of soil chemical properties (Tables 1
and 2). Both organic matter and soil C and N content were
2-fold lower in the near-stream zone than in the intermedi-
ate and hillslope zones, though all zones exhibited similar
C : N ratios (C : N= 14). Moreover, inorganic N concentra-
tions (NH+4 and NO−3 ) were from 2- to 5-fold lower for the
near-stream zone than for the other two zones.

On annual basis, net N mineralization averaged 0.14±
0.40, 0.39± 1.23, and 0.22± 1.03 mg N kg−1 d−1 at the
near-stream, intermediate, and hillslope zones, respectively.
Mean annual net nitrification rates were close to net
N mineralization, averaging 0.17± 0.38, 0.25± 0.69, and
0.28± 0.73 mg N kg−1 d−1 at the near-stream, intermedi-
ate, and hillslope zones, respectively. There were no sig-
nificant differences in mean annual net N mineraliza-
tion and net nitrification rates among riparian zones (in
both cases: mixed-model ANOVA test, F > F0.05, p >

0.05). Mean annual denitrification was higher at the near-
stream zone (2.69± 5.30 µg N Kg−1 d−1) than at the inter-
mediate (0.72± 1.85 µg N Kg−1 d−1) and hillslope (0.76±
1.59 µg N Kg−1 d−1) zones (mixed-model ANOVA test, F =

4.33, p = 0.038). However, potential denitrification rates
were lower in the near-stream zone (0.3–0.6 mgN kg−1 d−1)
compared to intermediate (1.0–2.4 mgNkg−1 d−1) and hills-
lope (1.3–3.8 mgN kg−1 d−1) zones (Table 3).

Natural CO2 and N2O emissions differed among ri-
parian zones, yet they showed opposite spatial patterns.
Near-stream zone exhibited lower CO2 emissions (318±
195 mgC m−2 h−1) compared to the intermediate (472±
298 mgC m−2 h−1) and hillslope (458± 308 mgC m−2 h−1)
zones (mixed-model ANOVA test, F = 7.08, p = 0.009).
Conversely, near-stream zone showed higher N2O emis-
sions (0.035± 0.022 mg N m−2 h−1) than the other two
zones (intermediate= 0.032± 0.025 mg N m−2 h−1; hills-
lope= 0.022±0.012 mg N m−2 h−1) (mixed-model ANOVA
test, F = 7.31, p = 0.008).

3.2 Temporal pattern of soil properties, microbial
rates, and gas emissions

During the study period, there was a marked seasonality in
most of soil physical properties, except for pH and Eh, which
did not show any temporal pattern (Table 2). Soil water con-
tent exhibited a marked seasonality, though it differed among
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Table 1. Mean annual values (±SD) of soil water content (volumetric), soil temperature, soil pH, soil redox capacity (Eh), soil organic
matter, soil molar C : N ratio, soil carbon (C) and nitrogen (N) content, and soil ammonium (NH+4 ) and nitrate (NO−3 ) concentrations for
the three riparian zones. For each variable, different letters indicate statistical significant differences between riparian zones (post hoc Tukey
HSD test, p < 0.05).

Near-stream Intermediate Hillslope

Soil water content (%) 29.58± 7.55A 19.36± 6.00B 19.81± 6.24B

Temperature (◦C) 11.37± 5.39A 11.82± 5.90A 12.01± 6.34A

Eh 170± 111A 184± 103A 184± 95A

pH 6.66± 0.42A 6.31± 0.50A 6.68± 0.53A

Organic matter (%) 4.41± 0.71A 7.98± 2.88B 9.53± 1.99C

C : N ratio 14.25± 3.64A 14.09± 1.78A 13.63± 1.18A

C (mg kg−1) 2004± 1038A 4007± 1785B 4923± 1428B

N (mg kg−1) 160± 44A 330± 135B 418± 107C

NH+4 (mg N kg−1) 1.88± 1.21A 5.58± 3.48B 3.90± 2.07B

NO−3 (mg N kg−1) 0.75± 0.58A 4.66± 4.25B 5.30± 4.20B

Table 2. Results from the mixed-model analysis of variance (ANOVA) showing the effects of riparian zones and seasons on soil water content,
soil temperature, soil pH, soil redox capacity (Eh), soil organic matter, soil molar C : N ratio, soil carbon (C) and nitrogen (N) content, and
soil ammonium (NH+4 ) and nitrate (NO−3 ) concentrations. Plot was treated as a random effect in the model, whereas riparian zones, seasons,
and their interactions were considered fixed effects. Values are F values and the p values are shown in brackets. P values < 0.05 are shown
in bold.

Riparian zone Seasons Zone× season

Soil water content 18.6 [< 0.001] 100 [< 0.001] 13.6 [< 0.001]
Temperature 0.33 [0.721 ] 2117 [< 0.001] 0.42 [0.906]
pH 1.97 [0.182] 2.43 [0.060] 2.73 [0.052]
Eh 1.34 [0.247] 3.53 [0.062] 1.88 [0.084]
Organic matter 27.8 [< 0.001] 2.77 [0.053] 1.62 [0.144]
C : N ratio 0.99 [0.400] 10.9 [< 0.001] 1.72 [1.118]
C 27.1 [< 0.001] 1.86 [0.132] 0.77 [0.630]
N 39.7 [< 0.001] 1.22 [0.311] 0.63 [0.746]
NH+4 12.4 [0.001] 2.71 [0.051] 1.52 [0.176]
NO−3 22.4 [< 0.001] 5.63 [< 0.001] 4.09 [< 0.001]

Zone: near-stream, intermediate, hillslope.
Season: Feb, Apr, Jun, Aug, and Nov.

riparian zones (Table 2, “zone× season”). In the interme-
diate and hillslope zones, soil water content was maxima
in November and minima in August, while the near-stream
soils were wetter during both spring (April–June) and fall
(November) (Fig. 3a). Conversely, soil temperature showed
similar seasonality but opposite values in all riparian zones
(Table 2), with a maxima in summer (August) and minima in
winter (February) (Fig. 3b). Soil chemical properties (soil or-
ganic matter and both soil C and N content) did not show any
seasonal trend, but all riparian zones exhibited lower C : N
ratios in February compared to the other seasons (Fig. 3c).
There was no seasonality in soil NH+4 concentrations at any
riparian zone (Table 2). However, soil NO−3 concentrations
showed a marked temporal pattern, yet it differed among
riparian zones (Table 2, “zone× season”). The highest soil
NO−3 concentrations occurred in February at both the near-

stream and hillslope zones, but in June–August at the inter-
mediate zone (Fig. 3d).

Soil N processes showed similar seasonal patterns in all ri-
parian zones (in all cases: Fdate < F0.05, Finteraction > F0.05).
Both net N mineralization and net nitrification rates were
higher in April than February, June, and November (Fig. 4a
and b), while denitrification rates were higher in April and
June compared to the rest of the year (Fig. 4c). In April, both
net N mineralization and net nitrification rates differed across
riparian zone, with higher rates in the intermediate zone than
in the near-stream one. Net N mineralization rates also dif-
fered in August, when the intermediate zone exhibited 2-fold
higher rates than the other two zones. Finally, denitrification
was higher at the near-stream than at the other two zones in
both June and August.

Natural gas emissions showed a clear seasonal pattern (in
both cases: mixed-model ANOVA test, Fdate < F0.05, p <
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Table 3. Mean values (± SD) of potential denitrification rates (in mg N kg−1 d−1) after anoxia (DEAMQ), carbon addition (DEAC), nitrogen
addition (DEANO3 ), and carbon and nitrogen addition (DEAC+NO3 ) treatments for the three riparian zones during the study period. For each
zone, different letters indicate statistical significant differences between treatments (post hoc Tukey HSD test, n= 15, p < 0.01).

Potential denitrification rates (mg N kg−1 d−1)
DEAMQ DEAC DEANO3 DEAC+NO3

Near-stream 0.31± 0.41A 0.26± 0.27A 0.42± 0.42A 0.63± 0.85A

Intermediate 1.01± 1.12A 1.88± 1.59A 2.28± 3.57A 2.40± 2.45A

Hillslope 1.34± 1.33A 2.35± 1.97AB 1.73± 1.43AB 3.82± 2.78B

Figure 3. Temporal pattern of (a) soil water content, (b) soil temperature, (c) soil C : N molar ratio, and (d) soil nitrate concentration at 10 cm
depth. Data are shown for the near-stream (white), intermediate (grey), and hillslope (black) zones during the study period. Circles are mean
values and error bars are standard deviations.

0.001), yet it differed between CO2 and N2O emissions. In
all zones, CO2 emissions were maxima in June and min-
ima in February (Fig. 5a), while highest N2O emission rates
occurred in April and lowest in both February and August
(Fig. 5b). In spring (April and June), CO2 emissions were
higher at the intermediate and hillslope zones compared to
the near-stream one (Fig. 5a). Moreover, the near-stream
zone showed higher N2O emissions than the hillslope zone
in February, April, and June (Fig. 5b).

3.3 Relationship between soil properties, microbial
processes, and gas emissions

PLS models extracted two components that explained the
71 % and the 40 % of the variance in CO2 and N2O
emissions, respectively (Table 4). The model predictabil-
ity was high for CO2 (Q2Y = 0.66), but weak for N2O
(Q2Y = 0.34). Moreover, PLS models identified few vari-
ables as key predictors of GHG emissions (VIF < 2, VIP >

0.8), yet these variables differed between CO2 and N2O
emissions (Table 4). Soil temperature (PLS coefficient
[coef]=+0.60), and soil water content (coef=−0.24) ex-
plained most of the variation in CO2 emissions (Table 4,

Fig. S2a). Conversely, variations in N2O emissions were
primarily related to changes in denitrification rates (coef=
+0.45), soil water content (coef=+0.21) and, to a lesser ex-
tent, groundwater level (coef=−0.16) (Table 4, Fig. S2b).

4 Discussion

This study emphasized the role of soil water content as
a main driver of riparian biogeochemistry and GHG emis-
sions. By analyzing soil microbial processes and GHG emis-
sions over a year in a Mediterranean riparian forest, we
clearly demonstrate that soil water content has a major role
in driving soil microbial processes, the spatiotemporal patters
of CO2 and N2O emissions and the overall role of Mediter-
ranean riparian soils in the global C and N cycles.

4.1 Microbial processes regulating GHG emissions

Mean daily emissions of CO2 found in the present study
(1.2–10 gC m−2 d−1) were generally high, especially during
spring and summer months. These soil CO2 emissions were
higher than those reported for temperate riparian regions
(0.2–4.8 gC m−2 d−1; Batson et al., 2015; Bond-Lamberty
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Table 4. Summary of the partial least squares (PLS) models produced for CO2 and N2O emissions at the riparian site (n= 75). Values
are the coefficients from PLS models which describe the relationship (direction and relative strength) between explanatory variables and
gas emissions. The variance inflation factor (VIF) of each explanatory variable, indicative of collinearity, is shown in brackets. Bold values
indicate the most influencing variables (variable importance in the projection (VIP) > 1.0).

X variable Abbreviation CO2 N2O

Soil properties Soil water content SWC −0.235 [1.72] 0.205 [1.32]
Groundwater level GWL – −0.157 [1.24]
Temperature Tsoil 0.599 [1.45] –
pH pH – –
Redox potential Eh – –
Bulk density BD – –
Coarse texture % Sand – –
Organic matter SOM – –
Total carbon C – –
Total nitrogen N – –
Molar C : N ratio C : N ratio – –
Ammonium NH+4 0.167 [1.61] –
Nitrate NO−3 0.066 [1.80] −0.060 [1.47]

Soil N processes Net N mineralization NNM – –
Net nitrification NN – –
Denitrification DNT – 0.449 [1.09]

R2Y 0.71 0.40
Q2Y 0.66 0.34

All abbreviations are used in Fig. S2 for PLS loading plots.

and Thomson, 2010; Mander et al., 2008), although similar
values have been reported in some dry forested wetlands of
Europe and North America (Harms and Grimm, 2008; Oer-
tel et al., 2016). These substantially high CO2 emissions ob-
served in Font del Regàs may be attributed to high microbial
respiration rates associated with relatively moist and organic-
matter-enriched soils (Mitsch and Gosselink, 2007; Pacific
et al., 2008; Stern, 2006). In agreement, previous studies have
reported that microbial heterotrophic respiration can be an
important contributor (> 60 %) to CO2 soil effluxes in water-
limited riparian zones (Harms and Grimm, 2012; McLain
and Martens, 2006). However, the absence of a relationship
between soil N processes and CO2 emissions suggests that
soil C and N cycles are decoupled in Mediterranean ripar-
ian forests, and thus soil N mineralization may be not a good
descriptor of bulk organic matter mineralization. Moreover,
plant root respiration and methane oxidation can increase the
CO2 emissions in riparian soils with deep groundwater tables
such as in Font del Regàs (Chang et al., 2014).

Conversely, N2O emissions of our riparian site (0.001–
0.2 mgN m−2 d−1) were relatively low during the whole
year. Similar N2O emissions were reported in other water-
limited riparian forests that are rarely flooded (−0.9–
0.39 mgm−2 d−1; Bernal et al., 2003; Harms and Grimm,
2012; Vidon et al., 2016), yet these values were, on average,
much lower than those found in temperate riparian regions
(0–54 mgN m−2 d−1; Burgin and Groffman, 2012; Hefting

et al., 2003; Mander et al., 2008). In Font del Regàs, most
N2O was produced by denitrification, as we found an inti-
mate link between this microbial process and N2O emissions.
Additionally, other processes such as nitrification or nitrate
ammonification can contribute to N2O emissions (Baggs,
2008; Hefting et al., 2003). However, it seems unlikely that
nitrification could account for the observed N2O emissions
because no relationship was found between net nitrification
rates and N2O emissions. Likewise relatively oxic condi-
tions (Eh > 100) and low C : N ratios (C : N < 20) in Font del
Regàs suggest low nitrate ammonification in riparian soils
(Schmidt et al., 2011). Currently, the influence of soil deni-
trification on N2O emissions in riparian zones is still under
debate (Giles et al., 2012). Nonetheless, our results suggest
that performing simultaneous measurements of different soil
N can contribute to disentangling the mechanisms underlying
net N2O emissions in riparian areas.

4.2 Effects of soil water content on soil CO2 effluxes

As expected, we found higher soil CO2 effluxes at the in-
termediate and hillslope zones than at the near-stream zone.
This spatial pattern was negative and strongly related to soil
water content (Table 4), suggesting that, as soils become
less moist and more aerated, oxidizing aerobic respiration
increases, ultimately stimulating CO2 production in the top
soil layer (Müller et al., 2015). In agreement, other aerobic
processes, such as N mineralization, were also higher in the
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Figure 4. Temporal pattern of (a) soil net N mineralization, (b) net
nitrification, and (c) denitrification rates at the near-stream (white),
intermediate (grey), and hillslope (black) zones during the study
period. Bars are mean values for each section and error bars are
standard errors. For each season, different letters indicate significant
differences among sections (mixed-model ANOVA, p < 0.05).

intermediate and hillslope zones. Moreover, deep groundwa-
ter tables in the hillslope zone can increase the volume of
aerated soil, which can increase the area-specific soil CO2
emissions near the hillslope edge (Chang et al., 2014). In-
creasing CO2 emissions from wet to dry zones has been re-
ported in other wetlands and riparian forests (Batson et al.,
2015; Morse et al., 2012; Welti et al., 2012), showing a close
linkage between riparian hydrology and spatial variations in
microbial respiration rates.

Nonetheless, the intra-annual variations of soil CO2 emis-
sions were strongly dependent on soil temperature (Table 4).
Probably, cold temperatures (< 4 ◦C) limited soil respira-
tion during winter, while warmer conditions (> 15 ◦C) stim-
ulated this process in June and August (Emmett et al., 2004;
Suseela et al., 2012; Teiter and Mander, 2005). However,
lower CO2 emissions than expected for temperature dynam-
ics were reported in summer at the intermediate and hills-
lope zones, likely because extreme soil dryness (soil water
content < 20 %) limited respiration rates during such period
(Chang et al., 2014; Goulden et al., 2004; Wickland et al.,

Figure 5. Temporal pattern of soil (a) CO2 and (b) N2O emissions
at the near-stream (white), intermediate (grey), and hillslope (black)
zones during the study period. Bars are mean values for each section
and error bars are standard errors. For each season, different let-
ters indicate significant differences among sections (mixed-model
ANOVA, p < 0.05).

2010). Although the mechanisms by which soil dryness may
affect microbial C demand are still poorly understood, sup-
pressed microbial respiration in summer can be attributed
to a disconnection between microbes and resources (Bel-
nap et al., 2005; Davidson et al., 2006), decreases in photo-
synthetic and exo-enzymatic activities (Stark and Firestone,
1995; Williams et al., 2000), or a relocation of the invested
energy on growth (Allison et al., 2010). Altogether, these re-
sults suggest that soil water content may be as important as
soil temperature to understand soil CO2 effluxes, and there-
fore future warmer conditions may not fuel higher CO2 emis-
sions, at least in those regions experiencing severe water lim-
itation.

4.3 Effects of soil water content on soil N2O effluxes

As occurred for CO2 emissions, N2O fluxes showed a clear
spatial pattern associated with changes in soil water con-
tent across the riparian zone. In the near-stream zone, rel-
atively wet conditions (SWC= 30–40 %) likely promoted
denitrification rates, while dry soils (SWC= 10–25 %) could
limit both nitrification and denitrification in the intermedi-
ate and hillslope zones (Linn and Doran, 1984; Pinay et al.,
2007). Such spatial pattern differed from those found in non-
water-limited riparian forests, where higher N2O emissions
occurred in the hillslope edge as a result of high resource
supply (DeSimone et al., 2010; Dhondt et al., 2004; Hedin
et al., 1998). These results suggest that riparian hydrology is
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the primary mechanisms controlling denitrification but, once
water is unlimited, substrate availability controls the magni-
tude of denitrification rates. This former idea is supported by
our potential denitrification results, which showed that, af-
ter adding water, denitrification rates at the intermediate and
hillslope zones were 3–4 times the rate at the near-stream
zone. Moreover, N2 : N2O ratios estimated from acetylene
method suggest that there was a spatial pattern in denitrifi-
cation efficiency as well. During the study period, N2 : N2O
ratios were always higher at the near-stream (21.50± 40.32)
than at the intermediate and hillslope zones (5.90±16.02 and
4.23± 8.31, respectively), yet all values were much lower
than those reported for temperate riparian forests (184–844;
Mander et al., 2014). All together, these results support the
idea that saturated soils favored the complete denitrification
process to N2 and can potentially emit less N2O compared to
less saturated soils (Giles et al., 2012).

Intra-annual variation in N2O emission was also related to
riparian hydrology because high rates of N2O effluxes oc-
curred in April, when large precipitation events (400 mm)
raised the groundwater level and increased soil water con-
tent at the whole riparian plot. Such pulses of N2O emis-
sions short-after rewetting events can reflect the microbial
use of the NO−3 that has been accumulated during dry an-
tecedent periods (Chang et al., 2014; Hefting et al., 2004;
Pinay et al., 2007). In agreement, the PLS model showed
a negative relation between soil water content and NO−3 con-
centrations. Moreover, our results further suggest that rewet-
ting events promote a fast N cycle because all microbial N
processes were maxima in April. Nevertheless, we also ex-
pected a fast N cycle as well as large N2O emissions fol-
lowing rains in November because, similarly to spring, en-
vironmental conditions (i.e., high soil water content and in-
crements in soil NO−3 concentrations during the antecedent
dry summer) should enhance microbial activity. Likely, low
rates of N transformations during fall may be attributed to
an increase in microbial N demand following large C inputs
from litterfall (Guckland et al., 2010). Moreover, leaf litter
from R. pseudoacacia, the main tree species in our study site,
holds a high lignin content (Castro-Díez et al., 2009; Yavitt
et al., 1997), which might enrich the riparian soil with pheno-
lic compounds and ultimately limit the use of N by microbes
(Bardon et al., 2014). These results suggest that the response
of N cycling to changes in water availability is more com-
plex and less predictable than C cycling, likely because N
processes depend on the interplay of additional ecosystem
factors not included in this study.

4.4 Riparian soils as hotspots of GHG effluxes

There are several studies that attempt to upscale riparian
GHG emissions at catchment scale, yet there are still funda-
mental uncertainties regarding the magnitude and sources of
GHG emissions (Hagedorn, 2010; Pinay et al., 2015; Vidon
and Hill, 2006). When accounting for all GHG (CO2+N2O),

our study suggest that our riparian soils can emit between
438 and 3650 gCm−2 yr−1. Assuming that GHG emissions
(CO2+N2O) from upland evergreen oak and beech soils (54
and 38 % of the catchment, respectively) are similar to other
Mediterranean regions (oak: 19–1240 gC m−2 yr−1; Asensio
et al., 2007; Barba et al., 2016; Inclán et al., 2014; beech:
214–1182 gC m−2 yr−1; Guidolotti et al., 2013; Kesik et al.,
2005), then riparian soils (6 % of the catchment area) can
contribute between 16 and 22 % to the total catchment soil
GHG emissions. Although these estimates are rough (i.e., we
assumed that riparian soils emit the same rate of GHG that
our study site), our results clearly pinpoint that riparian soils
can be potential hotspots of GHG emissions within Mediter-
ranean catchments. These findings contrast with the com-
mon knowledge that water-limited soils are powerless GHG
sources to the atmosphere (Bernal et al., 2007; Vidon et al.,
2016) and stress the importance of simultaneously consider
several GHG emissions (i.e., CO2, N2O, CH4) to get a whole
picture of the role of riparian soils in climate change.

5 Conclusions

Mediterranean riparian zones are dynamic systems that un-
dergo spatial and temporal shifts in biogeochemical pro-
cesses due to changes in both soil water content and sub-
strate availability. In a first attempt to simultaneously quan-
tify CO2 and N2O emissions from Mediterranean riparian
soils, we show that most of GHG emissions occur in the form
of CO2, even in the wet soils located near the stream. In ad-
dition, our results clearly illustrate a strong linkage between
riparian hydrology and the microbial processes that produce
GHG. Deep groundwater tables fueled large respiration rates
in the relatively dry soils near the hillslope, while denitri-
fication mostly occurred in the wet zones located near the
stream channel. As occurred at spatial scale, riparian soil wa-
ter content was a primarily control of the temporal patterns
of CO2 and N2O emissions. Soil dryness diminished respi-
ration rates during summer, while a fast soil N cycling pro-
moted high N2O emissions after a rewetting event in spring.
Overall, our study shows that future variations in catchment
hydrology due to climate change can potentially affect the ri-
parian functionality in Mediterranean zones, as well as their
contribution to regional and global C and N cycles.

Data availability. The data sets used in this paper can be obtained
from the authors upon request.
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Supplementary material 

Figure S1: Concentrations of carbon dioxide (left column) and nitrous oxide (right column) during the incubation 

time for the sampling campaign of June 2013. Data is shown for the near-stream, intermediate and hillslope zones 

separately. For each plot, data is shown as mean ± SD (n = 5) for all sampling days of June. The best fit linear 

model used to calculate gas emissions is shown for each plot.  5 

  



2 
 

Figure S2. Loading plot of the (a) CO2 and (b) N2O partial least squares models (PLS) for the 75 measurements. 

The graph depicts the correlation structures between the X variables (circles) and gas emissions (vectors). Variables 

situated along the same directional axis correlate with each other. Different color in X variables indicates their 

influence on gas emissions based on the “variable importance in the projection (VIP)” scores for each model. In 10 
each case, white has VIP scores < 0.8, grey has VIP scores < 1.0 and black has VIP scores > 1.0. 
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