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Abstract: We consider a system of N fermions described by the Lipkin model and investigate
their behaviour at finite temperature. We study the influence of the interactions on thermodynamic
properties. The calculations have been done by a numerical diagonalization of the Hamiltonian.
Once the full spectrum is known we consider the thermal occupation of the states and calculate
the different thermodynamic properties. The extension of the Hellmann-Feynman theorem at finite
temperature requires the derivative of the free energy instead of the internal energy used for zero
temperature. The importance of the entropy in the fulfillment of the Hellmann-Feynman theorem
is analyzed.

I. INTRODUCTION

Solving the Schrödinger equation for a many-body
system has supposed a challenge for physicists along the
history. These difficulties in solving this equation have
induced the development and improvement of quantum
many-body theories. Simple model systems have been
proposed in order to obtain exact solutions. One of
these models is the Lipkin model. It was proposed in the
mid-60s by Lipkin, Meshkov and Glick[1] to describe a
many-fermion system with two energy levels. It is impor-
tant to highlight that the Lipkin model can provide exact
results and has been set as a benchmark for different
approximations as for instance Hartree-Fock, random
phase approximation and perturbation theory[2, 3] and
also to study quantum phase transitions[4] and protocols
to implement short-cuts to adiabaticity[5, 6].

The aim of this work is the study of this model at
finite temperature. The motivation arises from the
interest to study hot nuclei and hot nuclear matter
in heavy ion collisions and in supernova explosions.
Theoretical treatments of these issues require of finite
temperature many-body theory. The Lipkin model has
been widely used at zero temperature but not as much
at finite temperature[7–9].

The organization of this work is as follows. In Sec. II
the basis of the Lipkin model are explained. In Sec. III
we make a detailed study of the Lipkin model at finite
temperature (with and without interaction). In Sec. IV
we prove the validity of the Hellmann-Feynman theorem
at finite temperature. Finally, a short summary of our
results is contained in Sec. V.

II. THE LIPKIN MODEL

The Lipkin model consists of N fermions occupying
two energy levels. The energy difference between these
two levels is indicated with the letter ε. Each level is
described by a quantum number σ which takes the value

+1 in the upper level and -1 in the lower one. It is also
characterized by a set of p quantum numbers specifying
the site number (1, ..., N). The Hamiltonian of this model
is given by:

Ĥ = εK̂0 −
V

2
(K̂2

+ + K̂2
−), (1)

with

K̂0 =
1

2

N∑
p=1

(a†p,+ap,+ − a
†
p,−ap,−),

K̂+ =

N∑
p=1

a†p,+ap,−,

K̂− =

N∑
p=1

a†p,−ap,+,

(2)

where a†p,±, ap,± are the creation and annihilation oper-
ators satisfying the anti-commutation relations:

{ap,α, a†r,β} = δprδαβ . (3)

In the Hamiltonian that we are considering, the term
proportional to V is the interaction term and acts as
follows: it takes two particles from one level and puts
them on the other one. Therefore, without interaction
we would only have the term K̂0. The energies in this un-
perturbed situation are given by the number of particles
lying in the lower and upper levels. The new operators
that we have introduced satisfy the following commu-
tation relations characteristic of the algebra of angular
momentum:

[K̂+, K̂−] = 2K̂0, [K̂0, K̂+] = K̂+, [K̂0, K̂−] = −K̂−,
(4)

which can be easily proved using the anti-commutation
relations in Eq. (3). The action of these operators is
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FIG. 1: Evolution of the ground state energy versus the in-
teraction term V for different number of particles.

easily described using their eigenvectors:

K̂0 |k,m〉 = m |k,m〉 ,

K̂2 |k,m〉 = k(k + 1) |k,m〉 ,

K̂± |k,m〉 =
√
k(k + 1)−m(m± 1) |k,m± 1〉 .

(5)

The quantum number k takes the following values:
0, 1, ..., N2 (where N is the number of particles), whereas
for each k, m takes the values −k,−k+1, ..., k. As we are
going to work with an even number of particles, these val-
ues will be integers. Every value of k sets up a subspace
of 2k + 1 dimension and it will have a definite multiplic-
ity (λk). Thus, the total dimension of the space will be
the sum of the dimension of each k-subspace multiplied
by λk. This total dimension is 2N . We could have also
chosen to work with the spin basis. However, it is much
more complicated that working with the |k,m〉 basis. In
order to compute the possible k’s from the spin values
we have to assign to each particle a definite spin ( 1

2 or

− 1
2 ) and sum all these spins. This will be the m value of

this state. The maximum m-value defines the maximum
k and can be identified with the state |k, k〉 with k = N

2 .

Applying successively the operator K̂− we can express
the state in terms of the spin basis. In the same way, the
state with all the spins down corresponds to |k,−k〉 with
k = N

2 . The multiplicity λk can be computed with the

k 0 1 2 3 4 5

λk 42 90 75 35 9 1

Dim. 1 3 5 7 9 11

TABLE I: Values of the quantum number k, the multiplicity
λk and the dimension of the subspace for N = 10. The sum
of the dimension times the multiplicities adds to 210.

FIG. 2: Energies for the subspace of k = 3 versus the inter-
action term V . This subspace has dimension 2k + 1 = 7 so
we obtain seven different eigenvalues.

following equation[10]:

λk =
1 + 2k

1 + k + N
2

(
N

N
2 − k

)
. (6)

In Table I we provide some values for the dimension and
multiplicity of several k-subspaces.

The matrix elements of the Hamiltonian are calculated
using Eq. (5):

〈k,m|Ĥ|k,m+ 2〉 = −V
2

√
[k(k + 1)−m(m− 1)]√

[k(k + 1)− (m− 1)(m− 2)],

〈k,m|Ĥ|k,m〉 = εm,

〈k,m+ 2|Ĥ|k,m〉 = 〈k,m|Ĥ|k,m+ 2〉 .
(7)

In this work we have focused on a system with an even
number of particles. Diagonalizing this Hamiltonian we
obtain the energies for the different subspaces. Regard-
ing the energies, one of the keys of the Lipkin model is
that the ground state of the system is precisely in the
subspace of dimension N + 1 corresponding to the max-
imum possible value of k, k = N

2 . The energies are in
units of ε to which we have assigned the value of 1. It is
obvious that the subspaces with the same k will generate
the same values for the energy.

Fig.1 shows the ground state energy as a function of V
for different number of particles. We observe that the big-
ger the number of particles, the more negative the ground
state energy is. Also, as the interaction term increases,
we notice that these values become more negative. Both
facts reflect the attractive character of the interaction
term. Notice however, the flatness of the energy when V
tends to zero.
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Fig. 2 shows the seven energy eigenvalues of the sys-
tem for k = 3 as a function of V . The lowest energy
corresponds to the ground state energy for N = 6. We
can observe that no matter which value takes the interac-
tion term V , the energies of the subspace are symmetric
with respect to zero.

III. FINITE TEMPERATURE

A. Formalism

The treatment of the Lipkin model at finite tempera-
ture can be done in the canonical ensemble. The partition
function Z can be computed after the diagonalization of
the Hamiltonian in each of the k-subspaces:

Z =
∑
k

λk

2k+1∑
i=1

e−βE
(k)
i , (8)

where β = 1
T . The Z partition function gives direct

access to the free energy:

F = E − TS = −T ln(Z), (9)

and to the thermal average of the energy:

E =
1

Z

∑
k

λk

2k+1∑
i=1

E
(k)
i e−βE

(k)
i

= − 1

Z

∂Z

∂β
= −∂ln(Z)

∂β
,

(10)

Other quantities of interest are the entropy:

S = −∂F
∂T

, (11)

and the heat capacity C:

C =
∂E

∂T
. (12)

B. Non interacting versus interacting case

In this section we compare the behaviour of the ther-
modynamic quantities without and with interaction.

We can observe in Fig.3, (a) that for low tempera-
tures the average energy approaches the energy of the
ground state. We also notice that the bigger the number
of particles, the more negative the ground state energy is.

At high temperatures, the finite size of the Hilbert
space, translates in an equiprobable occupation of all
energy states of the system. However, this does not
explain the zero value of the average energy. In order

to give an explanation to this fact we have to focus
on the energies of each k-subspace. These eigenvalues
are symmetric with respect to zero. Therefore, as at
high temperatures all these states are equiprobable, the
average energy goes to zero.

Focusing now on the average energy with interaction,
Fig.3, (b), we observe the same behaviour at high tem-
peratures as without interaction. The main difference is
that in the interacting case the ground state energy is
lower. Moreover, with interaction, a higher temperature
is necessary to reach the situation of equiprobability,
with average energy zero.

We have represented the heat capacity in Fig. 3
(c) and (d) because it is intimately related with the
dependence of the energy with temperature. We can
observe that at low temperatures, the heat capacity goes
to zero in (c) and (d) (independently of the number
of particles). Comparing it with the average energy in
(a) and (b) we observe that the slope of E versus T
is zero and therefore the heat capacity tends to zero.
In addition, we can observe that the maximum of the
heat capacity in (c) and (d) coincides with the inflection
point of the average energy as Eq. (12) requires. In
Fig.3, (d), the case with interaction, we observe that
depending on the number of particles the maximum is
shifted to higher temperatures, meanwhile in the non
interacting case in Fig. 2, (c) the maximums are aligned.
This shift of the maximum is due to the fact that as
the number of particles increases, it is more difficult to
reach the inflection point of the energy as a function of T .

The results for the entropy are shown in Fig.3, (e) and
Fig.3, (f). On the one hand, without interaction, we can
see that as the temperature goes to zero, the entropy
tends also to zero as expected (only the lowest energy
state is occupied). We can also observe that for a given
N , when the temperature increases, the entropy tends to
the value ln(2N ), being 2N the number of microstates.
Nevertheless, if we represent the entropy per particle
we would have that at high temperatures, no matter
the number of particles, the entropy would tend to
ln(2). On the other hand, in the interacting case, we
observe the same behaviour at high temperatures, but
it is more difficult to reach the situation where all the
microstates are equally possible. When the temperature
is nearly zero, the entropy is also zero as expected.
The differences with the case without interaction are
observed mainly at low temperatures.

In Fig.3 (g) and (h) we present the results for the free
energy. Depending on the number of particles, it takes a
more negative value. As temperature rises, Z decreases,
so by Eq.(9), the free energy decreases too. As Eq.(9)
shows, there is a competition between the entropy and
the average energy. As temperature rises, E tends to zero
and the term −TS is bigger and more negative, so at high
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FIG. 3: In the left panel, case without interaction. In the right panel, V = 1. (a), (b) E versus T for different N . (c), (d)
Heat capacity versus T for different N . (e), (f) Entropy versus T for different N . The dashed line represents the limit at high
temperatures. (g), (h) Free energy versus T for different N .

temperatures the free energy is approximately −TS. At
high temperatures we have proved before that the limit
for the entropy is the same with and without interaction
so the free energy at high temperatures approaches the
same value with or without interaction as observed in
(g) and (h). The differences between (g) and (h) are
mainly observed at low temperatures. The interaction
term V seems to distinguish the values of the free energy
depending on the number of particles.

IV. HELLMANN-FEYNMAN THEOREM

The Hellmann-Feynman theorem at T = 0 states that
if we make a perturbation in our Hamiltonian such that
[11]:

Ĥλ = H0 + λV, (13)

where V is a part of the Hamiltonian. Then the expec-
tation value of V in the ground state can be calculated
as:

〈V 〉gs =
∂Egs,λ
∂λ

∣∣∣∣
λ=1

, (14)

where Egs,λ is the ground state energy of Hλ. This the-
orem [12] is very useful when the expectation value of V
is difficult to calculate but we know how to compute the

total energy. In our case, we have numerically checked
the fulfillment of the theorem af T = 0. In addition, we
have extended the Hellmann-Feynman theorem to finite
temperature. To this end, we start from the definitions:

Z = Tr[e−βĤ ], (15)

F = −T ln(Tr[e−βĤ ]), (16)

where Tr is the trace. In one hand, introducing the λ
parameter as in Eq.(13) we obtain:

Fλ = −T ln(Tr[e−β(H0+λV )]). (17)

On the other hand we know that the thermal average of
V is given by:

〈V 〉T =
Tr(V e−βĤ)

Tr(e−βĤ)
. (18)

Therefore, the derivative of Eq.(17) over λ at λ = 1 re-
sults in:

∂Fλ
∂λ

∣∣∣∣
λ=1

= 〈V 〉T . (19)

Eq.(19) is the extension of the Hellmann-Feynman
theorem at finite temperature which states that the
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FIG. 4: Results for the Hellmann-Feynman theorem using the
derivative of the free energy versus temperature, the average
energy versus temperature and also the thermal average of V .

derivative of F with respect to the λ parameter at λ = 1
coincides with the thermal average of the term V .

As we observe in Fig.4 the direct calculations of the
thermal average of 〈V 〉 (circles) coincide with 〈V 〉 calcu-
lated according to Eq.(19). Notice the discrepancy when
the derivative is calculated with the average thermal en-
ergy. This emphasizes the important contribution of the
derivative of the entropy with the variation of λ. Ob-
viously, when T tends to zero, as S tends to zero too,
the derivative of Eλ and Fλ coincide. The same is true
when T becomes large, i.e, when S tends to a constant
independent of the interaction.

V. CONCLUSIONS

We have studied the Lipkin model at finite tem-
perature for an even number of particles without and

with interaction. We have also studied the Hellmann-
Feynman theorem at zero temperature and we have
extended it to finite temperature. Our conclusions are:

• The average energy of a system of N fermions tends
to the ground state at low temperatures and to zero
at high temperatures (all the states are equiprob-
able) independently of V . This fact is due to the
symmetry with respect to zero of the energies of
every k-subspace no matter which value takes V .

• The entropy tends to zero at low temperatures and
to the logarithm of the number microstates at high
temperatures. This behaviour is independent of the
interaction term. However, the influence of V is re-
flected in the temperature at which this value is
reached. The bigger the V , the higher the temper-
ature has to be.

• The Hellmann-Feynman theorem at zero tempera-
ture states that the derivative of the total energy
of the ground state of Hλ at λ = 1 provides the
expectation value of V in the ground state. The
extension of this theorem to finite temperature, to
obtain the thermal average, 〈V 〉T , requires to use
the corresponding derivative of the free energy, em-
phasizing the importance of the entropy contribu-
tion to 〈V 〉T .
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