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Abstract
The task of answering natural language questions over structured data has received wide

interest in recent years. Structured data in the form of knowledge bases has been available
for public usage with coverage on multiple domains. DBpedia and Freebase are such knowl-
edge bases that include encyclopedic data about multiple domains. However, querying such
knowledge bases requires an understanding of a query language and the underlying ontology,
which requires domain expertise. Querying structured data via question answering systems
that understand natural language has gained popularity to bridge the gap between the data
and the end user.

In order to understand a natural language question, a question answering system needs
to map the question into query representation that can be evaluated given a knowledge base.
An important aspect that we focus in this thesis is the multilinguality. While most research
focused on building monolingual solutions, mainly English, this thesis focuses on building
multilingual question answering systems. The main challenge for processing language input
is interpreting the meaning of questions in multiple languages.

In this thesis, we present three different semantic parsing approaches that learn models
to map questions into meaning representations, into a query in particular, in a supervised
fashion. Each approach differs in the way the model is learned, the features of the model, the
way of representing the meaning and how the meaning of questions is composed. The first
approach learns a joint probabilistic model for syntax and semantics simultaneously from the
labeled data. The second method learns a factorized probabilistic graphical model that builds
on a dependency parse of the input question and predicts the meaning representation that is
converted into a query. The last approach presents a number of different neural architectures
that tackle the task of question answering in end-to-end fashion. We evaluate each approach
using publicly available datasets and compare them with state-of-the-art QA systems.
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Chapter 1

Introduction

In this chapter, we provide content about the addressed challenges and introduction into the
field of semantic parsing approaches for question answering. We also present the research
questions along with the contributions of this thesis.

1.1 Natural Language Interfaces

Natural language interfaces (NLI) are type of user interfaces where the manipulation of com-
ponents is done based on a language input. The popularity of such interfaces increased
because of smart assistants available in mobile operating systems. Apple’s Siri, Google Now
and Microsoft Cortana can perform various tasks where a user types the command in natural
language or sends an audio input. Voice-enabled devices such as Amazon Alexa, Google
Home, Apple HomePod enable the interaction based on voice input. This type of user inter-
action is preferred for its speed and convenience for people from various backgrounds or age
groups in comparison to traditional user interfaces with different UI components e.g. buttons
etc. Users can interact with them as if “chatting” with a friend, sending audio recording or
using gestures.

Humans are able to interpret a written text by taking into account the domain knowl-
edge, the context of the sentence, the grammatical structure, pragmatics and the personal
understanding of the domain. NLI that interpret written input need to incorporate syntax, se-
mantics and inference mechanism in order to imitate the human understanding of language.
Natural Language Understanding (NLU) is a subfield of Natural Language Processing (NLP)
that focuses on understanding the meaning of a written text and act accordingly. NLI are able
to apply some sort of NLU models to interpret the input and respond accordingly.

NLI systems have been a focus for building human-computer interaction tools. NLU
models enable such interaction on a written language level. NLU models that use semantic
parsers enable easier ways of interaction where users can provide the input in free form e.g.
natural language. There have been many systems developed over the years such as ELIZA
(Weizenbaum, 1966) for the purpose of aiding people with psychological issues. Users could
engage with ELIZA to talk about their problems and the system imitates a psychotherapist.
SHRDLU (Winograd, 1971) could move objects in a “blocks world” using a robotic arm
where the performed action was triggered by a natural language command. Even though these
systems performed well at the time, they had limited understanding of the language where
they try to imitate an expert in a certain domain. The underlying vocabulary is restricted
and the adaptation of such systems to another domain is not straightforward. More advanced
systems have been developed over the years. For example, IBM developed Watson as an
assistant that interprets the spoken or written language. The system was tailored for factoid
questions and won the Jeopardy!1 quiz show in 2011 against two human champions.

1http://www.jeopardy.com/

http://www.jeopardy.com/
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Increasing popularity of messaging applications such as WhatsApp, Facebook Messen-
ger, LINE, WeChat etc. opened new use cases for building NLI systems on one of such mes-
saging platforms. Commercial applications of NLI systems by means of messaging evolved
into building conversational agents. Conversational agents are systems that conduct a con-
versation by means of text or speech where serve as a new interface for consuming services
or provide information. These interfaces are sometimes called chatbots. Messaging appli-
cations have developed frameworks where developers can build and host their chatbots. For
instance, Facebook has developed such platform and started hosting chatbots since 2015.
There were estimated to be 100.000 chatbots deployed on Facebook in 2017.2 These chat-
bots provide services for various domains in many languages. For instance, chatbots started
to answer questions posted on a regular channels posted by customers on various topics. In
cases where the questions are complicated, the chatbots can redirect cases to regular human
agents, e.g. call-center employees. Such use cases could potentially reduce the workload on
human agents where chatbots are trained to perform simple and repetitive tasks. Some of
these chatbots use a scripted approach to handle user input. Scripted approach here means
to predefine user inputs and respond only to those that are covered. Some chatbots use NLU
methods to interpret the intent of user messages, which increases the coverage by not relying
on scripted inputs only.

WeChat, the messaging application from the Chinese company Tencent, has more than
500 million users. This company provides a platform for developers to build dialog systems
that offer various services such as ordering a taxi, paying for a restaurant bill, shopping,
booking a flight ticket and many others. Xiaoice3 is a chatbot developed by Microsoft that
engages with users via chatting in Chinese language. It became very popular among young
people because it can converse about various topics. Specifically users like it for chit-chatting
purposes.4

Next, we explain how NLU methods can be applied to build factoid question answering
systems.

1.2 Semantic Parsing

Most NLI systems have a common way of operating: they take an input from a user and
map it to their internal meaning representation of knowledge, execute it and return the result.
Semantic parsing addresses the method for capturing relevant parts of the linguistic input
into a structured, machine-readable meaning representation. This representation captures the
meaning of the given input with respect to the domain knowledge. Depending on the use
case it can be an executable query, a nested object, a structured document in XML, JSON
formats, etc.

There are various ways of representing meaning. One common way of representation
is using lambda calculus (explained in more detail in Section 2.3.3). It is a formalism in
mathematical logic for expressing computation based on functional abstraction and applica-
tion. Such a formalism is language independent and can be adapted to other domains. Any
selected domain needs to define functions, constants, variables, quantifiers and connectors.

For example, consider some personal assistant that can set appointments or notifications
in a smart phone for a user. The following natural language input “Set an alarm for 7 in the
morning” must be interpreted by the system in order to execute it. The meaning represen-
tation for this can be defined using a function called “set_alarm(time)” that takes a single

2https://www.theregister.co.uk/2017/04/19/chatbots_facebook/
3http://www.msxiaoice.com/
4https://techxplore.com/news/2018-04-xiaoice-chatbot-chat-human-sounding.

html

https://www.theregister.co.uk/2017/04/19/chatbots_facebook/
http://www.msxiaoice.com/
https://techxplore.com/news/2018-04-xiaoice-chatbot-chat-human-sounding.html
https://techxplore.com/news/2018-04-xiaoice-chatbot-chat-human-sounding.html
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argument as an input and creates an event in the user’s calendar with the provided time, such
that the following meaning representation can be obtained:

1. set_alarm(07:00)

In the provided example above, the hours of the day are predefined set of constants and
the expression “set_alarm(time)” is a function. NLI systems can use a semantic parsing com-
ponent to convert the input into a meaning representation of the respective domain. Of course
it is only useful if there is some other component that makes use of the meaning represen-
tation. This component, sometimes called “executor”, takes the meaning representation and
executes it. In the case of setting an alarm, the executor runs the command “set_alarm( 07:00
)” that leads into the user’s calendar having a new entry for alarms.

Another possible example for semantic parsing can be the natural language question
“What is Michael Jordan’s height?”. Let’s say the question can be answered using Wikipedia
data and we have access to the database with factual data. The executor needs a query to
retrieve the answer from that database. A possible style of the meaning representation can be
as follows:

2. λx. height (Michael_Jordan, x)

The given expression is in lambda calculus format where “height” represents a function
with a defined constant “Michael_Jordan”. The function “height” takes two arguments, a
defined constant such as “Michael_Jordan” and a numerical value. In the given meaning
representation, the numerical value is missing and represented by the variable “x”. The
executor can take as input such meaning representation, convert it into any executable query-
like language and retrieve results from a database, e.g. “x” equals to “1.98 meters”.

Early NLI approaches tried to build semantic parsing components either with defined
patterns or using syntactic and semantic analyzers. Winograd (1971, 1972) developed one
of the earliest system that understands English sentences, answers questions and executes
commands via dialog with a user. The application domain was interacting with a system that
could manipulate different geometric shapes like moving objects, asking questions about
certain conditions that occur within the manipulation. The user interacts with the system via
dialogs. The approach used syntactic and semantic interpreters.

Another approach called LUNAR (Woods et al., 1972) had a semantic parsing unit that
was based on rules. The system could answer questions about rocks that were collected
during the Apollo 11 mission for non-experts that needed to query the database. However,
writing such rules manually does not scale to other domains or languages as it requires a
domain expert to define the input patterns.

The coverage of the system would also be limited by the rules. Following the advance-
ments in NLP, semantic parsing approaches based on statistical models evolved. Instead of
writing rules manually, systems are trained with sample data and learn a statistical model.

Tang and Mooney (2001) defined the first semantic parsing approach that was based on
a statistical model. They proposed to use a shift-reduce parser together with Logic Pro-
gramming. They created a training data based on a database of geographical knowledge of
the U.S., consisting of a question and a meaning representation pair. The dataset is called
Geoquery. Meaning representation is expressed using lambda calculus. We give detailed ex-
planation on meaning representations in Section 2.3. An example is given in Figure 1.1 with
a question and lambda calculus pair.
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Question: Which states border Texas?

Lambda calculus expression: λx.state(x) ∧ next_to(x,state:Texas)

FIGURE 1.1: An instance from Geoquery dataset.

Later on Zettlemoyer and Collins (2005) defined a method for learning a statistical se-
mantic parser using CCG (Steedman, 2000) for syntax and lambda calculus for semantics.
They evaluated their approach on the Geoquery dataset. They showed that syntax and seman-
tics mapping can be learned together. Later on, another semantic parsing approach (Berant
et al., 2013) focused on training semantic parsers from question and answer pairs. Labeling
questions with meaning representations is a harder problem than pairing them with expected
answers. The availability of large knowledge bases such as DBpedia (Auer et al., 2007),
Wikidata (Vrandečić and Krötzsch, 2014), YAGO (Suchanek et al., 2007) and Freebase (Bol-
lacker et al., 2008) made it possible to label training data easier. Instead of writing a query
for a question, users match each question with answers from knowledge bases.

1.3 Natural Language Question Answering System

In this thesis, we focus on building different semantic parsing approaches for Question An-
swering (QA) using the syntax of natural language questions and RDF data from knowledge
bases. The goal of a semantic parsing system is to map natural language questions to mean-
ing representations that are composed of knowledge base entries. Meaning representations
can be transformed into executable queries where the answer can be found.

We focus on building QA systems that enable to query RDF data in particular DBpedia
(Auer et al., 2007) and Freebase (Bollacker et al., 2008) using natural language expressions.
Both knowledge bases are available in RDF format and can be queried using SPARQL (see
Section 2.1.3). However, querying the data requires some understanding of the query lan-
guage and the underlying ontology. For this purpose, we build a QA system that users can
use to query the data using natural language in multiple languages without having to deal
with the ontology and query language specifications. In this thesis, we focus on building and
evaluating QA systems on QALD (Cimiano et al., 2013; Unger et al., 2014, 2015, 2016) and
SimpleQuestions (Bordes et al., 2015) datasets (see Chapter 3 for more details on datasets).

Consider the following questions shown in Figure 1.2, asking the same information in
English, German and Spanish respectively:

1. How tall is Amazon Eve?

2. Wie groß ist Amazon Eve?

3. ¿Cómo de alta es Amazon Eve?

FIGURE 1.2: Questions in English, German and Spanish asking the height
of Amazon Eve

All questions refer to the same fact in different languages. The answer for these questions
can be found in DBpedia by executing the following SPARQL query.
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PREFIX dbo: <http://dbpedia.org/ontology/>
PREFIX dbr: <http://dbpedia.org/resource/>
SELECT DISTINCT ?o
WHERE {

dbr:Amazon_Eve dbo:height ?o.
}

FIGURE 1.3: An example SPARQL query from DBpedia.

The query contains a single statement also called an RDF triple. RDF triples are based on
the idea of making statements about resources in expressions of the form subject-predicate-
object. The subject denotes the resource, the object denotes another resource or aspects of
the subject and the predicate expresses a relationship between the subject and the object. It
can be seen that the resource dbr:Amazon_Eve is the subject and dbo:height is the predicate
of the triple. The object is expressed as a variable ?o where it stands for the answer to the
questions above.

1.3.1 Task Definition

Considering the questions above in Figure 1.2, the task of a QA system is to construct the
query in Figure 1.3 for the supported languages. The system should map expressions in
the question to the URIs in the expected query. QA system needs to incorporate external
resources to make such mappings since the underlying knowledge base may not contain the
needed data for mapping. The task of Questions Answering over Linked Data can be defined
as:
Task: Question Answering over Linked Data
Return an executable query that answers the natural questions given an RDF knowledge
base.

1.4 Motivation

DBpedia (Auer et al., 2007), YAGO (Suchanek et al., 2007), Wikidata (Vrandečić and Krötzsch,
2014) and Freebase (Bollacker et al., 2008) are open-access knowledge bases that contain in-
formation about many domains. Each knowledge base contains RDF data collected from
various sources with an underlying ontology definition.

DBpedia has become a central hub in Linked Data (LD)5 containing structured encyclo-
pedic data extracted from Wikipedia over the last 10 years. DBpedia has an ontology that
defines more than 1000 properties, 800 classes, etc., with labels in many languages. The
latest release of DBpedia provides data in RDF format for more than 18 million entities in
127 languages (see Section 2.1.5). DBpedia is being updated in a yearly fashion by adding
more data and improving data quality. The data is open-access with availability to download
and accessible via endpoint for querying.6 This makes us consider DBpedia as one of the
main source of knowledge for building a multilingual QA system since it supports multiple
languages. Freebase was also considered as another large knowledge base with public ac-
cess until it was closed in 20157 where data has been merged with Wikidata (Vrandečić and
Krötzsch, 2014).

5http://linkeddata.org/
6http://dbpedia.org/sparql
7https://developers.google.com/freebase/

http://linkeddata.org/
http://dbpedia.org/sparql
https://developers.google.com/freebase/
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With a strong focus on linking RDF data initiative proposed by Linked Data8 project,
these knowledge bases also include interconnected links among each other making a huge
graph of knowledge about real-world entities.

Making such knowledge base systems open access does not necessarily mean that users
can use them easily. Even though SPARQL is the only query language, it is still difficult for
every user to learn the query language. Moreover, each knowledge base has its own ontology
definition and users need to get familiar with the data and ontology in order to build queries.
In thesis, we provide the solutions for building Question Answering (QA) systems so that
users can query the knowledge bases using natural language without any knowledge of the
query language and the ontology.

Consider the questions in Figure 1.4 in English, German and Spanish and the expected
SPARQL query (in Figure 1.5) to answer those questions.

1. Who created Wikipedia?

2. Wer hat Wikipedia gegründet?

3. ¿Quién creó Wikipedia?

FIGURE 1.4: Questions in English, German and Spanish asking about the
creator of Wikipedia

All questions refer to the same fact in different languages. The answer for these questions
can be found in DBpedia by executing the following SPARQL query.

PREFIX dbo: <http://dbpedia.org/ontology/>
PREFIX dbr: <http://dbpedia.org/resource/>
SELECT DISTINCT ?o
WHERE {

dbr:Wikipedia dbo:author ?o .
}

FIGURE 1.5: An example SPARQL query from DBpedia that returns the
creator of Wikipedia.

A multilingual QA system should map the given questions in different languages into a
meaning representation that can be transformed into a SPARQL query. However, the map-
ping from question to query is not straightforward. In the English question, the word created
should be mapped to DBpedia Ontology property dbo:author as shown in Figure 1.5. How-
ever, the DBpedia Ontology does not contain such lexicon that allows for mapping the word
created into the property dbo:author. The labels for the property dbo:author that the ontol-
ogy contains are shown below, the tags en, de, es represent the languages English, German
and Spanish respectively.

"author"@en
"autor"@de
"autor"@es

In order to answer the English question, the QA system needs to map the verb “created”
to the property dbo:author. It applies to German and Spanish questions as well where the

8http://linkeddata.org

http://linkeddata.org
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words gegründet and creó should be mapped to the same property. The missing lexicon is
known as the “lexical gap” challenge for a QA system to overcome to be able to map natural
language phrases to knowledge base entries.

Another challenge here lies in the structure of the knowledge base. The challenge is to
consider the positions of resources in triples. The property dbo:author defines a relation
between entities of class type dbo:Work and dbo:Person. The resource dbr:Wikipedia has
a class type dbo:Work. The position of the resource dbr:Wikipedia has to be in the subject
of the triple. These types of relations and ontology restrictions are shown below with RDF
triples from the DBpedia.

dbo:author rdfs:domain dbo:Work .
dbo:author rdfs:range dbo:Person .

dbr:Wikipedia rdf:type dbo:Work.

Let’s consider the following questions in three languages given in Figure 1.6 and the QA
system expected to construct the query given in Figure 1.7.

1. Give me all movies with Tom Cruise.

2. Gib mir alle Filme mit Tom Cruise.

3. Dame todas las películas con Tom Cruise.

FIGURE 1.6: Questions in English, German and Spanish asking the movies
with Tom Cruise

PREFIX dbo: <http://dbpedia.org/ontology/>
PREFIX dbr: <http://dbpedia.org/resource/>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
SELECT DISTINCT ?uri
WHERE {

?uri rdf:type dbo:Film.
?uri dbo:starring dbr:Tom_Cruise.

}

FIGURE 1.7: An example SPARQL query from DBpedia that returns the list
of movies with Tom Cruise.

By looking at the English question and the query, we can observe that the word movies
should be mapped to ?uri rdf:type dbo:Film. For German and Spanish questions, the words
that express the rdf:type dbo:Film part of the query are Filme and películas respectively.
These words are considered to be direct translations of the English word “film”. The system
needs a domain-specific lexicon to perform the matching of keywords to the expected URIs,
which is possible using external dictionaries with synonyms, e.g. WordNet (Miller, 1995a).

However, the property dbo:starring can not be expressed with any word in the given
questions. The preposition with can have different meanings depending on the context. It
is another challenge for a QA system to infer the property without any explicit words in
questions to map. The same challenge exists for German and Spanish questions given above
with prepositions mit for German and con in Spanish. QA system needs to cope with under-
specified properties in respect to the given question where the URI that can not be directly
retrieved from question text but must be inferred based on the context.
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As shown above, QA systems need a mechanism to map keywords in questions to URIs
in queries. Especially, mapping properties in queries poses a bigger challenge than mapping
entities (dbr:Tom_Cruise, dbr:Wikipedia) or classes (dbo:Film). It is caused by the variabil-
ity in natural language for expressing relations between entities. For example, starred in,
appeared, co-starred, co-star, leading role, played, acted all refer to one property in DB-
pedia dbo:starring. Welty et al. (2010) mentioned over 50 variations of natural language
expressions to express the relation between an actor and a movie.

A QA system could use indexes for different types of URIs for retrieval as well as a pre-
pocessor step that includes Named Entity Recognizer (NER) and then Named Entity Linker
(NEL). Even retrieving the expected URIs does not imply a successful interpretation of the
question. A QA system still needs to put those URIs in the right place in order to construct
a valid query. A wrong placement of URIs in the query does not return the same answers as
expected.

Consider the questions in Figure 1.8, the questions are about founding members of the
company Intel as expressed in the query given in Figure 1.9. The answers returned from DB-
pedia are: Robert Noyce, Andrew Grove, Gordon Moore. Swapping the position of dbr:Intel
to the object position of the triple leads to the query given in Figure 1.10. This query returns
companies that Intel founded: Dossia, Trusted Computing Group, which would a wrong in-
terpretation for the given questions. By considering the syntax of sentences, a QA system
should deal with the specifications of the knowledge base, as it leads to a different query than
expected. The syntax of the question above can determine the correct slot for the resource
dbr:Intel.

1. Who founded Intel?

2. Wer hat Intel gegründet?

3. ¿Quién fundó Intel?

FIGURE 1.8: Questions in English, German and Spanish asking the founder
of Intel

PREFIX dbo: <http://dbpedia.org/ontology/>
PREFIX dbr: <http://dbpedia.org/resource/>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
SELECT DISTINCT ?uri
WHERE {

dbr:Intel dbo:foundedBy ?uri.
}

FIGURE 1.9: SPARQL query for founding members of Intel from DBpedia.
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PREFIX dbo: <http://dbpedia.org/ontology/>
PREFIX dbr: <http://dbpedia.org/resource/>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
SELECT DISTINCT ?uri
WHERE {

?uri dbo:foundedBy dbr:Intel.
}

FIGURE 1.10: SPARQL query for companies that Intel founded from DB-
pedia.

The ambiguity of natural language expressions can be considered as another challenge
since the mapping phase will generate multiple candidates. For instance, the word created
can map to the property dbo:creator or dbo:author. We are assuming that the lexical gap
is handled using an external resource and that we can map the word created to the given
properties. QA system still needs to prefer one property over another. Additionally, personal
names are also quite ambiguous. A QA system needs a mechanism to disambiguate where
the mapping results in multiple matches.

We can summarize the challenges explained above in four main categories:

Challenge 1: Mapping natural language phrases to knowledge base entries. (Questions
in Figure 1.4 and SPARQL query in Figure 1.5)

Challenge 2: Inferring knowledge base entries based on the context where words for
direct mapping in the question are missing. (Questions in Figure 1.6 and SPARQL
query in Figure 1.7)

Challenge 3: Considering the structure of the knowledge base and the syntax of sen-
tences. (Questions in Figure 1.8 and SPARQL query in Figure 1.9)

Challenge 4: Handling the ambiguity in mapping natural language entries to knowl-
edge base entries where words map to multiple candidates.

Our motivation in this thesis is to combine a syntactic and a semantic analyzer for the
task of building a QA system. In particular build and evaluate different semantic parsing
approaches that use syntactic information of a sentence in combination with semantics of
underlying RDF data. The approaches that focus on developing solutions for the challenges
described above have a strong focus on a multilingual QA system. The syntax tells us how
sentences are constructed grammatically and the semantics tells us how the meaning of sen-
tences can be constructed from smaller units in sentences.

In this thesis, we focus on training supervised models that learn to incorporate syntax
together with semantics. The models learn to map to translate the structure of the syntax to
the structure of the semantics.

Recent efforts in developing cross-lingual treebank resulted in Universal Dependencies
(UD) (Nivre et al., 2016; Nivre, 2017). UD aims to capture syntactic similarities between
languages for developing multilingual NLP approaches. UD has defined a universal set of
morphological and syntactic specifications e.g. POS Tags, dependency relations with current
version including 70 treebanks for 50 languages.9 A more detailed description about the
syntax of sentences is given in Section 2.2.2. In Figure 1.11, the dependency parse trees are
given for questions in Figure 1.4 based on Universal Dependencies syntactic specifications.

9http://universaldependencies.org/v2, 70 treebanks, 50 languages

http://universaldependencies.org/v2
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1.
Who

PRON
created
VERB

Wikipedia
PROPN

?
PUNCT

root
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2.
Wer

PRON
hat

AUX
Wikipedia
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gegründet
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?
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root
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dobj
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punct

3.
¿

PUNCT
Quién
PRON

creó
VERB

Wikipedia
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?
PUNCT

root

nsubj dobj

punct punct

FIGURE 1.11: Dependency parse trees with part-of-speech (POS) tags for
questions in English, German and Spanish languages based on Universal

Dependencies syntactic specifications.

A dependency parse tree differs from a constituency parse tree in a way that the edges
that connect nodes are specified. The dependency relation dobj can be seen between the root
nodes and the node Wikipedia in all 3 languages, indicating that the node Wikipedia is the
direct object of the main verb. Additionally, pronouns Who, Wer, Quién have the nsubj re-
lation with the root nodes, which tells us that the node is the nominal subject of the main
verb. These dependency relations are better suited for the task of QA on a structured knowl-
edge base because the triples in DBpedia are constructed in a similar way. Each triple has a
predicate (it is expressed by verbs in sentences), subject and object. The SPARQL query that
answers the questions above is given in Figure 1.12. The structure of the query and the depen-
dency relations between nodes in the dependency parse trees show significant resemblance.
The root node created in English question is represented the predicate dbo:author. The node
Wikipedia is connected to the main verb with a dependency relation similar to the resource
dbr:Wikipedia being on the subject position of the triple with the predicate dbo:author. Note
here that the resource dbr:Wikipedia is on the subject position while the dependency relation
between the node Wikipedia and the parent node created indicates a dobj (direct object) re-
lation. Relying on the dependency relation position for the node Wikipedia would result in
the resource dbr:Wikipedia being inserted into object position of the triple as the dependency
parse tree suggests an object relation between its parent node created, which would be an
incorrect query. A QA system still needs to learn when to take the dependency relation into
account and what sort of information from it in order to build the expected query.
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PREFIX dbo: <http://dbpedia.org/ontology/>
PREFIX dbr: <http://dbpedia.org/resource/>
SELECT DISTINCT ?o
WHERE {

dbr:Wikipedia dbo:author ?o .
}

FIGURE 1.12: An example SPARQL query from DBpedia that returns the
creator of Wikipedia.

A QA system can be trained to learn the mapping between the underlying dependency
parse tree and the structure of knowledge represented in triples. The main contribution of
using dependency parse trees based on UD is that it provides a universal set of syntactic spec-
ifications for many languages and the learning mechanism can be applied to any supported
language. Additionally, the learned models can also be transferred into another language
since the same syntax is used for all languages in UD. As shown in Figure 2.11, the depen-
dency relations between the verb (the root node) and the node Wikipedia are the same as well
as the dependency relation between pronouns and the main verb. The POS tags are also the
same for those nodes, e.g. VERB for nodes created, gegründet and creó.

Open-domain knowledge bases such as DBpedia contain language-independent content
with labels in many languages. Syntactic analysis tools such as dependency parse tree gen-
erators provide syntax of a given question. Considering the language-independent structured
data together with syntactic information of multiple languages motivates us to build multi-
lingual semantic parsing systems for the application of QA systems while most of previously
published work focused on a solution for a single language, mainly English.

1.5 Research Questions

In this thesis, we focus on building QA systems that generalize better and easily adaptable
to other languages without changing the architecture and provide means of incorporating lin-
guistic data. The solution proposed for this purpose should handle the challenges described
above in terms of lexical ambiguity, knowledge base structure and language-specific linguis-
tic data retrieval.

This leads to the following research questions:

Question 1: How to map natural language phrases into knowledge base entries for
multiple languages? Which linguistic resources can be used?

Question 2: How to disambiguate URIs when multiple candidates are retrieved from
mapping natural language tokens into knowledge base entries?

Question 3: How to use syntactic information of a natural language question together
with semantic representations of entries in a knowledge base?

Question 4: What are the advantages and the disadvantages of a multilingual QA
system vs. a monolingual system built for each language?

Question 5: What effort is required to adapt our QA pipelines to another language?
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1.6 Contributions

The contributions of this thesis can be grouped under the three main chapters. These chap-
ters define the proposed approaches in them with contributions and answers to the research
questions raised above:

1. CCG-based Semantic Parsing Approach (Chapter 6)

2. Dependency parse tree-based Semantic Parsing Approach (Chapter 7)

3. Neural Network-based Semantic Parsing Approach (Chapter 8)

The CCG-based Semantic Parsing Approach is based on the CCG formalism for syntax
and lambda calculus for semantics (see Section 2.2.1). It is an implementation of the se-
mantic parsing method proposed by Zettlemoyer and Collins (2005) for the Geoquery (Tang
and Mooney, 2001) dataset. We adapted it into the QALD dataset and added additional fea-
tures. The approach learns a probabilistic model for syntax and semantics simultaneously
from the labeled data. The approach was adapted only to English since each language needs
a definition of CCG rules separately. We use the M-ATOLL (Walter et al., 2014) ontology
lexicalisations as an external source for mapping natural language phrases into knowledge
base entries, specifically properties. The M-ATOLL provides ontology lexicalisations in En-
glish, German and Spanish languages. The main contribution of this method is to show the
lexical gap that occurs when the tokens in questions can not be mapped directly to a knowl-
edge base data and the solution for this problem can be use external linguistic resources such
as ontology lexicalisations from M-ATOLL to bridge the gap.

The Dependency parse tree-based Semantic Parsing Approach uses Universal Pepen-
dency (UD) parse trees for syntax and learns the mapping from syntax in the parse trees
into knowledge base entries. The approach is adapted to English, German and Spanish lan-
guages. We combine multiple external resources such as M-ATOLL, WordNet and dictionary
computed from distributional semantics hypothesis using cosine similarity between words in
natural language and labels of knowledge base properties. These external resources serve as
a lexicon to map natural language phrases. We give more details on combined lexicon in Sec-
tion 5.2. The main contribution of this approach is the multilingual architecture for building
QA systems. Since it is based on UD dependency parse trees, the pipeline can be adapted
to all languages supported by UD. Another important contribution of this approach is the
solution for mapping multilingual natural language questions into knowledge base entries
by combining multiple external resources.

The approach uses DUDES (see Section 2.3.3) for expressing semantics. It has a compo-
sitional feature (see Section 2.3.4) that can be used in tandem with the syntax (dependency
parse tree). DUDES enable to create semantics where the URI is not specified but a com-
position of meaning representation is carried on without an explicit URI. It allows to infer
URIs that can not be mapped from a question. It has advantages over monolingual pipelines
in a way that the same pipeline can be used to train QA system regardless of a language. The
approach can be easily extended to other languages.

Finally, the Neural Network-based Semantic Parsing Approach uses neural networks that
learn mappings between natural language expressions to knowledge base entries using the
latent embeddings of words and characters. The chapter in fact compares four different
model architectures that are similar to recent state-of-the-art systems. The contribution of this
chapter is to compare different model architectures under the same environment which allows
to understand the pipelines better, compare them fairly under the same hood and highlight
the strengths of each architecture. Throughout the thesis, we select BiLSTM-Softmax as an
architecture to compare with the other approaches described in Chapter 6 and Chapter 7. The
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pipeline uses only words and characters as features by embedding them into the Bidirectional
LSTM (Graves et al., 2013) that learns contextual and syntactic dependencies between words
in a sentence. The approach is not necessarily built for a single language and can be adapted
to others. However, it is trained on the SimpleQuestions (Bordes et al., 2015) dataset that
contains questions only in English.

The main contribution of this thesis is to present three different model architectures for
building question answering systems and compare them. We focus specifically on the point
of building a multilingual approach that can be extended easily to other languages and do-
mains. We present a detailed evaluation and analysis of each proposed model architecture by
highlighting strengths and weaknesses. Other contributions can also be listed as making the
implemented approaches and the used linguistic data open for the research community.

Chapter 6: https://github.com/ag-sc/CCGParsing

Chapter 7: https://github.com/ag-sc/AMUSE

Chapter 8: https://github.com/ag-sc/SimpleQA

Published Work

The thesis is based on the following papers published earlier:

• Hakimov S, Unger C, Walter S, Cimiano P. (2015). Applying semantic parsing to
question answering over linked data: Addressing the lexical gap. In Proceedings of
International Conference on Applications of Natural Language to Information Systems
(NLDB)

• Hakimov S, ter Horst H, Jebbara S, Hartung M, Cimiano P. (2016). Combining textual
and graph-based features for named entity disambiguation using undirected probabilis-
tic graphical models. In Proceedings of 20th International Knowledge Engineering
and Knowledge Management Conference (EKAW)

• Ell B, Hakimov S, Cimiano P. (2016). Statistical Induction of Coupled Domain/Range
Restrictions from RDF Knowledge Bases. In Proceedings of 4th NLP and DBpedia
Workshop, co-located with the 15th International Semantic Web Conference (ISWC)

• Hakimov S, Jebbara S, Cimiano P. (2017). AMUSE: Multilingual Semantic Parsing
for Question Answering over Linked Data. In Proceedings of the 16th International
Semantic Web Conference (ISWC)

• Ell B, Hakimov S, Braukmann P, Cazzoli L, Kaupmann F, Mancino A, Altaf Memon
J, Rother K, Saini A, Cimiano P. (2017). Towards a Large Corpus of Richly Anno-
tated Web Tables for Knowledge Base Population. In Proceedings of 5th International
Workshop on Linked Data for Information Extraction, co-located with the 16th Inter-
national Semantic Web Conference (ISWC)

• Hakimov S, Jebbara S, Cimiano P. (2019). Evaluating Architectural Choices for Deep
Learning Approaches for Question Answering over Knowledge Bases. In Proceedings
of the 13th International Semantic Computing Conference (ICSC)

1.7 Chapter Structure

The remaining chapters are structured as follows:

https://github.com/ag-sc/CCGParsing
https://github.com/ag-sc/AMUSE
https://github.com/ag-sc/SimpleQA
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• Chapter 2 presents the foundations the thesis is based on. It covers preliminary knowl-
edge about the topics that are essential in understanding this work. It starts by describ-
ing the foundations of RDF & SPARQL along with publicly open knowledge bases.
Next, it describes the notion of syntax and semantics used in this thesis along with
application in building Question Answering systems.

• Chapter 3 presents publicly available datasets from the research community to evaluate
Question Answering systems. We give detailed overview of each dataset along with
comparisons.

• Chapter 4 describes previously published work on building Question Answering sys-
tems. We provide detailed overview on research done in semantic parsing along with
comparisons to the state-of-the-systems evaluated on the QALD and the SimpleQues-
tions datasets.

• Chapter 5 presents methods for mapping natural language phrases into knowledge base
entries by introducing an inverted index for retrieval of URIs. We combine several
external resources and compare their performance.

• Chapter 6 presents a semantic parsing that uses Combinatory Categorial Grammars
(CCG) for syntax and lambda calculus for semantics to build a QA system. The ap-
proach is applied to the QALD dataset on English. We give detailed information on
the approach along with comparisons to other systems.

• Chapter 7 presents another semantic parsing approach that abstracts from the under-
lying language by using dependency parse trees from the Universal Dependencies
project. The approach is based on building a multilingual pipeline for the English,
German and Spanish languages. We compare our approach with other published sys-
tems and evaluate the performance.

• Chapter 8 presents four different semantic parsing approaches for building QA systems
on the SimpleQuestions dataset that are evaluated under the same environment where
each chosen architecture is based on previously published systems.

• Chapter 9 presents discussions on proposed approaches and highlights differences in
terms of role of syntax & semantics, multilinguality, manual effort for adapting to
another domain or language and effects of datasets on these approaches.

• Chapter 10 sums up the thesis with ideas for future work. We also provide answers for
research questions addressed in the thesis.
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Chapter 2

Preliminaries

In this chapter, we present the foundations this thesis is based on. It covers preliminary
knowledge about the topics that are essential for understanding this work. It starts by de-
scribing the foundations of RDF & SPARQL along with publicly open knowledge bases.
Next, it describes the notion of syntax, semantics and how the semantics of natural language
questions is composed.

2.1 RDF & Semantic Web

In this section we introduce the fundamental technologies about Semantic Web, RDF, SPARQL
and Linked Data.

2.1.1 Semantic Web

The Semantic Web was proposed as an extension for the Web of Documents by Berners-
Lee et al. (2001) with a new name “Web of Data”. This extension addressed the change
of information representation that makes data machine-readable and interpretable. The term
“semantic” was intended to add meaning to the Web while many web pages contain unstruc-
tured data that is only human-readable. The Semantic Web provides a way for publishing data
in structured formats using standards such as: Resource Description Framework (RDF), Web
Ontology Language (OWL). The machine-readable aspect of web documents can be achieved
by adding additional tags to the current Hypertext Markup Language (HTML) based docu-
ments. For instance, consider the first HTML statement given below without semantic web
tags. The same information can be encoded by adding “semantic” tags that machines could
use in interpreting the HTML document. The tag “rdf:about” defines a relation between the
given text “Semantic Web” and the link. The relation is not just another hyperlink but it also
defines the relation name as shown below.

<item>Semantic Web</item>

<item rdf:about=”https://www.w3.org/standards/semanticweb/”>Semantic
Web</item>

2.1.2 RDF

Resource Description Framework (RDF) is a data model for the Semantic Web used for
conceptual modeling of data. RDF is based on allowing to make statements about resources
in subject-predicate-object form also known as triples. The subject denotes a resource, the
object denotes a resource or some literal value and the predicate denotes a relation between
subject and object. RDF is a W3C standard1 with the latest version 1.1 published in 2004.

1https://www.w3.org/RDF/

https://www.w3.org/standards/semanticweb/
https://www.w3.org/RDF/
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A URI (Uniform Resource Identifier) is a string used to identify resources. A resource can
be anything from a person, to abstract objects. For example, the URI http://dbpedia.
org/resource/Bielefeld identifies the city of Bielefeld located in Germany. The
URI has to be unique within its domain (per definition). It is also possible to use literals for
object position instead of resources. A literal can be a string or a data type value. RDF data
consists of a number of triples and can be viewed as graph where the resources represent
vertices and predicates represent edges. An example of RDF graph is given below.

FIGURE 2.1: RDF Graph showing triples about Bielefeld city, University

RDF data in the graph can be serialized using common formats such as: N-Triples, N-
Quads,Turtle, RDF/XML, JSON-LD formats. An example of serialization of triples in N-
Triple and JSON-LD format is given below. The N-Triple format is a more human-friendly
serialization format. JSON-LD is designed to transform existing JSON data into RDF data
quicker.

N-Triple

Subject : http://example.org/resource/Bielefeld
Predicate : http://example.org/predicate/located_in
Object : http://example.org/resource/Germany

JSON-LD

{
"@graph" : [ {

"@id" : "res:Bielefeld",
"located_in" : "res:Germany"

} ],
"@id" : "urn:x-arq:DefaultGraphNode",
"@context" : {

"located_in" : {
"@id" : "http://www.example.org/predicate/located_in",

http://dbpedia.org/resource/Bielefeld
http://dbpedia.org/resource/Bielefeld
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"@type" : "@id"
},
"res" : "http://www.example.org/resource/",
"pred" : "http://www.example.org/predicate/"

}
}

RDF Vocabulary, RDF Schema and OWL

The RDF Vocabulary consists of RDF terms such as rdf:type and rdf:Property 2. RDF
Schema3 extends the RDF Vocabulary with additional terms such as rdfs:subClassOf, rdfs:subPropertyOf,
rdfs:domain, rdfs:range. The Web Ontology Language (OWL)4 is a markup language for
defining and publishing ontologies. It is an extension on top of RDF Vocabulary with addi-
tional terms for fine-grained definitions of properties, classes, individuals and data types.

2.1.3 SPARQL

SPARQL is a W3C recommendation for querying RDF data5. The latest version SPARQL
1.1 was published in March, 20136. SPARQL has four different query variations:

• SELECT Query: to extract data from a SPARQL endpoint, the results are returned in
a structured format

• ASK Query: to provide True/False results for a query from an endpoint

• DESCRIBE Query: to extract RDF descriptions about an RDF term

• CONSTRUCT Query: to extract data from an endpoint and transform the results into
a defined RDF template

Each query type above is followed by a WHERE clause to add restrictions. Each restric-
tion has to be in triple format. Additional filtering options can also be added. Aggregation
clauses for ordering the query results are possible via ORDER BY clauses. Consider the
following SELECT SPARQL query in Figure 2.2 for retrieving top-10 cities ranked by pop-
ulation in Germany using DBpedia endpoint.

The prefixes are defined in the first four lines in Figure 2.2. The query is of type SELECT
with projection variables: city, population and label. The WHERE clause defines the four
query statements and FILTER clause for selection of only English labels. The four query
statements define a city that is located in Germany and has a certain population and label.
The FILTER clause filters out all labels except English as given with the parameter “en”. The
ORDER BY is an aggregation statement that ranks cities in descending order with OFFSET
and LIMIT clauses to select the top-10 results from the query.

An ASK Query example is provided in Figure 1.7. The query is about checking whether
there exists a river in Germany that has length of more than 500.000 km. The FILTER clause
filters rivers by length with bigger than ”>” operation. The query returns true because such
data exists in DBpedia.

2rdf : http://www.w3.org/1999/02/22-rdf-syntax-ns#
3rdfs: https://www.w3.org/TR/rdf-schema/
4owl:https://www.w3.org/TR/owl-ref/
5https://www.w3.org/TR/sparql11-overview/
6https://www.w3.org/TR/2013/REC-sparql11-overview-20130321/

http://www.w3.org/1999/02/22-rdf-syntax-ns#
https://www.w3.org/TR/rdf-schema/
owl : https://www.w3.org/TR/owl-ref/
https://www.w3.org/TR/sparql11-overview/
https://www.w3.org/TR/2013/REC-sparql11-overview-20130321/
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PREFIX dbo: <http://dbpedia.org/ontology/>
PREFIX dbr: <http://dbpedia.org/resource/>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

SELECT DISTINCT ?city ?population ?label WHERE {

?city dbo:country dbr:Germany .
?city rdf:type dbo:City.
?city dbo:populationTotal ?population.
?city rdfs:label ?label.

FILTER (lang(?label) = "en")

}
ORDER BY DESC(?population)
OFFSET 0 LIMIT 10

FIGURE 2.2: SPARQL SELECT query for retrieving top-10 cities in Ger-
many by population

2.1.4 Linked Data

Linked Data enables everyone to contribute to the Semantic Web by publishing their data
in RDF format. The most important aspect of this project is providing links to other pub-
lished datasets, thus the name comes from the term “linked”. The project was proposed
by Berners-Lee (2006) to publish RDF datasets and provide links between datasets. The
owl:sameAs predicates is used to link resources that refer to the same resource in differ-
ent datasets. Linked Open Data (LOD) depicts the open-access RDF datasets that provide
links among them. Everyone can contribute to LOD with their datasets to be published if the
following requirements are met:

• URIs must be resolvable (http:// or https:// )

• The data must be in RDF format.

• The dataset should contain at least 50 links to the published datasets in the LOD Cloud.

• Access to the data must be possible via RDF dumps and SPARQL endpoints.

The current LOD Cloud (Abele et al., 2017) is visualized in Figure 2.4 where datasets are
grouped by domains. Cross-domain datasets such as DBpedia and Freebase are visualized as
main hubs with many links coming from other datasets.
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PREFIX dbo: <http://dbpedia.org/ontology/>
PREFIX dbr: <http://dbpedia.org/resource/>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

ASK WHERE {

?river dbo:sourceCountry dbr:Germany .
?river rdf:type dbo:River.
?river dbo:length ?length.

FILTER (?length > 500000)
}

FIGURE 2.3: SPARQL ASK query to check if there are rivers in Germany
with length more than 500.000

FIGURE 2.4: Linked Open Data Cloud showing links between datasets,
February 2017, http://lod-cloud.net.

2.1.5 Knowledge Bases

A knowledge base is a system to store structured and unstructured data. With the popular-
ity of publishing RDF data as Linked Open Data, many domain specific and cross-domain

http://lod-cloud.net
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knowledge bases emerged. For instance, DBpedia (Auer et al., 2007), YAGO (Suchanek et
al., 2007), Wikidata (Vrandečić and Krötzsch, 2014) and Freebase (Bollacker et al., 2008) are
open-access knowledge bases that have factual information about entities and their relation-
ships. The BabelNet (Navigli and Ponzetto, 2012) is another example of open-access knowl-
edge base that contains multilingual linguistic data by combining data from other knowledge
bases.

Wikipedia has become a central source of knowledge for daily life, being maintained by
thousands of contributors in many languages. DBpedia is a crowd-sourced community effort
to extract structured information from Wikipedia. As shown in Figure 2.5, the structured
content of a Wikipedia article is visualized on the right side. This content is extracted from
all articles. The data is transformed into RDF by matching the concepts on structured content
to the DBpedia Ontology. DBpedia has an ontology with 1105 object properties, 1622 data
type properties and 760 classes. The ontology and the data is being updated yearly since 10
years from its initial release in 2007. The latest release of DBpedia has localized editions of
data in more 130 languages.7 For example, the DBpedia Ontology has a property dbo:capital
defined for relationships between countries and their capital cities. As highlighted in the
Figure 2.5, the triple dbr:Turkmenistan dbo:capital dbr:Ashgabat is added to DBpedia.

FIGURE 2.5: Structured and unstructured content in Wikipedia article, taken
from https://en.wikipedia.org/wiki/Turkmenistan

2.2 Syntax

Syntax is a set of rules that govern the structure of sentences in a language. These rules
govern word order, conjugation, etc. in sentences. Basic syntax of many languages can be
expressed with subject (S), verb (V) and object (O) notations. Sentences can be built using
different combinations of them e.g. SVO, SOV, VSO etc. For instance, English follows the
SVO notation “John (S) likes (V) Mary (O)”. Grammar is a set of such rules that govern
syntax in a given language. There are many approaches for defining grammar. In this thesis,
we focus on two grammar formalisms: Categorial Grammar and Dependency Grammar. In
the following sections we explain each approach in detail.

7https://wiki.dbpedia.org/downloads-2016-10

https://en.wikipedia.org/wiki/Turkmenistan
https://wiki.dbpedia.org/downloads-2016-10
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2.2.1 Categorial Grammar

Categorial Grammar (CG) is an approach for defining the syntax of sentences with syntactic
categories. Phrases can be built either by atomic or complex syntactic categories. These
atomic categories are given below:

• S: sentence

• N: noun

• NP: noun phrase

Combinatory Categorial Grammar (CCG) (Steedman, 1996, 2000) is a linguistic gram-
mar formalism for describing constituency-based structures using the categorial grammar. It
uses the atomic syntactic categories given above and the operators / (slash), \ (back slash),
where A/B (or A\B) denotes a function that takes an argument of type B to its right (or left)
and returns an object of type A. The operator / (slash) expects the intended argument on the
right, the operator \ (back slash) expects the argument to be on the left.

More complex categories such as transitive verbs can be built with combination of atomic
categories, operators and parentheses. For instance, in English transitive verbs are assigned
the category (S\NP)/NP, where it first expects a noun phrase (NP) on the right then another
noun phrase (NP) to its left then the phrase is a sentence. The main intuition of CCG is that
words in natural language act like functions. In the example of transitive verbs, the function
consumes two noun phrases, given the right order of noun phrases it results in a sentence.

CCG consists of combination rules and a set of lexical items where tokens are paired with
syntactic categories. These combination rules can be specified as follows:

• Forward application: A/B B
A

• Backward application:
B A\B

A

• Function composition: A/C C/B
A/B

FIGURE 2.6: CCG combination rules

A forward application is based on the / operator where A/B expects another B on the
right. The combination of these syntactic categories results in A. Backward application is
similar with difference in the direction of application. The syntactic category A\B expects
another syntactic category B on its left and the combination of these results in A. Function
composition combines two complex categories. The category C being common in both and
the operator / results in A/B after combination.

The combination rules shown above are the same for all languages that use CCG. How-
ever, complex categories must be defined for each language individually. A simple example
of a CCG lexicon for the sentence Barack Obama is married to Michelle Obama is given in
Table 2.1. Each entry is paired with a phrase and syntactic category.
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TABLE 2.1: Lexicon based on CCG

Phrase Syntactic category
Barack Obama NP
is (S\NP) / (S\NP)
married to (S\NP) / NP
Michelle Obama NP

In Figure 2.7, we illustrate how the rules above are applied to the lexicon in Table 2.1 in
order to construct the syntactic structure of the sentence. Similar to CCG combination rules,
lambda calculus expressions can also be combined in order to obtain meaning representations
for bigger phrases. More on applying CCG together with lambda calculus is explained in
Section 2.3.

As shown in Figure 2.7, the lexical item married to of category (S\NP)/NP is combined
with the lexical item Michelle Obama of category NP using forward application. The result
is an expression of category S\NP.

Barack Obama is married to Michelle Obama
NP (S\NP)/(S\NP) (S\NP)/NP NP

−−−−−−−−−−−−−−−−−−−−−−−−−→
S\NP

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
S\NP

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
S

FIGURE 2.7: CCG parse tree for the sentence Barack Obama is married to
Michelle Obama.

The syntactic category of is can be combined with the category S\NP, the syntactic cat-
egory for combination of married to and Michelle Obama, using forward application. This
combination results in S\NP. Finally, the syntactic category NP of Barack Obama can be
combined with S\NP. This application process is continued until all items are combined. If
the result of the last combination results in the syntactic category is S, as in our example,
then the derivation is considered a valid parse tree for the given sentence.

Different parse trees can be obtained using the same lexicon and combination rules. For
example, the category of is and married to can be combined via function composition as a first
combination that results in (S\NP)/NP. The remaining items Barack Obama and Michelle
Obama are two NP categories with one being on the left and the other on the right. It is shown
in Figure 2.8. All possible valid parse trees can be obtained by bottom-up parsing approach
using dynamic programming algorithms such as CYK (Cocke, 1970; Kasami, 1965; Younger,
1967).
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Barack Obama is married to Michelle Obama
NP (S\NP)/(S\NP) (S\NP)/NP NP

−−−−−−−−−−−−−−−−−−−−−−−−−→
(S\NP)/NP

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
S\NP

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
S

FIGURE 2.8: Alternative CCG parse tree for the sentence Barack Obama is
married to Michelle Obama.

2.2.2 Dependency Grammar

Dependency Grammar (DG) is a formal way of representing the syntax of a sentence using
dependency relations between words. Lucien Tesnière’s work called “Éléments de syntaxe
structurale (Elements of Structural Syntax)” defined the basis of this approach. Dependencies
between words are expressed with direct links. These dependencies define syntactic proper-
ties of words in a sentence. A sentence can be represented with DG as a tree with nodes,
words in a sentence, and edges, representing the dependency relations between words. Such
tree using DG is referred as a dependency parse tree. An example parse tree is given in
Figure 2.9 for the sentence Albert Einstein invented Relativity Theory.

The node invented is the root of the sentence indicating the main action of the sentence.
The node Albert Einstein is the nominal subject of the node invented as depicted by the de-
pendency relation nsubj. The node Relativity Theory is the direct object of the node invented
as shown via the edge dobj. Finally, the dot (.) has a punctuation dependency relation (punct)
to the root node.

Albert Einstein invented Relativity Theory .

root

nsubj dobj

punct

FIGURE 2.9: Dependency parse tree for the sentence Albert Einstein in-
vented Relativity Theory in Universal Dependencies syntax

Recent efforts in developing a cross-lingual treebank resulted in Universal Dependencies
(UD) (Nivre et al., 2016; Nivre, 2017). UD aims to capture syntactic similarities between
languages for developing multilingual NLP approaches. UD has a universal set of morpho-
logical and syntactic specifications for part-of-speech (POS) tags and dependency relations.
Currently, UD includes 70 treebanks for 50 languages. Having a universal set of POS tags
will enable NLP systems to learn models based on particular language and transfer learned
models to other languages easier. The current set of POS Tags are specified as follows8:

• ADJ: adjective

• ADV: adverb

• AUX: auxiliary verb

• CONJ: coordinating conjunction

• DET: determiner

• INTJ: interjection
8http://universaldependencies.org/v2, 70 treebanks, 50 languages

http://universaldependencies.org/v2
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• NOUN: noun

• NUM: number

• PART: particle

• PRON: pronoun

• PROPN: proper noun

• PUNCT: punctuation

• SCONJ: subordinating conjunction

• SYM: symbol

• VERB: verb

• X: other

UD has a set of universal dependency relations based on different syntactic properties of
words in different languages (De Marneffe et al., 2014). The revised version of dependency
relations in UD are grouped under the categories given in Figure 2.10 9:

Using the multilingual corpora of treebanks annotated by the community UD builds a
model with the available languages. Then, given a sentence, UD can generate a dependency
parse tree for the available languages. In Figure 2.11 dependency parse trees are given for
questions in English, German and Spanish languages. The dependency parse trees also in-
clude POS tags for each node. The questions are asking the same fact in each language. It
can be seen that pronoun words Who, Wer, Quién have the same dependency relation nsubj to
the root and the root nodes have the same POS tag VERB. Furthermore, the node Wikipedia
is the direct object of the root as depicted by dobj relation in all languages.

1.
Who

PRON
created
VERB

Wikipedia
PROPN

?
PUNCT

root

nsubj dobj

punct

2.
Wer

PRON
hat

AUX
Wikipedia
PROPN

gegründet
VERB

?
PUNCT

root
nsubj

dobj

aux

punct

3.
¿

PUNCT
Quién
PRON

creó
VERB

Wikipedia
PROPN

?
PUNCT

root

nsubj dobj

punct punct

FIGURE 2.11: Universal Dependency parse trees with part-of-speech (POS)
tags for questions in English, German and Spanish languages

9http://universaldependencies.org/u/dep/index.html

http://universaldependencies.org/u/dep/index.html
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• Core dependents of clausal predicates

– nsubj: nominal subject

– nsubjpass: passive nominal subject

– dobj: direct object

– iobj: indirect object

– csubj: clausal subject

– csubjpass: clausal passive subject

– ccomp: clausal complement

– xcomp: open clausal complement

• Noun dependents

– nummod: numeric modifier

– appos: appositional modifier

– nmod: nominal modifier

– acl: clausal modifier of noun

– acl:relcl: relative clause modifier

– amod: adjective modifier

– det: determiner

– neg: negative modifier

• Case-marking, prepositions, possessive

– case: case marking

• Non-core dependents of clausal predicates

– advcl: adverbial clause modifier

– advmod: adverbial modifier

– nmod: nominal modifier

– neg: negative modifier

• Compounding and unanalyzed

– compound: compound

– compound:prt : separable verb parti-
cle

– mwe: multi-word expression

– goeswith: goes with

– name: name

– foreign: foreign words

– flat: flat multi-word expression

• Loose joining relations

– list: list
– dislocated: dislocated elements
– parataxis: parataxis

– remnant: remnant in ellipsis

– reparandum: overridden disfluency

• Special clausal dependencies

– vocative: vocative
– aux: auxiliary
– auxpass: passive auxiliary

– discourse: discourse element

– cop: copula

• Coordination

– conj: conjunct – cc: coordinating conjunction

• Other

– root: root – dep: unspecified dependency

FIGURE 2.10: Dependency relations available in Universal Dependencies
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2.3 Semantics

In this section we introduce information about semantics. Semantics is the study of meaning
in language. The term semantics derives from Ancient Greek term “seme” that means “sign”.
Meaning can be put as function of signs in a language. The notion of meaning caught the
attention of many scholars throughout the history of humankind. Greek philosophers such
as Plato and Aristotle had different views on the notion of semantics: whether the mean-
ing of words depended on the sound it produced or on the context they appear in. Ludwig
Wittgenstein defined the meaning of a word as “the role a word plays in a sentence”. In lin-
guistics, semantics is a field of study devoted to understanding the meaning of words, phrases
and sentences with respect to the representation of meaning. The study is oriented around
understanding relationships between linguistic units. In the following sections, we describe
lexical, distributional, formal and compositional semantics.

2.3.1 Lexical Semantics

Lexical semantics is a subfield in linguistics that focuses on understanding meanings of indi-
vidual phrases. WordNet (Miller, 1995b) is an example for defining semantics of individual
words. It was developed for English and later the approach was adapted to other languages as
well (Bond and Foster, 2013; Vossen, 1998). Essentially, WordNet is a graph of word senses.
Words are nodes in the graph where an edge links two words based on a defined relationship.
The most common relation among words is hypernym relation. It links more general words
like bird into more specific ones like parrot. This relation is sometimes called ISA relation.
Meronym is another relation that is being used to define the part-whole relation. For instance,
a car has a wheel is an example for a meronym relation. Besides these two relations, Word-
Net also includes more specific relations based on the verbs. For instance, fish lives in water.
All of the relation types explained earlier are illustrated with examples in Figure 2.12.

FIGURE 2.12: Lexical semantics, WordNet semantic network of
words, taken from https://en.wikipedia.org/wiki/Lexical_

semantics

In Computer Science, specifically in Ontology Engineering, the term semantics refers
to the meaning of concepts, properties and their relationships that represent real-world enti-
ties. The DBpedia Ontology represents factual information about the world, which is defined

https://en.wikipedia.org/wiki/Lexical_semantics
https://en.wikipedia.org/wiki/Lexical_semantics
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using RDF, RDFS and OWL vocabulary. The concept such as Person is defined with the
following triples:10

dbo:Person rdf:type owl:Class.
dbo:Person subClassOf dbo:Agent.
rdfs:label "person"@en.
rdfs:label "Person"@de.

The concept dbo:Person has a hypernym relation with the general concept called owl:Class.
This relation is represented by rdf:type property in DBpedia. The property dbo:author11 is
defined with the following triples:

dbo:author rdf:type owl:ObjectProperty.
dbo:author rdfs:range dbo:Person.
dbo:author rdfs:domain dbo:Work.
dbo:author rdfs:label "author"@en.
dbo:author rdfs:label "Autor"@de.

Based on the definitions given above, the property author defines a relation between
individuals that are instances of concepts such as Work and Person.

In this thesis, we focus on semantic parsing approaches that map natural language ques-
tions into ontology concepts, properties and resources in a given knowledge base.

2.3.2 Distributional Semantics

Another way of expressing semantics can be done using distribution of words in a large
corpus. Distributional semantics focuses on developing theories and methods for categorizing
semantic similarities of linguistic items based on samples of language data. It differs from
lexical semantics in a way that the meaning of words is based on the context they appear
in. The semantics of words are categorized based on a large sample of the corresponding
language data. This became popular with Firth’s saying “You shall know a word by the
company it keeps” (Firth, 1957). This field of study builds on the distributional hypothesis.
The hypothesis is based on the idea that linguistic items with similar distributions have close
meanings.

In recent years, researchers focused on calculating distributional semantics of words from
large corpora such Wikipedia articles. The well-known method called word2vec was pro-
posed by Mikolov et al., 2013 that transforms words into dense vector representations by
embedding the context of words. It is based on the idea that words that have similar context
tend to have similar vector representations. Based on this vector representations, the simi-
larity can be calculated using the cosine similarity metric. An illustration of distributional
semantics of words and their semantic similarities are shown in Figure 2.13.

10http://dbpedia.org/ontology/Person
11http://dbpedia.org/ontology/author

http://dbpedia.org/ontology/Person
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FIGURE 2.13: Distributional semantics, word2vec visualization of words in
2-dimensional vector space, taken from http://www.samyzaf.com/

ML/nlp/nlp.html

The dimensions of vector representations can be set to any dimension, they are usually set
to 300 dimensions. The illustration in Figure 2.13 is shown as 2-dimensional representation
of word vectors, which is only for illustration purposes.

Words that appear in similar contexts such as father, girl, son are clustered closer to each
other. It can be seen that semantic relations such as plural forms of words, capital cities to
countries, adjectives to superlative forms can be captured using the distributional semantics
of words. For instance, the following vector operations can be performed since the relation
between two capital cities and the countries looks similar: W(“London”) - W(“England”)
∼= W(“Rome”) - W(“Italy”). Another famous example that follows the same pattern is
W(“woman”) - W(“man”) ∼= W(“queen”) - W(“king”).

2.3.3 Formal Semantics

In linguistics, formal semantics focuses on understanding the meaning of words based on for-
mal language. A formal language is a set of expressions defined for a specific domain. The
idea became popular with Richard Montague’s work known as Montague Grammar (Mon-
tague, 1970a,b). He showed how a natural language could be treated as any formal language
such as a programming language. The most important part of the theory is how the semantics
of a sentence is computed. The semantics of a sentence is the functional application of the
semantics of single words. It is an influential work for considering syntax and semantics in
tandem because the syntax of the sentence is the combination of grammar rules based on
single words.

Lambda Calculus

The formal semantics of a language can be expressed using mathematical logic expressions.
Lambda calculus (Church, 1936) is a such formalism for expressing semantics based on
function abstraction and application. The name comes from the Greek letter λ used in lambda
expressions for denoting functions.

Lambda expressions consist of lambda terms. Lambda terms are valid strings for defining
lambda calculus expressions.

Lambda expressions are composed of :

• Variables : x1 . . . xn

http://www.samyzaf.com/ML/nlp/nlp.html
http://www.samyzaf.com/ML/nlp/nlp.html
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• Abstraction symbols lambda ’λ’ and dot ’.’

• Parentheses ()

Formally, the set of lambda expressions, Λ, can be defined inductively:

• Variable: If x is a variable, then x ∈ Λ

• Abstraction : If x is a variable and M ∈ Λ, then (λx.M) ∈ Λ

• Application: If M, N ∈ Λ, then (M N) ∈ Λ

An abstraction λx.M is a function that takes an input x and replaces it in the expression M.
For example, λx. λy. (x+y) is a lambda abstraction where (x+y) stands for the expression M
and it takes 2 inputs defined by the variables x, y. It represents the function f (x, y) = x + y.
The variables x and y are bound to the term (x+y) by abstraction.

An application (M N) means the application of function M to an input N. For instance,
if we apply the function λx. λy. (x+y) to the input “2” then the variable x is replaced with
“2” using Beta reduction rule. The rule reduces the functional application (λx. λy. (x+y)) 2
into λy. (x+y)[x:=2]. The resulting expression will be λy. (2+y). The order of application
in the function depends on the order the variables. The left-most variable is replaced first in
this case. Bracketing can also be used to disambiguate the lambda expression.

Let’s consider the application domain for a QA system. Geoquery (Tang and Mooney,
2001)12 is a dataset consisting of pairs of question and lambda calculus expression. The
questions are about US geography and the lambda calculus expression is the semantics of
questions based on the database of geographic data. The database contains concepts such
as river, state, city. It also contains properties to express relationships. For example, the
property next_to is a binary relation between two states that stands for bordering states. The
property state is a unary relation that expresses an individual belonging to a concept. There
are also individuals that represent entities existing in the world, e.g. city:Boston, state:Texas,
river:Mississippi. An example pair of a sentence and the lambda expression is given below.

Sentence: Give me all states that border Texas.

Lambda expression: λx.(state(x) ∧ next_to(x,state:Texas))

The lambda expression is composed of the following two expressions:

some individual is a state : λx.state(x)
some individual borders Texas : λx.next_to(x,state:Texas)

DUDES

DUDES (Dependency-based Underspecified Discourse Representation Structures) (Cimi-
ano, 2009) is a formalism for specifying meaning representations and their composition.
They are based on Underspecified Discourse Representation Theory (UDRT) (Cimiano et
al., 2007; Reyle, 1993), and the resulting meaning representations. Formally, a DUDE is
defined as follows:

Definition 1 A DUDE is a 5-tuple (v, vs, l, drs, slots) where

12http://www.cs.utexas.edu/users/ml/nldata/geoquery.html

http://www.cs.utexas.edu/users/ml/nldata/geoquery.html
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• v is the main variable of the DUDES

• vs is a (possibly empty) set of variables, the projection variables

• l is the label of the main DRS

• drs is a DRS (the main semantic content of the DUDE)

• slots is a (possibly empty) set of semantic dependencies

The core of a DUDES is thus a Discourse Representation Structure (DRS) (Kamp and
Reyle, 1993). The main variable represents the variable to be unified with variables in slots of
other DUDES that the DUDE in question is inserted into. Each DUDE captures information
about which semantic arguments are required for a DUDE to be complete in the sense that
all slots have been filled. These required arguments are modeled as sets of slots that are filled
via (functional) application of other DUDES.

Definition 2 A slot is a 3-tuple (v, a, l) where

• v is the argument entity in the DUDES

• a is an anchor that connects this entity to the syntactic element that provides its seman-
tic content; this could, e.g., be the label of a syntactic dependency

• l is the label of the DRS to which the semantic content of v is to be added

The projection variables are relevant in meaning representations of questions; they spec-
ify which entity is asked for. When converting DUDES into SPARQL queries, they will
directly correspond to the variables in the SELECT clause of the query. Finally, slots capture
information about which syntactic elements map to which semantic arguments in the DUDE.

As basic units of composition, we consider 6 pre-defined DUDES types that correspond
to data elements in RDF datasets. Below we give the definition of each DUDE type and a
corresponding instantiated example of a DUDE.

1. Resource DUDES are used for constants.
v:v1 vs:- l:1

1:
v1

v1 = <URI>

-

Example:
v:v1 vs:- l:1

1:
v1

v1 = dbr:Bielefeld

-

2. Class DUDES contain one condition: a binary predicate rdf:type between a discourse en-
tity and the class URI, expressing that this entity is of the specified type.

v:v1 vs: l:1

1:
rdf:type(v1,<URI>)

-
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Example :
v:v1 vs: l:1

1:
rdf:type(v1,dbo:Person)

-

3. Property DUDES also contain one condition: a binary predicate specified by the property URI
between two discourse entities. The entities are contributed by the meaning representations of
those syntactic arguments related to the property expression by means of dependency relations
a1 and a2. The specific relations depend on the syntactic type of the property expression (tran-
sitive verbs, relational nouns, etc.) and the dependency relation set used by the parser. We use
slot labels 1,2 to nsubj, dobj, amod, nmod, etc., which are flexible compared to dependency
relations of the syntactic edge.

v:- vs:- l:1

1:
<URI>(v1, v2)

(v1, a1, 1)
(v2, a2, 2)

Example:
v:- vs:- l:1

1:
dbo:spouse(v1, v2)

(v1, 1, 1)
(v2, 2, 2)

4. Restriction class DUDES are like class DUDES, but use another property than rdf:type
and contain one slot for the discourse entity. In addition to classes typically expressed by
nouns such as mountain referring to the DBpedia class dbo:Mountain, we define class
DUDES for restriction classes, typically expressed by adjectives. For example, the expression
Swedish can be represented as a restriction class of all resources that are related to the resource
dbr:Sweden by means of a property dbo:country or dbo:birthPlace.

v:v1 vs: l:1

1:
<URI>(v1,<URI>)

(v1, a1, 1)

v:v1 vs: l:1

1:
dbo:country(v1,dbr:Sweden)

(v1, 1, 1)

5. QueryVar DUDES introduces a discourse entity that is added to the set of projection variables
(i.e. will end up in the SELECT clause of the resulting SPARQL query), it used for specific,
domain-independent expressions relevant for wh-words, such as which and what.
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v:v1 vs:{v1} l:1

1:
v1

-

6. Null DUDES introduce no information.

2.3.4 Compositional Semantics

Compositional semantics is a field of study focused on studying how the compound mean-
ing expressions can be composed using semantic rules and syntax. The smaller semantical
units build up the compound expressions, building larger blocks of semantics by merging
smaller units. The units are combined by defined composition rules. Next we explain two
compositional semantics approaches.

Semantic Composition with CCG and Lambda Calculus

This approach is based on CCG application rules and the compositionality property of the
lambda calculus. CCG application rules for syntax are given in Section 2.2.1. The categorial
grammar for a sentence is composed of lexical entries that are paired with CCG category
and a corresponding phrase. The semantics of each phrase can be expressed using lambda
calculus expressions (Section 2.3.3). For instance, proper names such as Texas stand for
individuals in a specific domain. In the Geoquery (Tang and Mooney, 2001) dataset each
question is paired with a corresponding lambda expression. The CCG combination rules can
be adapted to compose the syntax and semantics of entries by combination rules given below.

• Forward application:
A/B : f B : x

A : f (x)

• Backward application:
B : x A\B : f

A : f (x)

• Function composition:
A/C : f C/B : g

A/B : λx. f (g(x))

FIGURE 2.14: CCG combination rules for syntax and semantics

As given in Figure 2.14, each combination rule includes combination of syntax and se-
mantics together, e.g. A/B is a CCG category and f is a lambda calculus expression. For
instance, when Forward application is applied then the CCG categories are combined into
resulting category A. The semantics of this expression is the functional application of the
lambda expressions f(x) to x. In Table 2.2 we provide for each phrase a corresponding
CCG category and lambda calculus expression for the sentence Barack Obama is married
to Michelle Obama. This sentence is expressed with the following triple in DBpedia :

dbo:spouse(dbr:Barack_Obama,dbr:Michelle_Obama)
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Phrase Syntax Semantics
Barack Obama NP dbr:Barack_Obama
is (S\NP)/(S\NP) λ f .λx. f (x)
married to (S\NP)/NP λy.λx.dbo:spouse(x, y)
Michelle Obama NP dbr:Michelle_Obama

TABLE 2.2: Lexical entries with syntactic and semantic representations.

Each lambda calculus expression is adapted to the DBpedia Ontology where individuals
represent resources and transitive verbs represent predicates. The first entry has a string
Barack Obama that stands for an individual with CCG category NP and lambda expression
dbr:Barack_Obama. The string married to is paired with CCG category for a transitive
verb (S\NP)/NP. The semantics for this entry is a DBpedia Ontology predicate dbo:spouse
where the relation is expressed using two arguments, subject and object from the definition of
triples. Thus, the two-ary lambda expression λy.λx.dbo:spouse(x, y) expects two inputs
to replace variables x and y. The string is is a auxiliary verb that does not hold any DBpedia
Ontology information with a CCG category (S\NP)/(S\NP).

The semantics of the sentence is composed by applying the combination rules in Fig-
ure 2.14 above to the entries in Table 2.2. This application process is continued until all items
are combined. If the resulting syntactic category is S, as in our example, then the derivation
is considered a valid parse tree for the given sentence, and its meaning is expressed by the
corresponding logical expression, in our case:

dbo:spouse(dbr:Barack_Obama,dbr:Michelle_Obama)

The parse tree for obtaining the lambda expression given above and the CCG category S
is given below in Figure 2.15.

Barack Obama is married to Michelle Obama
NP (S\NP)/(S\NP) (S\NP)/NP NP

dbr:Barack_Obama λ f .λx. f (x) λy.λx.dbo:spouse(x, y) dbr:Michelle_Obama

−−−−−−−−−−−−−−−−−−−−−−−−−−−→
S\NP

λx.dbo:spouse(x,dbr:Michelle_Obama)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
S\NP

λx.dbo:spouse(x,dbr:Michelle_Obama)

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
S

dbo:spouse(dbr:Barack_Obama,dbr:Michelle_Obama)

FIGURE 2.15: CCG parse tree with syntax and semantics for the sentence
Barack Obama is married to Michelle Obama.

The first composition of entries for Michelle Obama and married to are obtained by
applying the combination rule Forward application. It results in CCG category S\NP. The
lambda calculus expression of both entries are combined based on the combination rules. The
entry λy.λx.dbo:spouse(x, y) is applied to the entry dbr:Michelle_Obama. This ap-
plication results in the replacement of the variable y with the entry dbr:Michelle_Obama,
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since the variable y is the first variable for in the function dbo:spouse(x, y). The resulting
lambda expression is:

λx.dbo:spouse(x,dbr:Michelle_Obama)

The same procedure is applied to all entries as shown below to combine both syntax and
semantics. The second combination with the entry is results in S\NP CCG category based
on Forward application and the same semantics. Since, the lambda calculus λ f .λx. f (x) for
the entry is is a placeholder semantics that results in the input after the application.

The last combination replaces the variable x with dbr:Barack_Obama in the seman-
tics (Backward application). The syntax of this combination results in the CCG category S.
The composition of entries stops at this point because no entries are left. If the final CCG
category is S then the parse tree is considered valid. The validity of the semantics of the
parse tree is measured by comparing it to the expected lambda calculus. In this example, the
expected lambda expression is obtained.

Semantic Composition with Dependency Parse Trees and DUDES

The composition of DUDES proceeds in parallel to the syntactic structure and in a standard
bottom-up fashion. Different DUDES can be combined to express more complex terms. The
composition of DUDES differs from lambda calculus in a way that DUDES composition is
not based on order of application. For instance, consider the lambda expression below:

λy.λx.dbo:spouse(x, y)

The variable y needs to be replaced first before the variable x. DUDES, on the other
hand, do not depend on the order of variables.

Definition 3 Given a DUDES (v1, vs1, l1, drs1, slots1) with (v, a, l) ∈ slots1 and a DUDES
(v2, vs2, l2, drs2, slots2) that is syntactically marked as a (e.g. in form of a dependency rela-
tion13), they can be composed into the DUDES (v1, vs1 ∪ vs2, l1, drs1 ∪ drs2[v2 7→ v],
slots1\(v, a, l) ∪ slots2), where

• ∪ is set union,

• \ is set subtraction,

• drs2[v2 7→ v] is like drs2 but v2 is replaced by v, and

• drs1 ∪ drs2 is the union of two DRSs (l1, D1, C1) and (l2, D2, C2) defined as (l1, D1 ∪
D2, C1 ∪ C2).14

As an example consider the sentence : Walt Disney created Goofy. The sentence has
subject Walt Disney, an object Goofy and a main verb created. The syntax of this sentence
can be expressed with the following dependency parse tree.

13For the composition of DUDES on the basis of a Lexicalized Tree Adjoining Grammar structure, see Cimiano
et al. (2014).

14Note that this union is directed in the sense that the label of the resulting DRS is l1, not l2. Which label
is picked does not make a difference semantically, but it needs to be in accordance with the main DRS label
specified in the DUDES.
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Walt Disney created Goofy

root

nsubj dobj

FIGURE 2.16: Dependency parse tree for the sentence Walt Disney created
Goofy in Universal Dependencies syntax.

Each node in this dependency parse tree can be expressed with a DUDES. The root node
is the main verb of this sentence. Thus, it is expressed as a Property DUDES. Its DUDES
can be depicted as a DRS together with a main variable v, a set vs of projection variables, a
URI dbo:creator, a DRS label l, and a set of two slots (nsubj, dobj):

1.

v:- vs:- l:1

1:
dbo:creator(v2, v1)

(v1, nsubj, 1)
(v2, dobj, 2)

Here the main variable is not set, there are no projection variables, and only one DRS
labeled 1. This DRS contains the semantic contribution of the verb to create: the statement
dbo:creator(v2, v1), where v2 is going to be contributed by the syntactic subject of the verb
depicted by the relation nsubj, and v1 is going to be contributed by the direct object, dobj.
The nodes Walt Disney and Goofy are individuals in this sentence and they are specified as
Resource DUDES as shown below.

2.

v:v3 vs:- l:1

1:
v3

v3 = dbr:Goofy

-

3.

v:v4 vs:- l:1

1:
v4

v4 = dbr:Walt_Disney

-

Its DRS introduces an entity, v3, that is set equal to dbr:Goofy and v4 in the other Re-
source DUDES for dbr:Walt_Disney.

Small units of the sentence are expressed with the instantiated DUDES explained above.
The semantics of the whole sentence needs to be obtained by merging the smaller units with
each other. DUDES are designed for the composition along a dependency parse tree where
the composition is independent of the order of application.

The semantic composition of the whole sentence is obtained by bottom-up parsing where
the child nodes are merged with their parent nodes. The final DUDES at the root node
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represents the semantics of a given sentence. For instance, if we apply the child node Goofy
with its parent node created it yields the following DUDES:

4.

v:- vs:{} l:1

1:
dbo:creator(dbr:Goofy, v1)

(v1, nsubj, 1)

The Resource DUDES is unified with the corresponding argument variable v2 since
the node Goofy is syntactically connected by dependency relation dobj to the node cre-
ated. The resulting DUDES is unified with the remaining Resource DUDES 3 with the
URI dbr:Walt_Disney. It is applied to the remaining argument v1 since the node Walt Disney
is connected via dependency relation nsubj as given in the Figure 2.16. This result in the
following DUDES that represents the whole sentence since all edges in the parse tree have
been explored:

5.

v:- vs:{} l:1

1:
dbo:creator(dbr:Goofy, dbr:Walt_Disney)

-

This DUDES does not contain any variable to be replaced and it does not contain any
projection variables (vs is empty). Note that the resulting DUDES 5 can be obtained no
matter which DUDES ( 2 or 3) is applied first, which is different than lambda calculus based
semantic composition.

Translating DUDES into SPARQL query

DUDES are translated into SPARQL queries by translating their DRS into the query body.
The projection variables, if any, will be used for the SELECT clause. If the set of projection
variables is empty, the query is either constructed as an ASK or SELECT * query. In the
following we use super script T as translation operator; the translation of DUDES can then
be defined as follows.

(v, vs, l, drs, slots)T =


ASK WHERE {drsT} if vs = ∅ and not b
SELECT * WHERE {drsT} if vs = ∅ and b
SELECT vs WHERE {drsT} otherwise
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The translation of a DRS boils down to translating all of its conditions, i.e. (l, D, C)T =
CT, where the translation of conditions is defined as follows:

P(t1, t2)
T = tT

1 P tT
2 .

(t1 = t2)
T = tT

1 owl:sameAs tT
2 .

(t1 ◦ t2)
T = FILTER( tT

1 ◦ tT
2 )

for all ◦ ∈ {<,≤,>,≥}
(not d)T = FILTER(!EXISTS { dT })

(d1 or d2)
T = { dT

1 } UNION { dT
2 }

The DUDES 5 yields the following ASK query since there are no projection variables:

ASK WHERE { dbr:Goofy dbo:creator dbr:Walt_Disney . }

Note that only two-place predicates are translated into triples; predicates of other arities
are currently ignored.

Terms are translated straightforwardly. Constants in our case are URIs, i.e. they are used
as they are: cT = c. Variables are implemented as integers i, thus they need to be converted
into variable strings valid in SPARQL: iT = ?vi (e.g. 1T = ?v1).

2.4 Factor Graphs

In this section, we introduce the concept of Conditional Random Fields (CRF) (Lafferty
et al., 2001) and factor graphs (Sutton and McCallum, 2012). The rest of this section is
based on the content provided by ter Horst et al. (2018). An important aspect in modelling
an NLP problem with sequences is to consider the multiple variables with dependencies to
predict an output. Part-of-speech (POS) tagging or named entity recognition (NER) are NLP
problems that can be modelled as a sequence prediction task. They are also called sequence-
to-sequence problems since such tasks require predicting an output vector ~y on the basis of
the input vector ~x. In NLP, the input vector x can be tokens in a given document. The output
vector y can be thought of a POS tag ys ∈ y for a word in the position s. Such tasks are
sometimes called multivariate prediction. These problems can be modelled via a conditional
distribution of the following form:

p(~y|~x; θ),

where the probability of the output is conditioned on the input vector ~x and parametrised by
some vector θ. This can be defined as follows:

~y∗ = argmax
~y

p(~y|~x; θ) (2.1)

The complexity of a model varies in regard to the observed variables and the output
variables. The output variables could represent complex structures such as parse trees or
graphs where there might be complex dependencies.

Graphical models are frameworks for representing multivariate probability distributions
for problems such as those described above. An important insight of using graphical mod-
els is that a distribution over many variables can be represented as product of some local
functions. These local functions have a scope on a subset of variables. Representing joint
probabilities over many variables can be computationally intractable. Such factorization of a
problem makes the computation manageable and efficient. These local functions are called



38 Chapter 2. Preliminaries

factors. Thus, the name Factor Graphs essentially stands for probabilistic graphical model
with factors. These factors are parameterised with subsets of ~yi ⊆ ~y and ~xi ⊆ ~x.

Conditional Random Fields (CRF) are widely used for sequence-to-sequence problems
because they can model such conditional probabilities via factors. A factor graph G =
(V, E,F ) is a bipartite graph composed of random variables V, edges E and a set of fac-
tors F . Each factor Ψj ∈ F represents a function: Ψj : Vj → R≥0 that is parameterised
with vj and returns a non-negative scalar score indicating the compatibility of variables in vj.
Further, an edge ej ∈ E is defined as a tuple: ej = 〈Vj, Ψj〉. An important aspect is that CRFs
assume ~x as fully observed and thus do not model statistical interdependence in ~x.

We illustrate this definition with an example provided in Figure 2.17. The factor graph
contains a set of random variables V = {A, B, C} and a set of factors F = {Ψ1, Ψ2, Ψ3},
denoted by black boxes. In this example each factor evaluates assignment between two ran-
dom variables. The probability distribution p over these random variables and factors can be
written as

p(A, B, C) =
1
Z

Ψ1(A, B) ·Ψ2(B, C) ·Ψ3(C, A) (2.2)

where Z is a partition function that normalises each distribution over all possible assign-
ments.

Z = ∑
a∈A,b∈B,c∈C

Ψ1(a, b) ·Ψ2(b, c) ·Ψ3(c, a) (2.3)

FIGURE 2.17: An example factor graph over 3 random variables V =
{A, B, C} and factors F = {Ψ1, Ψ2, Ψ3} (black boxes)

Let’s assume that each random variable takes two binary values where A = {a1, a2},
B = {b1, b2} and C = {c1, c2}, and each factor Ψi computes a score that reflects the
compatibility of two variables. Sample values for these assignments are given in Table 2.3.

TABLE 2.3: Factor values between with two variables. Values for the spe-
cific assignment A = a2, B = b1, C = c1 are highlighted.

A B Ψ1 B C Ψ2 C A Ψ3

a1 b1 4 b1 c1 6 c1 a1 2
a1 b2 1 b1 c2 2 c1 a2 3
a2 b1 12 b2 c1 0 c2 a1 4
a2 b2 1 b2 c2 3 c2 a2 7

To compute the probability of an assignment y = {A = a2, B = b1, C = c1} we apply
Equation 2.2 as follows:
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p(A = a2, B = b1, C = c1) =
1
Z

Ψ1(a2, b1) ·Ψ2(b1, c1) ·Ψ3(c1, a2) =
1
Z
(12∗ 6∗ 3) =

1
Z
(216)

where

Z = Ψ1(a1, b1) ·Ψ2(b1, c1) ·Ψ3(c1, a1)

+ Ψ1(a1, b1) ·Ψ2(b1, c1) ·Ψ3(c1, a2)

+ . . .
+ Ψ1(a2, b2) ·Ψ2(b2, c2) ·Ψ3(c2, a2)

= 3168

(2.4)

So that the probability is calculated as: p(A = a2, B = b1, C = c1) =
216

3168 = 0.068.
Throughout the years, researchers working on NLP have focused on building two types

of graphical models: generative and discriminative. Generative models focus on computing
a joint probability distribution p(X = x, Y = y) whereas discriminative models focus on a
conditional probability distribution p(~y|~x; θ) over inputs ~x and outputs ~y. Hidden Markov
Models (HMM) (Rabiner, 1989) is an example of generative models where the dependency to
an output variable yt is restricted by the previous output variable yt−1 and the input variable
xt. Conditional Random Fields (CRF) is an example of discriminative models where the
interdependencies between variables are not restricted as above. Both models have been
applied to various sequence prediction problems in NLP. The main difference between two
models is that generative models describe how an output label y generates input feature vector
x whereas discriminative models describe in the reverse order how to a set of feature vectors
x get assigned an output label y.

Both generative and discriminative models can be modeled as factor graphs for linear and
non-linear architectures. Some NLP problems require a non-linear model where interdepen-
dencies between variables can be complex. In order to generalize factor graphs to linear and
non-linear models the probability distribution p(~y|~x) is changed into

p(~y|~x) = 1
Z(~x) ∏

Ψi∈G
Ψi(~yi,~xi) (2.5)

where the normalization function Z(~x) is dependent on input vector~x and factors have access
to all variables in ~y. Input vectors ~x are considered as observed variables and factors assign
hidden variables that were not observed from the input. These hidden variables are also
called output variables where the model defines what sort of assignments to certain set of
input variables would lead into the prediction of output labels ~y.

A factor Ψi connects subsets of observed variables xi and hidden variables yi and com-
putes a scalar score based on the exponential of the scalar product of a feature vector fi(xi, yi)
and a set of parameters θi: Ψi = e fi(xi ,yi)·θi . The computation of the conditional probability
can now be defined as:

p(~y|~x) = 1
Z(~x) ∏

Ψi∈G
e fi(~xi ,~yi)·θi (2.6)

For a given set of observed variables, we generate a factor graph automatically making
use of factor templates T . Such templates allow for sharing parameters and grouping factors
that define a common pattern. A template Tj ∈ T defines the subsets of observed and hidden
variables (~x,~y) for which it can generate factors and a function f j(~x,~y) to generate features
for these variables. All factors generated by a given template Tj share the same parameters
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θj. With this definition, we can reformulate the conditional probability as follows:

p(~y|~x; θ) =
1

Z(~x) ∏
Tj∈T

∏
(~x,~y)∈Tj

e f j(~x,~y)·θj (2.7)

2.4.1 Inference and Learning

Computing the probability distribution over all possible variables results in exponential num-
ber of possibilities since Z(~x) which sums up over an exponential number of possible as-
signments to the variables Y1, ..., Yn. Approximative inference algorithms are used to To
reduce exponential computation in inferencing for probabilistic graphical models. Markov
Chain Monte Carlo (MCMC) is such an algorithm that iteratively generates stochastic sam-
ples from a joint distribution p(~y) to approximate the posterior distribution. Samples are
selected probabilistically from a state space Y that contains (all) possible variable assign-
ments (state) for ~y. MCMC constructs a path (Markov Chain) starting from a given initial
state to the expected state by walking through the state space. The method performs number
of inference steps where at each step a sampled state is drawn from all possible states given
the current state. The algorithm converges to the distribution of interest given a sufficient
number of steps, which means the distribution of states within the chain approximates the
marginal probability distribution of p(yi) for all yi ∈ ~y. The drawback of this method is the
unknown number of steps to perform in order to converge.

Inference Metropolis–Hastings (Hastings, 1970; Metropolis et al., 1953) algorithm is a
Markov Chain Monte Carlo (MCMC) method for efficiently computing a sequence of random
samples from a probability distribution. In Metropolis–Hastings, new samples are drawn
from a probability distribution Q. At each sampling step the algorithm draws a new sample
y′ that is based on the previous sample y. If P is proportional to the desired distribution p,
then, with sufficient samples, the Markov Chain will approximate the desired distribution by
using a stochastically-based accept/reject strategy. The pseudo-code for Metropolis–Hastings
is presented below.

Algorithm 1 Pseudo-code for Metropolis–Hastings Sampling

1: y0 ← random sample
2: t← 1
3: repeat
4: y′ ∼ Q(y′|yt)
5: α← acceptanceRatio(y′, yt)
6: if α ≥ rand[0, 1] then
7: y(t+1) ← y′

8: else
9: y(t+1) ← y

10: end if
11: t← t + 1
12: until convergence

The function acceptanceRatio(·, ·) calculates a score for accepting the new sampled state
as the next state. This function computes the score by dividing the probability of the new
sampled state to the current state.

acceptanceRatio(y′, y) =
f (y′)
f (y)

, (2.8)
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where f (y) is a function that is proportional to the real density p(y). Note that, if
f (y′) ≥ f (y), the new state y′ will be always accepted as the resulting score is greater
than 1. Otherwise, the new sampled state will be rejected.

Candidate State Generation Candidate states are generated by performing an atomic
change to the current state. This sampling procedure generates all possible states that can
be reached by making an atomic change. Let Ω(~y) be the set of states that can be generated
from~y by applying one atomic change operation to~y, then the probability distributionQ can
be described as:

Q(~y′,~y) =
{

q(~y′) iff ~y′ ∈ Ω(~y)
0 else

, (2.9)

where

q(~y′) =
f (~y′)

∑~̂y∈Ω(~y) f (~̂y)
. (2.10)

Parameter Learning The learning problem consists of finding the optimal weight vector
θ that maximizes the a-posteriori probability p(~y|~x; θ). The parameter learning relies on a
ranking objective that attempts to update the parameter vector by assigning a higher likeli-
hood to preferred solutions.

SampleRank (Wick et al., 2009) is an online algorithm that learns to prefer sampled states
to overcome the expensive computational costs that arise during inference. The parameter up-
date is based on gradient descent on pairs of states (~yt,~y(t+1)) consisting of the current state
~yt and the next state ~y(t+1). Two states are compared according to the following objective
preference function P : Y×Y → { f alse, true}:

P(~y,~y′) = O(~y′) > O(~y) (2.11)

where O(~y) is an objective function that returns a score indicating the degree of agree-
ment with the ground truth of a certain input document. Q : Y × Y → [0, 1] denotes the
proposal distribution that is provided by the model, φ : Y× X → R|θ| denotes the sufficient
statistics of a specific variable assignment and:

accept(y, y′) = p(y′) > p(y) (2.12)

if the sampled state y′ has a higher probability than the current state y. The pseudo-code for
the SampleRank algorithm is given below.

2.5 Neural Networks

In this section, we provide an overview on neural networks. Neural networks (NN) are com-
puting systems inspired by the biological “neurons” which are intended to replicate the way
humans learn. They are sometimes also called artificial neural networks. NN have gained
popularity in the last decade with successful applications (Krizhevsky et al., 2012, Srivastava
et al., 2014, Rastegari et al., 2016) on image recognition datasets such as ImageNet (Deng
et al., 2009). Applications in NLP (Bahdanau et al., 2014, Cho et al., 2014, Sutskever et al.,
2014a) has also proven the importance of NN specifically for sequence-to-sequence problems
such as POS-tagging, machine translation, etc..

NN consist of input and output layers, as well as hidden layers consisting of units that
transform the input into something that the output layer can use. A sample network is shown
in Figure 2.18. The input data is fed into the input layer with 4 neurons that transform the
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Algorithm 2 Pseudo-code for Sample Rank

1: Inputs: training data D
2: Initialization: set θ ←~0, set y← y0 ∈ Y
3: Output: parameter θ
4: repeat
5: y′ ∼ Q(·|y)
6: ∆← φ(y′, x)− φ(y, x)
7: if θ · ∆ > 0∧P(y, y′) then
8: θ ← θ − η∆
9: else if θ · ∆ ≤ 0∧P(y′, y) then

10: θ ← θ + η∆
11: end if
12: if accept(y′, y) then
13: y← y′

14: end if
15: until convergence

data into vector representations and forward it into the hidden layer. The output from the
hidden layer with 5 neurons is then forwarded into the output layer. The hidden layer can be
composed of multiple layers stacked into each other with varying number of neurons. Each
such hidden layer has a weight matrix that is optimized in supervised learning. The term
“deep learning” in fact refers to the neural network with multiple layers. Generally, such
architectures can learn to perform tasks based on training examples. For instance, the image
recognition task involves labeling images as “cat” or “dog” given the input image. The input
image is then transformed into vector representation and the output data can be modeled as
probability distribution over target classes (cat, dog, etc.).

Input #1

Input #2

Input #3

Input #4

Output

Hidden
layer

Input
layer

Output
layer

FIGURE 2.18: Neural network depicted with input, hidden and output layers

There are multiple types of neural networks, each of which has its own specific use cases
and levels of complexity. The most common and basic type is called a Feed-forward Neural
Network, in which the data is fed in forward fashion. The network shown in Figure 2.18 is
a feed-forward network where data flow is from input to output as depicted by arrows. The
output vector is computed as follows:

y = Wx + b (2.13)
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where W stands for weights learned by the network, x is the input vector and b is a bias
term.

Recurrent Neural Networks Another common type of neural networks are called Recur-
rent Neural Networks (RNN). RNNs form a directed graph between connected nodes. RNNs
have an internal state memory to process sequence of inputs. The idea behind RNNs is to
make use of sequential information from the input. For example, in speech recognition the
prediction of the next word in a sentence depends on previous words since a sentence follows
a certain coherence and context. RNNs are called recurrent because they perform the same
task for every element in a sequence where the output from the previous element is also used
in computation. RNNs have an internal state “memory” that captures computed informa-
tion. In Figure 2.19, we show a RNN diagram with compressed and unfolded versions. Each
node (neuron) has a time-varying real-valued activation and each connection has a trainable
real-valued weight. Nodes are either input nodes (x), output nodes (y), or hidden nodes (h).

FIGURE 2.19: Recurrent Neural Network (RNN) diagram with compressed
(left) and unfolded (right) versions.

Here xt−1, xt and xt+1 are inputs, ht−1, ht and ht+1 are hidden states and yt−1, yt and
yt+1 are output states at time steps t − 1, t and t + 1 respectively. The computation of a
hidden state ht at time step t is calculated based on the previous hidden state ht−1, the input
state xt and bias term b.

ht = f (Uxt + Vht−1 + b) (2.14)

where U and V are trainable weight vectors and f is an activation function, which can be lin-
ear or non-linear functions. Usually, non-linear functions such as hyperbolic tangent (tanh)
or Rectified Linear Unit (ReLU) are widely used. The hidden states (ht−1, ht and ht+1) act
as internal “memory” of the network. They capture information about previous time steps.
However, in practice RNNs can not capture long inner-dependencies between nodes.

The output states are computed based on only hidden states, e.g. the output state yt at
time step t is calculated based on the hidden state ht as follows:

yt = g(Wht) (2.15)

The function g is another activation function, which is chosen based on the tackled prob-
lem. For instance, in classification problems for multiple labels it is chosen as softmax and
sigmoid for binary labels.

RNN share the weight vectors U, W and V across all time steps. This reduces the to-
tal number of parameters for optimization. For supervised learning problems RNNs have
been applied to sequence-to-sequence, e.g. POS-Tagging, NER, problems in NLP. Training
such systems on RNNs requires a method called back-propagation to optimize the weight
vectors. Back-propagation is essentially used by optimization algorithms such as stochastic
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gradient descent (SGD) to adjust weights of neurons by calculating the gradient of a loss
function. The errors computed by loss functions are back-propagated in each neuron and the
weights are adjusted according to the occurred errors. The training process continues until
the network outputs the expected results or until it reaches a certain stopping criterion, e.g.
number of iterations over the training examples.

RNNs have a major drawback called vanishing gradient problem. It occurs during
training when the same weights are used in all time steps as well as in back-propagation. The
problems occurs in cases where the gradient will be very small number and it prevents the
weights from changing. Activation functions such as the hyperbolic tangent have gradients
in range (0,1) and the back-propagation computes the gradients by chain rule. A network
with n layers results in the “front” layers converging very slowly since the gradient decreases
exponentially with n. The network experiences difficulty in memorizing information from
previous time steps.

Long Short-term Memory Hochreiter and Schmidhuber (1997) introduced Long Short-
term Memory (LSTM) units as a special kind of RNNs that are capable of learning long-term
dependencies between time steps. LSTM units can be used in an RNN that is composed of
a cell, input gate, output gate and forget gate. The cell is responsible for memorizing values
over different time steps. Each of three gates controls the proportions of information to forget
and pass on to the next time step. A standard RNN unit is composed of a single layer. These
layers apply an activation function and compute the hidden state. LSTM units have 4 layers:
input, forget, output gates and cell memory. Cell memory stores a value for either long or
short periods. We give an LSTM unit diagram below in Figure 2.20.

ct

Cell

× ht×

×

ft Forget Gate

itInput Gate otOutput Gate

xt
ht−1

bc

xt

ht−1bi

xt

ht−1bo

xt

ht−1b f

FIGURE 2.20: Long short-term memory (LSTM) diagram with input, forget,
output gates and cell memory.

As shown in the diagram above in Figure 2.20, the LSTM unit takes as input the current
input state xt, the previous hidden state ht−1 and a bias terms bo (output gate), b f (forget
gate), bi (input gate) and bc (cell memory). The unit outputs the hidden state ht. Next, we
give the equations to compute the hidden state and the cell memory.
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it = σ(Wiht−1 + Uixt + bi)

ft = σ(W f ht−1 + U f xt + b f )

c̃t = tanh(Wcht−1 + Ucxt + bc)

ct = ft � ct−1 + it � c̃t

ot = σ(Woht−1 + Uoxt + bo)

ht = ot � tanh(ct) (2.16)

where σ is a sigmoid activation function and � is element wise product. Below we
describe each variable used in Equation 2.16. The subscripts t or t− 1 refer to the time steps.

• xt: input state (vector)

• ht−1: previous hidden state

• ft: forget gate’s activator vector

• it: input gate’s activator vector

• ot: output gate’s activator vector

• ct: cell memory

• ht: hidden state of the LSTM unit

• Ui, U f , Uo, Uc: weight matrices for different gates for input xt

• bi, b f , bo, bc: bias vectors for different gates for input xt

• Wi, W f , Wo, Wc: weight matrices for hidden state ht

Bidirectional RNNs Over the years researchers have developed different neural network
architectures. Bidirectional RNNs (BiRNN) are based on the idea that the hidden state ht
at time step t does not only depend on the previous hidden states but also the future hidden
states. The basic idea is to stack two RNN layers where one process the input as a stan-
dard RNN in forward direction and the other one processes the input in backward direction.
In Figure 2.21, we show two RNN layers that process the input in forward and backward
directions. Each layer computes the hidden states as any RNN layer. The hidden states of
each layer (forward and backward) are used to compute the final hidden states of BiRNN.
As mentioned before, LSTM units can be used in any RNN without getting affected by the
vanishing gradient problem. Thus, the depicted diagram can be converted into Bidirectional
LSTM (BiLSTM) (Graves et al., 2013). Such neural network architectures are capable of
capturing dependencies between input sequences in both directions. For example, in NLP to
predict a missing word in a sequence we can look at both the left and the right context of that
word using BiLSTMs.
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FIGURE 2.21: Bidirectional Recurrent Neural Network (BiRNN) diagram
with forward and backward layers.

Convolutional Neural Networks Convolutional Neural Networks (CNN) (LeCun et al.,
1998) are another type of neural networks that became popular with applications on computer
vision. CNNs are feed-forward networks composed of one or multiple convolutional layers,
pooling layers, fully connected layers.

Convolutional Layer: Convolutional layers apply a convolutional operation on the input,
then pass the result into the next layer. These convolutional operations can be thought of
different filters. In computer vision, these filters can extract a certain information about a
region in an image such as detecting edges, etc. These layers extract local features around
the window of the filter applied on a sequence. Usually, convolutional layers extract higher
level features. Convolutional layers have a defined window size that is slided over the input
sequences. Each application results in local features.

Pooling Layer: Pooling layers take an input from convolutional layers and applies pool-
ing operation that selects some value and passed to the next layer. The pooling layer combines
local features extract by convolutional layer. Pooling operations such as max or average are
widely used. They are sometimes also called subsampling since they pick a sample from
possible values.

Fully Connected Layer: Fully connected layers connect every neuron in a layer to every
neuron in the next layer.

In Figure 2.22, we show a sample application of CNNs on image processing. This CNN
has 2 convolutional and 2 pooling layers followed by a single fully connected layer. The input
image is fed forward into convolutional layers. Next, the pooling operation is performed by
selecting samples from outputs of convolutional operations. Another stack of convolutional
and pooling layers are applied to get a fully connected layer. Finally, the output is computed
based on the vectors in fully connected layer.
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FIGURE 2.22: Convolutional Recurrent Neural Network (CNN) example
applied for image processing taken from https://en.wikipedia.

org/wiki/Convolutional_neural_network.

https://en.wikipedia.org/wiki/Convolutional_neural_network
https://en.wikipedia.org/wiki/Convolutional_neural_network
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Chapter 3

Datasets

In this chapter, we introduce publicly available datasets from the research community that re-
searchers have used to evaluate Question Answering (QA) approaches. We give an overview
about each dataset along with comparisons with each other.

The datasets to evaluate semantic parsing approaches on QA can be divided into two main
groups: closed-domain and open-domain. We introduce the Geoquery (Tang and Mooney,
2001) dataset from closed-domain, the SimpleQuestions (Bordes et al., 2015) and the QALD
(Cimiano et al., 2013; Dragoni et al., 2017; Unger et al., 2014, 2016; Usbeck et al., 2017)
from open-domain datasets. Finally, we compare the lexical overlap between train and test
splits of each dataset. The overlap is calculated by taking unique tokens in train and test splits
and comparing how many of the tokens in test also appear in train. It provides an overview
about the lexical gap in each dataset since the higher number of tokens in the test split that
do not appear in the train split points to a challenge for QA systems known as “lexical gap”.

3.1 Closed-domain

Closed-domain datasets include questions about a specific domain. The vocabulary used in
such datasets are limited. It means that the same vocabulary is used in the train and the test
splits of a dataset. The systems trained on these datasets have less lexical gap to cope with
compared to open-domain datasets. It is due to the fact that systems encounter the same
vocabulary in prediction time as well as during training. Next, we describe the well-known
closed-domain dataset called Geoquery.

3.1.1 Geoquery

The dataset has questions about US geography (Tang and Mooney, 2001) with information
about rivers, states, mountains, etc1. Each instance in the dataset is comprised of a question
and a meaning representation pair. The meaning representation includes unary and binary
predicates as well as individuals. The meaning representation is expressed in Prolog format
and converts into an executable query. Sample question and the corresponding query pairs
are given below.

Question: Give me the states that border Texas.

Query: A,(state(A),next_to(A,B),const(B,stateid(texas)))

Question: How long is the longest river in California?

Query: A,(len(B,A),longest(B, river(B),loc(B,C),const(C,stateid(california)))))
1https://www.cs.utexas.edu/users/ml/nldata/geoquery.html

https://www.cs.utexas.edu/users/ml/nldata/geoquery.html
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Question: What state has the longest river?

Query: A,(state(A),loc(B,A),longest(B,river(B)))

Zettlemoyer and Collins (2005) converted the meaning representation of questions into
lambda calculus format (see Section 2.3.3). The dataset is split into 600 instances for training
and 280 instances for testing. In total, the dataset contains 880 instances. An example with
the question and the lambda calculus representation is shown below.

Question: Give me all states that border Texas ?

Lambda calculus expression: λx.state(x) ∧ next_to(x,state:Texas)

3.2 Open-domain

Open-domain datasets include questions about general factual knowledge such as encyclope-
dia. The questions in these datasets cover many topics unlike closed-domain datasets. Below
we give more details on two open-domain datasets: QALD and SimpleQuestions.

3.2.1 QALD

Question Answering over Linked Data (QALD) (Cimiano et al., 2013; Unger et al., 2014,
2016) is a series of evaluation campaigns on question answering over Linked Data.2 These
evaluation campaigns were proposed as a challenge to benchmark QA systems based on
structured data such as DBpedia. The challenge has been organized eight times as of July,
2018. The challenge include datasets for each time the evaluation campaign has been or-
ganized. QALD datasets contain questions in different languages and their corresponding
meaning representation is a SPARQL query. Available languages are: English (EN), German
(DE), Spanish (ES), Italian (IT), French (FR), Dutch (NL), Romanian (RO), Persian (FA),
Hindi (HI). QALD questions comprise of various topics with aggregation, fact checking,
ASK queries, or normal WH-questions. Additionally, QALD datasets include multiple tasks
that are interesting for the research community focused on QA. These tasks are Hybrid QA,
Multilingual QA, Large-scale QA, Biomedical QA. In this thesis, we focus on Multilingual
QA task.

A sample instance from the QALD-6 training dataset in English, German and Spanish is
given below with its respective SPARQL query.

"id": "141",
"answertype": "resource",
"aggregation": "false",
"onlydbo": "true",
"hybrid": "false",
"question": [

{
"language": "en",
"string": "Who founded Intel?",
"keywords": "Intel, founded"

},
{
"language": "de",

2http://www.sc.cit-ec.uni-bielefeld.de/qald

http://www.sc.cit-ec.uni-bielefeld.de/qald
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"string": "Wer hat Intel gegründet?",
"keywords": "Intel, gründen"
},
{
"language": "es",
"string": "¿Quién fundó Intel?",
"keywords": "Intel, fundación"
}

],
"query": {
"sparql": "

PREFIX dbo: <http://dbpedia.org/ontology/>
REFIX dbr: <http://dbpedia.org/resource/>
SELECT DISTINCT ?uri WHERE {

dbr:Intel dbo:foundedBy ?uri .
} "

}

In Table 3.1, we summarize all datasets in QALD benchmarks with information about
the available languages, tasks, number of training and test instances and the knowledge base
that the questions are based on.

TABLE 3.1: QALD 1-8 benchmark datasets with the available languages,
tasks, number of training and test instances and the knowledge base that the

questions are based on.

Dataset Knowledge base Languages Task Train Test
QALD-1 DBpedia 3.6 EN QA 100 50
QALD-1 MusicBrainz EN QA 50 50
QALD-2 DBpedia 3.7 EN QA 100 100
QALD-2 MusicBrainz EN QA 100 55
QALD-3 DBpedia 3.8 EN QA 100 100
QALD-3 DBpedia 3.8 ES QA 50 50
QALD-3 MusicBrainz EN QA 100 55
QALD-4 DBpedia 3.9 EN, DE, ES, IT, FR, NL, RO Multilingual QA 200 50
QALD-4 SIDER, Diseasome, Drugbank EN Biomedical QA 25 25
QALD-4 DBpedia 3.9 EN Hybrid QA 25 25
QALD-5 DBpedia 2014 EN, DE, ES, IT, FR, NL, RO Multilingual QA 300 50
QALD-5 DBpedia 2014 EN Hybrid QA 40 10
QALD-6 DBpedia 2015 EN, DE, ES, IT, FR, NL, RO, FA Multilingual QA 350 100
QALD-6 DBpedia 2015 EN Hybrid QA 50 50
QALD-6 LinkedSpending EN Statistical QA 100 25
QALD-7 DBpedia 2016-04 EN, DE, ES, IT, FR, NL, RO, FA Multilingual QA 215 43
QALD-7 DBpedia 2016-04 EN Hybrid QA 105 50
QALD-7 DBpedia 2016-04 EN Large-scale QA 100 2 million
QALD-7 Wikidata 2017-01-09 EN QA 100 50
QALD-8 DBpedia 2016-10 EN, DE, ES, IT, FR, NL, RO, FA Multilingual QA 219 41
QALD-8 Wikidata EN, DE, ES, IT, FR, NL, RO, FA Multilingual QA 100 41
QALD-8 DBpedia 2016-10 EN Hybrid QA 100 50

3.2.2 SimpleQuestions

The SimpleQuestions (Bordes et al., 2015)3 dataset is a collection of simple questions in
English where questions are based on a single fact from Freebase. Human annotators were
presented a single fact (a triple from Freebase) and were asked to write a question about it.
The dataset includes over 100K instances, which makes it the largest dataset for question an-
swering. The distribution of instances for training, validation and test are given in Table 3.2.

3https://research.fb.com/downloads/babi/

https://research.fb.com/downloads/babi/
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TABLE 3.2: SimpleQuestions dataset with the number of instances for each
split

Split Number of instances

Train 75,910
Validation 10,845
Test 21,687
Total 108,442

10,843,106 triples were extracted from Freebase and they were presented to human anno-
tators to write questions about them. This subset of triples is referred to as the Freebase-2M
set. 108,442 instances were created in the process where 75,910 are for training, 10,845 for
validation and 21,687 instances are left for testing.

Each instance is composed of a single question and a triple. A sample instance is given
below.

Question: What American cartoonist is the creator of Andy Lippincott?

Triple: Andy_Lippincott, character_created_by, Garry_Trudeau

The subject Andy_Lippincott and the predicate character_created_by are mentioned in
the question implicitly or explicitly. The expected answer to this question is the entity on the
object position: Garry_Trudeau. This example includes human-readable labels for entities.
In the original dataset the entities on the subject and the object position are represented with
Freebase MIDs (machine readable ids).

Questions in the dataset include wh-words or start with words like Name. For instance,
“name a town and comune in italy”. Most of the questions do not follow a proper capitaliza-
tion and punctuation unlike the QALD datasets. All instances are mostly about a single fact.
The dataset does not include questions that ask about aggregation of certain information or
information about a certain date.

3.3 Lexical Overlap

All datasets described above have the same task: given a natural language question return
an executable query. The systems that are trained on such datasets need to handle the map-
ping of natural language expressions appearing in a question text to query expressions. Such
a mapping defines the performance of the systems. Tokens needed to do the mapping of
natural language expressions to query expressions are not given in any dataset. In order to
understand the complexity in mapping we did the following analysis: we compared unique
tokens extracted from train and test splits of each dataset. The results are presented in Ta-
ble 3.3. The overlap between the train and the test split means that a token exists in both. We
chose the QALD-6 dataset from QALD benchmark datasets.

TABLE 3.3: Single token analysis for QA datasets, the number of tokens in
train & test splits and the number of overlapping tokens in both splits

Dataset Type Train Test Overlap Percentage
GeoQuery Closed-domain 284 167 167 1.0
SimpleQuestions Open-domain 50984 21142 11806 0.55
QALD-6 Open-domain 886 350 158 0.45

These results presented in Table 3.3 are based only on the single token overlap. We can
see that QALD-6 has the lowest overlap of 0.45 between train and test tokens. SimpleQues-
tions is the second dataset with the lowest overlap of 0.55. Finally, Geoquery has full overlap
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(1.0). In the next section, we evaluate these results and explain the challenges that systems
face for each dataset and how the overlap affects the performance.

3.4 Dataset Complexity

The results presented in Table 3.3 suggest that the systems trained on QALD-6 would face
more challenges with lexical knowledge since most of the tokens would not be seen during
training. Even though the SimpleQuestions dataset introduce a simpler task compared to
QALD-6, it still has the lexical gap (0.55). Geoquery, as expected, has a full overlap where
the tokens in test split also appear in train. Closed-domain datasets have a limited vocabulary
that is used interchangeably. Open-domain datasets cover wider vocabulary from different
topics.

Open-domain datasets pose a bigger challenge than closed-domain ones in terms of vo-
cabulary and the search space. QALD-6 and SimpleQuestions are datasets both based on
large knowledge bases such as DBpedia and Freebase with millions of entities. Geoquery
on the other hand, has a limited vocabulary and it is restricted to the set of entities from US
geography with approximately 700 entities.

We can see that the QALD-6 dataset has a gap in lexical knowledge introduced by the
non-overlapping tokens from test. The overlap for QALD-6 dataset is 0.45. It means that
more than half (the remaining 0.55) of the single tokens in test can not be mapped to query
expressions using only the vocabulary in the training data. Similar problem exists for the
SimpleQuestions dataset where the lexical gap is 0.55.

Additionally, note that QALD-6 dataset includes more complex types of questions such
as aggregations, ASK queries, etc. while SimpleQuestions has a single type. QALD-6 task
is not limited to a single triple unlike SimpleQuestions. Considering the available number of
training instances, the lexical gap, question complexities, different query templates we can
conclude that the QALD-6 is the most complex dataset among these three. The next complex
dataset is the SimpleQuestions with higher lexical overlap while the dataset includes over
70K training instances. The Geoquery is the dataset with the lowest complexity with limited
vocabulary that appears in both train and test splits.
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Chapter 4

Related Work

In this chapter, we describe previously published work on Question Answering. We provide
a detailed overview on research done in semantic parsing along with comparisons to the
state-of-the-systems evaluated on Geoquery, QALD and SimpleQuestions datasets.

4.1 Semantic Parsing

There is a substantial body of work on semantic parsing and its application in the task of
question answering. In the next sections we compare other published work to our approach
as well as discuss the strong points of each approach. We group QA systems under 2 groups
based on the datasets they use for evaluation: QALD and SimpleQuestions.

Semantic parsing (SP) is the problem of transforming natural language sentences into a
machine-interpretable meaning representation. It is a well studied sub-field of NLP. Early
semantic parsing approaches such as Winograd (1971, 1972) and Woods et al. (1972) used
patterns for understanding the content of the input sentences. These approaches were fol-
lowed by statistical ones that learn the statistics from training data rather than defining rules
manually. Zelle and Mooney (1996) defined the first semantic parsing approach that was
based on a statistical model. The approach learns control rules from the provided input
sentences paired with desired parses. The learning algorithm is Inductive Logic Program-
ming (ILP). The output from the learning process is a shift-reduce parser that converts input
sentences into parses using the learned control rules. The parses are essentially executable
queries on the target domain, e.g. US geography. The approach was called CHILL. The
dataset Geoquery (Tang and Mooney, 2001) was later introduced with 880 questions paired
with Prolog format queries.1 This approach was later followed by SILT (Kate et al., 2005)
that uses transformation rules to associate natural language patterns with templates drawn
from partial meaning representations.

SCISSOR (Ge and Mooney, 2005) is an approach based on syntactic parse trees as syntax
and uses compositional semantics to obtain the meaning representation of an utterance. This
approach bears similarities to our proposed approach discussed in Chapter 7 in a way that
we also use syntactic trees for syntax and compositional semantics to obtain the meaning
representation.

Semantic parsing approaches can be formulated as machine translation (MT) systems.
MT systems take an input utterance and transform it into the target language. The target
language can be formulated as a another representation such as queries. WASP (Wong and
Mooney, 2006) is a MT system adapted to the semantic parsing problem using context-
free grammars. It uses the word alignment technique used in MT systems to find better
transformation rules introduced than SILT.

KRISP (Kate and Mooney, 2006) is an approach based on string-kernel-based classifiers.
The approach learns pairs of sub-strings from the given utterance and the respective meaning

1http://www.cs.utexas.edu/users/ml/geo.html
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representation. They use SVM string-kernels that measure the common subsequences that
two strings share. The semantic parser gives as output the highest-ranking semantic parse
based on probabilities.

ZC05 (Zettlemoyer and Collins, 2005) is the first semantic parser that relies on CCG
for syntax and lambda calculus for semantics. The approach is based on training a proba-
bilistic semantic parser from input training data, e.g. Geoquery. The training algorithm has
a function called GENLEX that takes an input utterance and the respective lambda calcu-
lus expression as logical form. GENLEX generates lexical items by pairing n-grams from
the utterance with smaller units of lambda calculus expressions, e.g. individuals such as
state:Texas, binary predicates state_to with variables only. Each lexical item has a CCG cat-
egory assigned to it. The algorithm applies compositional semantics to generate all possible
parses that can be obtained using lexical items generated by GENLEX. Additionally, some
domain-independent lexical items are needed to be defined manually for tokens such as WH-
words, determiners etc. The approach learns a probabilistic model that assigns a distribution
over parses under the learned grammar based on CCG.

Semantic parsing approaches such as the ones explained above are evaluated on the Geo-
query dataset and the results are shown in Table 4.1 (Kate and Mooney, 2006). It can be seen
that the ZC05 approach achieves higher recall than most systems at the same time keeping
the precision high as well. KRISP also achieves high precision but the recall is not as high as
ZC05.

Most of these systems learn patterns on how to map natural language sub-strings into
smaller units of meaning representation. All systems perform relatively well given a dataset
in a restricted domain such as Geoquery.

FIGURE 4.1: Evaluation of semantic parsing approaches on Geoquery
dataset, taken from KRISP (Kate and Mooney, 2006)

Other statistical approaches that rely on CCG syntax have been studied as well. These
approaches differ in the learning methods. UBL (Kwiatkowski et al., 2010) is another ap-
proach that uses CCG as syntax and lambda calculus where the method is tailored for multi-
ple languages. The ZC05 is applied only to English and involves manual lexica for covering
domain-independent expressions. This approach generalizes better to other languages since
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it does not require any hand-engineered lexical items. The approach is based on a splitting
notion unlike ZC05 where the approach learns to compose the meaning representation from
smaller units.

Given the utterance and the meaning representation, the splitting algorithm extracts some
substrings from the utterance, small units of meaning representation and pairs them. These
paired lexical items get assigned a CCG category and the logical form. The remaining part of
the utterance and the meaning representation is kept as it is. Having these two lexical items,
the original training instance can be obtained by applying compositional semantics based on
CCG and lambda calculus as in the ZC05 approach. An example is given below. A training
instance consists of an utterance paired with CCG category S (sentence) and the semantic
representation as shown below.

Training instance : New York borders Vermont - S : next_to(NY, VT)
Split part: Vermont - NP : VT
Remaining part : New York borders - S/NP : λx.next_to(NY, x)

From the original sentence, some substrings such as Vermont and some small units of
semantic representation VT is removed and formed into new lexical item. The CCG category
of NP is assigned since VT stands for an individual. The remaining part gets assigned a
CCG category where NP is missing on the right to form a sentence. The reason for missing
a CCG category NP on the right is that the word Vermont is on the right side of the given
utterance. As a result, the remaining part of the sentence New York borders gets assigned
S/NP. The semantics of this phrase is obtained by replacing VT in next_to(NY, VT). As a
result, the following lambda expression λx.next_to(NY, x) is assigned to the remaining part
of the sentence.

Following such splits over the training corpus, the algorithm learns which split pairs fit
better using the probabilistic model. Different splits are also possible for the given example,
which leads to many different semantic parses obtained from the learned probabilistic model.
For efficiency reasons, most systems incorporate inference methods such as beam-search to
reduce the search space during interpretation of the natural language utterance. This approach
differs from ZC05 in obtaining lexical items. ZC05 generates all possible lexical items and
then evaluates each of them based on whether the combination of those lexical items leads to
a valid semantic parse. The ZC05 also relies on hand-engineered lexical items for domain-
independent expressions, which have to be defined for each language. However, UBL learns
how to split utterances and semantic representations in order to obtain the expected semantic
parse. It does not need any manually hand-engineered lexica.

It has been shown that statistical approaches (Kwiatkowski et al., 2013; Zettlemoyer
and Collins, 2007, 2009) can learn from pairs of natural language utterance and meaning
representation in restricted domains. However, generating such datasets requires experts that
understand formal languages such as lambda calculus. DCS (Liang et al., 2011) introduced
the notion of building semantic parsers without any pairs of natural language question and
the meaning representation.

Instead, the approach learns from pairs of natural language question and the answers for
that question as an expected output from the semantic parser. The meaning representation
of questions is not provided and it is inferred during the parsing process as a hidden vari-
able. The performance of such systems is evaluated with respect to the answers retrieved
from the executable query, generated by the semantic parser, rather than comparing meaning
representations. Other similar methods (Artzi and Zettlemoyer, 2011; Clarke et al., 2010;
Goldwasser and Roth, 2011; Krishnamurthy and Mitchell, 2012) have been proposed as well
because it is easier to create datasets by letting annotators write answers for questions by
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extracting from some knowledge bases such as Freebase, DBpedia, etc rather than asking
them to write queries. These methods have weak supervision on the model where the query
to extract answers is a hidden variable.

DCS stands for dependency-based compositional semantics, which is a formal language
to define semantic representations. It provides a formalism for defining semantics as tree
structures called DCS trees where the semantics is defined between different semantic units
(nodes) in terms of relations (edges) between them. An illustration of a DCS tree is shown in
Figure 4.2.

FIGURE 4.2: DCS formalism along with probabilistic model for the given
example, taken from Liang et al. (2011)

The utterance and its respective answer (Alaska based on the grounded world with cities,
states, etc.) is shown at each end as input and output. The inferred semantic representation
(also referred to logical form) of the utterance is shown in the middle of the pipeline with z.
The approach learns how to map an utterance to answers by inferring a logical form based
on the probabilistic model where parameters are estimated by training on some dataset.

Liang et al. (2011) evaluated the semantic parsing systems on the Geoquery dataset. The
results are presented in Table 4.1. Some approaches are evaluated on the basis of returned se-
mantic representation and some evaluated on the basis of answers retrieved from the database
after executing the query. It can be seen that the DCS-based semantic parsing approach
achieves the highest results in terms of recall compared to other proposed approaches.
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TABLE 4.1: Recall values for systems evaluated on Geoquery dataset, taken
from Liang et al. (2011)

System Semantic Representation Answer
CHILL 79,4 -
SCISSOR 77,5 77,5
SILT 54,1 -
KRISP 71,7 -
WASP 74,8 -
λ-WASP 86,6 -
ZC05 79,3 -
UBL 88,2 88,9
FUBL 88,6 88,9
DCS-based (with augmented triggers) - 91,4

A recent focus in the research community shifted towards to learning language-independent
meaning representations and building multilingual QA systems. This allows to build ap-
proaches that can potentially scale to multiple languages or domains. Reddy et al. (2017)
developed such a system called UDEPLAMBDA that maps natural language questions to
lambda calculus expressions. The multilinguality aspect of this system is based on using
cross-lingual dependency parse trees from Universal Dependencies (UD) (Nivre et al., 2016;
Nivre, 2017). The semantic representation of a natural language is based on lambda cal-
culus. This approach bears similarity with our proposed Dependency parse tree-based Se-
mantic Parsing Approach (see Chapter 7). Our method differs from theirs in the way of
applying the semantic composition and the way we express the semantics with DUDES.
Our semantic composition method does not depend on the order of functional applications,
which is a feature of DUDES, whereas their method requires an ordered application since it
is based on lambda calculus. Their approach improves upon the previously published system
called DEPLAMBDA (Reddy et al., 2016), which was built on dependency parse trees for
English only. UDEPLAMBDA uses the syntactic dependencies of words in UD form and
introduces enhancements over the dependency parse trees. These enhancements are adding
long-dependency relation between words and language-specific set of POS tags that are not
part of UD. Our approach Dependency parse tree-based Semantic Parsing Approach does not
depend on any additional syntax other than the one provided by UD such as long-dependency
relations and additional POS tags.

Additionally, other work has focused on building multilingual semantic representations
such as (Evang and Bos, 2016; Vanderwende et al., 2015; White et al., 2016). Vander-
wende et al. (2015) developed a system that converts natural language into Abstract Meaning
Representation (AMR) (Banarescu et al., 2013) where the aim is to assign the meaning rep-
resentations to sentences that are similar. They showed the application of their method on
German, French, Spanish and Japanese. White et al. (2016) proposed a framework for defin-
ing universal decompositional semantics with an aim to provide semantic annotations on
word senses, semantic roles and event properties across all languages. These semantic anno-
tations provide an understanding of a sentence given the syntax in form of the dependency
parse tree. Evang and Bos (2016) proposed to learn semantic parsers based on CCG using
the pre-trained parser on a specific language and transforming the parser into another target
language using a parallel corpus. They applied a CCG semantic parser trained on English
into Dutch. Such approaches can be extended to multiple languages using the parallel data
or machine translation systems directly.

Other weak-supervision approaches that learn from question-answer pairs followed the
trend by switching from restricted (closed) domains to open-domains. Berant et al. (2013)
introduced a dataset called WebQuestions. The dataset is more challenging than Geoquery
because the questions are based on various topics that appear in Freebase. SimpleQuestions
(Bordes et al., 2015) is another dataset that is based on Freebase as explained earlier in



60 Chapter 4. Related Work

Section 3.2.2. Other approaches that use semantic web data have gained popularity in recent
years. QALD datasets in particular have been used to evaluate systems that use DBpedia as a
knowledge base. We discuss the published systems on SimpleQuestions and QALD datasets
in the following sections.

4.2 QALD Systems

Höffner et al. (2017) surveyed QA systems that have been evaluated on QALD datasets till
July 2015. The survey analyses the challenges these systems face and discusses the strengths
and weaknesses of the proposed methods. They identified seven challenges that state-of-the-
art systems need to handle in order to reach high performance in question answering task.
Next, we explain these seven challenges and then methods that have proposed as possible
solutions to each challenge and describe them in detail.

Challenge 1 - Lexical Gap: natural language questions can be formulated in different
ways while asking for the same fact. However, knowledge bases contain limited label
information (with rdfs:label property) about RDF resources. The gap occurs if the
vocabulary used in a question is missing in a knowledge base. Systems need such
lexical information to map natural language words and phrases to knowledge base
items (resources, predicates or classes).

For instance, to answer the question “Who created Wikipedia?” the system needs
to map the word “created” to the predicate “dbo:author”, which is not provided by
DBpedia. The predicate “dbo:author” has a label “author”@en, which does not help to
do the mapping in this case. External dictionaries are required in order to fill the gap
in natural language question and the knowledge base.

Challenge 2 - Ambiguity: this challenge occurs usually when systems try to solve the
lexical gap and generate more candidates for a given search term. For instance, the
same phrase can map to multiple predicates and it causes a challenge for QA systems
because the number of possible queries for a given question increases. A QA system
needs to disambiguate and select the best candidate query given the question where
there might be multiple candidate queries.

For instance, the name “Barcelona” can be mapped to the city of Barcelona or the
football club F.C. Barcelona.

Challenge 3 - Multilingualism: knowledge bases contain factual information in many
languages (DBpedia in more than 120 languages) but QA systems still lack the notion
of multilinguality. The multilinguality for QA systems means that questions in multiple
languages can be answered simultaneously. It is an important aspect to consider for
building a QA system since users would like to interact in their native languages. The
previous challenge lexical gap needs to solved in multiple languages as well.

It becomes a challenge together with the lexical gap since the language specific part of
a QA system lies in mapping natural language phrases to knowledge base entries. If a
QA system uses some syntactic analyzer, then this syntactic analyzer should be able to
produce similar outputs for other languages as well.

Challenge 4 - Complex Queries: the complexity of a question increases by the num-
ber of facts mentioned in the question. For instance, the question “Who is the mayor of
the city that is the capital of Germany?” requires access to the syntax (relative clauses,
coreference resolution, etc.) of the question to correctly answer it as shown in the
SPARQL query below.
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PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX dbo: <http://dbpedia.org/ontology/>
PREFIX dbr: <http://dbpedia.org/resource/>
SELECT DISTINCT ?uri WHERE {

?uri dbo:leaderName ?city .
?city rdf:type dbo:City .
?city dbo:capital dbr:Germany .

}

Challenge 5 - Distributed Knowledge: The Linked Open Data Cloud contains inter-
linked knowledge bases. A question may involve a fact that requires combination of
data from multiple sources.

For instance, to answer the question given below, a QA system requires YAGO classes
in DBpedia.

Which Greek goddesses dwelt on Mount Olympus?

PREFIX dbr: <http://dbpedia.org/resource/>
PREFIX yago: <http://dbpedia.org/class/yago/>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX dbp: <http://dbpedia.org/property/>
SELECT DISTINCT ?uri WHERE {

?uri rdf:type yago:GreekGoddesses .
?uri dbp:abode dbr:Mount_Olympus .

}

Challenge 6 - Procedural, Temporal and Spatial Questions: Procedural QA ex-
pects an explanation why a certain fact is returned as an answer. It is not tackled by
any systems that use RDF data because all triples in a knowledge base are considered
to be true. Temporal questions introduce a challenge for QA systems because detec-
tion, mapping and reasoning of temporal information in a question requires a thorough
analysis of the underlying knowledge base ontology and the natural language question.
Spatial questions pose a similar challenge as procedural and temporal questions where
the focus is on integration of spatial knowledge bases with natural language questions.

Challenge 7 - Templates: QA systems that answer natural language questions using
RDF data generate SPARQL queries where the answers can be found by executing the
query. Simple questions usually require a single triple in a SPARQL query to answer
the given question. Complex questions that require aggregation, or even more facts in
a question require different templates of SPARQL queries.

The complexity of a question shown below lies in combining two triples, ordering the
results and picking the second result.

What is the second highest mountain on Earth?

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX dbo: <http://dbpedia.org/ontology/>
SELECT DISTINCT ?uri WHERE {

?uri rdf:type dbo:Mountain .
?uri dbo:elevation ?elevation .

}
ORDER BY DESC(?elevation)
OFFSET 1 LIMIT 1
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Recently, Diefenbach et al. (2017a) published a survey on core techniques of QA systems
that have been developed over the years to tackle challenges such as the ones defined above.
These core techniques are:

Question Analysis: the technique involves analyzing natural language questions using
syntactic information e.g. tokenization, part-of-speech (POS) tagging, named entity
recognition, dependency parsing etc. This part usually requires systems to identify
the question type (e.g. whether it has an aggregation), detecting phrases that stand
for named entities, predicates, etc. For instance, SINA (Shekarpour et al., 2015) uses
n-grams to detect named entities. PowerAqua (Lopez et al., 2012) instead depends on
manually defined rules based on POS tags to detect question type, and group phrases
as candidates for phrase mapping. Xser (Xu et al., 2014a) introduces a method for
identifying phrases in a question that stand for a knowledge base item as a sequence
labeling problem. One of our proposed systems (Hakimov et al., 2015) (see Chapter 6)
extracts n-grams from the question and the query pair and learns how to map certain
URIs to natural language expressions. Systems such as Intui2 (Dima, 2013) or FREyA
(Damljanovic et al., 2010) use constituency parse tree generators to analyze phrasal
dependencies between words. Systems such as gAnswer (Zou et al., 2014a), CASIA
(He et al., 2014), DEANNA (Yahya et al., 2012) use dependency parse trees to ana-
lyze dependencies between words, which is similar to our proposed approach AMUSE
(Hakimov et al., 2017) (see Chapter 7).

Phrase Mapping: this technique involves mapping phrases that occur in a question
to knowledge base entries, e.g. named entity linking by mapping named entities in a
question, mapping predicates etc. For instance, consider the question and the query
given below. The natural language words that map to certain URIs in the query are
highlighted with the same color.

Who created Goofy ?

PREFIX dbo: <http://dbpedia.org/ontology/>
PREFIX dbr: <http://dbpedia.org/resource/>
SELECT DISTINCT ?uri WHERE {
dbr:Goofy dbo:creator ?uri .
}

QA systems need an index to retrieve URIs for a given query term (words in questions).
Most QA systems have created a specific indexing structure for each type of URI: pred-
icates, resources and classes. For instance, the question above needs some mechanism
that maps the word “created” to predicate dbo:creator and the word “Goofy” to the re-
source dbr:Goofy. Mapping resources in the query is straightforward in this question
since the URI and the word in the question share the same label. However, the index
may return many URIs that share the same label, e.g. Barcelona mapping to both the
city and the football club. The predicate dbo:creator has the same lemma with the verb
in the question “created”.

QA systems need a lemmatizer or a stemmer in order to convert the words into the
root form, which makes the matching easier because the index can cover only the
root forms. An indexing solution such as Apache Lucene2 can map subsequences
of phrases efficiently but it may result in too many false negative matches. String
similarity measures such as Levenshtein can be used to filter some matches that have

2http://lucene.apache.org/

http://lucene.apache.org/
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lower similarity (predefined threshold) with the query term. Usually, the words that
stand for predicates are more ambiguous compared to resources and classes. In natural
language there are many variations for words that express certain relations between
entities. For instance, “married to, spouse of, partner of, husband, wife, life partner
of” are different natural language variations for the property dbo:spouse in DBpedia.
Personal names can also be in different formats such as given name, full name, first
name and last name, etc. QA systems need to consider such variations in natural
language while retrieving query terms. It corresponds to the Challenge 1 - Lexical
Gap explained above. The same problem exists not only for relations and entities but
also for classes (also called concepts). For instance, the question “Give me all movies
with Tom Cruise” requires an index that retrieves dbo:Film for the phrase “movies”.

External dictionaries can be used on top of ontology labels to increase the coverage for
mapping because in some cases the string similarity or subsequence matching methods
are not adequate. WordNet provides synsets that act as synonyms for each word in the
graph, e.g. the word “film” and “movie” are synonyms in WordNet. TBSL (Unger
et al., 2012), SemSek (Aggarwal and Buitelaar, 2012) and PowerAqua (Lopez et al.,
2012) use WordNet synsets as synonyms and use all as candidate terms while querying
a certain index. Additionally, there are other approaches that provide lexicalisations
for certain ontologies such as in the BOA Framework (Gerber and Ngomo, 2012), M-
ATOLL (Walter et al., 2014) and PATTY (Nakashole et al., 2012). The BOA and M-
ATOLL extract multilingual DBpedia Ontology lexicalisations from large text corpora,
e.g. Wikipedia. TBSL uses the BOA Framework lexicalisations for mapping, PATTY
is used by Xser (Xu et al., 2014a) and Hakimov et al. (2013) and our approach AMUSE
uses M-ATOLL lexicalisations. Such approaches bridge the gap in phrase mapping in
a multilingual setting as explained above by the Challenge 2 - Multilingualism.

Entity Linking (EL) approaches such as DBpedia Spotlight (Mendes et al., 2011) or
NERFGUN (Hakimov et al., 2016) provide an inverted index of resources with alter-
native surface forms including the frequencies of each surface form occurring with a
certain URI. Such inverted indexes can be used to map named entities in questions to
resources. NERFGUN extracts anchor links in Wikipedia articles along with labels
from DBpedia properties that express alternative names and aggregates the frequen-
cies of how often each surface form co-occurs with a URI. This sort of surface form
extraction approach can be applied to any language supported by DBpedia (over 120).
Our approach AMUSE uses the index from NERFGUN for phrase mapping in English,
Spanish and German questions.

Distributional semantics approaches such as word2Vec (Mikolov et al., 2013) can be
used as another alternative to an external dictionaries. The word vector representation
of a query term is compared with word vector representation of all candidate URIs.
The cosine similarity is used to rank candidate URIs and top-k ranking ones are re-
turned as a result. More details about usage of distributional semantics in mapping
natural language phrases is described in Section 5.2. CASIA (He et al., 2014) uses this
technique to map phrases to classes. Our approach AMUSE uses word vectors trained
on multiple languages to map phrases to predicates.

Disambiguation: this technique involves picking the most likely candidate out of
many options since certain words cant have different meanings based on the context
and they map to multiple URIs, as explained before in the Phrase Mapping.

Different approaches have been proposed to disambiguate possible interpretations of
a question. Some systems use local features such as string similarity to disambiguate
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candidates while some systems train machine-learning models. Local feature disam-
biguation is used to compare string or context similarity to compare the word and the
mapped URI. Additionally, knowledge base domain/range restrictions are used for fact
checking. Predicates detected in the Phrase Mapping phase are used to check if any
candidate resource has a matching type with a domain or range restriction of a pred-
icate. For instance, Hakimov et al. (2013) uses such features along with frequencies
of surface forms to rank the candidates. TBSL (Unger et al., 2012) uses the string
similarity, knowledge base fact checking and considers whether the combined URIs
occur in a triple to rank possible interpretations. SemSek (Aggarwal and Buitelaar,
2012) extracts only resource URIs in the Phrase Mapping step. By traversing over
candidate resource URIs, the predicates of each resource URI are compared with a
substring from a question, and the predicate URIs that match a certain threshold (edit
distance similarity, context similarity using distributional semantics) are extracted as
candidates.

Systems that use learning models rely on different sets of features such as local features
(string/context similarity), knowledge base consistency features (domain/range restric-
tions), POS-tag features (whether a subsequence should be mapped to a predicate or
resource), dependency relation features (indicates whether a certain resource has a re-
lation to a predicate), knowledge base features (whether certain resource and predicate
URI exist in a triple), co-occurrence of surface forms with URIs, popularity of resource
URIs (e.g. PageRank score of all resource URIs in a knowledge base). SINA (Shekar-
pour et al., 2015) trains a Hidden Markov Model (HMM) to disambiguate phrase map-
pings and select the best interpretation. DEANNA (Yahya et al., 2012) uses a Integer
Linear Program (ILP) algorithm for disambiguation whereas Xser (Xu et al., 2014a)
is based on a structured perceptron algorithm. Our approach AMUSE extracts similar
features and trains a factor graph model that learns to output the best interpretation
among all candidates.

Query Construction: this step involves constructing a query by combining the re-
turned URIs from the Disambiguation step explained above. Some approaches rely
on a pre-defined set of templates of SPARQL queries while others construct a query
dynamically based on the retrieved URIs. TBSL (Unger et al., 2012) uses templates
of SPARQL queries and fills the slots using ranked URIs. Another similar technique
is followed by QAKiS (Cabrio et al., 2012), ISOFT (Park et al., 2014a), Intui2 (Dima,
2013) and PowerAqua (Lopez et al., 2012) where templates contain at most two triples.
RTV (Giannone et al., 2013), gAnswer (Zou et al., 2014a) and QAnswer (Ruseti et al.,
2015) use dependency parse tree relations to combine URIs into triples. These ap-
proaches use the syntax of a question to combine URIs after the disambiguation step.
Other approaches use semantic parsing methods that consider the syntax of a ques-
tion to construct the query. The approach proposed by Hakimov et al. (2015) uses the
CCG grammar to guide query construction by combining lexical items in a question. A
similar approach is followed by AMUSE where the syntax of a question (dependency
relations between words) is used to construct a query. SINA (Shekarpour et al., 2015)
uses URIs from the disambiguation step and generates a graph. Such graph is com-
posed of resource and class URIs as nodes and the predicate URIs as edges between
the connected nodes. This graph can be converted into a SPARQL query since the
queries represent a graph structure as well. These types of approaches consider only
the underlying semantic information in a knowledge base. Our approach AMUSE con-
siders the syntax of a question and the knowledge base semantic information in a query
construction step.
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Distributed Knowledge: this technique involves executing the constructed query on
single or multiple knowledge bases. The constructed queries are executed on a single
or multiple knowledge bases depending on the retrieved URIs. Some approaches com-
bine URIs from different knowledge bases (e.g.PowerAqua). If knowledge bases are
interlinked then the URIs are transferred into the respective knowledge base URI using
owl:sameAs links. If the knowledge bases are not connected then it results in multiple
queries based on each knowledge base. Each query is executed separately and the re-
sults are combined using labels as in PowerAqua (Lopez et al., 2012). Our approaches
AMUSE and Hakimov et al. (2013) use a single knowledge base, DBpedia.

In Table 4.2, all systems that participated in QALD benchmarks as of July, 2018 are
shown. The table includes the participating systems and their performances on the respective
QALD dataset.

TABLE 4.2: All systems participated in Question Answering on DBpedia of
QALD challenges published till July 2018. * systems that did not participate

in challenges directly

System Lang Total Precision Recall F-measure Reference
QALD-1

FREyA (Damljanovic et al., 2010) en 50 0.54 0.46 0.50 Lopez et al. (2013)
PowerAqua (Lopez et al., 2012) en 50 0.48 0.44 0.46 Lopez et al. (2013)
TBSL (Unger et al., 2012) * en 50 0.41 0.42 0.42 Unger et al. (2012)

QALD-2
SemSek (Aggarwal and Buitelaar, 2012) en 100 0.35 0.38 0.37 Lopez et al. (2013)
BELA (Walter et al., 2012) * en 100 0.19 0.22 0.21 Walter et al. (2012)
QAKiS (Cabrio et al., 2012) en 100 0.14 0.13 0.13 Lopez et al. (2013)
Hakimov et al. (2013) * en 55 0.83 0.32 0.46 Hakimov et al. (2013)

QALD-3
gAnswer (Zou et al., 2014a) * en 100 0.40 0.40 0.40 Zou et al. (2014a)
RTV (Giannone et al., 2013) en 99 0.32 0.34 0.33 Cimiano et al. (2013)
Intui2 (Dima, 2013) en 99 0.32 0.32 0.32 Cimiano et al. (2013)
SINA (Shekarpour et al., 2015) * en 100 0.32 0.32 0.32 Shekarpour et al. (2015)
DEANNA (Yahya et al., 2012) * en 100 0.21 0.21 0.21 Yahya et al. (2012)
SWIP (Pradel et al., 2012) en 99 0.16 0.17 0.17 Cimiano et al. (2013)
Zhu et al. (2015) * en 99 0.38 0.42 0.38 Zhu et al. (2015)

QALD-4
Xser (Xu et al., 2014a) en 50 0.72 0.71 0.72 Unger et al. (2014)
gAnswer (Zou et al., 2014a) en 50 0.37 0.37 0.37 Unger et al. (2014)
CASIA (He et al., 2014) en 50 0.32 0.40 0.36 Unger et al. (2014)
Intui3 (Dima, 2014a) en 50 0.23 0.25 0.24 Unger et al. (2014)
ISOFT (Park et al., 2014a) en 50 0.21 0.26 0.23 Unger et al. (2014)
Hakimov et al. (2015) * en 50 0.52 0.13 0.21 Hakimov et al. (2015)

QALD-5
Xser (Xu et al., 2014a) en 50 0.74 0.72 0.73 Unger et al. (2015)
QAnswer (Ruseti et al., 2015) en 50 0.46 0.35 0.40 Unger et al. (2015)
SemGraphQA (Beaumont et al., 2015) en 50 0.31 0.32 0.31 Unger et al. (2015)
YodaQA (Baudiš and Šedivy, 2015) en 50 0.28 0.25 0.26 Unger et al. (2015)

QALD-6
UTQA (Veyseh, 2016) en 100 0.82 0.69 0.75 Unger et al. (2016)
UTQA (Veyseh, 2016) es 100 0.76 0.62 0.68 Unger et al. (2016)
UTQA (Veyseh, 2016) fs 100 0.70 0.61 0.65 Unger et al. (2016)
SemGraphQA (Beaumont et al., 2015) en 100 0.70 0.25 0.37 Unger et al. (2016)
AMUSE (Hakimov et al., 2017) * en 100 - - 0.26 Hakimov et al. (2017)
AMUSE (Hakimov et al., 2017) * de 100 - - 0.16 Hakimov et al. (2017)
AMUSE (Hakimov et al., 2017) * es 100 - - 0.20 Hakimov et al. (2017)

QALD-7
WDAqua (Dragoni et al., 2017) en 215 0.16 0.16 0.14 Dragoni et al. (2017)
gAnswer2 (Zou et al., 2014a) en 215 0.49 0.49 0.47 Dragoni et al. (2017)
AMAL (Dragoni et al., 2017) fr 215 0.72 0.72 0.72 Dragoni et al. (2017)

QALD-8
WDAqua-core0 (Diefenbach et al., 2017b) en 219 0.39 0.40 0.39 Usbeck et al. (2017)
gAnswer (Zou et al., 2014a) en 219 0.39 0.39 0.39 Usbeck et al. (2017)
QAKIS (Cabrio et al., 2012) fr 219 0.06 0.05 0.06 Usbeck et al. (2017)
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4.3 SimpleQuestions Systems

The SimpleQuestions dataset includes simpler questions where a single fact from Freebase
is used to answer those questions. Over the years, researchers have focused on building
neural network architectures since the number of training instances is more than 75K and
such architectures need lots of data to train. These systems are listed in Table 4.3 with their
respective scores obtained on the dataset.

TABLE 4.3: Systems evaluated on SimpleQuestions dataset ranked by the
reported F1 measures, * systems evaluated on FB5M data, the rest were

evaluated on FB2M data

System Accuracy
Bordes et al. (2015) 0.63
Aghaebrahimian and Jurčíček (2016) 0.65
Golub and He (2016) 0.71
Lukovnikov et al. (2017) 0.71
Dai et al. (2016) 0.76*
Yin et al. (2016) 0.76
Ture and Jojic (2017) 0.88

Bordes et al. (2015) present the baseline for the dataset using Memory Networks (Weston
et al., 2015). The approach generates candidate entities using n-grams from the question text
that match some Freebase entity. The top two entities for each of the five longest matched
n-grams are chosen as candidates. The main component of the model is scoring the candidate
Freebase fact y and it is computed as follows:

SQA(x, y) = cos(WV g(y), WS f (y)) (4.1)

where WV is the word embedding matrix and WS is the knowledge base embedding
matrix for Freebase. The approach corrupts the dataset to generate negative samples by
assigning random questions from the datasets to Freebase entity and predicate pairs. The
training objective is to maximize the score (Equation 4.1) between positive and negative
samples.

Yin et al. (2016) proposed an approach that uses Convolutional Neural Networks (CNN)
with attentive max pooling. They also presented entity linking methods to find the subject
entity in the question: passive and active. The passive method includes querying all n-grams
in the question text and retrieve spans that match some Freebase entity. The active linking
includes training a system that learns to detect the span of an entity and retrieve Freebase
entities using the detected surface form. The retrieved Freebase entities are ranked by the
learned score for each method and the top-k candidates are returned. Active linking out-
performs Passive linking with a 0.08 margin (0.81 vs 0.89) for top-20 candidates, which is
the number that was set for the whole system. The system for predicting the entity and the
predicate is depicted in Figure 4.3. The authors proposed to use character embeddings since
this generalizes better in handling out-of-vocabulary (OOV) words. The left part shown in
Figure 4.3 consists of a CNN layer on character-level embeddings to detect the subject entity.
As shown on the right, the detected entity span is replaced by the special character (<e>) and
the whole sequence of words in the question are fed into a CNN layer using word embed-
dings. This CNN layer also has an attentive max-pooling layer that learns to assign different
scores to n-grams.
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FIGURE 4.3: CNN with attention max-pooling proposed by Yin et al. (2016)

Lukovnikov et al. (2017) proposed a system to encode the question q, the subject entity s
and the predicate p using word and character embeddings and learn a function that optimizes
both subject and predicate assignments by introducing negative samples. The question is
encoded by computing word embeddings of each token and feeding them into an RNN. The
last output from the network is the representation of the question text as shown in Figure 4.4a.
The subject entity is encoded by character embeddings and word embeddings. Each character
in the label of the entity is fed into an RNN and word embeddings of type labels of the entity
are fed into another RNN. An example of type labels for entity hainan are chinese, province
as shown in Figure 4.4b.

Finally, the predicate is encoded using word embeddings as shown in Figure 4.4c. Pred-
icates in Freebase are grouped under different domains. Each predicate URI consists of a
label and hierarchy of domain labels. For instance, the predicate for the question “What
cyclone affected Hainan” is meteorology/affected_area/cyclone, which consists of 3 hierar-
chies. Each label is fed into the RNN and the output from the last layer in the network is the
representation of the predicate.

The similarity score of the subject entity and the predicate to the question is given below.

ŝ = arg max Ss(q, si)
si∈Cs

(4.2)

p̂ = arg max Sp(q, pi)
pi∈Cp

(4.3)

The functions Ss and Sp compute cosine similarity between the given question repre-
sentation and the subject entity representation or the predicate representation. Cs includes
candidate entities that are retrieved by matching n-grams in the question text and Freebase
entity labels. Cp includes candidate predicates that are connected to entities in Cs and the
predicate that have an entity from Cs in the subject position. Equation 4.2 selects an entity
with the maximum score from the candidate entities in Cs. Equation 4.3 selects a predicate
with a maximum score.

The approach is trained to optimize the scoring functions Ss and Sp using negative sam-
pling, where they introduce questions with the corrupted subject and the predicate.
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(A) Entity encoding using character-level (entity label) and word embeddings (entity type
labels)

(B) Predicate encoding using word embeddings (each word in hier-
archy)

(C) Question encoding using word embeddings

FIGURE 4.4: Encoding the question, the subject entity and the predicate
proposed by Lukovnikov et al. (2017)

Golub and He (2016) proposed an approach that uses both LSTM and CNN encoders
together with character-level embeddings. The question is encoded by representing all char-
acters as one-hot vectors and feeding them into two-layered LSTM with an attention mecha-
nism. Knowledge base entities and predicates are encoded again with character-level embed-
dings by extracting labels of each URI and feeding them into a CNN with two layers. The
architecture is shown in Figure 4.5. The output from the system is computed using LSTM
decoder with an attention mechanism. The decoder computes the similarity of the question
to an entity and the similarity of the question to a predicate.

The input to the whole network is a pair of entity and predicate. The output from the
network is a score for the given pair. The entity and the predicate pairs are generated similarly
to Bordes et al. (2015). All n-grams are used to match a Freebase entity. The matching
entities are extracted together with their corresponding spans in the question. Entities with
spans that are part of bigger spans are filtered out. The remaining entities are ranked by the
number of triples they have in Freebase, then the top 10 highest ranking entities are returned
as candidate entities. All predicates for each entity in the top-10 list are extracted as candidate
predicates. Candidate pairs of entity and predicate are generated using these lists. Training
the model is done by feeding the given entity and predicate pair along with 50 randomly
sampled negative pairs, similar to Lukovnikov et al. (2017). During prediction the candidate



4.3. SimpleQuestions Systems 69

pairs are generated as explained above and scored using the equation given below.

ê, p̂ = arg max P(ei) ∗ P(pj)
ei ,pj∈Cn

(4.4)

The important point in the evaluation suggests that character embeddings generalize bet-
ter compared to word embeddings (0.78 vs 0.38). Moreover, the effectiveness of the model
with an attention mechanism shows that the system learns to differentiate between spans of
the predicate and the entity by assigning different weights to them.

FIGURE 4.5: CNN with attention max-pooling proposed by Yin et al. (2016)

The results are given below.

TABLE 4.4: The results for passive and active Linking methods proposed by
Yin et al. (2016)

N Passive Active
1 0.57 0.74
5 0.71 0.85
10 0.75 0.87
20 0.81 0.89
50 0.86 0.90
100 0.88 0.92

Ture and Jojic (2017) proposed a simpler model based on RNNs without any attention
mechanism. They essentially propose to use a model with two BiGRU layers for prediction
of predicates and a model with two BiLSTM layers to predict the span for the subject. The
entity span detection model is similar to ours. The predicate prediction model is similar to
our BiLSTM-Softmax in Chapter 8.
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Chapter 5

Lexicon

In this chapter, we present resources for mapping natural language phrases into knowledge
base entries by introducing an inverted index for retrieval of URIs. We combine several
external resources and compare the performance on the created lexical inverted index.

5.1 Mapping from text to knowledge base entries

A key component in a question answering pipeline is the mapping of query terms to knowl-
edge base entries. Consider the question Who is the writer of The Hunger Games? It seems
to be a trivial task to link the query word writer to the appropriate identifier dbo:author,
however it still requires prior knowledge about the semantics of the query word and the KB
entry (e.g. that the writer of a book is the author).

QA systems need to handle the lexical gap to increase the coverage and performance. A
survey on QA systems (Höffner et al., 2017) published within QALD workshops concluded
that QA systems need to handle seven challenges and the lexical gap is one of them (see
Section 4.2). Consider the following question and its expected SPARQL query.

How tall is Michael Jordan ?

PREFIX dbo: <http://dbpedia.org/ontology/>
PREFIX dbr: <http://dbpedia.org/resource/>
SELECT DISTINCT ?s
WHERE {

dbr:Michael_Jordan dbo:height ?s.
}

A QA system needs to map the term tall to the knowledge base property dbo:height in
order to answer this question. However, such a lexical entry does not exist in DBpedia.
The lexical gap refers to the problem that the QA system can not answer this question only
because of the missing lexical entry. As we focus on building a multilingual QA system, we
need to overcome this challenge for multiple languages.

Another question and its expected SPARQL query is given below.
Give me all Danish movies.

PREFIX dbo: <http://dbpedia.org/ontology/>
PREFIX dbr: <http://dbpedia.org/resource/>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
SELECT DISTINCT ?s
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WHERE {
?s rdf:type dbo:Film.
?s dbo:country dbr:Denmark.

}

It is even more challenging than the previous question because the term Danish here
stands for the combination of the property dbo:country and the resource dbr:Denmark. The
word movies should be mapped to the combination of the property rdf:type and the class
dbo:Film. The property rdf:type is trivial in this case since all resources in DBpedia have
the same property to express the class they belong to. The main challenge here is to map the
word movies to the class dbo:Film using external dictionaries like synonyms, e.g. movie has
a synonym entry film in WordNet (Miller, 1995b).

5.2 Inverted Index

To address the lexical gap, we rely on five resources to build the indexes for retrieval. As
we explained in Section 2.3.3, we have five different DUDES types. For Resource, Property,
Restriction and Class DUDES we created a separate inverted index to retrieve matching URIs
given the query words. Our index is based on English, German and Spanish languages. Note
here that these inverted indexes are based on DBpedia data. Next, we explain in detail how
each index is created.

5.2.1 Resource Index

The resource index consists of resources in DBpedia and their different surface forms. Most
of these resources are people with different name labels, e.g. nickname, full name, given
name, surname etc. To capture as many labels as possible, we merge structured data avail-
able in DBpedia with Wikipedia anchor links. NERFGUN (Hakimov et al., 2016) is an entity
linking (EL) system that disambiguates entities detected in a text to corresponding Wikipedia
articles. We rely on the index of NERFGUN for retrieving candidate resources given a label
to search for. The index is built by extracting anchor links in Wikipedia that refer to certain
entities as candidate surface forms. On top of that, the information for resources from DB-
pedia properties such as rdfs:label, dbo:givenName, dbo:surname, dbp:name, etc. are also
extracted. Surface forms from both sources are merged by aggregating the frequency of each
surface form for a given resource. We give a sample from the index below. The data in the
table indicates how often a surface refers to a DBpedia resource.

Surface form DBpedia resource Frequency
bielefeld dbr:Bielefeld 25
bielefeld university dbr:Bielefeld_University 18
uni bielefeld dbr:Bielefeld_University 15
bielefeld dbr:Bielefeld_University 5

5.2.2 Property Index

The property index is built based on lexicalizations of DBpedia properties extracted by M-
ATOLL1 (Walter et al., 2014), WordNet (Miller, 1995b) synonyms, machine translation (to
translate English labels into other languages) and using word embeddings (to retrieve candi-
date properties for a given mention text). Next, we give an overview of each of these four
resources.

1http://www.dblexipedia.org

http://www.dblexipedia.org
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Ontology Labels RDF Schema labels in English, German and Spanish for properties are
extracted from the DBpedia Ontology. DBpedia has a property rdfs:label to express labels of
resources, properties and classes in multiple languages.

M-ATOLL M-ATOLL(Walter et al., 2014) is a framework for obtaining lexicalization of
ontology items. Currently, M-ATOLL supports English, German and Spanish languages. The
lexicon of property type is added to the index.

Machine Translation We rely on the online dictionary Dict.cc2 as our translation en-
gine. We query the web service for each available English label and target language, then
store the obtained translation candidates as new labels for the respective entity and language.
While these translations are prone to be noisy without a proper context, we receive a reason-
able starting point for the generation of candidate lexicalizations, especially in combination
with the word embedding approach.

Word Embedding Retrieval Many word embedding methods such as the skip-gram method
Mikolov et al. (2013) have been shown to encode useful semantic and syntactic properties.
The objective of the skip-gram method is to learn word representations that are useful for pre-
dicting context words. As a result, the learned embeddings often display a desirable linear
structure that can be exploited using simple vector addition. Motivated by the compositional-
ity of word vectors, we propose a measure of semantic relatedness between a mention m and
a DBpedia entry e using the cosine similarity between their respective vector representations
~vm and ~ve. For this we follow the approach in Basile et al. (2016) to derive entity embedding
vectors from word vectors: We define the vector of a mention m as the sum of the vectors of
its tokens3 ~vm = ∑t∈m~vt, where the ~vt are raw vectors from the set of pre-trained skip-gram
vectors. Similarly, we derive the vector representation of a DBpedia entry e by adding the
individual word vectors for the respective label le of e, thus ~ve = ∑t∈le ~vt.

As an example, the vector for the mention text movie director is composed as~vmovie director
= ~vmovie +~vdirector. The DBpedia entry dbo:director has the label film director and is
thus composed of ~vdbo:director = ~v f ilm +~vdirector. The vectors ~vmovie, ~v f ilm and ~vdirector are
obtained from the skip-gram embeddings.

To generate potential linking candidates given a mention text, we can compute the cosine
similarity measure between~vm and each possible~ve as a measure of semantic relatedness and
thus produce a ranking of all candidate entries. By pruning the ranking at a chosen threshold,
we can control the produced candidate list for precision and recall.

Using the cosine similarity to compute the vector similarity between mentions and en-
tities, we can interpret this similarity score as a measure of semantic relatedness and thus
as an indicator for a potential match between the mention text and the candidate entity. By
computing the similarity of a mention to all possible KB entries, we can produce a ranking
of these properties that places more likely candidates at the top positions of the rankings and
unlikely candidates at the bottom.

For this work, we trained 3 instances of the skip-gram model with each 100 dimensions
on the English, German and Spanish Wikipedia respectively. Following this approach, the
top ranking DBpedia entries for the mention text total population are listed below:

Mention DBpedia entry Cosine Similarity
total population dbo:populationTotal 1.0

dbo:totalPopulation 1.0
dbo:agglomerationPopulationTotal 0.984
dbo:populationTotalRanking 0.983
dbo:PopulatedPlace/areaTotal 0.979

2http://www.dict.cc
3We omit all stopword tokens.

http://www.dict.cc
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5.2.3 Class Index

The class index is created using DBpedia Ontology labels and WordNet synonyms. We ex-
tracted the labels for classes using the rdfs:label property. Additionally, we used the extracted
labels as query terms to search for synsets in WordNet to extract them as additional resource.

5.2.4 Restriction Class Index

A restriction class is a special case of classes where a resource has a restriction to a certain
property. For instance, the word Swedish corresponds to the following triple in DBpedia
where the resource dbr:Sweden is bound to the property dbo:country.

?x dbo:country dbr:Sweden

The M-ATOLL extracts restriction classes for English with corresponding frequencies.
Some samples are shown below.

Mention DBpedia entry Frequency
female dbo:gender dbr:Female 238
catholic dbo:religion dbr:Catholic_Church 18
german dbo:originalLanguage dbr:German_language 139

5.3 Evaluation

We evaluate the proposed lexicon generation methods using machine translation and embed-
dings with respect to a lexicon of manual annotations that are obtained from the training
set of the QALD-6 dataset. The manual lexicon is a mapping of mention to expected KB
entry derived from the (question-query) pairs in the QALD-6 dataset. Since the M-ATOLL
induces lexicalisations for the DBpedia Ontology properties, we restrict our word embedding
approach to also only produce this subset of KB entities. Analogously, the manual lexicon is
filtered such that it only contains word-property entries for DBpedia ontology properties to
prevent the unnecessary distortion of the evaluation results due to unsolvable query terms.

The evaluation is carried out with respect to the number of generated candidates per query
term using the Recall@k measure. Focusing on recall is a reasonable evaluation metric since
the considered manual lexicon is far from exhaustive, but only reflects a small subset of
possible lexicalizations of KB properties in natural language questions.

Figure 5.1, Figure 5.2 and Figure 5.3 visualize the retrieval performance using the Re-
call@k metric for English, German and Spanish languages respectively. The visualizations
show performance values for M-ATOLL (matoll), word embeddings (w2v) separately and
combination of both resources (w2v+matoll). For English, M-ATOLL reaches 0.3 at max-
imum whereas word embeddings reach 0.5 at maximum. Combination of both resources
yields a better performance of 0.6. For German and Spanish M-ATOLL does not perform as
good as for English whereas word embeddings perform better for both languages. The com-
bining the M-ATOLL candidates with the word embedding candidates yields the strongest
recall performance.
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FIGURE 5.1: Retrieval performance on English with respect to the manual
lexicon.
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FIGURE 5.2: Retrieval performance on German with respect to the manual
lexicon.
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FIGURE 5.3: Retrieval performance on Spanish with respect to the manual
lexicon.
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Chapter 6

CCG-based Semantic Parsing
Approach

In this chapter, we present a semantic parsing approach that uses Combinatory Categorial
Grammar (CCG) for syntax and lambda calculus for semantics to build a QA system. The
approach is applied to the QALD-4 (Unger et al., 2014) dataset on English questions. We give
detailed information about the approach along with comparisons to other published systems.
The content provided in this chapter is based on our previously published work (Hakimov
et al., 2015).

6.1 Overview

We present a method for learning syntax and semantics jointly for question answering. The
presented method is an adaptation of the CCG-based semantic parsing proposed by Zettle-
moyer and Collins (2005) to the QALD-4 dataset. It is a monolingual approach as it depends
on the CCG combination rules and the domain-independent lexicon for a specific language.
The original approach requires rules for the function called GENLEX. We adapted the func-
tion to the QALD-4 dataset and added additional rules (see Table 6.2). The approach was
evaluated on the QALD-4 dataset and compared to other state-of-the-art systems. In the next
sections, we give a detailed description of the approach which then followed by the evaluation
and discussion sections.

6.2 CCG-based Approach

As mentioned above, this chapter is about applying the semantic parsing approach proposed
by Zettlemoyer and Collins (2005) on the QALD-4 dataset. We will refer to their approach as
ZC05 throughout the thesis. ZC05 induces a grammar that maps sentences to logical forms.
The grammar consists of entries that correspond to CCG syntax and semantics based on
lambda calculus. The core part of the algorithm is the GENLEX function, which generates
candidate entries for the grammar. Our implementation adds additional rules to this method
(see Table 6.2). We give a detailed description of CCG in Section 2.2.1 also the lambda
calculus used for semantic representations are described in Section 2.3.3.

Zettlemoyer and Collins (2005) added additional quantifying terms such as: count, argmax
and argmin on top of functions for expressing predicates and individuals with the lambda cal-
culus. The quantified expression argmin and argmax have the general form of argmax(φ, ψ)
and argmin(φ, ψ), returning the first or the last item from the ordered list of items denoted
by φ and aggregated by ψ. The quantified expression count has the form of count(φ) where
the items are aggregated and it returns the number of items in the list. For example, the
expression λx.argmax(robot(x), performance(x, y)) returns a robot x that has the highest
performance y.
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In order to evaluate semantic parsing on the QALD-4 dataset, the provided SPARQL
queries have to be converted to semantic representations using lambda calculus. For this
conversion we define the following translation rules:

• Every resource in the query is translated into a constant.

• Every predicate in the query is translated into a function with two arguments.

• Every solution modifier ORDER BY, LIMIT and OFFSET is translated into an argmax/min
quantifier.

• Every COUNT solution modifier is translated into the function constant count.

In the following we give some examples with their corresponding lambda calculus ex-
pressions.

1. Give me all islands that belong to Japan.

PREFIX dbo: <http://dbpedia.org/ontology/>
PREFIX dbr: <http://dbpedia.org/resource/>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
SELECT DISTINCT ?uri
WHERE {

?uri rdf:type dbo:Island .
?uri dbo:country dbr:Japan .

}

λx.rdf:type(x,dbo:Island) ∧ dbo:country(x,dbr:Japan)

2. Who is the youngest player in the Premier League?

PREFIX dbo: <http://dbpedia.org/ontology/>
PREFIX dbr: <http://dbpedia.org/resource/>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
SELECT DISTINCT ?uri
WHERE {

?uri dbo:team ?x .
?x dbo:league dbr:Premier_League .
?uri dbo:birthDate ?y .

}
ORDER BY DESC(?y)
OFFSET 0 LIMIT 1

λx.argmin(rdf:type(x,dbo:Soccer_Player)
∧dbo:league(x,dbr:Premier_League),dbo:birthDate(x, y))

3. How many films did Hal Roach produce?

PREFIX dbo: <http://dbpedia.org/ontology/>
PREFIX dbr: <http://dbpedia.org/resource/>
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SELECT COUNT(DISTINCT ?uri)
WHERE {

?uri dbo:producer dbr:Hal_Roach .
}

λx.count(rdf:type(x,dbo:Film) ∧ dbo:producer(x,dbr:Hal_Roach))

6.2.1 Semantic parsing à la Zettlemoyer & Collins

In this section, we describe the semantic parsing approach proposed by Zettlemoyer and
Collins (2005).

The input to the algorithm is a set of training examples (Si, Li) with i = 1 . . . n, where
each Si is a sentence and each Li is a corresponding semantic representation (logical form).
The output is a pair (φ, θ), where φ is a set of features and θ is a vector of weights for those
features.

The important part of the approach is the function called GENLEX(S,L). It takes as input
a sentence S, a corresponding logical form L and generates a set of potential lexical items
with syntactic categories and the corresponding semantics, and pairs them with all possible
sub-strings of S. The input sentence is split into tokens. The logical form is also split into
atomic CCG categories: noun, property and noun phrase. GENLEX generates all possible
lexical entries paired with sub-strings from the sentence and atomic categories from the logi-
cal form. Additionally, domain-independent expressions, such as wh-words, auxiliary verbs,
determiners, etc. must be manually defined by assigning a CCG category and lambda cal-
culus expression. The wh-word what, for example, has the syntactic category (S/(S\NP))/N
and the semantic representation λ f .λg.λx. f (x) ∧ g(x). Example lexical entries are shown
below in Table 6.1. These entries are generated by splitting the sentence “Barack Obama is
married to Michelle Obama” and the logical form:

dbo:spouse(dbr:Barack_Obama,dbr:Michelle_Obama)

TABLE 6.1: Lexical entries generated by GENLEX with their syntactic and
semantic representations for the input sentence “Barack Obama is married to

Michelle Obama”

Phrase Syntax Semantics
Barack Obama NP dbr:Barack_Obama
Barack NP dbr:Barack_Obama
Obama NP dbr:Barack_Obama
Barack Obama NP dbr:Michelle_Obama
Barack Obama (S\NP)/NP λy.λx.dbo:spouse(x, y)
is (S\NP)/(S\NP) λ f .λx. f (x)
married to (S\NP)/NP λy.λx.dbo:spouse(x, y)
married to NP dbr:Michelle_Obama
married to NP dbr:Barack_Obama
married NP dbr:Barack_Obama
to Michelle NP dbr:Michelle_Obama
Michelle Obama NP dbr:Michelle_Obama
Michelle Obama NP dbr:Barack_Obama
Michelle Obama (S\NP)/NP λy.λx.dbo:spouse(x, y)
...
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The logical form is split into 1 predicate and 2 constants: λy.λx.dbo:spouse(x, y),
dbr:Michelle_Obama, dbr:Barack_Obama where the variables x and y are replaced
for the resources in the lambda expression. Each logical form has an assigned CCG category
according to the definition of CCGs. For example, a predicate has the category (S\NP)/NP
while a constant has NP. All such assignments are defined by the rules in GENLEX function.

The sentence is also split into tokens. GENLEX maps token(s) into a pair of CCG cate-
gory and atomic lambda expression and generates all possible entries (lexical items) as shown
above in Table 6.1. For simplicity we included only some samples for the input sentence. The
domain-independent words such as is do not get assignments by GENLEX since their syntax
and semantics is already pre-defined manually.

The generated lexical entries are then used in the actual semantic parsing step, employ-
ing a dynamic programming algorithm such as CYK parsing adapted for CCG along with a
beam-search decoder. Semantic parsing using CCG grammar with lambda calculus is applied
to all possible lexical entries as shown in Section 2.3.4. The parse tree is derived by applying
CCG combination rules along with lambda calculus expressions throught the parse tree. It is
syntactically correct when the final CCG category is S (stands for sentence) and it is semanti-
cally correct when the combined lambda calculus is equal to the expected one. In Figure 6.1,
we show a parsing example for the sentence “Barack Obama is married to Michelle Obama”
with the expected logical form:

dbo:spouse(dbr:Barack_Obama,dbr:Michelle_Obama)

Barack Obama is married to Michelle Obama
NP (S\NP)/(S\NP) (S\NP)/NP NP

dbr:Barack_Obama λ f .λx. f (x) λy.λx.dbo:spouse(x, y) dbr:Michelle_Obama

−−−−−−−−−−−−−−−−−−−−−−−−−−−→
S\NP

λx.dbo:spouse(x,dbr:Michelle_Obama)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
S\NP

λx.dbo:spouse(x,dbr:Michelle_Obama)

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
S

dbo:spouse(dbr:Barack_Obama,dbr:Michelle_Obama)

FIGURE 6.1: CCG parse tree with syntax and semantics for the sentence
Barack Obama is married to Michelle Obama.

The semantic parsing step finally returns the highest scoring parse that derive the ex-
pected logical form L using all possible lexical items with weight vector θ for features. The
parse tree shown in Figure 6.1 is valid because the derived logical form is equal to the ex-
pected and the final CCG category is S. The semantic parsing step may return multiple parse
trees since some strings can be ambiguous. For example, the string married to has multi-
ple assignments in Table 6.1 and different lexical items may result in the same final CCG
category and the lambda calculus.

The algorithm returns the highest scoring parse tree T and the final logical form L for a
given sentence S as shown in the equation below.

argmax
L

P(L|S; θ) = argmax
L

∑
T

P(L, T|S; θ) (6.1)
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where T is a parse tree (a sequence of steps that derive L), and argmax is taken over all T
that produce L. Different T can be derived for the same S and L due to ambiguities in terms
generated by GENLEX.

The probability of a particular pair (L, T) for a given S is defined by a log-linear model:

P(L, T|S; θ) =
e f̄ (L,T,S)·θ

∑(L,T) e f̄ (L,T,S)·θ (6.2)

where f̄ (L, T, S) = ( f̄1(L, T, S) . . . f̄d(L, T, S)) is a function that maps triples (L, T, S) to a
feature vector in Rd, with d being the number of features. For each lexical item in T there is
a feature f j that counts the number of times this item is used in T where f j ∈ φ. The lexical
items in Figure 6.1 are examples of such features because the derived parse tree is valid. The
sum in the denominator is over all valid parses for S under the induced CCG grammar.

To estimate the parameters θ, we train the model with a set of training examples {(Si,
Li): i = 1 · · · n}. Note that the derived parse tree T is not included. It is a hidden variable
that is inferred.

Parsing is an iterative process: The first step uses all possible lexical items generated
by GENLEX, and only those lexical items that were used in the successful parses are then
passed to the second step of parsing, where parameter values are estimated. The output from
the approach is the learned parameters θ and the induced lexical features φ.

6.2.2 Applying Semantic Parsing to QALD Dataset

In order to apply the ZC05 approach to the QALD-4 training dataset, comprising 200 nat-
ural language questions with corresponding SPARQL queries, all SPARQL queries were
converted into lambda calculus expressions as explained earlier. Domain-independent ex-
pressions such as wh-words, prepositions, determiners, etc. were specified manually, based
on similar domain-independent expressions used in ZC05. These expressions and the 200
training examples from QALD-4 are used as an input to the algorithm.

We re-implemented the algorithm following the descriptions in Zettlemoyer and Collins
(2005), using CYK-style parsing with a stack decoder, and changing the parameter estimation
step into perceptron updates. In Table 6.2, we show the updated GENLEX rules that we
employed. Each entry in the table has an input trigger and the corresponding output category,
shown together with an example. Each output category is matched with a syntactic and a
semantic representation. Newly added input triggers are highlighted in boldface. Moreover,
one-place predicates were removed, as in an RDF setting they are covered by the arity-two
predicate with constant trigger (the predicate being rdf:type).
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TABLE 6.2: GENLEX rules from Zettlemoyer and Collins, 2005 adapted to
the QALD-4 dataset.

Input Trigger Output Category and Example
Constant c NP : c

NP : dbr:Brooklyn_Bridge

Arity-two predicate p (S\NP)/NP : λx.λy.p(y, x)
(S\NP)/NP : λxλy.dbo:author(y, x)

Arity-two predicate p (S\NP)/NP : λx.λy.p(x, y)
(S\NP)/NP : λx.λy.dbo:starring(x, y)

Arity-two predicate p (S\NP)/NP : λg.λx.λy.p(y, x) ∧ g(y)
(S\NP)/NP : λg.λx.λy.dbo:crosses(x, y) ∧ g(y)

Arity-two predicate p N/NP : λx.λy.p(x, y)
N/NP : λx.λy.dbo:officialColor(x, y)

Arity-two predicate p N/NP : λg.λx.λy.p(y, x) ∧ g(y)
N/NP : λg.λx.λy.dbo:capital(y, x) ∧ g(y)

Arity-two predicate p N : λx.p(x, c)
and constant c N : λx.rdf:type(x,dbo:River)

Arity-two predicate p (N\N)/NP : λx.λg.λy.p(y, x) ∧ g(y)
(N\N)/NP : λx.λg.λy.dbo:crosses(y, x) ∧ g(y)

Arity-two predicate p N/N : λg.λy.p(y, c) ∧ g(y)
and constant c N/N : λx.dbo:country(x,dbr:Germany) ∧ g(x)

argmax/min with second NP/N : λg.λx.argmax/min(g(x), f (x))
argument arity-two function f NP/N : λg.λx.argmax(g(x), λd.dbo:birthDate(x, d))

The learning procedure was run for 10 iterations over all 200 training examples. The
output is a list of lexical items paired with a syntactic and semantic representation and a
weighted score. The score of domain-independent expressions is initially set to 1, so that
they always end up on the top-k stacks. Furthermore, these scores are not updated during the
iterations. All other items generated by GENLEX start with a score of 0.

6.3 Evaluation

After training the ZC05 algorithm on the QALD-4 training set, the learned model was tested
on the QALD-4 test set, comprising of 50 questions. We excluded questions that require
YAGO classes, UNIONs, ORDER BY statements and FILTERs, leaving 37 questions with
respect to which the results produced by the semantic parsing approach were compared to
the QALD-4 gold standard results. For each question q, precision, recall and F-measure were
computed as follows:

Recall(q) =
number of correct system answers for q
number of gold standard answers for q

Precision(q) =
number of correct system answers for q

number of system answers for q

F-Measure(q) =
2× Precision(q)× Recall(q)

Precision(q) + Recall(q)

Since the QALD-4 training queries cover only a small part of the DBpedia vocabulary, we
decided to increase lexical coverage of the system by adding a lexical item for each DBpedia
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predicate and class on the basis of their label, according to the GENLEX rules in Table 6.2
as “ontology labels”.

Precision Recall F-measure
Learned lexicon + ontology labels 0.66 0.05 0.09
Learned lexicon + ontology labels + handcrafted items 0.93 0.70 0.80
Learned lexicon + ontology labels + M-ATOLL 0.70 0.18 0.30

TABLE 6.3: Evaluation results of applying ZC05 semantic parsing on the
QALD-4 test dataset.

The test results are given in the first row of Table 6.3. Most prominently, recall turns out
to be very low. This is because most of the expressions in the test questions do not appear
either in the training data or among the DBpedia labels. Thus, the system lacks a great deal of
lexical knowledge of expressions that were not seen during training. For example, to answer
the question Who was the first to climb Mount Everest, the system would need a lexical item
such as the following one:

first to climb : N/NP : λx.λy.dbo:firstAscentPerson(x, y)

Such an item is not present in the induced lexicon, neither it is contained among the
ontology labels. Therefore, we need external lexical resources in such cases to bridge the
lexical gap. In order to test how much additional lexical knowledge is needed, we manually
handcrafted lexical items for the test data. Some examples are given in Table 6.4.

Phrase Syntax Semantics
first to climb N/NP λxλy.dbo:firstAscentPerson(x, y)
artistic movement N λxλy.dbo:movement(x, y)
launched from (S\NP)/NP λxλy.dbo:launchPad(y, x)
extinct N λx.dbo:conservationStatus(x,’EX’)
German N/N λgλx.g(x) ∧ dbo:country(x,dbr:Germany))
taikonauts N λx.rdf:type(x,dbo:Astronaut)

∧dbo:nationality(x,dbr:China)

TABLE 6.4: Samples from manually hand-crafted lexical items for the
QALD-4 test dataset.

In total we created 54 lexical items. The results using those additional lexical items are
presented in the second row in Table 6.3, showing that recall is now significantly increased
as well as an increase in precision is observed. Thus, the system shows remarkable im-
provements by using the handcrafted lexical items. However, for large domains the required
manual effort is not always feasible. Therefore, we ran M-ATOLL (Walter et al., 2014), a
system that automatically extracts lexicalizations for ontology elements from a text corpus,
on the predicates used in the training dataset. It managed to find 10 of the required 54 lex-
ical items. Results using lexical items per predicate that were automatically extracted by
M-ATOLL are shown in the third row in Table 6.3. Note here that the additional recall is
gained at the cost of a reduced precision.

Next, we compare results to the systems that participated in the QALD-4 challenge. The
evaluation results of all these systems are given in Table 6.5, based on all 50 test questions
(not just 37 as in Table 6.3 where the unhandled cases are taken as incorrect interpretation
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in order to compare fairly). We added the three different settings of our system as explained
above: ZC05 uses learned lexical entries together with ontology labels, ZC05+handcrafted
uses handcrafted lexical entries in addition, whereas ZC05+M-ATOLL uses entries generated
by M-ATOLL in addition.

Total Proc. Right Part. Recall Precision F-measure

Xser (Xu et al., 2014b) 50 40 34 6 0.71 0.72 0.72
ZC05 + handcrafted 50 28 26 0 0.52 0.93 0.67
gAnswer (Zou et al., 2014b) 50 25 16 4 0.37 0.37 0.37
CASIA (Shizhu et al., 2014) 50 26 15 4 0.40 0.32 0.36
Intui3 (Dima, 2014b) 50 33 10 4 0.25 0.23 0.24
ISOFT (Park et al., 2014b) 50 28 10 3 0.26 0.21 0.23
ZC05 + M-ATOLL 50 10 7 0 0.14 0.70 0.23
ZC05 50 3 2 0 0.04 0.66 0.07

TABLE 6.5: Comparing ZC05 semantic parsing approaches with the systems
participated in QALD-4.

The evaluation results show that ZC05 can be applied for QALD datasets as long as there
is a way to obtain lexical items. ZC05+handcrafted achieves 0.67 scores compared to 0.23 by
ZC05+M-ATOLL. Comparing automatic systems with another system that uses handcrafted
lexical items provides important insights to what is important in building QA system. We
can see that adding more accurate lexical items can give better results.

6.4 Discussion

The approach can only be applied to a single language because it depends on two language-
specific data: CCG combination rules and domain-independent lexicon. We showed that
ZC05 can be applied to an open-domain dataset such as QALD-4 even though the underlying
algorithm has been applied on closed-domain dataset such as Geoquery. However, as sug-
gested by results shown in Table 6.5, the approach does not generalize well for unseen data.
It works well for closed-domain datasets since the model learns to associate words from sen-
tences with certain semantic representations. It is mainly due to the fact that the variability of
natural language expressions appearing in test is not covered in the train data for the QALD-4
dataset. It is more challenging compared to closed-domain datasets where the similar natural
language expressions can be found in both train and test splits.

Adding more training instances for the task can solve the issue of the lexical gap. How-
ever, to create more training instances and defining domain-independent lexica requires do-
main expertise and it can be costly. Thus, the approach did not generalize well compared
to other systems. Adding lexical items from M-ATOLL improved the results. Adding hand-
crafted lexicon improved the results significantly from 0.23 to 0.67 since the lexicon derived
by M-ATOLL did not have the adequate coverage needed for this experiment. It shows that
the system suffers more from lexical gap rather than the errors occur from the pipeline com-
ponents that are learned, e.g. syntactic parser or semantic parser. Therefore, we can conclude
that it is possible to apply the ZC05 semantic parsing approach on any dataset that has either
a high number of training instances or limited vocabulary. Moreover, the approach needs do-
main expertise in adapting the model to other languages since it is based on language-specific
CCG combination rules and domain-independent lexical items.
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Chapter 7

Dependency parse tree-based
Semantic Parsing Approach

In this chapter, we present another semantic parsing approach for building question answer-
ing systems. The approach abstracts from the underlying language by using cross-lingual
dependency parse trees from Universal Dependencies where a single pipeline can be built
for multilingual setting. The pipeline is adapted for English, German and Spanish languages
evaluated on the QALD-6 dataset. The content provided in this chapter is based on our pre-
viously published work (Hakimov et al., 2017).

7.1 Overview

We present another semantic parsing approach for question answering. The approach dif-
fers from the CCG-based Semantic Parsing Approach in how the semantics of the natural
language questions is composed. The approach uses the dependency parse tree of a ques-
tion as syntax and trains a model that learns the mapping from syntax to semantics while
CCG-based Semantic Parsing Approach learns syntax and semantics in tandem. Specifically,
this approach uses the dependency relations in the parse trees. This approach presents a
multilingual architecture where the dependency parse tree syntax are based on Universal De-
pendencies (Nivre et al., 2016; Nivre, 2017). The approach is applied for English, German
and Spanish and evaluated on the QALD-6 dataset. In the next sections, we give the detailed
description of the approach then followed by the evaluation and discussion sections.

7.2 Dependency Parse Tree-based Approach

Our intuition for this system is that the interpretation of a natural language question in terms
of a SPARQL query is a compositional process. Such process includes composing a meaning
representation of a sentence by combining partial semantic representations of smaller units
with each other in a bottom-up fashion along a dependency tree. The dependency parse
tree of a question guides the semantic composition where the dependency relations between
nodes and their POS tags define the result of composition. Instead of relying on hand-crafted
rules guiding the composition, we rely on a learning approach that can infer such ‘rules’
from training data. We employ a factor graph model trained using a ranking objective and
the SampleRank algorithm.

The model learns to prefer good over bad interpretations of a question. In essence, an
interpretation of a question represented as a dependency tree consists of an assignment of
several variables: i) a knowledge base identifier (KB ID) and semantic type to every node
in the parse tree, and ii) an argument index (1 or 2) to every edge in the dependency tree
specifying which slot of the parent node, subject or object, the child node should be applied



86 Chapter 7. Dependency parse tree-based Semantic Parsing Approach

to. The input to our approach is thus a set of pairs (q, sp) of a question q and a SPARQL
query sp.

Consider the following questions that ask the same information in English, German &
Spanish respectively:

• Who created Wikipedia?

• Wer hat Wikipedia gegründet?

• ¿Quién creó Wikipedia?

Independently of the language they are expressed in, the three questions can be inter-
preted with the same SPARQL query as given below.

PREFIX dbo: <http://dbpedia.org/ontology/>
PREFIX dbr: <http://dbpedia.org/resource/>
SELECT DISTINCT ?uri WHERE {

dbr:Wikipedia dbo:author ?uri .
}

The approach consists of generating multiple states where the solution to the problem
partially or fully exist. The learning model essentially learns to rank the generated states. In
order to generate states, we apply an inference method in particular Markov Chain Monte
Carlo (MCMC). Our inference method consists of two layers that we call Linking to Knowl-
edge Base (L2KB) and Query Construction (QC). Each of these layers consists of a different
state generation and factor graph optimized for different subtasks of the overall task. The
first inference layer is trained using an entity linking objective that learns to link parts of
the query to KB Identifiers. In particular, this inference step assigns KB Identifiers to open
class words such as nouns, proper nouns, adjectives,verbs, etc. We use Universal Depen-
dencies1(Nivre et al., 2016; Nivre, 2017) to get dependency parse trees for three languages.
The second inference layer is a query construction layer that takes the top k results from
the L2KB layer and assigns semantic representations to closed class words such as question
pronouns, determiners, etc. to yield a logical representation of the complete question. The
approach is trained on the QALD-6 train dataset for English, German & Spanish questions to
optimize the parameters of the model. The model learns mappings between the dependency
parse tree for a given question text and RDF nodes in the SPARQL query. As an output, our
system produces an executable SPARQL query for a given natural language question. All
data and source code are freely available2. As semantic representations, we rely on DUDES,
which are described in Section 2.3.3. In the next sections, we explain all of the steps men-
tioned above about inferencing, parameter learning as well as the evaluation of the proposed
method with a separate discussion section.

7.2.1 Representation with Factor Graphs

We provide the formal definition of factor graphs in Section 2.4. In this section, we define
how the factor graph model is used along with definition of observed and hidden (also known
as latent) variables for our task. Input to our approach is a pair (W, E) consisting of a
sequence of words W = {w1, . . . , wn} and a set of dependency edges E ⊆W ×W forming
a tree. A state (W, E, α, β, γ) represents a partial interpretation of the input in terms of
partial semantic representations. The partial functions α : W → KB maps words to KB
identifiers, β : W → {t1, t2, t3, t4, t5} maps words to the five basic DUDES types, and

1http://universaldependencies.org/v2, 70 treebanks, 50 languages
2https://github.com/ag-sc/AMUSE

http://universaldependencies.org/v2
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γ : E → {1, 2} maps edges to indices of semantic arguments, with 1 corresponding to the
subject of a property and 2 corresponding to the object, respectively.

Observed variables are nodes and edges in a parse tree as shown in Figure 7.1.

FIGURE 7.1: Observed variables : nodes and edges in a dependency parse
tree

Figure 7.2 shows a schematic visualization of a question along with its factor graph. Hid-
den variables are depicted with dashed lines. Each node gets assigned a pair of Knowledge
Base Identifier (KB ID) and a Semantic Type (DUDES type). Each edge gets a Slot Number,
the ones connecting nodes with assigned KB ID and DUDES type. There can be also nodes
without any KB ID and Semantic Types and edge Slot Number. For instance, determiners
don’t provide a meaning to the sentence in terms of the semantic representation.

FIGURE 7.2: Factor graph for the question: Who created Wikipedia?. Ob-
served variables are depicted as bubbles with straight lines; hidden variables

as bubbles with dashed lines. Black boxes represent factors.

For a given input consisting of a dependency parsed sentence, the factor graph is rolled
out by applying template procedures that match over parts of the input and generate corre-
sponding factors. The templates are thus imperatively specified procedures that roll out the
graph.

A template Tj ∈ T defines the subsets of observed and hidden variables (x′, y′) with
x′ ∈ Xj and y′ ∈ Yj for which it can generate factors and a function f j(x′, y′) to generate
features for these variables. Additionally, all factors generated by a given template Tj share
the same parameters θj. With this definition, we can reformulate the conditional probability
as follows:

p(y|x; θ) =
1

Z(x) ∏
Tj∈T

∏
(x′,y′)∈Tj

e f j(x′,y′)·θj (7.1)
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where Z(x) is the normalization function. We define a probability distribution over pos-
sible configurations of observed and hidden variables. This enables us to explore the joint
space of observed and hidden variables in a probabilistic fashion.

7.2.2 Inference

We rely on an approximate inference procedure, in particular Metropolis–Hastings (Hast-
ings, 1970; Metropolis et al., 1953) which is a powerful Markov chain method to simulate
multivariate distributions. More detailed description on inferencing is given in Section 2.4.
The method performs iterative inference for exploring the state space of possible question
interpretations by proposing concrete changes to sets of variables that define a proposal dis-
tribution. The inference procedure performs an iterative local search and can be divided into
the following steps:

1. Generatine possible successor states for a given state by applying changes

2. Score the states using the model score

3. Decide which proposal to accept as a successor state

A proposal is accepted with a probability that is proportional to the likelihood assigned
by the distribution p (see Equation 7.1). To compute the logical form of a question, we
run two inference procedures using two different models. The first model L2KB is trained
using a linking objective that learns to map open class words to KB identifiers. The sam-
pling process is run for m steps for the L2KB model; the top k states are used as an input
for the second inference model called QC that assigns meanings to closed class words to
yield a full fledged semantic representation of the question. This process is illustrated in Fig-
ure 7.3. Both inference strategies generate successor states by exploration based on edges in
the dependency parse tree. We explore only the following types of edges: Core arguments,
Non-core dependents, Nominal dependents defined by Universal Dependencies3 and nodes
that have the following POS tags: NOUN, VERB, ADJ, PRON, PROPN, DET. In both in-
ference strategies, we alternate across iterations between using the probability of the state
given the model and the objective score to decide which state to accept. Initially, all partial
assignments α0, β0, γ0 are empty.

FIGURE 7.3: Inference Architecture

We rely on an inverted index to find all KB IDs for a given query term. The inverted
index maps terms to candidate KB IDs for all three languages. We describe the details of this
index in Section 5.2. Entries in the inverted index are grouped by DUDES types, so that it
supports type-specific retrieval. The index stores the frequency of the mentions paired with
KB ID. During retrieval, the index returns a normalized frequency score for each candidate
KB ID. Next, we describe the two inferecing strategies.

3http://universaldependencies.org/u/dep/index.html

http://universaldependencies.org/u/dep/index.html
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L2KB: Linking to Knowledge Base

Proposal Generation: The L2KB proposal generation proposes changes to a given state by
considering single dependency edges and changing the following:

1. The KB IDs of parent and child nodes

2. The DUDES type of parent and child nodes

3. The argument index attached to the edge. The DUDES Type variables range over the
five basic DUDES types defined, while the argument index variable ranges in the set
{1,2}.

The resulting partial semantic representations for the dependency edge are checked for
availability with respect to the knowledge base, pruning the proposal if it is not satisfiable.
It means that the semantic representations that don’t lead to an executable query are not
passed into the next step. Figure 7.4 depicts the local exploration of the dobj-edge between
Wikipedia and created.

FIGURE 7.4: Left: Initial state based on dependency parse where each node
has empty KB ID and Semantic Type. Right: Proposal generated by the

LKB proposal generation for the question Who created Wikipedia?

The left image shows an initial state with empty assignments for all hidden variables.
The right image shows a proposal that changes the KB IDs and DUDES types of the nodes
connected by the dobj edge. The inference process has assigned the KB ID dbo:author
and the Property DUDES type to the created node. The Wikipedia nodes gets assigned the
type Resource DUDES as well as the KB ID dbr:Wikipedia. The dependency edge gets
assigned the argument index 1, representing that dbr:Wikipedia should be inserted at the
subject position of the dbo:author property.

These assignments are valid because once the KB IDs are combined it leads to the triple
dbr:Wikipedia dbo:author ?o. that exists in DBpedia. As it is satisfiable, it is not pruned. In
contrast, a state in which the edge is assigned the argument index 2 would yield the follow-
ing non-satisfiable representation, corresponding to things that were authored by Wikipedia
instead of things that authored Wikipedia:
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v:- vs:{} l:1

1:
dbo:author(dbr:Wikipedia, y)

(y, nsubj, 2)

As such query doesn’t exist in DBpedia, the state is removed from candidate successor
states.

We generate modified new states that differ from the current state st with three changes at
most. Specifically, the modified state s′ij = (W, E, U′ij, S′ij, T′ij) comprises the same observed
variables W and E, but has three changes on “hidden” variables (U′ij, S′ij, T′ij), URIs, Slots
and Semantic Types.

Objective Function: As objective for the L2KB model, we rely on a linking objective that
calculates the overlap between inferred KB IDs and KB IDs in the gold standard SPARQL
query.

All generated states are ranked by the objective score. The top-k states are passed to
the next sampling step. In the next iteration, the inference is performed on these k states.
Following this procedure for m iterations yields a sequence of states (s0, . . . , sm) that are
sampled from the distribution defined by the underlying factor graphs.

QC: Query Construction

Proposal Generation: Proposals in this inference layer consist of assignments of the type
QueryVar DUDES to nodes for class words, in particular determiners, that could fill the
argument position of a parent with unsatisfied arguments at the same time assigning the
missing Slot Number depending on the parent nodes’ DUDES Types.

Objective Function: As objective we use a function that measures the (graph) similarity
between the inferred SPARQL query and the gold standard SPARQL query. The inferred
SPARQL query is constructed using semantic composition on dependency parse trees using
DUDES as semantic representations (see Section 2.3.4).

FIGURE 7.5: Left: Input state; Right: Proposal generated by the QC pro-
posal generation for the question Who created Wikipedia?
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Figure 7.5 shows an input state and a sampled state for the QC inference layer of our ex-
ample query: Who created Wikipedia?. The initial state (see Left) has Slot 1 assigned to the
edge dobj. Property DUDES have two slots by definition. The right figure shows a proposed
state in which the argument slot 2 has been assigned to the nsubj edge and the QueryVar
DUDES type has been assigned to node Who. We apply bottom-up semantic composition on
the dependency parse tree and compose the following DUDES.

v:- vs:{y} l:1

1:
dbo:author(dbr:Wikipedia, y)

Converting the composed DUDES into a SPARQL query will result in the following:

PREFIX dbo: <http://dbpedia.org/ontology/>
PREFIX dbr: <http://dbpedia.org/resource/>
SELECT DISTINCT ?y WHERE {

dbr:Wikipedia dbo:author ?y .
}

We apply two inference methods L2KB and QC as described above to generate a state
that gives the correct query once we apply semantic composition. In the next section, we give
a pseudo-code of a sampling method that generates states, which is used by L2KB and QC.

Candidate State Generation Algorithm

Below in Algorithm 3, we present the pseudo-code for sampling strategy that generates can-
didate states by exploring the edges of a dependency parse tree. The input to the algorithm
is the current state st, all DUDES types and the dependency parse tree that contains a set of
edges and words that edges connect to. The sampling process generates all possible candidate
states. The algorithm explores every possible edge that connects two words in the parse tree
(Line 3). Each edge connects two words wi and wj. We pair each word with a DUDES type t
and query the inverted index to retrieve the matching list of candidate URIs (Lines 5-8). The
list of URI candidates for a word, e.g. wi, is paired with the other word’s, e.g. wj, URI can-
didates. Instead of creating all possible candidate pairs, we apply a pruning step that checks
whether the pair results in a valid triple (Lines 9-19). The slot number is sampled during the
pair generation where the slot number 1 indicates that the child node is in the subject position
of the triple (Line 16-18). Similarly, the slot number 2 indicates that the child node is in the
object position (Line 11-12). If the constructed triple exists in DBpedia then the candidate
state s′ij is generated. The candidate state s′ij differs from the current state in three changes:
the URI assignments for words wi and wj along with the slot number. The generated state is
added to the list of candidate states S. The output from the algorithm is newly generated list
of candidate states S.
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Algorithm 3 Candidate state generation algorithm by traversing the dependency parse tree

1: Inputs: current state st, DUDES types T, dependency parse tree consisting of a sequence
of words W = {w1, . . . , wn} and a set of edges E ⊆W ×W

2: Output: sampled states S
3: for the edge e in E do
4: the edge e connects two words wi and wj in the parse tree
5: for type ti in T do
6: Ui = query(wi, ti) . retrieves matching URIs based on the lemma of wi

and the given DUDES type t1
7: for type tj in T do
8: Uj = query(wj, tj) . retrieves matching URIs based on the lemma of

wj and the given DUDES type tj
9: for candidate URI ui in Ui do

10: for candidate URI uj in Uj do
11: if the triple (?s, ui, uj) exists in DBpedia then . the URI ui is

in the predicate and the URI uj is in the object position. The subject position contains a
variable ?s

12: slotij = 2
13: s′ij = (W, E, U′ij, S′ij, T′ij) where ui, uj ∈ U′ij, slotij ∈ S′ij, ti, tj ∈

T′ij
14: S = S ∪ s′ij
15: end if
16: if the triple (uj, ui, ?o) exists in DBpedia then . the URI uj is

in the subject and the URI ui is in the predicate position. The object position contains a
variable ?o

17: slotij = 1
18: s′ij = (W, E, U′ij, S′ij, T′ij) where ui, uj ∈ U′ij, slotij ∈ S′ij, ti, tj ∈

T′ij
19: S = S ∪ s′ij
20: end if
21: end for
22: end for
23: end for
24: end for
25: end for

7.2.3 Semantic Composition

As described in the two inference methods, the goal is to generate a state composed of ob-
served and hidden variables. The sampled state can be converted into a SPARQL query
by applying the semantic composition explained in Section 2.3.4. Below in Figure 7.6, we
illustrate the state that gives the expected query.
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FIGURE 7.6: Factor graph for the question: Who created Wikipedia?. Ob-
served variables are depicted as bubbles with straight lines; hidden variables

as bubbles with dashed lines. Black boxes represent factors.

By applying the bottom-up semantic composition based on DUDES and dependency
relations, we compose the following meaning representation.

v:x- vs:{x} l:1

:
dbo:author(dbr:Wikipedia, x)

This meaning representation is based on DUDES. This DUDES can be translated into the
following SPARQL query as explained in Section 2.3.4.

PREFIX dbo: <http://dbpedia.org/ontology/>
PREFIX dbr: <http://dbpedia.org/resource/>
SELECT DISTINCT ?x WHERE {

dbr:Wikipedia dbo:author ?x .
}

The inference methods sample a state that after being composed generates the expected
SPARQL query for the given question “Who created Wikipedia?”. In the next section, we
describe features for the factor graph model.

7.2.4 Features

As features for the factors, we use conjunctions of the following information: i) lemma
of parent and child nodes, ii) KB IDs of parent and child nodes, iii) POS tags of parent
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and child nodes, iv) DUDES type of parent and child, v) slot number of an argument at
edge, vi) dependency relation of edge, vii) normalized frequency score for retrieved KB IDs,
viii) string similarity between KB ID and lemma of node, ix) rdfs:domain and rdfs:range
restrictions for the parent KB ID (in case of being a property).

We have two templates that generate features for each inference method described before:
Linking to KB and Query Construction. Each template generates a different set of features.
Each feature captures different information about the explored edge, the parent and the child
node. Some features include less information compared to others. This allows to create more
specific and general features that scale well. We group features for each inference method as
shown below.

L2KB Feature Template

In this section, we describe the template that generates features for linking phrases to knowl-
edge base entries. We group features under four groups. Each group contains a set of features
that contains information about the edge between a child and a parent node.

• Group I

– Parent Lemma + Parent KB ID

– Parent POS + Parent Semantic Type

– Child Lemma + Child KB ID

– Child POS + Child Semantic Type

– Edge Dependency Relation + Slot Number

– Parent POS + Parent Lemma + Child POS + Child Lemma

– Parent POS + Parent Semantic Type + Child POS + Child Semantic Type

– Parent POS + Parent Semantic Type + Child POS + Child Semantic Type + De-
pendency Relation + Slot Number

• Group II

– Parent String Similarity >= Value + Parent Semantic Type

– Child String Similarity >= Value + Parent Semantic Type

• Group III

– Parent POS + Parent Semantic Type + Child POS + Child Semantic Type + Slot
Number + Parent rdfs:range/domain

• Group IV

– Parent & Child Nodes’ String Similarity >= Value

– Parent & Child Nodes’ Knowledge Base Score >= Value

The argument Value is pre-defined. For every value that the condition holds, e.g. Parent
& Child String Similarity >= Value, we add all possible feature buckets. For instance, if the
pre-defined value is set to 0.7 then the following features are generated if the calculated string
similarity for the parent and the child node is equal to 1.0 because all the conditions below
hold since 1.0 is bigger than or equal to 0.7, 0.8, 0.9 and 1.0.

• Parent & Child String Similarity >= 1.0
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• Parent & Child String Similarity >= 0.9

• Parent & Child String Similarity >= 0.8

• Parent & Child String Similarity >= 0.7

QC Feature Template

This is the template that generates features needed for constructing the query from a state.
Each feature contains information about the edge that connects a parent node to the child.

• Group I

– Parent POS + Parent Semantic Type + Child POS + Child Semantic Type + De-
pendency Relation + Slot Number

– Parent POS + Parent Semantic Type + Child Lemma + Child POS + Child Se-
mantic Type + Dependency Relation + Slot Number

• Group II

– Parent POS + Parent Semantic Type + Child POS + Child Semantic Type + De-
pendency Relation + Slot Number + Parent rdfs:domain/range

– Parent POS + Parent Semantic Type + Child POS + Child Semantic Type + De-
pendency Relation + Slot Number + Parent rdfs:domain/range + FIRST_TOKEN

As mentioned earlier, some features include more information than others. For instance,
the feature with information such as “Parent Lemma + Parent KB ID” captures information
only about the parent node whereas a feature such as “Parent POS + Parent Semantic Type
+ Child POS + Child Semantic Type” abstracts from actual lemmas of nodes and capture
information in terms of POS tags and Semantic Types (DUDES type), which generalizes
better since the same lemmas may not appear during prediction.

FIGURE 7.7: Features for Linking to KB task

L2KB Generated Features

In Figure 7.7, we have shown node information for the highlighted edge dobj between nodes
created and Wikipedia. We generate the following features shown below from this edge
using the L2KB Feature Template and all features are added in the same order as described
above. Feature Group II generates features depending on the similarity score. As seen in the
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example below, we added three features where the string similarity between the lemma of the
child node “Wikipedia” and the assigned KB ID dbr:Wikipedia is a full match, 1.0. We add
buckets of features starting from 0.7 up to the actual value of the similarity measure. Note
here that, the similarity score between parent lemma and KB ID is not higher than 0.7 and
that’s why there aren not any features. Similarly, GROUP IV adds features based on the joint
condition of parent & child nodes’ string similarity and knowledge base score. Knowledge
base scores for resources are normalized values retrieved from the surface form index and
for properties it is either the M-ATOLL score or word embedding score depending on how
the property was retrieved. In our example, we added only knowledge base score features on
the joint condition because the child KB score and the parent KB score are higher than 0.7.
GROUP III added the feature with additional information of parent KB ID’s rdfs:domain
restriction. This is bound to the slot number. If the slot number is 1 then the rdfs:domain
is added, if the slot number is 2 then rdfs:range restriction is added. In this case, we added
rdfs:domain: dbo:Work since the slot number was chosen as 1.

• Group I

– Parent Lemma: created + Parent KB ID: dbo:author

– Parent POS: VERB + Parent Semantic Type: Property

– Child Lemma: Wikipedia + Child KB ID: dbr:Wikipedia

– Child POS: PROPN + Child Semantic Type: Resource

– Edge Dependency Relation: dobj + Slot Number: 1

– Parent POS: VERB + Parent Lemma: created + Child POS: PROPN + Child
Lemma: Wikipedia

– Parent POS: VERB + Parent Semantic Type: Property + Child POS: PROPN +
Child Semantic Type: Resource

– Parent POS: VERB + Parent Semantic Type: Property + Child POS: PROPN +
Child Semantic Type: Resource + Dependency Relation: dobj + Slot Number: 1

• Group II

– Child String Similarity >= 1.0 + Child Semantic Type: Resource

– Child String Similarity >= 0.9 + Child Semantic Type: Resource

– Child String Similarity >= 0.8 + Child Semantic Type: Resource

– Child String Similarity >= 0.7 + Child Semantic Type: Resource

• Group III

– Parent POS: VERB + Parent Semantic Type: Property + Child POS: PROPN
+ Child Semantic Type: Resource + Slot Number: 1 + Parent rdfs:domain:
dbo:Work

• Group IV

– Parent & Child Knowledge Base Score >= 1.0

– Parent & Child Knowledge Base Score >= 0.9

– Parent & Child Knowledge Base Score >= 0.8

– Parent & Child Knowledge Base Score >= 0.7
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QC Generated Features

In Figure 7.8, we show a node information for the highlighted edge nsubj between nodes
created and Wikipedia. We generate the following features shown below from this edge
using the QC Feature Template and all features are added in the same order as described
above. QC features are aimed to learn the structure of the query and fill the missing slots. As
shown in Figure 7.8, we added rdfs:range restriction coupled with slot number 2 and other
information on the edge. Additionally, we also mark the first token in the question, which
might give clues on whether the query should be ASK or SELECT.

FIGURE 7.8: Features for Query Construction task

• Group I

– Parent POS:VERB + Parent Semantic Type: Property + Child POS: PRON +
Child Semantic Type: QueryVar + Dependency Relation: nsubj + Slot Number:
2

– Parent POS: VERB + Parent Semantic Type: Property + Child Lemma:Who +
Child POS: PRON + Child Semantic Type: QueryVar + Dependency Relation:
nsubj + Slot Number: 2

• Group II

– Parent POS: VERB + Parent Semantic Type: Property + Child POS: PRON +
Child Semantic Type: QueryVar + Dependency Relation: nsubj + Slot Number:
2 + Parent rdfs:range: dbo:Person

– Parent POS: VERB + Parent Semantic Type: Property + Child POS: PRON +
Child Semantic Type: QueryVar + Dependency Relation: nsubj + Slot Number:
2 + Parent rdfs:range: dbo:Person + FIRST_TOKEN: Who

7.3 Learning Model Parameters

In order to optimize model parameters θ, we use an implementation of the SampleRank Wick
et al. (2009) algorithm (see Section 2.4). The SampleRank algorithm obtains gradients for
these parameters from pairs of consecutive states in the chain based on a preference function
P defined in terms of the objective function O as follows:

P(s′, s) =

{
1, if O(s′) > O(s)
0, otherwise

(7.2)
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We have observed that accepting proposals only on the basis of the model score requires
a large number of inference steps. This is due to the fact that the exploration space is huge
considering all the candidate resources, predicates, classes etc. in DBpedia. To guide the
search towards good solutions, we switch between model score and the objective score to
compute the likelihood of acceptance of a proposal. Once the training procedure switches the
scoring function in the next sampling step, the model uses the parameters from the previous
step to score the states.

In the next section, we provide experiments for evaluating the performance of the pro-
posed approach.

7.4 Evaluation

We present experiments carried out on the QALD-6 dataset comprising of English, German &
Spanish questions. We train and test on the multilingual subtask. This yields a training dataset
consisting of 350 and 100 test instances. We train the model with 350 training instances for
each language from QALD-6 train split by performing 10 iterations over the dataset with
learning rate set to 0.01 to optimize the parameters. We set k to 10. We use the top 5
candidates from the Resource index, 25 candidates from the Predicates index, 25 candidates
from Classes index and 25 candidates from the Restriction Classes index during retrieval
of KB IDs for mentions. We perform a preprocessing step on the dependency parse tree
before running through the pipeline. This step consists of merging nodes that are connected
with compound edges. This results in having one node for compound names and reduces
the traversing time and complexity for the model. The approach is evaluated on two tasks:
a linking task and a question answering task. The linking task is evaluated by comparing
the proposed KB links to the KB elements contained in the SPARQL question in terms of
F-Measure. The question answering task is evaluated by executing the constructed SPARQL
query over the DBpedia, and comparing the retrieved answers with answers retrieved for the
gold standard SPARQL query in terms of F1-measure.

In order to contextualize our results, we provide an upper bound for our approach, which
consists of running over all instances in test using 1 epoch and accepting states according to
an objective score only, which compares the accepted state to the ground. Thus, accepting
states according to an objective score yields an oracle-like approach. We report test results
based on training a model and performing an inference on test instances using the model
score.

We report Macro F1 scores for this oracle in Table 7.1 together with the actual results on
test. The oracle results are obtained using objective functions for both task while test results
are obtained using the trained model scores.

We evaluate different configurations of our system in which we consider different source
for lexical mapping as given below:

1. DBP: a dictionary derived only from DBpedia labels

2. M-ATOLL: additional dictionary entries derived from the M-ATOLL

3. Embed: entries inferred using cosine similarity in the embedding space

4. Dict: a manually created dictionary
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TABLE 7.1: Macro F1-scores on test data for the linking and question an-
swering tasks using different configurations

Language Task DBP DBP + M-ATOLL DBP + M-ATOLL + Embed DBP + M-ATOLL + Dict
Oracle

EN Linking 0.05 0.22 0.46 0.59
EN QA 0.05 0.21 0.30 0.51
DE Linking 0.01 0.01 0.10 0.48
DE QA 0.04 0.04 0.18 0.44
ES Linking 0.02 0.04 0.10 0.51
ES QA 0.04 0.06 0.22 0.52

Test
EN Linking 0.05 0.13 0.16 0.22
EN QA 0.05 0.20 0.26 0.34
DE Linking 0.01 0.01 0.10 0.27
DE QA 0.04 0.04 0.16 0.37
ES Linking 0.02 0.02 0.04 0.30
ES QA 0.04 0.04 0.20 0.42

It is important to note that even the oracle does not get perfect results, which is due to
the fact that the lexical gap still persists and some entries can not be mapped to the correct
KB IDs. Furthermore, errors in POS tagging or in the dependency tree prevent the inference
strategy to generate the correct proposals.

We see that in all configurations, results clearly improve when using additional entries
from the M-ATOLL in comparison to only using labels from DBpedia. The results further
increase by adding lexical entries inferred via similarity in embedding space (+Embed), but
are still far from the results with manually created dictionary (Dict), showing that addressing
the lexical gap is an important issue to increase performance of question answering systems
over linked data.

On the linking task, while the use of embeddings increases performance as seen in the
DBP + M-ATOLL + Embed vs. DBP + M-ATOLL condition, there is still a clear margin
to the DBP + M-ATOLL + Dict condition (English 0.16 vs. 0.22, German 0.10 vs. 0.27,
Spanish 0.04 vs. 0.30).

On the QA task, adding embeddings on top of DBP + M-ATOLL also has a positive
impact, but is also lower compared to the DBP + M-ATOLL + Dict condition (English 0.26
vs. 0.34, German 0.16 vs. 0.37, Spanish 0.20 vs. 0.42). Clearly, one can observe that the
difference between the learned model and the oracle diminishes the more lexical knowledge
is added to the system.

7.4.1 Error Analysis

We analyzed the errors made during prediction and grouped them below.

• Wrong resource: 30%

This errors occurs when the system predicts the wrong resource for a question or does
not link to any resource. For instance, for the following question the model could not
produce any linking for the entity “Boston Tea Party”.

Question: When did the Boston Tea Party take place?

Expected Query:

PREFIX dbr: <http://dbpedia.org/resource/>
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PREFIX dbp: <http://dbpedia.org/property/>
SELECT DISTINCT ?d WHERE {

dbr:Boston_Tea_Party dbp:date ?d
}

• Wrong property: 48%

It is the most common error type since identifying the correct property is more chal-
lenging than finding the correct resource or a class. For instance, the model identified
the wrong property for the following question.

Question: Who wrote the song Hotel California?

Expected Query:

PREFIX dbr: <http://dbpedia.org/resource/>
PREFIX dbo: <http://dbpedia.org/ontology/>
SELECT DISTINCT ?o WHERE {

dbr:Hotel_California dbo:writer ?o.
}

Predicted Query:

PREFIX dbr: <http://dbpedia.org/resource/>
PREFIX dbo: <http://dbpedia.org/ontology/>
SELECT DISTINCT ?o WHERE {

dbr:Hotel_California dbo:musicalArtist ?o.
}

The expected query is supposed to have the property dbo:writer instead the model pre-
dicts the property dbo:musicalArtist. Even though the predicted property makes sense
in this case, the returned data from DBpedia is not the expected one. The expected
query returns the following answer: Glen Frey, Don Henley, Don Felder. The inferred
query returns the answer: Eagles (band). We can see in this case that the query makes
sense because Glen Frey, Don Henley and Don Felder were members of the famous
band Eagles. However, it counts as wrong interpretation.

• Wrong Slot Number: 10%

As mentioned earlier the slot numbers define the position of the child node in parent
node’s semantic representation. Incorrect slot number would result in incorrect query.
An example of such error is shown below.

Question: How many people live in Poland?

Expected Query:

PREFIX dbr: <http://dbpedia.org/resource/>
PREFIX dbo: <http://dbpedia.org/ontology/>
SELECT DISTINCT ?o WHERE {

dbr:Poland dbo:populationTotal ?o.
}

Predicted Query:
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PREFIX dbr: <http://dbpedia.org/resource/>
PREFIX dbo: <http://dbpedia.org/ontology/>
SELECT DISTINCT ?v1 WHERE {

?v1 dbo:populationTotal ?v2.
?v1 dbo:residence dbr:Poland

}

We can see that the expected query has a property dbo:populationTotal that expects
the resource dbr:Poland to be on subject position (or slot number 1). However, the
predicted query has the resource on the wrong slot and it has an additional property
dbo:residence. The slot number for the resource in the predicted query is 2.

• Wrong Query Type: 12%

This error occurs when the type of queries do not match. The types of queries could be
SELECT, and ASK queries. Some SELECT queries also include additional quantifiers
such as COUNT or ORDER BY. We show an example of such error below.

Question: Where does Piccadilly start?

Expected Query:

PREFIX dbr: <http://dbpedia.org/resource/>
PREFIX dbo: <http://dbpedia.org/ontology/>
SELECT DISTINCT ?s WHERE {

?s dbo:routeStart dbr:Piccadilly.
}

Predicted Query:

PREFIX dbr: <http://dbpedia.org/resource/>
PREFIX dbo: <http://dbpedia.org/ontology/>
ASK WHERE {

?s dbo:routeStart dbr:Piccadilly.
}

The model predicted the given question as ASK query where the expected query is
SELECT. These type of errors are caused by not assigning QueryVar semantic type to
any of the tokens in the sentences. Therefore, the constructed query does not include
any return variables.

7.5 Discussion

We have evaluated the proposed model on three languages: English, German and Spanish.
The results presented in Table 7.1 suggest that the model is capable of learning a multilin-
gual semantic parser for all evaluated languages. The model was trained separately for each
language using the same type of data: M-ATOLL lexicalizations, word embeddings, the DB-
pedia Ontology labels and the inverted index for resources. Moreover, using dependency
parse trees from Universal Dependencies (UD) made it possible to use the same syntactic
structures for each language because of cross-lingual syntax specifications.

By looking at the results for Linking to Knowledge Base task (Linking), we can see
that for all languages there is a lexical gap even after adding lexical information from word
embeddings, the M-ATOLL and the DBpedia Ontology labels. For German and Spanish this



102 Chapter 7. Dependency parse tree-based Semantic Parsing Approach

lexical gap is even bigger because the lexicon from the M-ATOLL is not adequate to bridge
the gap compared to English. If we add the hand-crafted lexicon the performance of the
models increases. This shows that to achieve better results on QA tasks the model needs a
lexicon with a better coverage. The oracle results suggest that the pipeline could not reach
1.0 even when added the hand-crafted lexicon, e.g. 0.59 on English. It can be explained with
choice of the syntactic parser, the choice of sampling methods. As explained in Section 7.2.2,
each sampling step requires assignments of URIs to both nodes connected by an edge, which
generates more assignments than needed. It some cases not every node connected by an edge
needs an assignment (URI and slot number) even though the edge represents a relation. An
alternative sampling strategy could be sampling a single node along the dependency parse tree
not sampling an edge that connects two nodes. However, the sampling process would take
longer time to train and test since the number of candidate states would increase considering
the number of resources in DBpedia (ca. 9 mil) and the pruning step can only be executed if
at least two nodes have an assignment and an edge. Assigning two nodes and an edge would
part be part of separate sampling steps since each sampling step would make a single change
either on a node or an edge.

Similar analysis can be made about the Question Answering task (QA) reported in Ta-
ble 7.1. Since L2KB is limited to a certain upper-bound, the QC step is affected by the
performance of the L2KB step. The missed URIs from the previous step will result in the
wrong SPARQL query after the QC step. It is due to the fact that the errors made during
mapping the natural language phrases to KB IDs can not be recovered after the L2KB step
is applied. We can see that adding word embeddings and M-ATOLL yields better results for
English only. This means that the M-ATOLL lexicon for the QALD-6 questions for German
and Spanish does not have a sufficient coverage. This is also shown in Chapter 5 where we
evaluated the lexicon for each language without the QA pipeline. However, adding the lex-
icon from word embeddings improved the results for both of these languages as well as for
English.

The sampling strategies described in Section 7.2.2 were chosen on the basis of empirical
evaluation. The choice of making a joint assignment on an edge (child node URI, child Se-
mantic Type, parent URI, parent Semantic Type and Slot Number) gave better performance
than sampling over each assignment separately. Sampling each assignment separately suf-
fered from the given huge search space. The search space is the whole DBpedia with approx-
imately 6 million entities, over 2000 properties and around 800 classes. During sampling,
sometimes the model pruned the needed state too early, which caused the whole process to
not reaching the intended performance. Thus, we restricted each sampling step into making
a joint decision on assignments for the connected nodes on an edge.

The choice of features given in Section 7.2.4 was based on the available information given
a joint assignment. We can see that some features include general information such as the
syntactic and semantic information without explicit lexical information (POS tag & Semantic
Type) while others include more-specific in respect to the connection with lexical information
(POS tag, Semantic Type & Lemma ), this type of features are bound to the explored lexical
information. This allows to train a model that generalizes better to unseen questions using
features with more general information while at the same time mark the patterns seen on the
given training data with more-specific features.



103

Chapter 8

Neural Network-based Semantic
Parsing Approach

In this chapter, we present four different QA systems on the SimpleQuestions dataset (Bordes
et al., 2015) that use the same environment for detecting named entities. Each architecture
is similar to previously published systems and we compare them in terms of performance
under the same environment. The content provided in this chapter is based on our previously
published work (Hakimov et al., 2019).

8.1 Overview

We present four different approaches for building a question answering system. The systems
are trained on the SimpleQuestions dataset (Bordes et al., 2015). The approaches differ from
previously proposed ones in a way that they use word and character embeddings of words
as features instead of manually defined indicator functions. Specifically, the systems are
based on neural network architectures. All proposed architectures are evaluated in detail and
compared to other similar methods. In the next sections, we give a detailed description of
each model architecture which is then followed by the evaluation and discussion sections.

8.2 Methods

The task of Question Answering (QA) has received increasing attention in the last few years.
Most research has concentrated on the task of answering factoid questions such as Who wrote
Mildred Pierced?, yielding the answer Stuart Kaminsky. Typically, such answers are ex-
tracted from a knowledge base (KB). A frequently used dataset in this context is the Sim-
pleQuestions Bordes et al. (2015) dataset, which consists of simple questions that can be
answered with a single fact from the Freebase KB. For instance, the question above can be
answered using the following triple from Freebase:

Subject: m.04t1ftb (mildred_pierced)
Predicate: book.written_work.author
Object: m.03nx4yz (stuart_kaminsky)

The system needs to identify the relevant entity (subject), i.e. mildred_pierced in the
example question, and infer the appropriate predicate, i.e. book.written_work.author. In
the case of SimpleQuestions, all questions involve a single triple, with the answer being the
corresponding object. Thus, the task involves essentially predicting the subject and pred-
icate of a triple. The answer to the given question is the object of the triple, m.03nx4yz
(stuart_kaminsky).

Many different architectures have been proposed for this task, in particular many deep
learning architectures. However, a systematic comparison of different architectural choices
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has not been provided so far. In particular, different property predicting systems have used
different approaches to identifying the entity, so that they are not directly comparable.

Using a common model for entity prediction based on an NER architecture, we consider
four different architectures for the predicate prediction task:

• BiLSTM-Softmax: this architecture uses a standard BiLSTM softmax classifier to
predict the property in a question where the output ranges over all properties seen
during training.

• BiLSTM-KB: instead of using softmax layer output, this model predicts a low-dimensional
representation of predicates that match to the closest predicate representation in pre-
trained KB embeddings; the closest property is found using cosine similarity.

• BiLSTM-Binary: this architecture outputs a binary decision on whether a pair of
subject and predicate matches for the given question q (true or false).

• FastText-Softmax: this architecture uses FastText1 as a classifier to predict the prop-
erty (Joulin et al., 2016).

The task of answering simple questions requires identifying the correct entity and the
predicate in the question. In this section, we describe in detail the model for identifying the
span of the entity and retrieving the matching candidates. Then, we describe four architec-
tures for property prediction that build on this common entity prediction model. All four
architectures rely on a candidate retrieval step that extracts candidate pairs of subject and
predicate where only 1 pair constructs the query. The process is shown in Figure 8.3. In
order to retrieve entity candidates we rely on an inverted index the construction of which we
detail in the section below.

We present a partial Knowledge Base (KB) constructed with subjects and their related
predicates. Each subject (blue colored) has a type relation, label and predicate relations to
other subjects. We trained a Named Entity Recognizer (NER) system to identify the sub-
ject mention in a given question. By querying the identified subject mention we extract
candidate subjects. This is achieved by matching the label values of each subject to the ex-
tracted mention. Retrieved candidate subjects are paired with predicates that exist within a
triple in Freebase. These are predicates that connect two entities. For instance, the predicate
book.written_work.author between m.04t1ftb and m.03nx4yz. Finally, the subject and predi-
cate pairs are returned as candidates. We limit our candidate pairs to only those that appear
in the Freebase-2M set of triples since this set of triples were used by human annotators to
create the SimpleQuestions dataset.

Next, we explain each part in more detail starting with constructing an inverted index for
entity retrieval, NER and finally Candidate Pair Generation.

8.2.1 Inverted Index Construction for Entity Retrieval

We extract all entity mentions from Freebase using type.object.name and common.topic.alias
predicates. During the extraction process, we also counted how often a surface form occurs
together with an entity. As a result, we generated a surface form index for each subject with
an associated frequency value. Additionally, we merged a surface form index created for
DBpedia entities using owl:sameAs links. NERFGUN (Hakimov et al., 2016) provides such
an index of surface forms. We converted the DBpedia URIs into Freebase MIDs using the
links provided by the DBpedia release of 20142. The converted index was merged with the

1https://github.com/facebookresearch/fastText
2http://oldwiki.dbpedia.org/Downloads2014#links-to-freebase

https://github.com/facebookresearch/fastText
http://oldwiki.dbpedia.org/Downloads2014#links-to-freebase
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index data extracted from Freebase. We aggregated the frequency values if the same surface
form and Freebase URI (MID) existed in both indexes.

A sample from this index is given below. All surface forms in the index are normalized;
they are converted into lowercase, punctuation as well as non-alpha-numeric characters are
removed, etc.

Surface Form URI Frequency
mildred pierced m.04t1ftb 11
mildred pierced m.04t_038 8
mildred pierced m.0cgv06r 7

8.2.2 Named Entity Recognition

We trained a Named Entity Recognizer (NER) system similar to the one proposed by Chiu
and Nichols (2015) using weak supervision.3 Since the dataset requires a single subject we
adapted the NER to identify a single entity span.

The original approach is tailored towards identifying common named entity (NE) types:
LOCATION, PERSON, ORGANIZATION, MISCELLANEOUS. Our goal is extract the sin-
gle named entity span without doing any distinction between those types. We use a IO tagging
scheme to mark tokens inside (I) and outside (O) of the single named entity of interest.

We merge the consecutive tokens that have I as an output. This process is illustrated in
Figure 8.1. The predicted output shows that tokens Mildred and Pierced get assigned the
output I while other tokens get O as an assigned label.

3We build on the code available at https://github.com/kamalkraj/
Named-Entity-Recognition-with-Bidirectional-LSTM-CNNs

https://github.com/kamalkraj/Named-Entity-Recognition-with-Bidirectional-LSTM-CNNs
https://github.com/kamalkraj/Named-Entity-Recognition-with-Bidirectional-LSTM-CNNs
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FIGURE 8.1: Named Entity Recognition using Bidirectional LSTM

The architecture is based on Bidirectional LSTMs (BiLSTM) (Graves et al., 2013). It is
composed of two LSTM (Hochreiter and Schmidhuber, 1997) layers. The model uses words
and characters as features along with case of words (lowercase, uppercase). These features
are concatenated and fed into a neural network.

The input sentence is tokenized. Each token in the sentence is converted into a word
embedding representation using Glove (Pennington et al., 2014) vectors (100 dimensional).
Each token is also represented in terms of characters by converting the token into a matrix
where each vector corresponds to a one-hot encoding vector of a character. The character
matrix is fed into a Convolutional Neural Network (CNN) (LeCun et al., 1998). The CNN
applies a convolution function to input vectors. We apply a Max-Pooling layer on the CNN
output layer that represents the most important character embeddings given the token. The
process is illustrated in Figure 8.2. A sigmoid function is applied to the output layer to infer
the maximally scoring label for each token.
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FIGURE 8.2: CNN max pooling operation on character embeddings

As the SimpleQuestions dataset does not explicitly provide the span of subjects, we rely
on weak supervision to infer the subject during train. We infer the position of the subject
by querying the inverted index for each n-gram in the question. We assume that the correct
subject span is the one that matches the expected subject URI when queried on an index. The
algorithm for inferring the span of a subject is given in Algorithm 4. These inferred token
labels are used as expected output labels from the NER model.

Algorithm 4 Inferring Named Entity Spans

1: procedure FIND-SPAN(s, u, m) . input sentence s, the expected URI u and maximum
ngram size m

2: ngrams← extract_ngrams(s, m) . extracts all possible n-grams from the input s
3: in f erred = ∅
4: for each item ni in ngrams do
5: candidates = retrieve_candidates(ni)
6: if u is in candidates then
7: in f erred = ni
8: Break . stops the loop if the expected URI is found
9: end if

10: end for
11: return in f erred . The inferred span for a given URI
12: end procedure

The algorithm extracts all possible n-grams from a question by limiting the maximum n-
gram size to 10. The process starts with bigger n-grams where each n-gram is queried against
the surface form index. The index returns a list of candidates. If the subject (e.g. m.04t1ftb)
is among the returned results the span of a named entity is assumed to be correctly inferred.
The process will be stopped at this point. This procedure is applied to all questions in the
SimpleQuestions train split.

The NER model is trained for 15 epochs, the embedding size of the BiLSTM was 300,
the CNN networks uses 3 kernels.

Prediction: During prediction we give the question text into the model and obtain the
output labels. We merge the tokens that are returned as I. As shown in Figure 8.3, we apply
NER and extract the entity mention, i.e. Mildred Pierced in our example. Querying the
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mention will result in some candidates because it matches the sample surface forms given in
Section 8.2.1.

However, in some cases NER returns partial names where some tokens are missing. This
is due to the fact that some questions are lowercased and some are not. It is challenging for
the NER system to learn whether a certain word, e.g. preposition, is part of a named entity
or not.

To overcome this drawback, first we find all n-grams from the question that match some
candidate subject in the index. Then, we compute edit distance similarity between the ex-
tracted mention from NER and all n-grams that matched some subject. The n-gram with the
highest similarity to the one proposed by NER is used as inferred subject mention m.

This way we can ensure that there is always a candidate mention m with candidate sub-
jects. In cases where NER does not return any span or the maximum similarity between
extracted mention and n-grams does not surpass a certain threshold (t=0.6), we pick the
n-gram that covers the most tokens and matches to some candidates.

8.2.3 Candidate Pair Generation

As shown in Figure 8.3, we apply the trained NER system and extract the entity mention,
i.e. Mildred Pierced in our example. The extracted mention m is queried on the surface
form index. All matching entries are added to the set S(m). Each entry contains a subject
URI (Freebase MID) and a frequency value. For example, the following subjects are found:
m.04t1ftb, m.01d13qs, m.04t_038, m.0cgv06r.

We define a KB as a set of triples of the form (si, pi, oi) that appear in the Freebase-2M
dataset. Given a subject si we define the set Pred(si) of all the properties that si has as

Pred(si) := {pi | ∃oi(si, pi, oi) ∈ KB} (8.1)

We further define the set of candidate pairs for mention m as:

C(m) := {(si, pi) | si ∈ S(m) ∧ pi ∈ Pred(si)} (8.2)

For example, the extracted candidate entity m.01d13qs has 2 predicates:
music.release_track.release, music.release_track.recording. By combining the predicate

with the candidate entity we generate candidate pairs (see Figure 8.3).
The next step is to find a ranking function that takes an input question text (q), the iden-

tified mention m and candidate pairs (C(m)={(s1, p1), (s2, p2), (s3, p3), . . . , (sn, sn)}), and
returns the highest ranking pair (s∗, p∗).

(s∗, p∗) = argmax(si ,pi)∈C(m)P(si, pi|q; θ) (8.3)

where P(si, pi) computes the probability of a pair si and pi using the equation below.

P(si, pi|q; θ) = P(pi|q; θ) ∗ P(si|q : θ) (8.4)

where P(pi|q; θ) is the probability of predicate pi as computed by our four predicate
models described below. P(si|q : θ) is the probability of a subject si computed by normaliz-
ing the frequency scores retrieved for the mention m.

In the following sections, we describe our proposed approaches for the prediction of
target predicates.
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FIGURE 8.3: Candidate pair generation illustration for neural model archi-
tectures

8.2.4 Model 1: BiLSTM-Softmax

Our first model is a BiLSTM classifier that predicts the target predicate given the question
text. This a standard model to predict multiple class labels using a softmax layer by encoding
the input text using word and character embeddings. Before passing the question text to our
network, we replace the entity name with a special placeholder token e (e.g. “Who wrote
e?”) that abstracts away the (inferred) subject mention. Moreover, the model is very similar
to the one proposed by Ture and Jojic (2017).

Architecture

Similar to the NER model, the question text is encoded on the word and character level.
Character-level word embeddings are computed by applying a CNN layer with Max-Pooling
on the characters of each token. This process is the same as explained above in Figure 8.2.
Word and character embeddings are concatenated and passed through a BiLSTM layer. The
final states of the BiLSTM layers are concatenated and fed into a feed-forward layer with
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softmax activation function, which calculates a probability distribution over a set of predi-
cates. We identified 1629 predicates in the training split of the SimpleQuestions dataset. The
model architecture is shown in Figure 8.4.

The model assigns a probability for each predicate. During candidate pair generation
we extract subjects along with frequency values. These frequency values are normalized
so that we yield a proper probability for each subject given a question q and a mention m.
The score for each candidate pair is calculated by multiplying the probability score of the
candidate predicate with the normalized frequency value of the candidate subject as given in
Equation 8.3.

Hyper-parameters

The CNN layer uses an embedding size of 100, the LSTM layer uses 200 dimensions; Word
embeddings are initialized using 100 dimensional Glove vectors and are retrained with the
rest of the model. The model is trained for 100 epochs. These parameters are chosen based
on trying different configurations of parameters on the development set.

FIGURE 8.4: BiLSTM-Softmax model that computes probability distribu-
tions for predicates given only the question text

8.2.5 Model 2: BiLSTM-KB

In this subsection, we present a different approach for predicting a predicate from a given
question that incorporates pre-trained graph embeddings into the classification process. Be-
fore we describe this model architecture, we first introduce how these graph embeddings are
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computed.

Graph Embedding

There have been different approaches proposed over the years for computing embeddings for
knowledge bases. RDF2Vec (Ristoski and Paulheim, 2016) is such a method. By performing
a random walk on the graph, the algorithm records paths between pairs of entities. The
resulting paths are considered as "sentences" and are fed into the popular word embedding
algorithm word2vec which computes vector representations for vertices and edges.

TransE (Bordes et al., 2013) is another method for computing graph embeddings. The
method is based on taking a single triple, e.g. (ei, p, ej) and creating corrupted triples from it
by randomly replacing the subject ei or the object ej with a random entity from the KB. The
objective of the method is to learn a ranking function that maximizes the margin between the
score of an actual triple and the corrupted triples.

In this work, we compute KB embeddings using FastText (Joulin et al., 2016). We phrase
the task of learning KB embeddings as a classification task. For each triple t = (ei, p, ej)
in the KB, we construct training samples for the FastText classifier by treating the predicate
p and the object ej as input tokens and subject ei as the target class. To create embedding
vectors that are aware of the role of an entity in a triple, we generate the training sample using
role-specific embeddings: es

i , eo
j and ps. Here, es

i indicates that the target is an entity in the
subject position, eo

j is an input entity in the object position and ps an input predicate used for
predicting a subject entity. Analogously, we create a training sample with the object o being
the target class. An example in the FastText format for the triple Inferno, hasAuthor,
Dan_Brown is given below:

__label__Infernos hasAuthors Dan_Browno

__label__Dan_Browno hasAuthoro Infernos

By training a FastText classifier on the generated training samples, we obtain vector
representations for all entities and predicates with respect to their role in the triple4. We
chose FastText as a classifier for its good performance on text classification tasks in terms of
accuracy and speed.

Architecture

In the following, we describe a neural network model that uses the pre-trained graph embed-
dings to predict the target predicate given a question text. The intuition is that we can project
the question text into the embedding space of the KB, thus supporting the learning process by
utilizing the pre-trained, latent structure of that space. Additionally, the model is not limited
to predicates seen during training whereas BiLSTM-Softmax outputs probability distribution
to predicates that only appear in the training split.

Similar to the model in Figure 8.4, the question text is encoded using word and character
level embeddings. The encoded text is fed into a BiLSTM layer that outputs a sequence
of hidden states. We concatenate the last states of the forward and backward LSTM and
pass it through a feed-forward layer which produces a fixed-sized output vector p̂ of 200
dimensions. The network is trained to maximize the cosine similarity of the produced output
vector p̂ and the pre-trained embedding vector p∗ of the target predicate.

4Due to the huge amount of target classes, training the classifier with a full softmax objective is not feasible.
Instead, we use the negative sampling objective that is part of the FastText toolkit as an approximation to the
softmax objective.
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During prediction we compute the cosine similarity of the computed output vector to the
embeddings of all predicates in Freebase-2M and normalize across all predicates to obtain a
probability distribution.

The score for a candidate pair is computed as given in Equation 8.3. The model architec-
ture is shown in Figure 8.5.

Hyper-parameters

The CNN layer has 100 dimensions, the LSTM has 400 dimensions. We use 100-dimensional
Glove vectors.

FIGURE 8.5: BiLSTM-KB model that computes probability distributions for
predicates given only the question text

8.2.6 Model 3: BiLSTM-Binary

This model is different than the other 2 models explained above (see Section 8.2.4 and Sec-
tion 8.2.5) in terms of the input to the model. While BiLSTM-KB introduces external knowl-
edge about predicates from a knowledge base, this model learns to associate the question text
with the tokens in the predicate URI. The input is composed of a question text q and the label
of a single predicate pi and the model outputs a binary decision (0 or 1) indicating if the
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predicate is correct for the question. By giving the label of a predicate as an input feature,
the model can potentially use the similarity between the question text (e.g. Who wrote e?)
and the predicate label (e.g. book.written_work.author) to determine if the given predicate
tokens matches the question text.

Architecture

The inputs q and pi are tokenized and fed into encoding layer that uses word and character
embeddings. These are shown as a separate components. The encoding is the same process
explained in Section 8.2.4 (see Figure 8.4) where the tokens are represented by word and
character embeddings and fed into 2-layer BiLSTM.

The tokenization of the predicate pi is done by splitting the URI by dot and underscore
characters. The latent embeddings are fed into an intermediate layer, which learns to score
the compatibility between (embedded) question input q and predicate pi. Finally, the output
layer is a sigmoid function that outputs a binary decision in terms of probability. The model
architecture is depicted on Figure 8.6.

FIGURE 8.6: BiLSTM-Binary model that computes probability distributions
as a binary decision given the question text and the predicate pair

During prediction we collect all predicates from each candidate subject and feed them
into the model one at a time. The model outputs a probability for each predicate. The score
for a candidate pair is computed using Equation 8.3. The highest scoring pair is selected as
the final output.

Hyper-parameters

We use a CNN with 100 dimensions, and an LSTM with 400 dimensions. We use 100-
dimensional Glove vectors. The model is trained for 100 epochs.
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8.2.7 Model 4: FastText-Softmax

For our last model, we train a classifier that predicts the target predicate given the question
text using FastText (Joulin et al., 2016). The FastText tool implements a linear classifier on
top of a bag-of-n-gram representation of a text using word n-grams to preserve local word
order and character n-grams for robustness against out-of-vocabulary words. The model out-
puts a probability for each predicate. The score for a candidate pair is computed using Equa-
tion 8.3. The highest scoring pair is selected as the final output. For a detailed description of
the model architecture we refer to Joulin et al. (2016).

Hyper-parameters

Due to the moderate size of the target vocabulary5 we can train the classifier with a full
softmax objective. We trained the classifier for 50 epochs and a hidden layer size of 100. The
classifier uses word n-grams of size 1 and 2 and character n-grams of size 5.

8.3 Evaluation

We provide evaluations on four models and the building components in isolation using the
provided test split from the SimpleQuestions (Bordes et al., 2015) dataset as follows:

1. Named Entity Recognition: the evaluation shows the accuracy for extracting the cor-
rect mention from the question text.

2. Named Entity Linking: the evaluation shows in how many cases the subject can be
retrieved by index look-up using the detected entity mention from the NER step.

3. Predicate Prediction: this evaluation shows how well the four models perform in pre-
dicting the correct predicate for the given question text.

4. Answer Prediction: this evaluation shows how well the proposed models perform on
predicting the correct triple and how they compare to other systems on the Simple-
Questions dataset.

8.3.1 Named Entity Recognition

Training We trained a BiLSTM-CRF NER system on SimpleQuestions training split. The
model was run for 100 epochs, with word embeddings from Glove 100-dimensional vectors,
200 dimension for LSTM layers.

Prediction During prediction, we queried all possible n-grams extracted from question text
q on a surface form index. N-grams that returned a match were added to a set N. A question
text q was given as an input to the trained NER system. The output from NER system was
compared with each n-gram in N. The comparison is based on Edit distance similarity. The
N-gram that is the most similar to the output is taken as a recognized subject mention m. In
this way we can ensure that output mention from NER maps to some set of subjects. The
system is regarded as having correctly identified a certain mention m if by looking up the
mention in the index the correct subject is returned. For instance, in the Figure 8.3 the NER
system identifies “mildred pierced” as an entity mention. By querying the entity mention
we retrieve four subjects. The expected target subject m.04t1ftb is in the list. The NER
component achieves an accuracy of 0.82 on the test split of the SimpleQuestions dataset.

51629 predicates in the training set.
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8.3.2 Named Entity Linking

Once the subject mention m has been extracted from the NER system, the next step is to get
all the matching subjects from the surface form index. We queried the mention m on an index
and retrieved subjects with corresponding frequency values.

For evaluation, we ranked the subjects by their frequency values and calculated Re-
call@K. The system correctly links if the target subject is in the ranked list of K candidate
subjects. The results are shown in Table 8.1.

TABLE 8.1: Named Entity Linking evaluation on test split using Recall@K

K Recall

1 0.68
2 0.74
5 0.79
10 0.81
25 0.82
100 0.82
400 0.82

8.3.3 Predicate Prediction

All models described above compute probability distributions for predicates. To understand
better the building blocks of each model, we evaluated the performance of each model for pre-
dicting the correct predicate. Below in Table 8.2, we listed the results for BiLSTM-Softmax,
BiLSTM-KB, BiLSTM-Binary, and FastText-Softmax. We trained different models with dif-
ferent hyper-parameters. In Table 8.2, we listed only the best performing models of each type
with their performance scores. The performance score is Accuracy and it was calculated by
excluding the subject from the pair and comparing only predicted and expected predicates.
As shown in Table 8.2, FastText-Softmax output performs all other systems while BiLSTM-
Softmax and BiLSTM-Binary performed similarly.

TABLE 8.2: Evaluation of four models on predicate prediction task

Name Accuracy

BiLSTM-Softmax 0.74
BiLSTM-KB 0.68
BiLSTM-Binary 0.73
FastText-Softmax 0.79

8.3.4 Answer Prediction

The task of question answering on the SimpleQuestions dataset requires a system to output a
single triple consisting of a subject and a predicate. We evaluated the four proposed models
on prediction of a triple consisting of a subject and a predicate. The predicated pairs are
ranked using Equation 8.3.

Moreover, we compared our results with other published systems that evaluated using
the same dataset. All results are shown in Table 8.3. None of the vanilla architectures could
outperform the current state-of-the-art systems.
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TABLE 8.3: Systems evaluated on SimpleQuestions dataset ranked by the
reported accuracy measures, * systems evaluated on FB5M data, the rest

were evaluated on FB2M data

System Accuracy
Bordes et al. (2015) 0.63
Aghaebrahimian and Jurčíček (2016) 0.65
Golub and He (2016) 0.71
Lukovnikov et al. (2017) 0.71
Dai et al. (2016) 0.76*
Yin et al. (2016) 0.76
Ture and Jojic (2017) 0.88
BiLSTM-Softmax 0.66
BiLSTM-KB 0.61
BiLSTM-Binary 0.66
FastText-Softmax 0.68

8.3.5 Error Analysis

We choose BiLSTM-Softmax to perform error analysis and highlight the errors the model
makes. In Table 8.4, we report the pair prediction results for BiLSTM-Softmax using Re-
call@K. We extract K top-ranking pairs as given by the model and evaluate how well the
system performs on pair prediction. Additionally, we evaluate separately how the subject in
the predicted pair compares to the subject of the expected pair. We perform the same evaluate
on predicates as well.

We can observe that BiLSTM-Softmax predicts the correct predicate with 0.74 for Re-
call@1 and 0.8 for Recall@2. The predicate prediction has an upper-bound of 0.84, which
was obtained by Recall@20. Subject prediction has a higher performance than pair predic-
tion (0.67 vs 0.74 for Recall@1). Subject prediction has an upper-bound of 0.82 as explained
in the previous section (Section 8.3.2). Overall results for pair prediction suggest that the
model has the highest margin between Recall@1 and Recall@2. It means that the system
could easily reach 0.74 if the ranking function improved.

TABLE 8.4: Recall@K values for BiLSTM-Softmax in Pair Prediction task

K Pair Subject Predicate

1 0.67 0.74 0.74
2 0.74 0.78 0.80
3 0.77 0.80 0.81
4 0.78 0.80 0.82
5 0.79 0.81 0.83
10 0.80 0.81 0.83
20 0.80 0.82 0.84

Next, we analyzed the type of errors systems do as reported in Table 8.5. In total the
system predicted 7206 wrong pairs and 14481 correct pairs out of total 21687 test instances.
We reported the following type of errors:

• Only Wrong Predicate: If the predicted predicate is incorrect where the predicted
subject is correct compared to the target subject and predicate pair. These errors could
be caused by
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• Only Wrong Subject: If the predicted subject is incorrect where the predicted predi-
cate is correct compared to the target subject and predicate pair. These errors could be
caused by NER or the frequency value of a subject.

• Wrong Subject & Predicate: If both predicate subject and predicate are incorrect
compared to the target subject and predicate pair.

• Empty Prediction: If both predicate subject and predicate are empty.

By picking the highest ranking pair from predictions we compare it to the target pair, if
there was a predicted pair. We can see that the majority of errors (0.29) are caused by not
predicting any pair. The next biggest error mass is in predicting the pair wrong with 0.26.
Finally, the system made more errors while predicting the predicate rather than the subject
(0.23 vs 0.22).

TABLE 8.5: Error analysis for BiLSTM-Softmax in Pair Prediction task

Error Type Count Percentage

Only Wrong Predicate 1642 0.23
Only Wrong Subject 1591 0.22
Wrong Subject & Predicate 1911 0.26
Empty Prediction 2062 0.29
Total 7206 1.0

8.4 Discussion

We have shown that our NER step is reasonably accurate at detecting the subject span with
an accuracy of 0.82. We have seen that in some cases NER picked the wrong span when the
question contains some proper name which is not part of a target span, e.g. “where is mineral
hot springs, colorado?” the expected span is “mineral hot springs” while the NER system
recognizes the span “springs, colorado”. Similarly, during entity candidate extraction we
have seen that sometimes the target subject has a frequency of 1, which affects the candidate
pair score.

The models BiLSTM-Softmax and BiLSTM-Binary performed similarly on predicate
prediction while BiLSTM-Binary had a margin of 0.6. FastText-Softmax outperformed all
models on predicate prediction. For the answer prediction, BiLSTM-Softmax, BiLSTM-
Binary and FastText-Softmax performed similarly even though FastText-Softmax had the
best performance on predicate prediction with a margin more than 0.5.

While none of the model architectures could outperform the current state-of-the-art sys-
tems for the overall answer prediction, we evaluated the building blocks of a question answer-
ing system and showed how they perform in isolation. It shows how well each component
performs and highlights the importance for comparing different models not just on the overall
output performance but also the individual small components. Comparing to the state-of-the-
art systems, our models lack on average 0.10 on accuracy.

For comparison with approaches presented in previous Chapters ( 6 and 7) we choose
BiLSTM-Softmax since the performance is comparable to other models presented in this
chapter or in some cases better.
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Chapter 9

Discussion

In this chapter, we discuss the results obtained with the three different semantic parsing
approaches proposed in this thesis and highlight differences in terms of the role of syntax
and semantics, the multilinguality aspect of these approaches, the manual effort required for
adapting to another domain or language and finally analyse the effects of the datasets on these
approaches.

9.1 Overview

We described three different semantic parsing approaches for Question Answering in previ-
ous chapters: Chapter 6, Chapter 7 and Chapter 8. From Chapter 8 we have chosen BiLSTM-
Softmax for comparison. In this chapter, we compare these methods based on the following
dimensions:

• Manual Effort: what manual effort is required for each approach in order to adapt
them?

• Syntax and Semantics: what is the role of syntax and semantics for each approach?

• Multilinguality: how does each proposed approach deal with multilinguality?

• Cross-domain Transferability: what are the requirements to adapt the approaches to
other domains?

• Training Data Size and Search Space: how are the approaches affected by the given
training data and the search space of the target domain?

9.2 Manual Effort

The presented approaches have different requirements in their architectures in terms of the
needed lexical resources, the training procedure or the manual effort that is needed to run
these methods. In the next section, we highlight the parts of each approach where manual
effort is required and compare them against each other.

9.2.1 CCG-based Semantic Parsing Approach

The approach is built on CCG syntax and lambda calculus. For each language one needs to
define CCG combination rules (see Section 2.2.1) as well as the domain independent lexicon
for each domain and language. Defining such a lexicon requires not only manual effort but
also domain expertise in CCG syntax and lambda calculus.



120 Chapter 9. Discussion

9.2.2 Dependency parse tree-based Semantic Parsing Approach

The approach builds on cross-lingual dependency parse trees from Universal Dependencies
(UD) and compositional semantics based on DUDES. The manual effort required for this
approach consists of the definition of features for the model. All of these features have to
be designed carefully and evaluated properly in order to understand the impact and obtain a
functioning system.

9.2.3 Neural Network-based Semantic Parsing Approach

This method, unlike others, does not need any manually defined features, lexicon or grammar
entries. The model architecture is based on neural networks where the learning process is
end-to-end. The words in sentences are used as features. The method does not depend on
any syntactic information. It rather learns such syntactic and contextual dependencies using
BiLSTM layers in the network.

9.2.4 Comparison

In terms of manual effort the Neural Network-based Semantic Parsing Approach does not
require any additional resources for the pipeline to run. The approach is trained end-to-end
where the model performance relies heavily on the amount of training data. The Depen-
dency parse tree-based Semantic Parsing Approach requires hand-engineered features to be
defined but the same features can be used for other languages as well. Lastly, the CCG-based
Semantic Parsing Approach requires the most manual effort in adapting the system.

9.3 Syntax and Semantics Relationship

The syntax and the semantics are building blocks for semantic parsing approaches. In this
section, we explain briefly how syntax and semantics is used in each proposed approach and
highlight the differences and compare the proposed approaches.

9.3.1 CCG-based Semantic Parsing Approach

The CCG-based Semantic Parsing Approach learns syntax and semantics jointly from the
training data. The approach learns to generate syntactic parse trees that depend on CCG com-
bination rules. The approach depends on lambda calculus for defining semantics of words.
The model learns the syntax and semantics jointly but it is limited to the given training data,
which is the reason why it works better on closed-domain datasets. The meaning represen-
tation of a natural language question is obtained using semantic composition as explained
in Section 2.3.4 where the syntax guides the semantics using CCG combination rules along
with lambda calculus composition.

9.3.2 Dependency parse tree-based Semantic Parsing Approach

This approach uses UD dependency parse trees for syntax and DUDES for expressing seman-
tics. UD includes parse trees for over 60 languages and new annotation data is being added
regularly by the community. It uses compositional semantics based on DUDES (see Sec-
tion 2.3.4) and the dependency relations on a parse tree to obtain the meaning representation
of natural language questions.
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9.3.3 Neural Network-based Semantic Parsing Approach

The approach does not rely on syntactic information about words in sentences. The syntactic
and contextual information is rather learned. The BiLSTM layers in the network are capable
of learning inter-dependencies between words. The input is represented as word and char-
acter embeddings. Word embeddings provide lexical and contextual information while char-
acter embeddings encode an additional information for the lexical coverage. The approach
has a simple semantic representation. The task of answering questions in SimpleQuestions
(Bordes et al., 2015) requires a system to predict a single triple with a predicate and a subject
entity.

9.3.4 Comparison

The CCG-based Semantic Parsing Approach learns the syntax and semantics from the train-
ing data whereas Dependency parse tree-based Semantic Parsing Approach uses a pre-trained
dependency parser for syntax and learns only the mapping from parse trees into semantic rep-
resentations. Both methods have semantic representations for aggregation, ordering, entities,
classes and predicates. The Dependency parse tree-based Semantic Parsing Approach is the
only system that uses dependency relations among nodes in the parse tree.

The Neural Network-based Semantic Parsing Approach differs from the other the two
methods in terms of syntax and semantics. The syntactic and contextual information are
rather part of a learning process using word and character embeddings with BiLSTM layers.
All questions in the SimpleQuestions dataset follow the same rule where questions do not
include aggregation, ordering etc. For such tasks, we only need a semantic representation
for an entity and a predicate where these fill the subject or the object slot in a triple. The
composition of semantics for a given question in fact does not require any machinery. It is a
straightforward slot filling approach consisting of inserting the predicted Freebase entity into
the subject position and the predicted Freebase property into the predicate position.

The CCG-based and the Dependency parse tree-based Semantic Parsing approaches both
use a compositional semantics approach to obtain a meaning representation of a sentence
using bottom-up semantic composition methods described in Section 2.3.4. They differ in
order and criterion for composition. The lambda calculus is based on a certain order of
application. For instance, the following lambda expression expects the variable λx to be
combined before the variable λy.

λx.λy.next_to(x, y)

However, the semantic composition with DUDES (see Section 2.3.3) does not necessarily
depend on the order of application. It depends on the dependency relation with the child and
the parent node. If the criterion is met then the application proceeds. The following semantic
representation states that the variables x or y will be replaced if the given arguments have
nsubj or dobj relation to the parent node in a dependency parse tree.

v:- vs:- l:1

1:
next_to(x, y)

(x, nsubj, 1)
(y, dobj, 2)
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9.4 Multilinguality

Multilinguality is an important aspect to consider when building a QA system. Approaches
that scale to other languages are preferred since building such systems require sometimes
manual effort or domain expertise as explained above. In this section, we provide an overview
on the multilinguality aspect of each approach and compare them.

9.4.1 CCG-based Semantic Parsing Approach

The approach is intended to be built for a single language, which is English. As explained
above, the method relies on CCG grammar definition for each language and some additional
manual lexicon. The application to another language is possible if these specific resources
are provided.

9.4.2 Dependency parse tree-based Semantic Parsing Approach

This approach uses cross-lingual dependency parse trees from Universal Dependency (UD)
as syntactic representations that allows the system to be defined as a multilingual method
since other components of the method do not incorporate any data that restricts it to a spe-
cific language. The UD comprises of corpora for over 60 languages1, which allows to build
language-independent pipelines by abstracting from specific languages.

9.4.3 Neural Network-based Semantic Parsing Approach

The Neural Network-based Semantic Parsing Approach is different from the other two meth-
ods in the way that it does not depend on any syntactic representation specific to a language.
The method rather learns such information from a large number of training instances. Word
embeddings are used in this method to provide contextual information. Character embed-
dings are also used in order to provide lexical information.

9.4.4 Comparison

The important aspect to consider here is the lexicon for mapping natural language expressions
to knowledge base representation, e.g. predicates, resources or classes. Such a lexicon is a
language-specific resource. As we showed in Section 5.3, the availability of such data with
high quality and the required variability is not comparable across all languages. Furthermore,
we showed that by using only word embeddings the system can still achieve reasonable
results where the multilingual lexica is not available or they lack wide coverage, e.g. the
German and Spanish lexical items from the M-ATOLL. Considering these points, extending
the Dependency parse tree-based Semantic Parsing Approach to other languages is possible
and easier compared to extending the CCG-based Semantic Parsing Approach.

The Neural Network-based Semantic Parsing Approach uses word and character em-
beddings as resources to learn syntactic and contextual information. These resources are
available for any language. Therefore, all components of the architecture can be adapted to
another language without any changes to the pipeline.

1https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-2515

https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-2515
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9.5 Cross-domain Transferability

Another important aspect to consider when building QA systems is the transferability of
our proposed approaches to other domains. In this section, we compare the approaches and
explain how each one of them can be transferred to another domain.

9.5.1 CCG-based Semantic Parsing Approach

The approach is built on DBpedia and applied to the QALD-4 dataset. It relies on external
linguistic resources such as M-ATOLL and the lexicon that is learned by the model. Addi-
tionally, manual effort is required to adapt the method to another domain as explained above.

9.5.2 Dependency parse tree-based Semantic Parsing Approach

This approach can be applied on other domains without any changes to the model. The only
drawback would be the availability of high quality dependency trees for the selected domain.
Universal Dependencies (UD) is a community effort that has been growing rapidly in the
recent years. However, the annotated dependency parse trees are based on news articles, web
documents, etc. For instance, applying to a specific domain such as biomedical would require
UD corpora to contain parse trees in the same domain.

9.5.3 Neural Network-based Semantic Parsing Approach

This approach does not depend on any domain knowledge and can be applied without any
changes to the architecture. The method requires only character and word embeddings as an
input, which can be obtained for other domains as well.

9.5.4 Comparison

The CCG-based Semantic Parsing Approach and the Dependency parse tree-based Semantic
Parsing Approach were built on DBpedia data. The approaches rely on an inverted index
of lexicon to retrieve matching knowledge base entries. Transferring such information to
another domain is not always feasible. For instance, in order to apply these methods to
the biomedical domain either one needs to build such an inverted index or the knowledge
base must already include these lexicalizations. As previously described, the CCG-based
Semantic Parsing Approach is restricted to a certain domain because of the need to manually
define some lexical entries. Even though these can be fixed for any specific language, it is
still a drawback because not every entry can be found in the domain where the approach has
been applied before.

The CCG-based Semantic Parsing Approach works well only for closed domains. If the
variability of natural language expressions in the selected domain is limited and it is possible
to create enough training instances it would be an easier choice. However, if the knowledge
base includes a vast amount of data then the Dependency parse tree-based Semantic Parsing
Approach would be more suitable since it learns patterns for associating natural language ex-
pressions to knowledge base entries. Finally, if the selected domain includes a large number
of training instances then the Neural Network-based Semantic Parsing Approach could be
easily extended considering the fact that it is an end-to-end system.

9.6 Training Data Size & Search Space

The availability of training data defines the choice for a model architecture. The performance
of each proposed model architecture depends on the size of the training data and the search
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space for the approach to explore. The search space is essentially the number of knowledge
base entries that the approach explores during the mapping of natural language tokens in
questions. If the search space is large and the number of training examples are low then a
system can not capture variabilities in natural language from training data. The M-ATOLL
(Walter et al., 2014) is a tool that generates the lexicalization of DBpedia properties. It is a
needed resource because the QALD datasets do not include many training instances to learn
from. Our proposed Dependency parse tree-based Semantic Parsing Approach uses such
external resources in order to minimize the lexical gap in the natural language.

Below in Table 9.1, we provide statistics on the size of the training data and approxi-
mate the number of knowledge base entries for each respective dataset. Note here that the
search space size for each dataset is approximated since the data in the knowledge bases can
vary. The assumption here for the search space is the total number of unique entries in each
knowledge base.

TABLE 9.1: Training data size for each dataset together with approximate
number of distinct entries in each knowledge base

Dataset Knowledge Base Training Instances Number of Distint IDs

Geoquery US Geography data 600 750
QALD-6 DBpedia 300 10 mil.
SimpleQuestions Freebase 75,910 2 mil.

The search space for Geoquery (Tang and Mooney, 2001) is composed of entities such as
cities, states, rivers, mountains and handful properties such as border, population, etc. The
search space is approximated to 750 items in total.

The search space for the QALD-6 dataset is essentially DBpedia data with approximately
10 million resources, more than 2000 predicates and around 800 classes. We approximated
the search space for this dataset as 8 million items to search from.

The SimpleQuestions dataset is based on a subset of triples from Freebase. The counted
number of individuals and predicates is approximated to 2 million entries.

We can see that the QALD-6 dataset has the largest search space with the lowest number
of training instances. This suggests that the dataset is more complex than others also con-
sidering different types of questions, e.g. aggregation. Next, the SimpleQuestions dataset
has a large number of entries to search from. However, this dataset includes 75,910 training
instances where all questions are factoid questions with a single fact asked about. The dataset
does not include aggregation for instance, unlike the QALD-6 dataset.

Finally, the Geoquery dataset has the lowest number of items in its search space. The
dataset is domain-specific where a limited vocabulary is used for training and test instances. It
makes the learning process easier compared to the QALD-6 or the SimpleQuestions datasets.
It also includes more training examples than QALD-6 (600 vs. 300).

By looking at these results, we can see that QA systems running on the QALD-6 dataset
have a more complex task to solve by searching in a larger space while training the system
using only 300 instances. It poses a bigger challenge for our Dependency parse tree-based
Semantic Parsing Approach to generalize from available number of training instances.
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Chapter 10

Conclusion

In this chapter, we sum up the thesis with ideas for the future work. We provide answers for
the research questions that are addressed in this thesis.

10.1 Conclusion

In this thesis, we presented three different semantic parsing approaches that aim to build
Question Answering (QA) systems. These systems provide an interface where users could
query the data available in knowledge bases using a natural language.

Chapter 6 describes a method for building a QA system that works well for closed-
domain datasets. The approach is based on the method introduced by Zettlemoyer and
Collins (2005) that uses CCG syntax and the lambda calculus for expressing the seman-
tics. They evaluated the method on the Geoquery (Tang and Mooney, 2001) dataset. We
adapted their method to the QALD-4 dataset which is an open-domain dataset that includes
questions about various topics. We showed that training on such a dataset can be challenging
since the vocabulary in training and test documents can vary significantly where the vocab-
ulary seen during prediction does not occur in the training instances, unlike closed-domain
datasets where the vocabulary is limited and used interchangeably. This missing vocabulary
reduces the performance of systems since there is a gap in lexical knowledge that is learned
during training.

The contribution of this approach is to show how the lexical gap in mapping a natural
language question into knowledge base queries can be closed. It is shown that using external
ontology lexicalisations extracted by M-ATOLL (Walter et al., 2014) can provide additional
lexical information to bridge the gap as shown by our evaluation results. The system achieved
0.09 F1 score on QALD-4 dataset using only the learned lexicon and the DBpedia Ontology
labels. The performance of the system increased to 0.30 when we added ontology lexical-
isations from M-ATOLL. It shows that the systems trained on open-domain datasets could
incorporate such lexicon in order to bridge the gap.

Chapter 7 describes a semantic parsing approach that uses dependency parse trees and
DUDES (Cimiano, 2009) for expressing the semantics. The main contribution of this ap-
proach is showing how to build a semantic parsing approach for a multilingual QA system
that is based on factorized graphical models. We showed that the same architecture can be
applied to multiple languages without changing the pipeline components where we train a
model that learns to map a syntactic structure to knowledge base queries in a supervised
fashion. We used dependency parse trees from Universal Dependencies (UD) (Nivre et al.,
2016; Nivre, 2017) as a syntax of the given questions. UD is an important community effort
in creating multilingual NLP systems since the same set of dependency relations and POS-
tags are used for all supported languages. As a proof-of-concept, we built a QA system that
can handle questions in English, German and Spanish by training the model on the QALD-
6 dataset. We showed how to build a multilingual QA system that is based on a semantic
parsing approach.
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Another contribution of this approach is to show how the mapping of natural language
questions to knowledge base queries can be performed. We built an inverted index that com-
bines lexical resources from WordNet, M-ATOLL and dictionary terms that are extracted
from word embeddings. The choice of the evaluated languages were based on the languages
that were supported by M-ATOLL at the time of writing. We showed that using only a dictio-
nary from word embeddings can already give adequate results. This is the case for German
and Spanish where the model based on the learned lexicon and M-ATOLL lexicalisations
did not perform well. The approach achieved 0.04 Macro F1 score on Spanish and German
in a question answering task. By adding an indexed dictionary from word embeddings we
increased the performance by far. The performance of the approach increased to 0.20 for
Spanish and 0.16 for German. This suggests that we can build multilingual QA systems for
other languages as well even when ontology lexicalisations for some languages is missing or
lacking adequate performance.

Chapter 8 describes a different set of architectures that do not use symbolic represen-
tations compared to the other two approaches explained above. This chapter evaluates four
model architectures that are inspired by the state-of-the-art systems published in the same do-
main. All of these architectures are evaluated on the SimpleQuestions (Bordes et al., 2015)
dataset. The main contribution of this chapter is to highlight the importance of comparing
such architectures under the same environment because each published system can vary in
many ways and it is sometimes hard to compare these systems by the reported performances
only. Comparing these architectures under the same environment allowed us to understand
the strengths and weaknesses in more detail.

In particular, we focused on the predicate prediction task and compared the four model
architectures. Additionally, we evaluated each sub component of the pipelines such as named
entity recognition and linking, relation prediction and joint answer prediction. We showed
that the performance of the trained NER system affected all architectures since the detection
and disambiguation of named entities constitutes half of the job for answering questions. The
contribution of this chapter can be put in other words as identifying bottlenecks in the overall
QA pipeline in order to shed light on the impact of different architectural choices to guide
the future research on the QA task.

All proposed model architectures above have their own advantages and disadvantages,
depending on the use case and the applied domain for QA. We compared them against each
other on the points such as multilinguality, manual effort required to run, usage of syntax and
semantics together in the process of interpretation and cross-domain transferability. We can
conclude that the CCG-based Semantic Parsing Approach works best for domains where the
vocabulary is restricted but it requires the most amount of manual effort in order to run it.
It requires domain expertise in defining manually the domain-independent lexicon together
with CCG combination rules.

The Neural Network-based Semantic Parsing Approach can also perform quite well in
closed and open-domain datasets since the pipeline does not require any additional resources
to run. It heavily depends on the training data size since optimizing the model parame-
ters requires a large number of training examples. The Dependency parse tree-based Se-
mantic Parsing Approach is a good choice for open-domain use cases where the number
of training examples are limited. This approach incorporates multilingual lexical resources
and language-agnostic dependency parse tree structures in order to build a multilingual QA
system.
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10.2 Research Questions

In this section, we provide answers to the research questions addressed in this thesis.

Question 1: How to map natural language phrases into knowledge base entries for
multiple languages? Which linguistic resources can be used?

Using provided labels in an ontology of a knowledge base, external tools such as M-
ATOLL (Walter et al., 2014) that generate ontology lexicalizations and contextual embed-
dings of words, phrases could be used to map natural language expressions to knowledge
base entries.

Knowledge base ontologies sometimes provide labels in multiple languages. Addition-
ally, as mentioned in Chapter 5, M-ATOLL lexicalizations can be used for multiple lan-
guages. Contextual word embeddings can be trained for any language considering the amount
of text data available on the Web. In Chapter 5, we showed how we built an inverted index for
retrieving URIs. We mapped each entry in the index to a certain semantic type, e.g. DUDES.
This index combines data from different resources for multiple languages. The approach pre-
sented in Chapter 7 uses the index for mapping natural language phrases into knowledge base
entries in multiple languages. In Chapter 6, the approach uses the labels from the knowledge
base, learned lexicon and M-ATOLL lexicalisations to do the mapping for a single language,
which is English.

The approach in Chapter 8 uses contextual information of words in order to do the map-
ping which is learned from training examples rather than using an inverted index for direct
mapping.

Question 2: How to disambiguate URIs when multiple candidates are retrieved from
mapping natural language tokens into knowledge base entries?

All proposed approaches have a model that is trained in a supervised fashion with an
objective to disambiguate URIs and construct a meaning representation that is translated into
a valid query. The disambiguation process is learned as a part of the training process of
each proposed approach. Each approach outputs a single meaning representation that is the
highest-ranking solution for a given question.

The CCG-based Semantic Parsing Approach deals with a restricted vocabulary where the
ambiguity occurs less often. The method learns to rank certain URIs based on features that
include lemma and CCG category information. The approach outputs the highest-ranking
parse tree with its semantic representation for a given question where the disambiguation is
handled by the score of such a parse tree.

The Dependency parse tree-based Semantic Parsing Approach uses factor graphs with
features that express a certain edge relation between a parent and a child node (see Sec-
tion 7.2.4). These features incorporate string similarity information, frequency value of a
surface form to link phrase to URI, edge relation along with syntactic and semantic informa-
tion. The method learns to rank the candidate URIs that construct a valid query by optimizing
the weight for the defined features. There is also a pruning step where the candidates that
do not lead to a valid query are removed early in the sampling process. This reduces the
complexity for the algorithm to disambiguate.

Similarly, the Neural Network-based Semantic Parsing Approach also trains a supervised
model to rank pairs of predicates and resources that appear in a question. The disambigua-
tion is done on the basis of scores returned by the model for a predicate and a subject entity
given a question. The chapter describes four different architectures that learn to rank a single
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predicate and a subject entity using neural networks.

Question 3: How to use syntactic information of a natural language question to-
gether with semantic representations of entries in a knowledge base?

Semantic parsing approaches built on top of syntactic parse trees use semantic compo-
sition methods that take into account the underlying syntax and the ontology of the target
knowledge base. In Chapter 7, we consider dependency relations between two nodes and
the DBpedia Ontology, e.g., rdfs:domain and rdfs:range restrictions of properties, in order to
learn the right mapping between syntax and knowledge base representation. The approach
in Chapter 6 trains a model to learn a joint mapping of a question syntax and the provided
knowledge base.

In Chapter 7, we presented a method for building a multilingual semantic parsing ap-
proach that uses compositional semantics of dependency tree structures to obtain a semantic
representation. The approach uses a bottom-up semantic composition method that uses the
dependency relations between words in a question and DUDES (Cimiano, 2009), which is
a formalism for expressing the semantics of words or phrases in a sentence. The bottom-up
semantic composition method described in Section 2.3.4 traverses each dependency relation
and composes the semantics based on the parent and the child node where the syntax of a
sentence guides the process to obtain the semantics.

The approach described in Chapter 6 learns the syntax and semantics jointly. The ap-
proach learns to generate the syntactic parse tree together with the semantics of a given ques-
tion. Similar to the one described above, the syntax of a question guides the composition of
semantics that is based on CCG combination rules and lambda calculus.

Question 4: What are the advantages and the disadvantages of a multilingual QA
system vs. a monolingual system built for each language?

In Chapter 7, we present a multilingual semantic parsing approach that uses Universal
Dependencies (UD) to obtain dependency parse trees of questions. Using such a resource
enables us to abstract from languages because all parse trees use the same set of Part-Of-
Speech (POS) tags and dependency relations. The main advantage for this approach is that
the architecture can be extended for other languages without changing the pipeline. We
showed this by applying the proposed approach on English, German and Spanish. It shows
that the application of the approach to other languages is possible. In addition to that, having
such systems enables other non-domain experts to build a question answering system for
multiple languages as well as extending the approach to other domains.

The main disadvantage of a multilingual system could be seen in the amount of language-
specific resources available for languages. Since not every linguistic resource is equally avail-
able or it can be limited for some languages, focusing on building a monolingual system for
a chosen language can give better performance as shown by the method by Zettlemoyer and
Collins (2005) with its application on the closed-domain dataset.

Question 5: What effort is required to adapt our QA pipelines to another language?

Approaches that are built on the syntax of a single language require more effort in order
to adapt to another language. The method described in Chapter 6 is an example for such a
system. It requires a domain expert to manually define CCG combination rules and domain-
independent lexicon.
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Considering the recent efforts in the research community for building Universal Depen-
dencies (UD), the systems can focus only on the underlying mapping from syntax to seman-
tics because all languages use the same set of grammar entries such as dependency relations
and POS tags. In Chapter 7, we focused on this idea. The requirements for this approach for
adapting to another language is extracting a lexicon that maps natural language expressions
to knowledge base entries. Such a lexicon can be extracted from the embeddings of words in
vector space, ontology lexicalizations provided by tools such as the M-ATOLL or the given
ontology labels of knowledge bases. Word embeddings are openly available and trainable re-
sources, e.g. word embeddings for 157 languages provided by Fasttext.1 The same approach
can be applied to other languages without any changes to the pipeline considering the fact
that training instances will be provided in those languages.

In Chapter 8, we introduced four different model architectures that are built on language-
independent pipelines. These model architectures use word and character embeddings of
a given question as input. These resources as mentioned earlier are available for all lan-
guages. Thus, these architectures can be applied to other languages without any changes to
the pipeline. However, these methods are heavily dependent on the amount of training data.
The requirement for such architectures is acquiring enough training data in order to reach
reasonable performance.

10.3 Limitations

This work compares three different semantic parsing approaches for building a QA system.
The comparison of these approaches is described in detail in Chapter 9. The advantages and
disadvantages of each system are highlighted. However, the work described in this thesis has
the following limitations.

• Applying all systems on the same datasets.

Even though approaches described in Chapter 6 and Chapter 7 were applied to QALD
datasets, they were still different benchmarks. The CCG-based Semantic Parsing Ap-
proach was evaluated on the QALD-4 and the Dependency parse tree-based Semantic
Parsing Approach was evaluated on the QALD-6. The Neural Network-based Seman-
tic Parsing Approach was evaluated only on the SimpleQuestions dataset. Similarly,
application of the Dependency parse tree-based Semantic Parsing Approach to Sim-
pleQuestions dataset is another limitation.

• Applying the Neural Network-based Semantic Parsing Approach to QALD datasets.

The presented neural network based approach can predict a single triple given a ques-
tion. This limitation makes it harder to apply it to QALD like datasets properly since
the queries are not limited to a single triple and some include quantifiers, etc.

• Applying the Dependency parse tree-based Semantic Parsing Approach on all lan-
guages that are available in QALD datasets.

As a proof of concept, we trained on three languages and compared the results. These
languages were chosen because at the time of the implementation these were the lan-
guages that M-ATOLL (Walter et al., 2014) supported at the time of writing the thesis.

1https://fasttext.cc/docs/en/crawl-vectors.html

https://fasttext.cc/docs/en/crawl-vectors.html
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10.4 Future Work

We plan to improve the following points and adding additional components in order to im-
prove the quality of predictions for the model architectures presented in Chapter 7 and Chap-
ter 8. We mentioned earlier that the limitation of approaches lies on evaluating all of the
proposed model architectures on the same dataset.

10.4.1 Dependency parse tree-based Semantic Parsing Approach

The quality of predictions increases rapidly if the provided lexicon has a bigger coverage or a
larger number of training examples. We plan to incorporate deep contextualized word vectors
(Peters et al., 2018) that take into account not only the context of words but the syntactic
structures of the whole sentence. Such a difference might improve the fact that sometimes
word embeddings give similar results for words with opposite meanings, e.g. youngest and
oldest. It would be an interesting research question to consider comparing traditional and
deep contextual word embeddings for the task of QA.

Another future development can be considered in doing transfer learning. The idea is
to train a model on a single language and apply the same model to other languages without
explicitly training the system of those languages. Since our proposed approach in Chapter 7
has a language-independent pipeline, we could apply the learned model on a single language
to others. The main change to the model would be the hand-engineered features that need to
abstract from any language specific information such as lexical information.

Sequence-to-Sequence (seq2seq) (Sutskever et al., 2014b) could be another architecture
to consider for this task. It has been proven in machine translation systems that such models
can perform better, given enough training data. Another idea for such an architecture could
be training a seq2seq model on the QALD dataset. This would be a challenging task since
QALD datasets have limited training instances (200-300). Transfer learning from another
task such as NER, POS tagger where there are more training instances could decrease the
need of huge corpora for QA.

As a proof of concept, we have shown that we could use the pipeline for building QA
system for other languages. We have chosen English, German and Spanish languages. How-
ever, QALD datasets contain questions in more than seven languages. It could be a future
improvement of the pipeline to apply the system to all available languages.

10.4.2 Neural Network-based Semantic Parsing Approach

This work has been evaluated only on the SimpleQuestions (Bordes et al., 2015) dataset. The
approach could be extended to other datasets such as QALD or WebQuestions (Berant et al.,
2013).

The current model architecture uses words and characters as inputs. It can be extended
into using the underlying dependency parse tree of a question along with some linguistic
information such as POS tags. Moreover, the Named Entity Recognizer (NER) component
can be further improved considering the same additional syntactic information such as de-
pendency parse trees.

Another aspect to consider here would be a model that performs the prediction jointly.
For instance, we trained a separate NER model, separate model for relation prediction and
separate component that ranks the subject entities. The idea is to learn these subtasks in a
joint fashion.
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Appendix A

QALD Dataset

A.1 QALD-6 Instances from Training Data with Aggregation,
Answer Types: Resource, Date, Number, Boolean

{
"dataset": {

"id": "qald-6-train-multilingual"
},
"questions": [

{
"question": [
{

"language": "en",
"string": "Which German cities have more than 250000 inhabitants?",
"keywords": "city, Germany, inhabitants, more than 250000"

},
{

"language": "de",
"string": "Welche deutschen Städte haben mehr als 250000 Einwohner?",
"keywords": "Stadt, Deutschland, Einwohner, mehr als 250000"

},
{

"language": "es",
"string": "¿Qué ciudades alemanas tienen más de 250000 habitantes?",
"keywords": "cuidad, Alemania, habitantes, más de 250000"

},
{

"language": "it",
"string": "Quali città tedesche hanno più di 250000 abitanti?",
"keywords": "città, Germania, abitanti, più di 250000"

},
{

"language": "fr",
"string": "Quelles villes allemandes ont plus de 250000 habitants?",
"keywords": "villes, Allemagne, habitants, plus de 250000"

},
{

"language": "nl",
"string": "Welke Duitse steden hebben meer dan 250000 inwoners?",
"keywords": "stad, Duitsland, inwoners, meer dan 250000"

},
{

"language": "ro",
"string": "Ce oras,e germane au mai mult de 250000 de locuitori?",
"keywords": "oras,, Germania, locuitori, mai mult de 250000"
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}
],
"answertype": "resource",
"query": {

"sparql": "SELECT DISTINCT ?uri WHERE {
{ ?uri rdf:type dbo:City . }
UNION { ?uri rdf:type dbo:Town . }
?uri dbo:country dbr:Germany .
?uri dbo:populationTotal ?population .
FILTER ( ?population > 250000 ) } "

},

"aggregation": "true",
"onlydbo": "true",
"id": "101",
"hybrid": "false"

},
{

"question": [
{

"language": "en",
"string": "What is the second highest mountain on Earth?",
"keywords": "mountain, second highest"

},
{

"language": "de",
"string": "Was ist der zweithöchste Berg der Erde?",
"keywords": "Berg, zweithöchster"

},
{

"language": "es",
"string": "¿Cuál es la segunda montaña más alta de la tierra?",
"keywords": "montaña, seguna más alta"

},
{

"language": "it",
"string": "Qual è la seconda montagna più alta sulla Terra?",
"keywords": "montagna, seconda più alta"

},
{

"language": "fr",
"string": "Quelle est la deuxième plus haute montagne de la Terre?",
"keywords": "montagne, deuxième plus haute"

},
{

"language": "nl",
"string": "Wat is de op één na hoogste berg ter wereld?",
"keywords": "berg, op één na hoogste"

},
{

"language": "ro",
"string": "Care este al doilea cel mai înalt munte de pe Pământ?",
"keywords": "munte, al doilea cel mai înalt"

}
],
"answertype": "resource",
"query": {
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"sparql": "SELECT DISTINCT ?uri WHERE {
?uri rdf:type dbo:Mountain .
?uri dbo:elevation ?elevation . }
ORDER BY DESC(?elevation)
OFFSET 1 LIMIT 1 "

},
"aggregation": "true",
"onlydbo": "true",
"id": "105",
"hybrid": "false"

},
{

"question": [
{

"language": "en",
"string": "Is proinsulin a protein?",
"keywords": "proinsulin, protein"

},
{

"language": "de",
"string": "Ist Proinsulin ein Protein?",
"keywords": "Proinsulin, Protein"

},
{

"language": "es",
"string": "¿La proinsulina es una proteina?",
"keywords": "proinsulina, protein"

},
{

"language": "it",
"string": "La proinsulina è una proteina?",
"keywords": "proinsulina, proteina"

},
{

"language": "fr",
"string": "La pro-insuline est-elle une protéine?",
"keywords": "pro-insuline, protéine"

},
{

"language": "nl",
"string": "Is proinsuline een proteïne?",
"keywords": "proinsuline, proteïne"

},
{

"language": "ro",
"string": "Este proinsulina o proteină?",
"keywords": "proinsulină, proteină"

}
],
"answertype": "boolean",
"query": {

"sparql": "ASK WHERE {
dbr:Proinsulin rdf:type dbo:Protein .
} "

},
"aggregation": "false",
"onlydbo": "true",



134 Appendix A. QALD Dataset

"id": "12",
"hybrid": "false"

},
{

"question": [
{

"language": "en",
"string": "Are tree frogs a type of amphibian?",
"keywords": "tree frog, amphibian"

},
{

"language": "de",
"string": "Sind Laubfrösche Amphibien?",
"keywords": "Laubfrosch, Amphibie"

},
{

"language": "es",
"string": "¿Son las ranas verdes un tipo de anfibio?",
"keywords": "rana verde, anfibio"

},
{

"language": "it",
"string": "Le rane verdi sono un tipo di anfibio?",
"keywords": "rana verde, anfibio"

},
{

"language": "fr",
"string": "Sont les grenouilles arboricoles un type d’amphibiens?",
"keywords": "grenouilles arboricoles, amphibien"

},
{

"language": "nl",
"string": "Zijn boomkikkers een soort amfibie?",
"keywords": "boomkikker, amfibie"

},
{

"language": "ro",
"string": "Sunt broas,tele de copac un tip de amfibieni?",
"keywords": "broască de copac, amfibian"

}
],
"answertype": "boolean",
"query": {

"sparql": "ASK WHERE { dbr:Hylidae dbo:class dbr:Amphibian . } "
},
"aggregation": "false",
"onlydbo": "true",
"id": "13",
"hybrid": "false"

},
{

"question": [
{

"language": "en",
"string": "Give me all cosmonauts.",
"keywords": "cosmonauts"

},
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{
"language": "de",
"string": "Gib mir alle Kosmonauten.",
"keywords": "Kosmonauten"

},
{

"language": "es",
"string": "Dame todas las cosmonautas.",
"keywords": "cosmonautas"

},
{

"language": "it",
"string": "Dammi tutte le cosmonaute.",
"keywords": "cosmonaute"

},
{

"language": "fr",
"string": "Donnes-moi tous les cosmonautes.",
"keywords": "cosmonautes"

},
{

"language": "nl",
"string": "Geef alle kosmonauten.",
"keywords": "kosmonauten"

},
{

"language": "ro",
"string": "Dă-mi tot,i cosmonaut,ii.",
"keywords": "cosmonaut,i"

}
],
"answertype": "resource",
"query": {

"sparql": "SELECT DISTINCT ?uri WHERE {
?uri rdf:type dbo:Astronaut .
{ ?uri dbo:nationality dbr:Russia . }
UNION { ?uri dbo:nationality dbr:Soviet_Union . }
} "

},
"aggregation": "false",
"onlydbo": "true",
"id": "1",
"hybrid": "false"

},
{

"question": [
{

"language": "en",
"string": "In which country does the Ganges start?",
"keywords": "Ganges, start, country"

},
{

"language": "de",
"string": "In welchem Land entspringt der Ganges?",
"keywords": "Ganges, entspringen, Land"

},
{



136 Appendix A. QALD Dataset

"language": "es",
"string": "¿En qué país nace el Ganges?",
"keywords": "Ganges, país, orígen"

},
{

"language": "it",
"string": "In quale stato nasce il Gange?",
"keywords": "Gange, stato, origine"

},
{

"language": "fr",
"string": "Dans quel pays commence le Gange?",
"keywords": "pays, commence, Gange"

},
{

"language": "nl",
"string": "In welk land ontspringt de Ganges?",
"keywords": "ontspringt, Ganges"

},
{

"language": "ro",
"string": "Din ce t,ară izvorăs,te Ganga?",
"keywords": "Gangele, izvor, t,ară"

}
],
"answertype": "resource",
"query": {

"sparql": "SELECT DISTINCT ?uri WHERE {
dbr:Ganges dbp:sourceCountry ?l .
?uri rdfs:label ?l .
?uri rdf:type dbo:Country .
}"

},
"aggregation": "false",
"onlydbo": "true",
"id": "10",
"hybrid": "false"

},
{

"question": [
{

"language": "en",
"string": "When did Michael Jackson die?",
"keywords": "Michael Jackson, die"

},
{

"language": "de",
"string": "Wann starb Michael Jackson?",
"keywords": "Michael Jackson, gestorben"

},
{

"language": "es",
"string": "¿Cuándo murió Michael Jackson?",
"keywords": "Michael Jackson, muerto"

},
{

"language": "it",
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"string": "Quando è morto Michael Jackson?",
"keywords": "Michael Jackson, morto"

},
{

"language": "fr",
"string": "Quand mourut Michael Jackson?",
"keywords": "Michael Jackson, mort"

},
{

"language": "nl",
"string": "Wanneer overleed Michael Jackson?",
"keywords": "overleden, Michael Jackson"

},
{

"language": "ro",
"string": "Când a murit Michael Jackson?",
"keywords": "Michael Jackson, muri"

}
],
"answertype": "date",
"query": {

"sparql": "SELECT DISTINCT ?date WHERE {
dbr:Michael_Jackson dbo:deathDate ?date .
} "

},
"aggregation": "false",
"onlydbo": "true",
"id": "174",
"hybrid": "false"

},
{

"question": [
{

"language": "en",
"string": "Give me the birthdays of all actors of the television show Charmed.",
"keywords": "television show, Charmed, actor, birthday"

},
{

"language": "de",
"string": "Gib mir die Geburtstage von allen Darstellern der Fernsehserie Charmed.",
"keywords": "Fernsehserie, Charmed, Darsteller, Geburtstag"

},
{

"language": "es",
"string": "Dame los cumpleaños de los actores de la serie de televisión Charmed.",
"keywords": "serie televisiva, Charmed, actores, cumpleaños"

},
{

"language": "it",
"string": "Dammi le date dei compleanni di tutti gli attori della serie televisiva Charmed.",
"keywords": "serie televisiva, Charmed, attore, compleanno"

},
{

"language": "fr",
"string": "Donnes-moi les dates de naissance des acteurs de la série télévisée Charmed.",
"keywords": "série télévisée, Charmed, acteurs, date de naissance"

},
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{
"language": "nl",
"string": "Noem de verjaardag van alle acteurs uit de televisieserie Charmed.",
"keywords": "verjaardag, acteur, televisieserie, Charmed"

},
{

"language": "ro",
"string": "Dă-mi zilele de nas,tere a tuturor actorilor din serialul de televiziune Charmed",
"keywords": "serial de televiziune, Charmed, actor, zi de nas,tere"

}
],
"answertype": "date",
"query": {

"sparql": "SELECT DISTINCT ?date WHERE {
dbr:Charmed dbo:starring ?actor .
?actor dbo:birthDate ?date .
} "

},
"aggregation": "false",
"onlydbo": "true",
"id": "2",
"hybrid": "false"

},
{

"question": [
{

"language": "en",
"string": "What is the birth name of Angela Merkel?",
"keywords": "birth name, Angela Merkel"

},
{

"language": "de",
"string": "Was ist der Geburtsname von Angela Merkel?",
"keywords": "Geburtsname, Angela Merkel"

},
{

"language": "es",
"string": "¿Cuál es el nombre de soltera de Angela Merkel?",
"keywords": "nombre de soltera, Angela Merkel"

},
{

"language": "it",
"string": "Qual è il nome da nubile di Angela Merkel?",
"keywords": "nome da nubile, Angela Merkel"

},
{

"language": "fr",
"string": "Quel est le nom de jeune fille d’Angela Merkel?",
"keywords": "nom de jeune fille, Angela Merkel"

},
{

"language": "nl",
"string": "Wat is de meisjesnaam van Angela Merkel?",
"keywords": "meisjesnaam, Angela Merkel"

},
{

"language": "ro",
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"string": "Care este numele de domnis,oară al Angelei Merkel?",
"keywords": "nume de domnis,oară, Angela Merkel"

}
],
"answertype": "string",
"query": {

"sparql": "SELECT DISTINCT ?string WHERE { dbr:Angela_Merkel dbo:birthName ?string . } "
},
"aggregation": "false",
"onlydbo": "true",
"id": "130",
"hybrid": "false"

},
{

"question": [
{

"language": "en",
"string": "Give me all B-sides of the Ramones.",
"keywords": "Ramones, B-sides"

},
{

"language": "de",
"string": "Gib mir alle B-Seiten der Ramones.",
"keywords": "Ramones, B-Seiten"

},
{

"language": "es",
"string": "Dame todas las caras B de los Ramones.",
"keywords": "Ramones, cara B"

},
{

"language": "it",
"string": "Dammi tutti i lati B dei Ramones.",
"keywords": "Ramones, lato B"

},
{

"language": "fr",
"string": "Donnes-moi tous les faces B des Ramones.",
"keywords": "faces B, Ramones"

},
{

"language": "nl",
"string": "Geef alle B-kantjes van singles van de Ramones.",
"keywords": "B-kant, single, de Ramones"

},
{

"language": "ro",
"string": "Dă-mi toate laturile B ale Ramones",
"keywords": "Ramones, laturi B"

}
],
"answertype": "string",
"query": {

"sparql": "SELECT DISTINCT ?string WHERE {
?x dbo:musicalArtist dbr:Ramones .
?x dbo:bSide ?string .
} "
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},
"aggregation": "false",
"onlydbo": "true",
"id": "196",
"hybrid": "false"

},
{

"question": [
{

"language": "en",
"string": "How many students does the Free University in Amsterdam have?",
"keywords": "Free University, Amsterdam, students"

},
{

"language": "de",
"string": "Wieviele Studenten hat die Freie Universität in Amsterdam?",
"keywords": "Freie Universität, Amsterdam, Studenten"

},
{

"language": "es",
"string": "¿Cuántos estudiantes tiene la Universidad Libre de Amsterdam?",
"keywords": "Universidad Libre, Amsterdam, estudiantes"

},
{

"language": "it",
"string": "Quanti studenti ci sono nella Libera Università di Amsterdam?",
"keywords": "Libera Università, Amsterdam, studenti"

},
{

"language": "fr",
"string": "Combien d’étudiants a l’université libre d’Amsterdam?",
"keywords": "Université libre, Amsterdam, étudiants"

},
{

"language": "nl",
"string": "Hoeveel studenten heeft de Vrije Universiteit in Amsterdam?",
"keywords": "Vrije Universiteit, Amsterdam, studenten"

},
{

"language": "ro",
"string": "Cât,i student,i are Universitatea Liberă din Amsterdam?",
"keywords": "Universitatea Liberă, Amsterdam, student,i"

}
],
"answertype": "number",
"query": {

"sparql": "SELECT DISTINCT ?num WHERE { dbr:VU_University_Amsterdam dbo:numberOfStudents ?num . } "
},
"aggregation": "false",
"onlydbo": "true",
"id": "104",
"hybrid": "false"

},
{

"question": [
{

"language": "en",
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"string": "How tall is Michael Jordan?",
"keywords": "tall, Michael Jordan"

},
{

"language": "de",
"string": "Wie groß ist Michael Jordan?",
"keywords": "groß, Michael Jordan"

},
{

"language": "es",
"string": "¿Qué altura tiene Michael Jordan?",
"keywords": "altura, Michael Jordan"

},
{

"language": "it",
"string": "Quanto è alto Michael Jordan?",
"keywords": "altezza, Michael Jordan"

},
{

"language": "fr",
"string": "Quelle est la taille de Michael Jordan?",
"keywords": "taille, Michael Jordan"

},
{

"language": "nl",
"string": "Hoe lang is Michael Jordan?",
"keywords": "lang, Michael Jordan"

},
{

"language": "ro",
"string": "Ce înăt,ime are Michael Jordan?",
"keywords": "înălt,ime, Michael Jordan"

}
],
"answertype": "number",
"query": {

"sparql": "SELECT DISTINCT ?num WHERE { dbr:Michael_Jordan dbo:height ?num . } "
},
"aggregation": "false",
"onlydbo": "true",
"id": "120",
"hybrid": "false"

}
]

}
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