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Abstract

Background: Traumatic stress does not only increase the risk for posttraumatic stress disorder (PTSD), but is also
associated with adverse secondary physical health outcomes. Despite increasing efforts, we only begin to
understand the underlying biomolecular processes. The hypothesis-free assessment of a wide range of metabolites
(termed metabolite profiling) might contribute to the discovery of biological pathways underlying PTSD.

Methods: Here, we present the results of the first metabolite profiling study in PTSD, which investigated peripheral
blood serum samples of 20 PTSD patients and 18 controls. We performed liquid chromatography (LC) coupled to
Quadrupole/Time-Of-Flight (QTOF) mass spectrometry. Two complementary statistical approaches were used to
identify metabolites associated with PTSD status including univariate analyses and Partial Least Squares Discriminant
Analysis (PLS-DA).

Results: Thirteen metabolites displayed significant changes in PTSD, including four glycerophospholipids, and one
metabolite involved in endocannabinoid signaling. A biomarker panel of 19 metabolites classifies PTSD with 85%
accuracy, while classification accuracy from the glycerophospholipid with the highest differentiating ability already
reached 82%.

Conclusions: This study illustrates the feasibility and utility of metabolite profiling for PTSD and suggests lipid-derived
and endocannabinoid signaling as potential biological pathways involved in trauma-associated pathophysiology.

Keywords: Posttraumatic stress disorder, Metabolite profiling, Mass spectrometry, Biological pathways,
Palmitoylethanolamide, Glycerophospholipid
Background
Traumatic events, such as war, torture, rape or natural
disasters, cumulatively increase the risk of developing
posttraumatic stress disorder (PTSD) [1]. According to
the Diagnostic and Statistical Manual of Mental Disor-
ders (DSM), this mental health disorder is defined by the
joint presence of four symptom clusters: intrusive re-
experiencing of the traumatic event(s), avoidance of
trauma-reminders, alterations in mood and cognition,
and hyperarousal [2]. In addition to suffering from dis-
tressing traumatic memories, survivors with PTSD are
also at enhanced risk of adverse physical health out-
comes, including cardiovascular diseases and auto-
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immune diseases [3]. In recent years, increasing effort
has been devoted to unraveling the underlying biomolec-
ular ‘memories’ of traumatic stress in order to better
understand both the disorder etiology as well as the
observed co-morbidity with physical diseases. PTSD-
associated alterations have been reported in the neuro-
endocrine system [4,5] and the immune system [6-8].
Furthermore, several lines of evidence point toward ac-
celerated age-related processes in PTSD, reflected for in-
stance in shortened telomere length [9], enhanced DNA
damage [10] or an altered N-glycosylation profile [11].
These studies have largely contributed to our current
understanding of the cellular and molecular alterations
in PTSD, but are nevertheless confined to the investiga-
tion of biological pathways already known or hypothe-
sized to be involved in PTSD etiology, symptomatology
and associated health impairments.
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However, the recent development of high-throughput
technology enables the untargeted investigation of thou-
sands of biological markers, and hence opens new oppor-
tunities for the discovery of so far unknown biomolecular
pathways of disorders and diseases. These newly developed
‘omics’ approaches comprise the global study of DNA (‘gen-
omics’), gene expression (‘transcriptomics’), protein expres-
sion (‘proteomics’), and lipids (‘lipidomics’). One of the
latest omic sciences, metabolomics, employs mass spec-
trometry to investigate the metabolome, defined as the col-
lection of small molecules (metabolites) which can be
found in a given biological sample (e.g., cells, tissue or
extracellular liquid) [12-14]. The metabolome represents
the final outcome of environmentally influenced gene regu-
lation and protein expression and thus “serves as a direct
signature of biochemical activity” ([15], p.263). Therefore, it
exhibits the strongest link with the overall health status of
an individual [12].
So far, only a limited number of studies employed this

new method to investigate metabolite profiles in psychi-
atric disorders such as depression [16-19] and schizo-
phrenia [20-23]. These studies illustrate the large
potential of metabolomics to contribute to a deeper un-
derstanding of the pathophysiological alterations associ-
ated with mental health disorders and to identify novel
biomarker candidates and their associated pathways. For
instance, metabolite profiling studies of depression in
both urine and plasma identified several metabolites in-
volved in disturbed energy metabolism to be altered in
depression, a finding that corresponds well with the
commonly observed psychosomatic symptoms of fatigue
and lethargy in depressed individuals [18,19]. The clin-
ical relevance of metabolite profiling has been further
demonstrated by an investigation which gave initial evi-
dence that responders and non-responders to pharmaco-
logical treatment for depression could be differentiated
by this approach [16].
To our best knowledge, this is the first study employ-

ing metabolite profiling to identify so far unknown me-
tabolites associated with a diagnosis of PTSD. We
hypothesized that we would be able to identify a profile
of altered metabolite levels associated with the diagnosis
of PTSD in the aftermath of traumatic stress. A bio-
marker panel of 19 identified metabolites enabled the
relatively precise classification of the PTSD status. Fur-
thermore, this novel methodological approach identified
potential novel biological pathways implied in PTSD eti-
ology including lipid-derived signaling.

Methods
Subjects
We investigated the metabolite profile in peripheral
blood serum of 20 trauma-exposed individuals with a
diagnosis of PTSD according to DSM-IV-TR [24] and 18
healthy controls with varying degrees of trauma expos-
ure. All participants were recruited at the Center of
Excellence for Psychotraumatology, University of Konstanz,
Germany, and via public advertisement. Participants were
included in the present study if they met the following
criteria (1) age between 18 and 55, (2) no psychotropic
medication, (3) no autoimmune disease, (4) no signs of
a current infection according to the whole blood count,
and (5) no substance addiction. PTSD cases and con-
trols were matched based on age and ethnicity. For an
overview on demographics and clinical variables of the
groups see Table 1.
The study procedures followed the Declaration of

Helsinki and were approved by the Ethics Committee of
the University of Konstanz. Written informed consent was
obtained from the subjects before study participation.

Clinical interviews
Psychodiagnostic interviews were administered by trained
psychologists specialized in the field of trauma, with the
assistance of trained interpreters, if required. PTSD diag-
nosis and the severity of PTSD symptoms were assessed
with the Clinician Administered PTSD Scale (CAPS) [25].
Furthermore, we calculated separate scores for the three
PTSD symptom clusters (intrusions, avoidance and hyper-
arousal). The number of traumatic event types experi-
enced was ascertained with the respective event list of the
CAPS. The Mini International Neuropsychiatric Interview
(M.I.N.I.) [26] was employed to assess the possible
presence of other mental health disorders. Additionally,
the severity of depressive symptoms was determined with
the Hamilton Depression Rating Scale (HAM-D) [27].

Blood sampling and processing
Peripheral blood was collected by venous puncture into
8.5 ml SST II Plus Vacutainers (BD, USA) before the psy-
chodiagnostic interview (10 am ± 15 min). Participants were
asked to have regular breakfast in the morning before the
interview to minimize additional strains and prevent circu-
latory disturbances. The collection containers were directly
inverted and stored for 30 min at room temperature to
stabilize the blood. Subsequently, serum was separated by
centrifugation for 10 min at 2000 g and serum aliquots of
250 μl were immediately stored at −80°C.

Sample preparation for metabolite profiling
Serum samples were thawed on ice for metabolite ex-
traction. For each participant, a volume of 200 μl serum
was taken from the 250 μl aliquot and mixed with
600 μl ice-cold methanol:chloroform (2:1, v/v, Sigma
Aldrich, High Pressure Liquid Chromatography (HPLC)-
certified). Samples were mixed three times (Vortex
Genie 2, Scientific Instruments, USA) for one min, and
incubated for 5 min at 4°C in between. The last mixing



Table 1 Demographic and clinical sample characteristics

Controls (N = 18) PTSD (N = 20) Statisticb p-value

N Female (%) 8 (44) 11 (55) Fisher’s exact test .75

Mean Age in Years (SD) 31.06 (10.93) 32.65 (8.46) tdf=36 = −.51 .62

N Smoker (%) 11 (61) 12 (60) Fisher’s exact test 1.00

Mean Cigarettes per Day (SD) 5.58 (9.74) 7.72 (13.24) W = 172.50 .82

Region of Origin Fisher’s exact test .49

N Africa (%) 7 (39) 5 (25)

N Middle East (%) 11(61) 14 (70)

N Southeastern Europe (%) 0 (0) 1 (5)

N Insecure Asylum Status (%)a 7 (39) 20 (100) Fisher’s exact test < .001

Mean Number of CAPS Events (SD) 5.56 (2.94) 8.35 (1.95) tdf=36 = −3.50 .001

Mean CAPS Score (SD) 9.11 (15.41) 84.5 (18.55) W = 0.00 < .001

Mean HAM-D Score (SD) 5.59 (6.67) 25.85 (7.26) tdf=35 = −8.78 < .001

CAPS, Clinician Administered PTSD Scale; HAM-D, Hamilton Rating Scale for Depression.
aInsecure asylum status refers to legal situations that imply possible deportation.
bt-test for continuous data if test residuals were normally distributed, Mann–Whitney U-test for continuous data if residuals were not normally distributed, and
Fisher’s Exact test for categorical data.
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was performed for 30 sec followed by 10 min incubation
on ice. Next, 200 μl ice-cold HPLC-certified water was
added and the samples were mixed for 1 min, followed
by centrifugation at 14.000 rpm for 5 min at 4°C. Subse-
quently, the liquid phase of each sample was extracted
into a new reaction tube. The samples were vacuum-dried
in a CentriVap concentrator linked to a −80°C cold trap
(Labconco, USA), sealed (Parafilm, Brand, Germany) and
shipped to the National Environmental Research Institute
(NERI) at the National University of Singapore (NUS).
After arrival samples were re-suspended in 40 μl HPLC-
certified water, incubated for 10 min on ice, and centri-
fuged at 4°C for 15 min at 15.000 rpm. For each sample,
a 30 μl supernatant was transferred into HPLC vials
(Agilent Incorporated, USA). Samples of subjects with
PTSD and controls were analyzed in batches in random-
ized order.

Metabolite profiling by liquid chromatography coupled to
mass spectrometry
We extracted 5 technical replicates per participant,
which were consecutively analyzed by liquid chromatog-
raphy (LC; model G4226A Agilent Technologies, USA)
coupled to a Quadrupole/Time-Of-Flight Mass Spec-
trometer (QTOF-MS; model G6540A Agilent Technolo-
gies, USA). The LC system comprised two Agilent EC-C18
Poroshell columns (2.1 × 5 mm and 2.1 × 100 mm, re-
spectively) with a particle size of 2.7 μm and a pore size of
120 Å. A reference solution contained two references (ions
m/z 121.0508 and 922.0097) for continuous autocalibra-
tion of QTOF-MS during analyses with a minimum detec-
tion threshold of 1000 counts. For metabolite separation,
the following LC parameters were set: 2 μl injection vol-
ume, 0.3 ml/min binary pump flow, 600 bar high pressure
limit, and 4°C autosampler temperature. The mobile phase
was composed of two solvents: Solvent A consisted of
0.1% formic acid (FA; Sigma Aldrich) in ultrapure water
(TKA Ultrapure Water System) and solvent B consisted of
0.1% FA in acetonitrile (Sigma Aldrich). The gradient cycle
started with a solvent composition of 95% of solvent A
and 5% of solvent B and reached a solvent composition of
100% solvent B within 9.5 min. The initial solvent compos-
ition was re-established prior to the next measurement,
resulting in an overall run time of 16 min/sample. The
injection needle was washed for 10 sec after each com-
pleted run. Mass spectrometric analysis was performed
in both positive and negative ionization mode with a
scan rate of 2 spectra/sec, a mass range of 100–1700
(m/z), a capillary voltage setting of 4000 V and 3500 V
(positive and negative mode, respectively) and a frag-
mentor setting of 100 V. The pressure of the nebulizer
was set to 40 psi, the gas temperature to 250°C, and the
continuous gas flow to 12 l/min.

Raw data processing and quality control
Raw data was imported into the MassHunter Qualitative
Analysis Software (Agilent Incorporated, USA) for com-
pound feature extraction based on assessed mass and
retention time. Features with a minimum absolute abun-
dance of 1000 counts within a defined mass accuracy
(<15 ppm) were selected, while no retention time-
filtering was applied. The resulting non-normalized data
was exported as CEF-files and loaded into Mass Profiler
Professional software (MPP; Agilent Technology, version
12.5). Feature alignment based on mass (20 ppm + 2.0
mDA tolerance) and retention time (0.5% + 0.15 min
tolerance) was performed using the software solution
IDBrowser (version B.05) implemented in MPP. A
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recursive analysis considering all possible isoforms of
the metabolites was performed in order to enhance ac-
curacy and coverage of metabolite identification. Follow-
ing this approach, 382 entities were identified in the
positive ionization mode and underwent manual filtering
based on origin (exogenous vs. endogenous/essential
metabolites) and data quality. Initially, all exogenous me-
tabolites were excluded resulting in a number of 138
remaining entities. All metabolites were included that
were detected in at least 10 PTSD cases and 10 control
subjects. Finally, for each detected metabolite, the me-
dian number of replicates per person had to exceed 2 for
inclusion. This resulted in a total number of 60 metabo-
lites from the positive ionization mode which entered
statistical analysis. The same procedure was repeated for
the metabolites detected in the negative ionization mode
(N = 178). However, since manual filtering revealed
much lower data quality of this assessment (only 6 of 68
endogenous metabolites passed our predefined quality
criteria), we decided to restrict the analyses to the 60 en-
tities detected in positive ionization mode. Prior to all
statistical analyses, metabolite data was log2 transformed
to account for deviances from normal distribution. Data
quality control included two steps: First, we manually
inspected the consistency of the chromatogram (Additional
file 1: Figure S1A). Second, we investigated the results of a
principal component analysis (PCA) including all 190 mea-
sured probes (5 technical replicates for 38 individuals). The
results showed that the 5 technical replicates for each par-
ticipant clustered together (Additional file 1: Figure S1B).
Subsequently, for each metabolite, the average value of the
5 technical replicates of each participant was calculated.
Data were then exported from MPP and loaded into the
statistical environment R version 3.1.0 [28] for further
analyses.

Statistical analyses
Demographic and clinical variables were compared be-
tween PTSD cases and controls using t-test or Mann–
Whitney-U-test if the residuals were not normally
distributed for continuous variables and Fisher’s exact
test for categorical data. We employed two complemen-
tary statistical analyses to identify metabolites associated
with PTSD status: 1) univariate analyses to identify
group differences in mean abundance values between
PTSD cases and controls and 2) Partial Least Squares
Discriminant Analysis (PLS-DA) as implemented in the
R package mixOmics version 5.0-1 [29] as a multivariate
approach to identify the best combination of metabolites
which separate PTSD cases and controls.

Dealing with missing data
Several metabolites were not detected in all individuals,
which could be due to either a metabolite concentration
in this sample below the default signal-to-noise threshold
of 1000 counts, or a non-identification of that metabolite
due to methodological reasons. For example, as not all
ionized metabolites reach the mass spectrometer after
nebulization, this results in a variance in the detection
rates and availability of data for each replicate. We decided
to omit missing data for the univariate analyses. However,
since cross-validation is only feasible without missing
data, the multivariate analyses were performed after
imputing missing data employing the NIPALS algorithm
[30] implemented in the R package mixOmics version
5.0-1 [29].

Univariate statistics
The abundance scores of the single metabolites were
analyzed parametrically using Welch’s t-tests or non-
parametrically using Mann–Whitney-U-test, if the resid-
uals of the t-test were not normally distributed. The
resulting p-values were corrected for multiple compari-
sons (N = 60). Since this was the first exploratory study
to investigate metabolite alterations in PTSD we employed
the false-discovery rate (FDR) [31] as a correction method
for multiple comparisons – an approach that is especially
recommended for discovery studies [32,33]. As a com-
promise between the stringent 5% level and the suggestion
of more relaxed FDR thresholds (up to 20%) for an initial
discovery study [33], which have been implemented in
untargeted metabolite investigations [23], the critical FRD
threshold was defined as 10% for this study. All nominal
significant metabolites were considered as interesting can-
didates for further investigations in PTSD and are hence
reported, however, only metabolites with a p-value < 5% in
combination with an FDR < 10% can be considered as
associated with PTSD in the narrower sense.
In addition to group comparisons, Kendall’s τ correla-

tions were calculated between metabolite signals and
PTSD symptom severity (CAPS sum score), PTSD symp-
tom scores (intrusions, avoidance and hyperarousal) as
well as with trauma exposure (number of traumatic events
assessed in the CAPS). Since there is a high co-morbidity
between PTSD and depression in the aftermath of trau-
matic stress [34], we also tested the association between
the identified metabolites and depressive symptomatology
(HAM-D).

Multivariate statistics
While univariate statistics can identify significant group
differences in single metabolite levels, multivariate statis-
tics allow for the simultaneous consideration of all inves-
tigated metabolites, for the ranking of metabolites
according to their importance in predicting PTSD status,
and ultimately for the identification of a potential bio-
marker panel which differentiates PTSD cases from con-
trols. Further, metabolites which do not yield significant
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univariate group differences can, when combined with
other metabolites in a multivariate model, decisively
contribute to a clear discrimination between cases and
controls [35].
PLS-DA is a multivariate class prediction method es-

pecially suited if the number of predictors exceeds the
number of observations, which can also deal with multi-
collinearity among predictors [30,36]. PLS-DA combines
the approaches of principal component analyses aiming
at dimension reduction and regression analysis. In PLS-
DA, all predictor variables X (the metabolites) are projected
to a limited number of dimensions termed X-components.
The components are extracted in a way that they not only
maximize the explained variance in the X-space, but also
maximize the covariance between the X-components and
the nominal Y-variable [36]. Likewise, metabolites which
highly differentiate between cases and controls have a
higher importance in defining the components than “noisy”
metabolites which are not associated with the disorder sta-
tus. The relative explanatory power of a metabolite for the
resulting class prediction model can be summarized by the
Variable Importance in the Projection (VIP) factor, which
reflects the relevance of a metabolite over all weighted
components [36,37]. As the average of the squared VIP
equals 1, metabolites with a VIP larger than 1 are generally
considered important for the projection. In order to define
a biomarker set, metabolites exceeding a certain VIP
threshold (usually 1, but higher thresholds may be
more accurate in the presence of multicollinearity) can
be selected and the PLS-DA model is refitted including
only these metabolites [36-38].
We employed 1000 repeats of 10-fold cross-validation

to identify the PLS-DA model with the highest predict-
ive accuracy. In order to promote a parsimonious pre-
diction, the one-standard error (SD) rule was applied for
model selection [39]. Accordingly, the most economic
model whose mean prediction accuracy was < 1 SD
below the model with the highest accuracy was chosen.
Employing the above described cross-validation pro-

cedure, we first estimated the predictive accuracy of
PLS-DA models extracting one to four components. Model
accuracy did not enhance with extracting more than three
components, and according to the 1 SD rule, a model
extracting two components was chosen. In a second step,
we compared the models resulting from the extraction of
biomarker panels based on six different VIP thresholds
(ranging from 1.0 to 1.5). Finally, we evaluated the predic-
tive accuracy of a logistic regression model including only
the metabolite with the highest VIP as a predictor.

Results and discussion
In accordance with our hypothesis, convergent evidence
from univariate and multivariate analyses indicates
PTSD-associated alterations in the metabolite profile.
Univariate statistics
Group comparison revealed 13 metabolites, which reached
nominal significance (p < .05). After multiple comparison
correction, two metabolites remained significant at the
5% level (palmitoylethanolamide and PE(17:1(9Z)/18:0);
Figure 1) and an additional four metabolites had a FDR
of less than 10% (Table 2).
All but two of the identified metabolites also showed

strong and significant correlations with the CAPS score
(Table 2). Furthermore, for several metabolites (e.g.,
guanosine, inosine), the relationship with PTSD symp-
tomatology was stronger than the group differences be-
tween cases and controls, indicating a dose-dependent
relationship between PTSD symptoms and metabolic al-
terations (Table 2). Similarly, high correlations were
found with all three CAPS symptom scores (Additional
file 1: Table S1). While correlations between trauma ex-
posure and relative metabolite concentrations generally
showed the same direction as CAPS correlations, they
were much weaker, and only one metabolite displayed
nominal significance (Additional file 1: Table S1), sug-
gesting that PTSD symptoms lead to metabolite alter-
ations beyond the effect of trauma exposure. Similarly,
weak correlations were found with depressive symptoms,
with only three correlations reaching nominal signifi-
cance (Additional file 1: Table S1). This finding might be
partially explained by the high comorbidity and symp-
tom overlap between PTSD and depression.

Multivariate statistics
A PLS-DA model with two components extracting all
metabolites exceeding a VIP threshold of 1.1 yielded the
highest predictive accuracy in the cross-validation pro-
cedure (see Additional file 1: Figure S2 for a comparison
of model accuracy). The selected model included 19 me-
tabolites (Additional file 1: Table S2), of which 12 were
also identified by the univariate analyses. In 1000 repeats
of 10-fold cross-validation, these 19 metabolites predicted
PTSD status with an accuracy of 0.85 (SD = 0.02), a sensi-
tivity of 0.83 (SD = 0.03), and a specificity of 0.87 (SD =
0.03). Figure 2 depicts the separation of PTSD cases and
controls on the two components of this PLS-DA model.
We finally investigated the predictive ability of the me-

tabolite with the highest discriminative ability in the
PLS-DA model (PE(17:1(9Z)18:0)) by means of cross-
validation. A logistic regression model revealed that this
metabolite predicted PTSD status with an accuracy of
0.82 (SD = 0.02), rendering this metabolite an interesting
biomarker candidate for PTSD. In comparison, the pre-
dictive accuracy of the second important metabolite in
the PLS-DA model (palmitoylethanolamide) only re-
vealed a predictive accuracy of 0.74 (SD = 0.01).
Multivariate and univariate statistics revealed conver-

gent results, as 12 out of the 13 nominally significant



Figure 1 Displayed are the log2 transformed relative concentrations of Palmitoylethanolamide and the phospholipid PE(17:1(9Z)18:0),
which showed the strongest univariate group differences. The left panel visualizes the differences between PTSD patients and controls, while
the right panel displays the correlation with PTSD symptomatology assessed with the Clinician Administered PTSD Scale (CAPS) Score.
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metabolites in the univariate approach were also identi-
fied as important predictors of PTSD status by the
multivariate approach (Additional file 1: Table S2). Fur-
thermore, both the multivariate and the univariate ap-
proach similarly revealed palmitoylethanolamide (PEA)
and PE(17:1(9Z)/18:0) as the most important metabolites
in the separation of PTSD cases and controls. Accordingly,
they were identified as the strongest candidates for an
involvement in the pathophysiology in PTSD.
In total, this study identified 20 metabolites potentially

associated with PTSD-related psychopathology, which
can be subdivided into the following categories: 1) gly-
cerophospholipids, 2) fatty acid metabolites, 3) nucleo-
sides, 4) bile acids, 5) monosaccarides, and 6) anti-oxidants.
The more extensive collection of metabolites discovered in
the PLS-DA is considered as a useful metabolite panel
discriminating PTSD cases from controls. A subset of
these metabolites revealed univariate significant group
differences, and consequently, can be further discussed
regarding the identified up- or down-regulation in
PTSD and potential underlying molecular processes in-
volved in disorder psychopathology.

Glycerophospholipids
Glycerophospholipids are composed of fatty acids and
phosphate, and constitute the key components of all cellu-
lar membranes. As these barriers not only separate the
extracellular milieu from the cytosol, but also contribute to
intracellular organization, phospholipids are essential for
intracellular metabolism and transmembrane signaling [40].
We identified seven phospholipids which contributed

to the differentiation between PTSD cases and controls
in the PLS-DA model (Additional file 1: Table S2). Four
of these phospholipids, all members of the class of gly-
cerophosphoethanolamines, showed significantly ele-
vated serum concentrations in PTSD. One of these
glycerophosphoethanolamines, PE(17:1(9Z)/18:0), had
the highest discriminative ability in the multivariate
approach. Glycerophosphoethanolamines are catabo-
lites of phophatidylethanolamine, one of the most
prevalent mammalian membrane phospholipid, which
constitutes approximately 45% of the total phospholipid
pool in the brain [41]. Elevated levels of brain glyceropho-
sphoethanolamines have been reported in elderly subjects
with depression [42], as well as in Alzheimer’s Disease
[43], and may reflect enhanced cell membrane breakdown
and inflammation in these subjects [42]. In accordance
with these findings, enhanced inflammatory processes
have been also reported in PTSD [6,7]. Taken together, the
investigation of glycerophosphoethanolamines in the con-
text of PTSD and other stress-related disorders may reveal
important insights in the underlying biomolecular pro-
cesses, which may include (neuro-) inflammation and al-
terations in cell membrane dynamics and metabolism.



Table 2 Metabolites with significant group differences and their relationship with clinical symptoms

Substance class Comparison PTSD vs. Controls Symptom correlation

Metabolite VIP p FDR d [95% CI] r CAPS p FDR

Glycerophospholipids

PE(17:1(9Z)18:0) ↑ 1.94 .0007 .020 −1.38 [−2.28, −0.48] .466 .0004 .019

PE(P-18:1(11Z)/15:0) ↑ 1.70 .004 .073 −1.04 [−1.84, −0.24] .324 .008 .058

PE-Nme(O-14:0/O-14:0) ↑ 1.46 .007 .073 −0.92 [−1.63, −0.21] .270 .020 .102

PE-NMe2(O-14:0/O-14:0) ↑ 1.37 .023 .163 −0.79 [−1.51, −0.06] .185 .125 .325

Fatty acid metabolites

Palmitoylethanolamide ↓ 1.91 .0004 .020 1.28 [0.54, 2.02] -.391 .001 .019

Palmitic amide ↓ 1.17 .044 .204 0.67 [−0.02, 1.37] -.190 .102 .294

Nucleosides

Guanosine ↓ 1.22 .039 .204 0.71 [−0.01, 1.43] -.391 .0009 .019

Inosine ↓ 1.25 .041 .204 0.69 [0.00, 1.39] -.356 .002 .027

Bile acids and derivates

3α-hydroxy-5β-cholan-24-oic acid ↓ 1.53 .006 .073 0.89 [0.18, 1.6] -.347 .003 .029

7α,12α-dihydroxy-3-oxocholest-4-en-26-oic acid ↑ 1.55 .007 .073 −0.98 [−1.72, −0.24] .310 .011 .065

Glycocholic Acid ↓ 1.53 .023 .163 0.82 [0.12, 1.53] -.301 .016 .085

Monosaccharides

N-Acetylglucosamine-6-phosphate ↓ 1.50 .024 .163 0.83 [0.05, 1.61] -.392 .002 .027

Anti-Oxidants

Pantothenic Acid ↓ 0.94 .044 .204 0.55 [−0.14, 1.24] -.323 .005 .047

VIP, Variable Importance in Projection; FDR, False Discovery Rate corrected p-values; d, Cohen’s d; CI, Confidence Interval; CAPS, Clinician Administered PTSD Scale;
r, Kendall’s τ correlations; ↑ and ↓ refer to up- and down-regulation in PTSD, respectively.
NB: The univariate group comparisons PTSD vs. controls were performed by t-tests, if test residuals were normally distributed and Mann–Whitney U-test if
residuals were not normally distributed.

Figure 2 Separation of PTSD cases and controls in the selected
Partial Least Squares Discriminant Analysis (PLS-DA) model
including a panel of 19 metabolites.
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Fatty acid metabolites
Fatty acids are not only constituents of the aforemen-
tioned phospholipids, but are also involved in energy
metabolism and serve as signaling molecules. Of the
four fatty acid metabolites identified by the PLS-DA ap-
proach, PEA is of particular interest due to its involve-
ment in the endocannabinoid system and its potential
role in stress-related psychopathology. In our univariate
analysis, PEA was down-regulated and showed the
strongest association with PTSD status. PEA is a lipid
signaling molecule which is formed from membrane
phospholipids when required [44]. PEA modulates the
endocannabinoid system by potentiating the effects of
anandamide, a central agonist of the cannabinoid recep-
tor [45]. In recent years, the interest in PEA has grown
due to its anticonvulsant [46], anti-inflammatory and an-
algesic pharmacological action [47], as well as its neuro-
protective effects against oxidative stress [48]. In healthy
individuals, PEA serum levels were found to be in-
creased immediately after a social stressor [49] and de-
creased in the subsequent recovery phase [50]. Similarly,
PEA was found to be decreased 24 hours after acute
stress in cardiac tissue in rodents [51]. Thus, reduced
PEA levels seem to be an important mediator in the link
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between psychological stress and associated physical
health impairments [51]. Furthermore, PEA administra-
tion was found to reduce depression and anxiety-like
symptoms in animal models of depression [52,53], sup-
porting the hypothesis that PEA may represent a valu-
able treatment option for depression [54]. So far, the
three studies investigating the role of PEA in PTSD
found inconsistent results: while Hauer and colleagues
[55] reported enhanced PEA levels in PTSD as opposed
to trauma-exposed and unexposed controls, two studies
did not observe PTSD-associated differences in PEA
levels [56,57]. Yet, our results indicate a down-regulation
of PEA in PTSD. While future studies are warranted to
better understand these inconsistent results, the observed
PEA down-regulation in PTSD in this study provides a
potential psychobiological explanation for high anxiety
and depression symptoms, as well as adverse physical
health outcomes observed in this disorder.
In contrast to the large literature on PEA, little is

known about palmitic amide (also termed palmitamide),
a metabolite belonging to the category of primary fatty
acid amides [58], which we found to be significantly
down-regulated in PTSD. Due to its structural similarities
with PEA, one study investigated the anti-convulsative
properties of palmitic amide and found that it also
exerts a mild inhibitory effect on seizure frequency
in mice [45]. The two remaining metabolites (N-Pal-
mitoyl alanine and 10-Nitrooleate) contributed to the
separation in the PLS-DA model, but did not exert
significant univariate group differences. Like PEA,
both substances have been discussed regarding anti-
inflammatory effects [59,60].

Nucleosides
Nucleosides are constituents of nucleic acids, which are
implied in the modulation of several brain processes and
psychopathological alterations, including memory, sleep,
depression and schizophrenia [61]. The purin-nucleosides
guanosine and inosine contributed to the separation of
the two groups in the PLS-DA model and were signifi-
cantly down-regulated in PTSD. These metabolites were
found to have neuroprotective properties [62,63] and exert
antidepressant-like effects [64,65]. Further, guanosine ex-
erts anxiolytic effects, which might be mediated via its an-
tagonistic effects on glutaminergic signaling [66]. Hence, a
down-regulation in PTSD matches well with the psycho-
logical and physical symptoms associated with PTSD.

Bile acids and derivates
Besides their function to transport and absorb nutrients,
bile acids are also important signaling molecules for the
regulation of lipid, glucose and energy metabolism [67].
We identified four metabolites belonging to the class of
bile acids and derivates which contributed to the
separation of PTSD cases and controls in the PLS-DA
model (Additional file 1: Table S2), of which three also
revealed significant group differences in the univariate
analysis (Table 2). While the physiological processes
linking alterations in bile acids to PTSD etiology remain
to be elucidated, one potential hint may be the reported
association of bile acid concentration with human aging
[68], as accelerated biological aging has been observed in
PTSD [9,11].

Monosaccharides
N-Acetylglucosamine-6-phosphate, a monosaccharide, is
a precurser of uridine diphosphate N-acetylglucosamine
(UDP-GlcNAc) in the hexosamine pathway. An increase
in UDP-GlcNAc was found to inhibit autoimmune reaction
and to protect against auto-inflammatory diseases by sup-
pressing T-cell functioning [69,70]. N-Acetylglucosamine-
6-phosphate contributed to the group separation in the
PLS-DA model and was significantly down-regulated in
PTSD. This might contribute to the observed higher rates
of auto-immune and inflammatory diseases in PTSD [71].

Anti-oxidants
We identified two metabolites (4Z,15E-bilirubin IXa and
pantothenic acid) with potential anti-oxidant properties.
4Z,15E-bilirubin IXa, an isomer of bilirubin, contributed
to the separation of PTSD cases and controls in the
PLS-DA model, but did not reach statistical significance
in the univariate approach. Modestly elevated levels of
bilirubin exert protective effects against oxidative stress,
inflammation and atherosclerotic disease, yet high levels
of circulating bilirubin are often cytotoxic [72]. By con-
trast, pantothenic acid (also termed vitamin B5) was
found to be significantly down-regulated in PTSD, but
did not potently contribute to the separation between
PTSD cases and controls and hence was not included in
the PLS-DA model. This vitamin is a precursor of co-
enzyme A, exerts antioxidant action [73] and might
therefore exert a protective function against the mito-
chondrial oxidative decay of aging [74].

Strengths, limitations, and future research directions
Strengths of the study include the comprehensive diag-
nostic interviews, and the assessment of individuals with
varying degrees of trauma exposure, which allowed us to
investigate potential dose-dependent effects of trauma
exposure and PTSD symptomatology. The major limita-
tion of this first study on metabolite alterations in PTSD
is the relatively small sample size and the lack of an
independent replication sample. Therefore, differences
between the diagnostic groups apart from the PTSD
diagnosis could have also contributed to the observed
metabolite alterations. One potential confounding factor
might be recent dietary influences, as the study
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participants were asked to have breakfast prior to the
examination. This decision was made in order to avoid
additional stress and potential circulatory disturbances
for the trauma survivors, who often travel longer than
an hour from the asylum seeker accommodation to the
University of Konstanz. Furthermore, it is frequently dis-
cussed that PTSD is associated with engagement in
health risk behaviors including smoking, alcohol or drug
abuse. However, we excluded individuals who met cri-
teria of substance addiction, and the two diagnostic
groups did not differ in smoking behavior (cf. Table 1).
Additionally, the entire PTSD group opposed to seven
individuals in the control group faced an unsecure asy-
lum status. Hence, one might argue that the strain asso-
ciated with a possible deportation could account for
some of our findings. While this assumption cannot be
completely eliminated given our small sample size, at
least two arguments are in contrast with this explan-
ation. First of all, the observed dose–response relation-
ship between PTSD symptom severity and alterations at
the metabolite level (cf. Figure 1, Table 2) contradicts
the idea that our findings might be merely accounted by
the asylum status. Second, we exploratorily investigated
for PEA and PE(17:1(9Z)/18:0) if individuals from the
control group with an insecure asylum status clustered
together and showed metabolite alterations comparable
to the PTSD group, which was not the case (compare
Additional file 1: Figure S3).
Future targeted and untargeted studies on metabolite al-

terations in PTSD are warranted to confirm the identified
relations. Forthcoming studies should further compare
metabolite alterations in PTSD with other stress-related
disorders such as depression to identify shared and dis-
tinct biological pathways underlying psychiatric diagnoses.
Finally, it would be interesting to investigate in the fu-

ture whether psychotherapeutic or psychopharmacologi-
cal treatments for PTSD are accompanied by changes in
relative metabolite concentrations and if responders and
non-responders could be differentiated ex ante based on
their metabolite profile.

Conclusions
In conclusion, metabolites which were found to be asso-
ciated with PTSD status are involved in processes of
(neuro-) inflammation, auto-immune reactions, oxidative
stress, energy metabolism, and biological aging. Accord-
ingly, these metabolites provide putative links between
the development of PTSD and a higher risk for adverse
physical health consequences. The majority of the identi-
fied metabolites belonged to the class of phospholipids,
and class prediction from one single phospholipid already
yielded a good separation between cases and controls, in-
dicating a significant role of lipid-derived signaling in
PTSD. Furthermore, the high association between relative
PEA concentrations and PTSD supports a contribution of
the endocannabinoid system in PTSD etiology.

Additional file

Additional file 1: Figure S1A. The chromatograms of all 190 measured
probes (38 participants × 5 technical replicates) were superimposed to
manually inspect the consistency of the characteristic metabolite peaks.
Figure S1B. The latent structure of all measured probes was investigated
by means of a principal component analysis (PCA). The results showed
that the five technical replicates per participant clustered together.
Table S1. Correlation of relative metabolite concentrations with PTSD
symptom clusters and trauma exposure. Figure S2. The critical Variable
Importance in the Projection (VIP) threshold for metabolites to be
included in the Partial Least Square Discriminant Analysis (PLS-DA)
model was determined by comparing the predictive accuracy of the
resulting PLS-DA models by means of 1000 repeats of 10-fold cross-
validation. Displayed are the mean predictive accuracies along with the
standard deviation for each model. The highest predictive accuracy was
reached for a model with a VIP of 1.1. Table S2. Metabolites exceeding
a VIP of 1.1 included in the Partial Least Squares Discriminant Analysis
(PLS-DA) model. Figure S3. Displayed are the log2 transformed relative
concentrations of palmitoylethanolamide and the phospholipid PE(17:1(9Z)
18:0) by diagnostic group. All individuals in the PTSD group, but only seven
individuals in the control group faced an insecure asylum status. In order to
examine the potential influence of the insecure asylum status on the
metabolite levels, we exploratorily inspected the metabolite data of
individuals with an insecure asylum status in the control group (displayed as
red circles).

Abbrevations
am: Ante meridiem; min: Minute; g: Gravity; μl: Microliters; C: Celsius; v/v: Percent
concentration volume/volume; sec: Second; rpm: Rounds per minute
(centrifugation unit); mm: Millimeter; ml: Milliliter; μl: Microliter; psi: Pound-force
per square inch; μm: Micrometer; Å: Angström; mDa: Milli-Dalton; m/z: Mass-to-
charge ratio; V: Volt; l: Liter; %: Percent; ppm: Parts per million.
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