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Abstract 

The relationship between the gut microbiota and the central nervous system (the 

microbiota-gut-brain axis) is an area of increasing interest and research. Studies based 

on germ-free models have provided a big amount of evidence of the connection 

between the gut and the brain. This research has done a great step forward in recent 

years, due to the application of metagenomics and bioinformatics. We now know that 

the human gut microbiome can be classified into three enterotypes, characterized by 

the variation in three genera: Bacteroides, Bacteroidetes, and Prevotella. Type of birth, 

formula feeding, and antibiotic intake are among the main factors that impact on infant 

microbiome assembly. Moreover, the composition of the gut microbiota is strongly 

associated with diet. A review of the bibliographical evidence connecting the 

alterations in the microbiome and some central nervous system disorders (as 

Alzheimer disease, Parkinson disease or autism spectrum disorder) shows us that the 

levels of Prevotella and the Firmicutes/Bacteroidetes ratio are altered in these 

pathologies. Accumulating data reveals that the microbiota-gut-brain axis can be 

modulated by the administration of probiotics and prebiotics. Moreover, some 

traditional fermented food has been seen to have probiotic properties and high-fiber 

containing diets have been associated with a lower Firmicutes/Bacteroidetes ratio and 

higher levels of Prevotella. 

 

Resum 

La relació entre la microbiota intestinal i el sistema nerviós central (l'eix microbiota-
intestí-cervell) és una àrea d'interès i investigació creixents. Els estudis basats en 
models lliures de gèrmens han proporcionat gran quantitat d’evidències de la connexió 
entre l'intestí i el cervell. Aquesta investigació ha fet un gran avenç en els últims anys 
gràcies a la metagenòmica i la bioinformàtica. Ara sabem que el microbioma intestinal 
humà es pot classificar en tres enterotips, caracteritzats per la variació en tres gèneres: 
Bacteroides, Bacteroidetes i Prevotella. Els tipus de naixement, el tipus d’alletament i la 
ingesta d'antibiòtics són els principals factors que afecten el desenvolupament del 
microbioma infantil. A més, la composició de la microbiota intestinal està fortament 
relacionada amb la dieta. Una revisió de les evidències bibliogràfiques que connecten 
les alteracions en el microbioma i alguns trastorns del sistema nerviós central (com la 
malaltia d'Alzheimer, la malaltia de Parkinson o el trastorn de l'espectre autista) ens 
mostra que els nivells de Prevotella i la relació Firmicutes/Bacteroidetes estan alterats 
en aquestes patologies. Cada cop hi ha més dades que revelen que l'eix microbiota-
intestí-cervell pot ser modulat per l'administració de probiòtics i prebiòtics. D'altra 
banda, s'ha observat que alguns aliments fermentats tradicionals tenen propietats 
probiòtiques i que les dietes amb alt contingut de fibra s’associen a nivells inferiors de 
la raó Firmicutes /Bacteroidetes i superiors de Prevotella. 
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Integration of the different fields 

This is a work focused on the role of probiotics and prebiotics in the treatment and 

prevention of neurological diseases. Even when this main objective falls into the field 

of Food Science, it has close connections with the proposed secondary fields. From one 

hand, a deep study of the potential role of probiotics in central nervous disorders 

needs a deep understanding of the physiology of the gut-brain axis and its relationship 

with brain diseases. This leads us to consider Physiology and Physiopathology as a 

secondary field. On the other hand, our analysis needs a detailed knowledge of the 

composition of the human gut microbiome, its role in the gut-brain axis and its 

connection with brain disorders. By this reason, we consider Microbiology as a 

secondary field in our work. 

 

1. Introduction 

The complex relationship between the digestive and the nervous system has been an 

object of attention for centuries and, to some extent, it appears in our common 

language, in expressions as “butterflies in the stomach”, “gut feeling”, “trust our gut 

instinct” or “gut check time”.  

Ivan Pavlov (Nobel Prize 1904), who established the basis of the modern physiology of 

digestion, proved that the digestive system is influenced by the central nervous system 

in a complex manner, and that psychological process can influence the nature of the 

fluids secreted into the digestive tract (see (1)). In fact, he foreshadowed the complex 

and intricate net that we now call the gut-brain axis. 

The gut-brain axis (GBA) consists of bidirectional communication between the gut and 

the brain. A major scientific breakthrough in understanding this interaction was the 

discovery of the enteric nervous system (ENS) in the middle of the nineteenth century 

(see (2)).  

 

In the last years, there is an increasing evidence that the above-mentioned pathways 

are under the influence of the gut microbiota together complementing the microbiota-

gut-brain-axis (MGBA) (see for example (3) or (4) ). A map of the main MGBA pathways 

is shown in Figure 1. The brain and the ENS are connected via the autonomic nervous 

system and hypothalamic-pituitary-adrenal (HPA) axis. The gut microbiota interacts 

with the brain via the ENS and via metabolic products. The immune system 

communicates bidirectionally with each member of the MGBA.  

Up to our knowledge (see (5)), the first evidence that microbes affect the brain 

chemistry was written in 1986 by Hegstrand and Hineand can be found in (6). In this 

ground-breaking paper, proved significant differences in hypothalamic histamine levels 

between germ-free and conventionally housed animals. Nevertheless, the interest in 
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this field did not spark until the publication in 2004 of the work by Sudo et al. (7). In 

this work, an exaggerated HPA stress response was reported in germ-free mice and, 

moreover, this response was reversed by reconstitution with Bifidobacterium infantis. 

Figure 1 The microbiota-gut-brain axis (MGBA) (3) 

Application of modern rapid DNA sequencing technology has transformed our 

knowledge of the gut microbiota. Modern metagenomic and bioinformatic techniques 

have allowed researchers to do a great step forward, and they have allowed us to 

describe the gut microbiome and to connect it with different disorders (see for 

example (8)). Nowadays, there is an increasing evidence that the microbiome plays a 

key role in the development of CNS diseases as Alzheimer’s disease (AD), anxiety, 

autism, amyotrophic lateral sclerosis, depression, multiple sclerosis or Parkinson’s 

disease (PD) (see for example (9)). 

The interest on this field is clearly increasing. MGBA has become one of the targets of 

neuroscience. In the year 2013, the National Institute of Mental Health (NIMH) 

launched a special project to study the mechanisms of the MGBA, with a view to 

develop new medications or non-invasive treatments for mental diseases. On the 

other side, the European Union has launched a project called MyNewGut, two main 

objectives of which focus brain development and disorders (see (10)). The number of 

publications in this area is clearly increasing. For example, that a Pubmed search of the 

keywords ‘gut brain and (microbiota OR microbiome) axis’ gives a total of 323 

outcomes during the year 2017, while the same quantity for the 2008 is equal to just 2 

outcomes. 

Despite the increasing evidences on the relationship between the microbiota and the 

gut-brain axis, understanding the mechanisms of these interactions require further 

studies.  We must take into account that most of the available research in this field is 

still pre-clinical, and it is not clear to what extent we can generalize the results in these 

studies to the human physiology. Moreover, we do not know how the manipulation of 

the gut microbiome can be an efficient tool in the prevention and treatment of 
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neurological disorders. Finally, an important point is how to efficiently manipulate this 

gut microbiome. Even we know that its composition is affected by some environmental 

factors as the type of birth, stress, antibiotic intake and diet (see (11)), the design of 

possible treatments is not straightforward. All these points are of strong interest in 

research since they are a key step in the translation of all this knowledge into the 

prevention and treatment of diseases. A summary of the key challenges in this area 

can be found in (12). 

In this work, our main interest is the potential applications of probiotics in the 

prevention and treatment of CNS diseases. This idea is not completely new. Over a 

century ago (see (13)), Metchnikoff theorized that senility could be delayed, by 

manipulating the intestinal microbiome with host-friendly bacteria found in yogurt. 

This theory has re-emerged from the 1990s, and today probiotics are not only the 

subject of medical research but also the source of a multibillion dollar global industry 

(see again (13)). Nevertheless, we must understand that this research, concerning the 

CNS, is still in its infancy. In fact, if we do a search of the keyword ‘probiotic’ in 

Cochrane Evidence we will find no evidences of their efficacy in the treatment of brain 

disorders. 

 

2. Objectives 

The main objective of this work is to carry out a bibliographical research that allows us 

to understand the state-of-the-art of the research in the application of probiotics in 

the treatment of CNS disorders. Towards this end, we want to answer the following 

questions: 

a) What are the main tools used in the study of the microbiome-gut-brain axis? To 

what extent these techniques can give us enough information so that we can 

develop new treatments for CNS diseases? 

b) What do we know about the gut-brain axis? Moreover, what do we know about 

the role of the microbiome in the gut-brain axis? 

c) Which kind of pre-clinical and clinical results do we have about the use of 

probiotics in the prevention and treatment of neurological disorders? 

 

3. Methodology 

The methodology used in this work is based on bibliographical screening in PubMed, 

Nature Reviews, Google Scholar, and Google.  

Moreover, we have consulted the web pages of several organizations and companies 

related to the subject of this work. Among them we can quote the websites of: The 

Human Microbiome Project, INFRAFRONTIER (The European Research Infrastructure 
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for the generation, phenotyping, archiving and distribution of model mammalian 

genomes), Gut Microbiota for Health (public information service of the European 

Society for Gastroenterology and Motility), Illumina Inc. (USA),  European Food Safety 

Agency (EFSA), World Gastroenterology Organization (WGO), Food Agriculture 

Organization (FAO), International Scientific Association for Probiotics and Prebiotics 

(ISAPP) and the Food and Drug Administration (FDA). 

 

4. Results 

In this section, we discuss the results of our bibliographical research. In Section 4.1 we 

will discuss the basic tools that have been used up to now in the study of the MGBA, 

and we will see how, nowadays, metagenomics and bioinformatics represent a great 

step forward in this research. In Section 4.2 we present the basic pathways of the gut-

brain axis. Section 4.3 is devoted to studying the composition of the human gut 

microbiome. In Section 4.4 we focus on the interactions between this gut microbiota 

and the gut-brain axis, while in Section 4.5 we deep on the relationship between the 

MGBA and CNS diseases. The modulation of the MGBA by probiotics and prebiotics is 

discussed in Section 4.6.  

 

4.1 Tools in the study of the microbiota-gut-brain axis 

We review the tools used in the study of the MGBA following the paper by Mayer, 

Tillisch, and Gupta (4), where the main techniques used up to now in the study of the 

MGBA are listed. These techniques are: germ-free models, microbial manipulation with 

antibiotics, fecal transplantation, probiotic feeding and diet (see Figure 2). 

 

 

Figure 2: Classical techniques in the study of the MGBA (4). 
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4.1.1 Germ-free models 

 

A common approach used to study the functions of an organ consists in abolishing its 

contribution. Then, it is not surprising that the first tool used in the study of the role of 

the microbiome in the GBA was to see how this latest is affected by the absence of 

microbiota. To help answer this question, germ-free (GF) animals were generated.  

Germ-free (axenic) animals are animals that are free of microorganisms. As quoted in 

the Introduction, Hegstrand and Hine (6) demonstrated significant differences in 

hypothalamic histamine levels between GF and conventionally raised animals. By 

nearly 20 years after, Sudo et al. (7) reported an exaggerated hypothalamic-pituitary-

adrenal axis response to restraint stress in  GF mice. Moreover, this effect that was 

reversed by monocolonization with Bifidobacterium infantis.  Many studies have been 

done since then by using GF models.  

The main advantage of the germ-free/gnotobiotic mouse model is in proof-of-principle 

studies. Moreover, complete microbiota or defined sets of bacteria can be introduced 

at various developmental moments, which allows us to study the existence of critical 

windows of development that may require bacterial input.  Germ-free studies are 

powerful in helping us to prove if the microbiome is involved in a specific aspect of 

brain function, as well us to study of the impact of a particular set of bacteria or 

dietary intervention on the microbiota-gut-brain axis in isolation.  

Research using GF models has provided a big amount of evidence of the role of the 

microbiome in gut-brain signaling. Now we know that the microbiota is necessary for 

normal stress responsivity, anxiety-like behaviors, sociability, and cognition. Moreover, 

it keeps CNS homeostasis (by regulation of the immune system and the blood-brain 

barrier integrity). Furthermore, the microbiome influences neurotransmitter, synaptic 

and neurotrophic signaling systems and neurogenesis. Growing up in the absence of 

microorganisms alters behavior and brain function, as it is detailed in (14).  In Figure 3 

we show a summary of the results obtained up to now on GF raised mice: 

 

 
Figure 3: Germ-free (GF) mice as a tool to study the microbiota-gut-brain axis (14). 
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As humans are not it a GF state, GF models are often criticized and assumed to do not 

have clinical relevance. Another important limitation of GF animals is the fact that, as 

they have no bacterial exposure from conception, they are not useful for the study of 

questions regarding the impact of altered microbiota composition that first occurs 

later in life. Moreover, rearing germ-free animals implies technical difficulties and high 

expenses. For these reasons, alternatives to the GF model have been proposed, as we 

see in the following subsection. 

 

4.1.2 Alternatives to GF models 

An alternative to the use of GF mice is given by antibiotic treatment, that allows us to 

induce a disruption of the gut microbiota. Many of the phenotypic features associated 

with the GF state are also evident after this sustained disruption. Among the studies 

that use this technique, we can quote (15). This paper shows how microbiota depletion 

in the adolescence, by means of a chronic treatment with a combination of antibiotics 

affects the gut-brain communication in a similar way as it is reported in germ-free 

mice, which suggests that this technique can be an alternative to GF models. However, 

we notice that many antibiotics are also systematically toxic and this needs to be 

considered in the interpretation of the results (see for example (11)). 

Another related technique consists in the introduction of bacteria in mouse models of 

intestinal dysbiosis. In humanization studies, human feces are transferred to GF mice 

and to antibiotic-treated mice (see for example (16)). The humanization technique also 

transfers some features of the disease to the animal (see for example (17)). Connected 

to this technique we can also consider Infection studies, that have been used to study 

the effects of pathogenic bacteria on the CNS (see for example (11)). 

Another tool is the use of probiotics. Probiotics are defined as “living microorganisms 

that, when ingested in adequate quantities, confer a health benefit on the host” (18).  

There is an increasing evidence that certain probiotics (as Bifidobacterium and 

Lactobacillus) may positively impact the pathogenesis of CNS disorders (see for 

example (19) and (20)).  

 

4.1.3 Metagenomics, bioinformatics and neuroimaging  

 

Nowadays, preclinical and clinical studies can be improved significantly with the help 

of metagenomics, bioinformatics, and neuroimaging. Here we offer a basic 

introduction to these techniques in the study of the MGBA. We refer to the review  (8) 

and to the webpage of the specialized company Ilumina (section ‘Human Microbiome 

Analysis’ (21)) for a more detailed description. 
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Metagenomics is the study of the microbial genetic material obtained directly from 

environmental (culture-free) samples. Next-generation sequencing (NGS) give us 

throughput and cost savings tool to study the genomes of entire communities. Among 

NGS methods we can quote shotgun metagenomic sequencing, 16S rRNA sequencing 

(a cost-saving and efficient tool in the identification of bacteria) and microbial 

metatranscriptomics. 

These metagenomic techniques have enabled collaborative projects, as National 

Institutes of Health’s Human Microbiome Project (HMP) and Metagenomics of the 

Human Intestinal Tract (MetaHIT) Project. These projects provide public databases that 

are available for researchers. All the information in these databases must be analyzed.  

In particular, the statistical analysis of this data includes: 

 

- Microbial community composition,  

- diversity analysis: alpha-diversity (biodiversity of the samples) and beta-

diversity (healthy controls versus patients),  

- network analysis,  

- biomarker discovery and 

- metabolomics (the study of the metabolites produced by the microbiome).  

All these statistical analyses, jointly with the questions they can help us to answer, are 

summarized in Figure 4.  

Figure 4: Data Analysis for metagenomic microbial data (8) 
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Another interesting application of metagenomics is its combination with the data from 

functional neuroimaging techniques that provide readouts of neural activity across the 

brain (see for example (3)). This is what we call radiomicrobiomics (see (22)): a process 

to extract quantitative parameters from the gut-brain axis by combining brain imaging 

and features of the microbiota. We notice that this process becomes possible thanks 

to modern mathematical and computational tools. 

Vast evidence has shown that the composition of human gut microbiota has an 

obvious correlation with the occurrence of human diseases, such as obesity, 

cardiovascular disease, and tumor, but the impact on health and disease of the human 

brain is underway. But, even when the application of metagenomics and 

bioinformatics in the study of the MGBA is still in its infancy, it is a very promising 

approach.  

 

4.2 The gut-brain axis 
 

As indicated in (11), the interaction between the gastrointestinal tract and the brain 

has been observed since the middle of the nineteenth century through the pioneering 

work of Claude Bernard, Ivan Pavlov, William Beaumont, William James and Carl Lange. 

The impact of emotions in the secretions of the alimentary tract had been quoted by 

Charles Darwin in The Expression of the Emotions in Man and Animals (1872). In the 

late 1920s, Walter Cannon emphasized the role of brain processing in the modulation 

of gut function. A major scientific breakthrough in understanding the interaction of the 

nervous system with the gastrointestinal tract was the discovery of the so-called 

enteric nervous system (ENS) in the middle of the nineteenth century (see (2)).  

 

It is now increasingly being recognized that the gut–brain axis provides a bidirectional 

pathway that uses neural, hormonal and immunological routes (see for example (23)). 

This relationship is important not only in normal gastrointestinal function but also 

plays a significant role in higher cognitive functions.  Now we describe the basics of this 

interaction. For a more detailed exposition, we refer to (23). 

 

The gut-brain axis is a bidirectional relationship. In response to some factors and 

events, some regions of the brain may be activated, which may cause different 

responses depending on the stimuli. The hypothalamic-pituitary-adrenal axis (HPA) 

may be activated to initiate the release of adrenal hormones. Projections from these 

brain regions to brainstem nuclei may initiate vagal output, or these may project to the 

spinal cord and modulate signals related to gastrointestinal spinal reflexes or pain 

sensitivity. Depending on which spinal cord level is activated, there may be additional 

parasympathetic or sympathetic outflow. These hormonal and neural outputs 
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influence gastrointestinal targets such as immune cells, enteric smooth muscle, enteric 

neurons and enteroendocrine cells. 

The gut to brain interaction involves the enteric nervous system (ENS). The ENS has 

more than 200 million neurons and it is sometimes called the “second brain” This 

extensive network influences the brain via endocrine, neuronal and immune pathways. 

Mechanical and chemical information from the luminal environment is signaled 

through extrinsic (vagal and spinal) primary afferent neurons to the brain. Moreover, 

terminals of extrinsic primary afferent neurons are near the immune and 

enteroendocrine cells. These cells, in conjunction with enteric microbiota, produce 

several signaling molecules that can activate receptors on extrinsic primary afferent 

neurons. Then, endocrine, neuronal and immune signals are integrated and are sent to 

specific brain regions. 

Due to this close relationship between the gut and the brain, it is not surprising to 

observe that many brain affecting disorders appear connected to gastrointestinal 

manifestation (24). Among them, the most explored one for this relationship is 

Parkinson disease (PD). Other brain disorders that have been found to be related to 

gastrointestinal manifestations include autism, amyotrophic lateral sclerosis, 

Alzheimer diseases, prion diseases, Creutzfeldt-Jakob disease, transmissible 

spongiform encephalopathies, depression, anxiety behavior, cognition, mood, stress, 

fatigue, and aging (see again (24)). 

 

4.3 The gut microbiota 

The human gastrointestinal tract is inhabited by 1013 to 1014 microorganisms (see for 

example (14)). This quantity is more than 10 times the number of human cells in our 

bodies. Moreover, this microbiome contains 150 times as many genes as our genome. 

It is generally accepted that the adult microbiota consists of more than 1,000 species 

and more than 7,000 strains.  

It is well-known that gut microbiota has an important role in the development and 

functionality of the immune system and in regulating the gastrointestinal system. We 

also remark that, as quoted in Section 4.1.3, next-generation sequencing and 

bioinformatics have had an immense impact on our knowledge of the microbiome. 

The gut microbiome is a complex ecosystem where the bacterial component is the 

dominant domain (see for example (25)). In fact, the term microbiota is usually 

assumed to refer to the bacteria microbiota. Bacteria represent huge quantities of 

microorganisms whereas fungi represent less than 0.01% to 0.1% of genes in fecal 

samples (see again (25)). Most studies have focused exclusively on the bacterial 

component, neglecting fungi and other minority kingdoms. Initially, the large-scale 

projects such as the quoted HMP and MetaHIT were focused exclusively on this 
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bacterial component.  In fact, to date, the only review devoted to the role of the gut 

mycobiome in the MGBA is the very recent paper by Enaud et al. (25). Another recent 

review on the human mycobiome (not focused in the MGBA) can be found in (26). 

Nevertheless, even when research into the mycobiome is still in its infancy, its 

potential role in human disease is increasingly recognized (see (26)). 

It is difficult to describe the microbial composition in health. One of the reasons is the 

high variation between individuals. Moreover, the composition that is usually 

measured is the one observed in fecal samples, that does not truly reflect the diversity 

of the gastrointestinal. In this section, we will describe our knowledge of the 

composition of the gut bacteria and the gut mycobiota.  

 

4.3.1 The gut bacteria  

Current consensus (that comes from NGS of the 16S rRNA from thousands of fecal 

samples) is that in health, the predominant bacterial phylum in the human microbiota 

of the large intestine are Bacteroidetes and Firmicutes. The next most abundant 

phylum is Actinobacteria, mainly comprised of the genus Bifidobacterium (see for 

example (27)). 

Even when the bacterial communities vary greatly between individuals, statistical tools 

(Principal Component Analysis and clustering) have allowed to classify them into just 3 

enterotypes (see (28)). Each of these enterotypes is characterized by the variation in 

the levels of one of three genera: Bacteroides (Bacteroidetes), Prevotella 

(Bacteroidetes) and Ruminococcus (Firmicutes) (see Figures 5 and 6). We remark that 

the classification of the microbiota into enterotypes can depend on the method for 

data processing and clustering. Some other works (see (29))  show two cluster, where 

the Bacteroides enterotype appears fused with the less well 

distinguished Ruminococcus enterotype.  

 

Figure 5: Results from Principal Components Analysis and clustering (28). We observe 3 enterotypes. 

Abbreviations: IBD inflammatory bowel disease. 



12 
 

 

 

Figure 6: Network analysis of the three enterotypes (28). 

 

Diet is one of the main factors that can alter the microbiome. Dietary effects primarily 

distinguish the Prevotella enterotype (associated with high-carbohydrate diet) from 

the Bacteroides (associated with diets that are high in fat or protein) (see again (29)). 

Other factors, like infection, disease, and antibiotics, may transiently alter the stability 

of the natural composition of the gut microbiota and, consequently, can have a 

deleterious effect on the well-being of the host. 

The ratio Firmicutes/Bacteroidetes is an important marker since it appears increased in 

obesity. High-fat, high-calorie Western diets have been observed to quickly change the 

microbiota from a thin to an obese pattern while fat-or carbohydrate-restricted diets 

increase the Bacteroidetes levels and reduce the Firmicutes/Bacteroidetes ratio (see 

(30) and (31)). 

The initial development of the neonatal microbiome is strongly determined by 

maternal–offspring exchanges of microbiota. It is well-known that this process is 

affected by several practices, as Caesarean section antibiotics, and formula feeding 

(see for example (32)). Babies born by Caesarian section harbor no vaginal microbes 

like Lactobacillus or Prevotella, but they are colonized by skin bacteria like 

Staphylococcus, Corynebacterium or Propionibacterium. Moreover, formula feeding 

has been linked with increased bacterial diversity, increased prevalence of Clostridium. 

difficile, Bacteroides fragilis, and Escherichia coli, and decreased prevalence of 

Bifidobacterium. 

The gut microbiome of new-born has a low diversity and a relative dominance of 

Proteobacteria and Actinobacteria. As time passes, this microbiota becomes more 

diverse with the emergence and dominance of Firmicutes and Bacteroidetes. By the 

end of the first year of life, infants possess an individually distinct microbial profile, 

converging toward the characteristic microbiota of an adult. It is considered that the 

first 3 years of life represent the most critical period for dietary interventions to 

improve child growth and development (see (27)). This is the period when the 

intestinal microbiota is established and its alteration during this period can strongly 

affect host health and development.  We notice that it has been proved that the 
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microbiota is a vital asset for neurodevelopment (see for example (33)). In the elderly, 

the gut microbiota is characterized by a reduced bacterial diversity, lower levels of 

Firmicutes, and Actinobacteria (mainly Bifidobacterium), and increased populations of 

Proteobacteria. 

For the convenience of the reader, we include in Appendix 1 the taxonomic tree 

corresponding to the most common genera in the gut microbiota. 

 

4.3.2 The gut mycobiome 

 

As in the case of bacteria, fungi seem to colonize the gut shortly after birth, and the 

fungal composition is affected by several factors as age, diet, medication, etc. (see 

(25)). Despite the number of published data on the gut mycobiome is increasing, it is 

still difficult to describe the composition of the healthy gut mycobiome. In contrast 

with gut-associated bacteria, studies have found a lack of stability in the gut 

mycobiome over time and low abundance and diversity (see (34) and (35)). In most 

studies, Ascomycota is by far the most prevalent fungus phylum in the gut. We remark 

the recent paper (34), where the authors sequenced 317 stool samples from the 

American HMP project. The mycobiome in this healthy cohort was dominated by yeast 

and it was mainly composed of a high prevalence of Saccharomyces, Candida, and 

Malassezia, with Saccharomyces cerevisiae, Malassezia restricta, and Candida albicans 

being found in 96.8%, 88.3%, and in 80.8% of the samples, respectively (see Figure 7). 

As these fungal species persisted across a majority of samples, giving evidence that a 

core gut mycobiome may exist.  

 

 
Figure 7: Composition of the human gut mycobiome (34). Relative abundance of fungi at the a) phylum 

level and b) genus level. 
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4.4. The role of the gut microbiome on the gut-brain axis 
 

The interaction between the microbiome and the gut-brain axis relies on the following 

mechanisms, that are summarized in Figure 8. A more detailed description of these 

pathways can be found  in (9) and (11). 

 

Figure 8: Pathways involved in the communication between the gut microbiota and the brain (9) 

 

Immune activation. Microbiota and probiotic agents can have direct effects on the 

immune system, and the immune system also exerts a bidirectional communication 

with the brain. Moreover, indirect effects of the gut microbiota on the innate immune 

system can result in alterations in the circulating levels of cytokines that affect brain 

function. 

Vagus nerve. Animal studies support strong evidence that gut microorganism can 

activate the vagus nerve and that such activation plays a critical role in mediating 

effects on the brain. Nevertheless, the mechanisms of this activation are still unclear. 

Tryptophan metabolism. Tryptophan is an essential amino acid and is a precursor to 

the neurotransmitter serotonin. A growing body of evidence shows that, in many 

disorders affecting both the brain and the gastrointestinal tract, there is a 

dysregulation of the tryptophan metabolic pathway. There is some evidence to suggest 

that some probiotics (as Bifidobacterium infantis) can modulate this pathway. 

 

Host metabolic reactions. Gut bacteria modulate various host metabolic reactions, 

resulting in the production of metabolites such as bile acids, choline and short-chain 

fatty acids (SCFA) that are essential for host health. On the other hand, complex 

carbohydrates can be digested and subsequently fermented in the colon by gut 

microorganisms into short-chain fatty acids with neuroactive properties.  

 

Microbial neurometabolites. It has been proved that Bacteria generate 

neurotransmitters and neuromodulators. For example, Lactobacillus spp. and 
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Bifidobacterium spp. produce GABA; Escherichia spp., Bacillus spp. and Saccharomyces 

spp. produce noradrenalin; Candida spp., Streptococcus spp., Escherichia spp. and 

Enterococcus spp. produce serotonin; Bacillus spp. produce dopamine; and 

Lactobacillus spp. produce acetylcholine. 

Bacterial cell wall sugars. Cell wall components of the microbiome are poised to 

induce epithelial cells to release molecules that in turn modulate neural signaling or 

that act directly on primary afferent axons. 

Epithelial permeability. As described in (36), normal gut microbiota is essential in 

preventing colonization of the harmful bacteria by competing with them. If this 

microbiota is reduced, pathogenic organisms can colonize the epithelium. The toxins 

produced by these organisms, together with the local inflammation, can increase gut 

permeability. Moreover, several studies show that some species of probiotics (as 

Lactobacillus, Escherichia coli, and Bifidobacterium) can upregulate trans-membrane 

proteins and enhance mucus production, reducing then gut permeability.  

Neurotoxins. Bacteria are capable of producing potent neurotoxins. One example of 

toxin produced in the intestine affecting the CNS is given by botulism. Even when this 

is a rare and extreme case, it is plausible that additional species within the microbiota 

can secrete highly potent neuroactive chemicals that have not yet been identified. 

We finally remark that the above mechanisms can affect the brain development. In 

fact, the gut microbiota has been proved to be involved in mammalian brain 

development and subsequent adult behaviour (see for example (37) and (38)). 

 

4.5 The gut microbiome and its connection with CNS diseases 
 

We have seen that there is a strong evidence that the gut microbiota interacts with the 

brain. Then, the natural question is: to what extent does this interaction have a role in 

the development and/or the evolution of neurological disorders? Moreover, can we 

revert or prevent these diseases by modulating the gut microbiota? 

As we will see in this section, some recent studies establish a correlation between the 

microbiota composition and different disorders (see Figure 9).  This research has 

become possible due to the recent developments in metagenomics, as we pointed out 

in Section 4.1.3.  Here we will present the state-of-the-art of the studies on the link 

between the gut microbiota and neurological diseases. For a more detailed exposition, 

we refer to (39) and  (20). 
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Figure 9: Overview of the effect of microbiota-gut-brain axis on neurological diseases (39). 

 

Aging Recent studies have recently characterized the microbiota composition of aged 

(20–21 months old) versus young (2–3 months old) mice. Aged animals have been 

observed to display alterations in the microbiota that have previously been related to 

inflammation. In aged animals, the intestinal permeability appears increased. This 

increased permeability can increase the risk for the translocation of bacteria or 

bacterial component. 

 

Parkinson disease. Parkinson disease (PD) is the most common movement disorder. It 

is characterized, pathologically, by degeneration of dopaminergic neurons of the 

substantia nigra pars compacta and distinctive alfa-synuclein-containing cytoplasmic 

inclusions known as Lewy bodies. Patients exhibit motor-related impairments. 

Prodromal alterations in bowel function, especially constipation, are often reported 

before the development of the motor symptoms. Moreover, the progression of the 

disease is related to constipation, impaired gastric emptying. It is important to notice 

that, as these symptoms appear before motor manifestations, this can give us an 

interesting tool for prevention, early diagnosis and better treatment at the initiation 

stage.  

 

Experimentally, abnormal forms of alpha-synuclein appear in enteric nerves before 

they appear in the brain and injection of abnormal alpha-synuclein into the wall of the 

intestine spreads to the vagus nerve. Ingested toxins and alterations in gut microbiota 

can induce alpha-synuclein aggregation and PD, however, it is not known how PD 

starts (see (40) and (41)). 

 

As quoted in (39), the composition of the microbiota in feces samples has been seen to 

have a reduced abundance of the genera Prevotella (that may indicate decreased 
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mucin synthesis, which is associated with increased gut permeability), Blautia and 

Roseburia (anti-inflammatory) and increases in Akkermansia muciniphila (a mucin-

degrading bacteria) and Faecalibacterium (pro-inflammatory). Altered abundances of 

the Bifidobacteriaceae, Christensenellaceae, Tissierellaceae, Lachnospiraceae, 

Lactobacillaceae, Pasteurellaceae, and Verrucomicrobiaceae families have also been 

found, corroborating the relationship between the altered microbiota and the 

evolution of Parkinson disease.   Moreover, positive correlation between levels of 

Enterobacteriaceae and the severity of postural instability and gait difficulty was 

proven in PD patients. It has also been seen that the levels of SCFA are lower in 

parkinsonian patients and that the prevalence of Helicobacter pillory is higher. Even 

when its mechanisms have still to be understood, the close relationship between gut 

dysbiosis, intestinal permeability and neurological dysfunction suggests that the gut 

microbiota modification may provide a promising therapeutic tool in PD. Recently, an 

increase of the Firmicutes/Bacteroidetes ratio has been reported in an induced mice 

model of PD (see (42)). 

 

Alzheimer’s disease Alzheimer’s disease (AD) is the most common cause of dementia. 

It is a neurodegenerative disease characterized by the accumulation of amyloid 

plaques, tau fibrils, and neuroinflammation that culminates in severe cognitive decline. 

Recently, it has been seen that the Escherichia/Shigella genera (associated with 

mediating inflammation) appear increased in fecal samples from Alzheimer’s patients 

relative to healthy controls. Moreover, Prevotella appears decreased. In (43) it was 

observed a decreased Firmicutes/Bacteroidetes ratio and decreased Bifidobacterium in 

AD patients. Moreover, it was observed a correlation between levels of differentially 

abundant genera and cerebrospinal fluid (CSF) biomarkers of AD. 

 

 It has been proposed that, as intestinal permeability increases with age, some bacteria 

or bacterial components as LPS (lipopolysaccharide), found in amyloid plaques, may 

transport from the gut into the systemic circulation and mediate neuroinflammation.  

We also notice that risk factors for AD such as metabolic syndrome, type 2 diabetes 

and obesity are associated with gut microbiota alterations.  

 

A very interesting recent study by Pisa et al. (44) found that 100% of the AD patients 

analyzed presented fungal cells and fungal material in brain sections. Moreover, fungal 

macromolecules were found in blood serum from AD patients. We remark that Aβ 

peptide has a potent antimicrobial activity, in particular against C. albicans. Then, it is 

possible that the presence of a chronic fungal infection in the CNS promotes the 

synthesis of Aβ peptide, which in turn leads to amyloid deposits. The results in this 

paper support the hypotheses that AD may be caused by fungi, even when more 

research should be necessary to prove casualty. It is interesting to point out that the 

gastrointestinal tract is the main reservoir of C. albicans, from where systemic infections 
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originate as a consequence of the disruption of the intestinal mucosal barrier. 

Moreover, the antagonistic interkingdom interactions between C. albicans and 

common intestinal commensal bacteria have been recently showed (see (45)).  

 

Multiple sclerosis Multiple sclerosis (MS) is an autoimmune neurodegenerative 

disorder characterized by the progressive loss of myelin surrounding the axons of 

neurons. It has been seen that patients with MS present significant reductions in 

Faecalibacterium, Prevotella and Araerostiples. Nevertheless, it is not clear if these 

alterations in the gut microbiota are a cause or a consequence of the disease. We also 

notice that pre-clinical studies with GF mice have shown that the gut microbiota 

influences myelination within the CNS. 

 

Depression The role of the gut microbiota in depression and other stress-related 

disorders has predominantly studied in animal models.  Recent research has proved 

that stress in rats is related to a decrease in the Firmicutes/Bacteroidetes ratio. More 

precisely, decreases in the relative abundances of Lactobacillus and increases in 

Oscillibacter.  Even when pre-clinical research gives us strong evidences of this 

relationship, only a few clinical studies to have performed microbiota analysis in 

depressed patients to assess for any potential dysregulation. In these works, depressed 

patients were found to have a dysregulated microbiota, observed as a reduction in 

species richness and microbial diversity. Moreover, a negative correlation between 

Faecalibacterium and severity of depressive symptoms has been reported. We notice 

when of fecal microbiota of depressed patients were transplanted to microbiota-

depleted rats, the depression phenotype was also transferred to the animals. These 

animals presented an increased kynurenine/tryptophan ration. This means that the 

altered microbiota affects the tryptophan pathway, which is implicated in depression. 

 

Autism spectrum disorder (ASD) The BTBR animal model (that presents a spontaneous 

deletion of the DISC1 gene) is a model of autism. It has been demonstrated that BTBR 

mice present a decrease in the Firmicutes/Bacteroidetes ratio, together with increases 

in the abundance of species such as Akkermansia mucinphilia and reductions in 

Bifidobacterium, suggestive of microbiota dysregulation. On the contrary, In clinical 

studies, it has been seen a significant increase in the Firmicutes/Bacteroidetes ratio 

due to a reduction of the Bacteroidetes relative abundance ((46)). Moreover, 

Prevotella and other fermenters has been found to decrease (see (47)). 

 

Addictions Little is known with regard to the role of the gut microbiota in substance 

abuse disorders. Nevertheless, there is growing evidence on the capability of the gut 

microbiota to modulate behaviors relevant to substance abuse.  
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Even when research on the link between the gut microbiome and brain diseases is still 

dispersed, we observe we can extract the following information from the above 

review. From one hand, a reduction in Prevotella seems to be decreased in many of 

these disorders, as PD, AD MS and ASD. On the other hand, the 

Firmicutes/Bacteroidetes ratio appears to be altered. Some diagnostics companies, 

(see for example (48)) offer the analysis of this ratio and indicate optimal ranges. 

 

 

4.6 Probiotics, prebiotics and synbiotics 

 

4.6.1 Basic definitions 

 

Probiotics According to the Food and Agriculture Organization of the United Nations 

(FAO) and the World Health Organization (WHO), probiotics are defined as “live micro-

organisms which, when administered in adequate amounts, confer a health benefit on 

the host” (18). We notice that this definition points out the need for providing an 

adequate dose of probiotic bacteria in order to obtain the health benefits. It is 

generally accepted that probiotic products should have at least a concentration of 

106 CFU/mL and that a total of some 108 to 109 probiotic bacteria should be ingested 

daily for the probiotic effect to be conferred to the consumer (see (49)).  

 

From the legal point of view, it is difficult to precise when a food product can be 

classified as probiotic. To date, there is not, in the European Union, a legal framework 

defining probiotic bacteria or the food category "probiotics". Nor is there a 

harmonized EU legal framework establishing the conditions for a strain to be 

considered as probiotic. Moreover, the 2007 European Commission Guidance on the 

implementation of the Nutritional Health Claim Regulation (NHCR) (50) considered the 

phrase "contains probiotics" to be a health claim instead of a nutrition claim. Many 

applications for health claims on probiotics have been submitted for evaluation to the 

European Food Safety Authority (EFSA) but to date, no application has received a 

positive opinion (see the EU register of nutritional and health claims (51)). We can see 

from this register that the main reason for these rejections is the lack of sufficient 

scientific evidence. 

 

Nevertheless, we point out that the regulation of probiotics is not the same worldwide. 

Some countries (as for example Canada) include a list of species considered as probiotics 

in their regulatory guidelines (see for example (52)) 

 

In order to fix an appropriate use and scope of the term ‘probiotic’, an expert panel 

was convened in October 2013 by the International Scientific Association for Probiotics 

and Prebiotics (ISAPP). The conclusions of this consensus meeting can be found in (53). 
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In this consensus, the categories of living microorganisms for human use are classified 

as in Table 1: 
 

Non-probiotics This category includes traditionally associated with 

fermented foods and for which there is no evidence of 

a health benefit 

Probiotics  

Probiotic in food or 

supplement without 

health claim 

A member of a safe specie, with sufficient evidence for 

a general benefit in humans 

Probiotic in food or 

supplement with a specific 

health claim 

A specific strain, in an efficacious dose, and with 

sufficient evidence in the specified health condition 

Probiotic drug What constitutes a drug claim varies among countries 

Table 1: Categories of living microorganisms for human use (adapted from (46)) 

 

Prebiotics In Europe, EFSA follows the FAO prebiotic definition, that states that “A 

prebiotic is a nonviable food component that confers a health benefit on the host 

associated with modulation of the microbiota” (see for example (54)). Prebiotic is 

considered a health claim, and no application for a health claim on prebiotics has been 

approved (see again the EU register for nutritional and health claims (51)).  The current 

ISAPP consensus panel now proposes the following definition of a prebiotic: 

a substrate that is selectively utilized by host microorganisms conferring a health 

benefit (see (55)). 

 

Synbiotics are Products that contain both probiotics and prebiotics, with conferred 

health benefits (see the WGO guidelines (56)). 

 

Psychobiotics are probiotics that can affect cognitive functions (see for example (57)). 

 

 

4.6.2 Genera, species and strains used as probiotics 

 

The most common species used as probiotics are species of the genera Lactobacillus 

and Bifidobacterium. The yeast Saccharomyces boulardii and some species from other 

genera as Escherichia and Bacillus have also been used. Newcomers include also 

Clostridium butyricum, recently approved as a novel food in European Union.  

 

A probiotic strain is identified by the genus, species, subspecies (if applicable) and an 

alphanumeric designation that identifies a specific strain. Marketing and trade names 

are not controlled by the scientific community. According to FAO/WHO guidelines (18), 
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probiotic manufacturers should register their strains with an international depository.  

Depositories will give an additional designation to strains. An example of this 

identification system can be seen in the following table: 

 

Genus Species Subspecies Strain 

designation 

International 

strain 

depository 

designation 

Strain 

nickname 

Lactobacillus rhamnosus None GG ATTC 52103 LGG 

Bifidobacterium Animalis lactis DN-173 010 CNCM I-2494 Bifidus 

Regularis 

Bifidobacterium longum longum 35624 NCIMB 41003 Bifantis 

Table 2: Nomenclature used for probiotic microorganisms (adapted from (56)) 

 

As we will see in the following subsections, some properties appear, in the literature, 

linked to a specific strain, while some mechanisms of probiotic activity are shared 

among different strains, species, or even genera.  

The probiotic organisms that we can find in commercial products have been mainly 

sourced from the gut or from traditional fermented foods. Nevertheless, modern 

biotechnology allows us to consider and develop probiotics that address specific 

needs and issues. In particular, the sequencing of the human gut microbiome has 

dramatically extended the range of organisms with potential health benefits. These 

organisms are called next-generation probiotics (NGPs), but may also be termed live 

biotherapeutic products (LBPs) (see (58)). 

 

 

4.6.2 Probiotics: general mechanisms of action 

 

The mechanisms of action of probiotics are not completely clarified (see for example 

(59) or (60)).  Moreover, most of the available research is still pre-clinical. 

Nevertheless, some mechanisms have been postulated (see Figure 10). Here we 

summarize these mechanisms. For a more complete exposition we refer to (59) and 

(60)).  

One of these mechanisms is a competition for adhesion sites. Some strains of 
Bifidobacterium and Lactobacillus can adhere to the epithelium, preventing pathogens 
from adhering to the mucosa. For example, Lactobacillus rhamnosus strain GG and L. 
plantarum have been proven to in vitro inhibit attachment of E. coli to human colon 
cells. 
 
Another possible mechanism of action is the synthesis of antimicrobial compounds 
that modify the microbiota, as many species of the genera Lactobacillus and 
Bifidobacterium. Moreover, acid lactic bacteria produce some biological active 
compounds, as hydrogen peroxide, diacetyl, and short-chain fatty acids. 
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It has been seen that probiotics can stimulate the immune response. This immune 

response may decrease numbers of pathogenic organisms in the gut, thus improving 

the microbiome composition. Because of this immunomodulation effect, it is 

reasonable that probiotics can be useful in the prevention or treatment of other 

diseases. 

Probiotics may also compete for nutrients that would otherwise be utilized by 
pathogens (as for example with Clostridium difficile). 
 

 
Figure 10: Probiotic mechanisms of action (61) 

 
 

4.6.3 Probiotics and the gut-brain axis: pre-clinical research 

 

As quoted in the previous sections, several CNS disorders have been associated with 

changes in the gut microbiome. This fact has led to an increasing interest in the 

regulation of the gut microbiota through probiotics. There is an increasing evidence 

that certain probiotics can impact the pathogenesis of CNS disorders. Clinical data is 

less compelling than the animal model data but is rapidly emerging. 

 

Several probiotics have been investigated in animal models of neurological disorders. 

Bifidobacterium and Lactobacillus are the main genera that have shown beneficial 

effects on neurological diseases. In (62) we can find a systematic review of this 

research (to 2016). In particular, 

 

Anxiety Reduction of the anxiety-like behavior in animals (mice or rats) was observed 

using single strains of Bifidobacterim. longum, B. breve, Lactobacillus helveticus, L. 

plantarum, and L. fermentum, as well as with multi-strain probiotic combinations of L. 

rhamnosus + L. helveticus and B. longum + L. helveticus. 

 

Depression Antidepressant effects observed using single strains of B. longum, B. breve, 

L. rhamnosus, and L. helveticus, as well as using multi-strain combination of B.longum 

+ L. helveticus. 

 

Cognitive function Single strains of B. longum, B. breve, and L. helveticus were 

effective on both spatial and non-spatial memories. Single strains of L. fermentum and 



23 
 

Clostridium butyricum improved spatial memory ability. Multi-strain combinations of L. 

rhamnosus + L. helveticus2 and B. longum + L. helveticus were assessed to be effective 

with regard to non-spatial memory, and combinations of Lactobacillus acidophilus + B. 

lactis + L. fermentum and L. plantarum + L. curvatus were reported to be effective with 

respect to spatial memory. 

 

Autism spectrum disorder and obsessive-compulsive disorder B. fragilis improved 

behaviors related to the ASD in maternal immune activation mice, but not social 

interaction behavior. On the other hand, L. rhamnosus was decreased some obsessive-

compulsive disorder-like behaviors in mice, but with no effect in communicative or 

social interaction behaviors.  

 

Stress response A probiotic combination of L. rhamnosus + L. helveticus prevented 

non-spatial memory dysfunction induced by acute stress. L. casei Shirota was related 

to a significant decrease of plasma corticosterone levels in response to acute. 

Moreover, B. longum biotype infantis was found to normalize depression- like 

behavior induced by maternal separation. 

 

Mechanisms of action Apart from behavioral changes, pre-clinical research also gives 

us information about the mechanisms of the relationship between probiotics and the 

gut-brain axis. Pre-clinical studies give us the following evidence: 

 

- Serum corticosteroid levels are found to be decreased by L. plantarum, L. 

helveticus, L. fermentum, L. rhamnosus, and L. casei Shirota.  

- Adrenocorticotropic hormone (ACTH) could also be decreased by L. helveticus 

and L. fermentum.  

- Inflammatory cytokines such as were decreased, and anti-inflammatory 

cytokines were increased with L. plantarum, L. helveticus, L. fermentum, L. 

acidophilus, B. longum, and L. rhamnosus.  

- Brain monoamines (as for example 5-HT and DA) could be increased by L. 

plantarum, L. helveticus, and B. infantis, while their metabolites reduce. 

- GABA receptor expression could be affected by L. rhamnosus, depending on the 

brain area. 

- Brain BDNF and c-Fos mRNA expression was observed to increase with L. 

helveticus, L. plantarum, L. rhamnosus, B. longum, and Clostridium butyricum 

- c-Fos in the hypothalamus paraventricular has observed to decrease with L. 

casei Shirota. 

- Some effects of L. rhamnosus and B. longum could be mediated via the vagus 

nerve. It has been seen that L. casei Shirota improve gastric vagal afferent 

activity. B. longum was found to inhibit enteric neuron excitability. It has been 
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observed that a combination of B. longum + L. helveticus reduced intestinal 

barrier permeability.  

- Serum tryptophan levels were increased by L. helveticus, B. infantis, and B. 

fragilis at the same time its metabolites decreased. 

- The fecal microbiota has been observed to be altered by probiotics.  For 

example, Bacteroides and Lactobacillus were increased and Firmicutes 

decreased by L. fermentum.  

 

 

4.6.4 Probiotics and the gut-brain axis: human studies 

 

In the 2016 review (62)  a total of 15 human studies were included. All the selected 

studies had strong ratings in the quality assessment tool for quantitative studies. Eight 

of these 15 studies found significant effects of the probiotic treatments. The main 

results of these works are the following. For a more detailed exposition we refer to 

(62). 

 

Psychiatric conditions 15 studies tested participants with respect to anxiety, 

depression, distress levels, mood state, and behavior disorders. The studies used 

different probiotic formulations containing different strains of Lactobacillus spp. and 

Bifidobacterium spp. The changes were measured using different scales as the Leiden 

Index of Depression Sensitivity-Revised (LEIDS-r), the Hospital Anxiety and Depression 

Scale (HADS), the State-Trait Anxiety Inventory (STAI), the Positive and Negative 

Syndrome Scale (PANSS) (used in schizophrenia) and the Developmental Behavior 

Checklist (DBC) (used in ASD).  Some other indicators as the salivary cortisol levels 

were also considered. Among these studies, 7 of them reported significative changes, 

while other studies found no significant effects in the treatment with probiotics. 

 

Memory and other cognitive abilities Different memory and cognitive abilities were 

evaluated in healthy participants. L. casei Shirota was found to slightly decrease 

memory abilities in all participants, with no effect on fluency or eating-associated 

behavior (see also (63)). 

 

Neuroimaging study There was only one neuroimaging study, that used functional 

magnetic resonance imaging (fMRI). In this study, a fermented milk product with 

probiotic (FMPP) containing Bifidobacterium lactis with yogurt starters (Streptococcus 

thermophilus, Lactobacillus bulgaricus, and Lactococcus lactis subsp. lactis) was found 

to reduce task-related response of a distributed functional network. 

 

Mechanisms of action Some evidences on the mechanism of action that we can 

deduct from the previous works in human studies can be summarized as follows: 
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- The cortisol levels in saliva and urine after probiotic interventions were found to 

decrease with Lactobacillus casei Shirota and multi-strain L. helveticus + B. 

longum, respectively. 

- L. casei reduced pro-inflammatory cytokines, increased regulatory cytokines, and 

increased natural killer cell activity in smokers. 

- Only one study in humans investigated the tryptophan pathway, but no significant 

changes were found. 

-  Changes in the fecal microbiota were observed: Lactobacillus increased, and 

Clostridium was decreased by L. plantarum, and Bifidobacterium and Lactobacillus 

increased after a treatment by L. casei Shirota.  

 

 

 4.6.5 Prebiotics and the gut-brain axis 

 

Prebiotics comprise certain non-digestible oligosaccharides (NDOs), soluble 

fermentable fibers (as inulin and fructooligosaccharides), and human milk 

oligosaccharides (HMOs). The use of NDOs as prebiotics has rapidly increased, due to 

the fact that the enrichment of the diet with NDOs provides the opportunity to 

improve the gut microbial ecosystem (see for example (64)).  

 

It has been proved that polysaccharides can improve brain function  (see for example 

(19)). Moreover, plant polysaccharides have major influences on gut microbiota. For 

example, arabinoxylan was reported to increase the growth of butyrate producers 

(Roseburia intestinalis, Eubacterium rectale, Anaerostipes caccae); fucoidan was found 

to reduce Enterobacteriaceae population in the newly weaned pig and glucan 

increased the growth of Lactobacillus strains in the human intestine. On the other 

hand, prebiotics directly influence signaling molecules in the brain (see again (19)). 

We also remark that one of the advantages of prebiotics is given by the presence of 

survival problems in the GI tract for probiotics (for example, for some genotypes). On 

the other hand, probiotics are usually supplemented by some few species at one time, 

whereas prebiotics could stimulate several beneficial species simultaneously. 

 

4.6.6 Probiotics and prebiotics in food 
 

Here we summarize the recent review on the most common probiotic and prebiotic 

foods we can find in the traditional gastronomy in our cultural environment. 
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4.6.6.1 Probiotics in food 

 

The most classical source of probiotics in the diet is fermented food. Fermented 

products have a long history and they have been consumed by nearly every culture 

worldwide. Recently, some groups recommend their inclusion in national dietary 

guidelines (see (52)). Here we review some of the latest research on specific probiotic 

foods (in the European context). We remark that there is a need for more clinical 

studies to elucidate the effects of different fermented foods on human health. 

Kefir An interesting pre-clinical study on the modulation of the intestine microbiota in 
mice by kefir administration can be found in (65).  Here we summarize the main results 
presented in this paper. Kefir, a traditional food originated in the Caucasus Mountains, 
is a multi-species complex probiotic containing lactic and acetic acid bacteria and 
yeast, in a symbiotic mixture of more than 50 species of microorganisms. In the study, 
the number of total bacteria was found not to be significantly different during the 
experiment between the control and kefir groups. Nevertheless, interesting changes 
were observed in the composition of the gut microbiota. Moreover, these changes 
were observed to increase gradually during the administration period. In comparison 
with the control group, numbers of Firmicutes, Proteobacteria, Enterobacteriaceae in 
the kefir group significantly decreased while the numbers of Bacteroidetes, 
Lactobacillus, Lactococcus and yeast increased. In particular, the 
Enterobacteriaceae/Lactobacillus ratio increased and Firmicutes/Bacteroidetes ratio 
decreased (see Figures 11 and 12).  
 

 
Figure 11 Composition of (A) Enterobacteriaceae and (B) Lactobacillus and Lactococcus in total 
bacteria during the experimental period (65). * indicates a significant difference compared to the 
control group Abbreviations: TB total bacteria, LBLC Lactobacillus and Lactococcus, ENBC 
Enterobacteriaceae 
 

 
 

Figure 12 Box-and-whisker plot of Firmicutes/Bacteroidetes ratios (65). 
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Yogurt According to the USA Food and Drug Administration (FDA) regulations (see 
(66)), 
yogurt is produced by culturing dairy ingredients with a characterizing bacterial culture 
that contains Lactobacillus bulgaricus and Streptococcus thermophilus.  Recent 
research coincides in pointing out that the consumption of dietary yogurt does not 
produce significant changes in the composition of the gut microbiota (see for example 
(67) and (68)). Nevertheless, we remark that this does not mean that yogurt has no 
effect on the microbiota. For example, in (68), 7 healthy adult female twins consumed 
a probiotic yogurt (containing Bifidobacterium animalis subsp. lactis and 4 strains of 
lactic starter bacteria) for 7 weeks.  Even when there were no significant changes in 
the microbiota composition, there were changes in transcriptional responses (primarily 
in carbohydrate metabolism pathways) and in urinary metabolites. These results 
highlight that one of the mechanisms of probiotics may be not to alter the microbiota 
composition, but to affect its metabolic pathways. 
 

Cheese Some recent papers indicate that some cheeses can be considered as 

probiotics. For example, it has been seen that starter acid lactic bacteria survive in 

Cheddar cheese (see (69)). Notice that this fact opens the door to enrich cheese with 

probiotics. In particular, it has been suggested to enhance the quality of Mozzarella  

(70) and Feta (71) cheeses by using different strains of Lactobacillus. On the other 

hand, some peptides derived from simulated gastrointestinal digestion of Parmesano 

Reggiano have been proved to stimulate the growth of most Lactobacillus and 

Bifidobacterium. 

Non-dairy probiotic food Some probiotic fermented food include olives (the main 

microbial genus in more olive fermentations are L. plantarum and L. pentosus, as 

quoted in (72)), and fermented cabbage as sauerkraut or choucroute (see for 

example(73)).  

 

4.6.6.2 Prebiotics in food 

 

The main source of prebiotics in food is dietary fiber.  A diet rich in the fructan-type 

resistant starches, especially oligofructose and inulin, is known to promote “good” 

species of colon bacteria (see for example (74)). Such prebiotics are found in the diet 

mainly associated with wheat, barley and onions. 

An interesting study on the effect of the fiber content on the gut microbiota can be 

found in (75). In this work, the fecal microbiota of a group of European children (EU), 

consuming a ‘Western’ diet rich in animal fat and low in legume and fruit dietary fiber, 

was compared to a group of children from a rural African village of Burkina Faso (BF), 

consuming a plant-based diet, rich in fruit and legume fiber.  BF children showed a 

lower Firmicutes/Bacteroidetes ratio, with abundance of Prevotella and Xylanibacter, 

known to contain a set of bacterial genes for cellulose and xylan hydrolysis, genus that 

is lacking in the EU children. Moreover, it was found significantly more SCFA in BF than 
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in EU children. On the other hand, Enterobacteriaceae (Shigella and Escherichia) were 

significantly underrepresented in BF than in EU children, as we can see in Figure 13: 

  

Figure 13: Diet and the microbiome (in green: Bacteroidetes, in red: Firmicutes) Adapted from (75). 

We finally mention that, apart from fiber, some other components of the diet have 

been proved to be prebiotics, as for example polyphenols in wine (see (76)). 

 

 

5 Conclusions 

 

The conclusions of this work can be summarized as follows  

 

1. Germ-free models have provided a big amount of evidence of the connection 

between the gut and the brain.  In recent years, metagenomic techniques, jointly with 

computational and statistical tools, have allowed researchers to do a great step 

forward the study of the gut microbiome.  

 

2. The predominant bacterial phyla in the human microbiota of the large intestine are 

Bacteroidetes and Firmicutes.  We can classify the human gut microbiome into three 

enterotypes, characterized by the variation in three genera: Bacteroides, 

Bacteroidetes, and Prevotella. The Prevotella enterotype is connected with high-fiber 

diets, while the Bacteroides enterotype is linked to high-fat, low-fiber diets. Moreover, 

the Firmicutes/Bacteroidetes ratio has been observed to increase in obesity. 

  

3. Several neurological diseases are correlated to changes in the gut microbiome. 

Among the reviewed results, we remark that Prevotella has been found to decrease in 

Alzheimer’s disease, Parkinson disease, and autism spectrum disorder.  On the other 

hand, the ratio Firmicutes/Bacteroidetes is altered in several brain disorders. 

Moreover, recent studies link Alzheimer’s disease with a fungal infection. An 
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interesting question to elucidate is if this fungal infection is the cause of Alzheimer’s 

disease and if the alterations in the gut permeability due to changes in the 

microbiota can be the cause of this fungal infection. 

 

4. One of the tools to modify the composition of the gut microbiota is the use of 

probiotics and prebiotics. The most common species used as probiotics are species of 

Lactobacillus and Bifidobacterium, even when modern biotechnology has extended 

the range of organisms with potential health benefits. The study of the effect of 

probiotics in health is still in its infancy, and in fact, to date, no probiotic claims have 

been approved in the European Union.  

 

5. The main source of probiotics in the diet are some fermented products.  It has been 

seen in pre-clinical studies that kefir is able to change the microbiome composition.  

This effect has not been observed in the dietary consumption of yogurt, even when 

studies have reported changes in transcriptional responses. These results point out 

that one of the mechanisms of probiotics may be not to alter the microbiota 

composition but to affect its metabolic pathways. The main source of prebiotics in the 

diet are some types of fiber. As quoted before, high-fiber diets are associated with an 

increase in Prevotella.  

 

6. From the evidence we can state that the microbiome plays a relevant role in human 

health. More research is needed to understand the mechanisms of the microbiota-gut-

brain axis and its interaction with brain disorders, as well as to develop new probiotic 

products that target specific diseases. Given the importance of the microbiome, we 

consider convenient to pay attention to those factors that can affect its development, 

like Cesarean delivery, perinatal antibiotics, and formula feeding. Moreover, we 

consider important, as some groups propose, including probiotics in national dietary 

guidelines, as well as to promote the consumption of dietary fiber. 
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