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Experimental validation of in silico
predicted RAD locus frequencies using
genomic resources and short read data
from a model marine mammal
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Abstract

Background: Restriction site-associated DNA sequencing (RADseq) has revolutionized the study of wild organisms
by allowing cost-effective genotyping of thousands of loci. However, for species lacking reference genomes, it can
be challenging to select the restriction enzyme that offers the best balance between the number of obtained
RAD loci and depth of coverage, which is crucial for a successful outcome. To address this issue, PredRAD was
recently developed, which uses probabilistic models to predict restriction site frequencies from a transcriptome
assembly or other sequence resource based on either GC content or mono-, di- or trinucleotide composition. This
program generates predictions that are broadly consistent with estimates of the true number of restriction sites
obtained through in silico digestion of available reference genome assemblies. However, in practice the actual
number of loci obtained could potentially differ as incomplete enzymatic digestion or patchy sequence coverage
across the genome might lead to some loci not being represented in a RAD dataset, while erroneous assembly
could potentially inflate the number of loci. To investigate this, we used genome and transcriptome assemblies
together with RADseq data from the Antarctic fur seal (Arctocephalus gazella) to compare PredRAD predictions with
empirical estimates of the number of loci obtained via in silico digestion and from de novo assemblies.

Results: PredRAD yielded consistently higher predicted numbers of restriction sites for the transcriptome assembly
relative to the genome assembly. The trinucleotide and dinucleotide models also predicted higher frequencies
than the mononucleotide or GC content models. Overall, the dinucleotide and trinucleotide models applied to
the transcriptome and the genome assemblies respectively generated predictions that were closest to the number
of restriction sites estimated by in silico digestion. Furthermore, the number of de novo assembled RAD loci mapping
to restriction sites was similar to the expectation based on in silico digestion.

Conclusions: Our study reveals generally high concordance between PredRAD predictions and empirical estimates of
the number of RAD loci. This further supports the utility of PredRAD, while also suggesting that it may be feasible to
sequence and assemble the majority of RAD loci present in an organism’s genome.
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Background
Restriction site associated DNA sequencing (RADseq) is
one of a family of reduced representation sequencing ap-
proaches that have revolutionized the field of molecular
ecology by allowing individuals of most organisms to be
genotyped at thousands to tens of thousands of genetic
markers [1, 2]. RADseq uses type II restriction enzymes
to digest intact genomic DNA samples into fragments,
usually shorter than 1000 bp and referred to as RAD
tags, which are then massively parallel Illumina se-
quenced. The resulting sequence reads are then aligned
either de novo or to a reference genome, to generate
RAD loci that are interrogated for single nucleotide
polymorphisms (SNPs). These in turn provide the basis
for diverse applications from linkage and association
mapping [3, 4], through elucidating population struc-
ture and patterns of introgression [5, 6] to quantifying
inbreeding depression [7].
An important consideration when designing a RADseq

project is the choice of which restriction enzyme to use,
as this determines the number of RAD tags that will be
sequenced and hence the total number of RAD loci that
can be assembled. Assuming complete digestion and ad-
equately deep and even sequencing across loci, the num-
ber of assembled RAD loci should be roughly twice the
number of restriction sites, as enzymatic digestion gen-
erates two fragments that are both partially sequenced
(Fig. 1). Based on this number, it is possible to calculate
the amount of sequencing required to obtain a specified
average depth of coverage and from there to design an
optimal sequencing strategy given the available budget.
For species with genome assemblies, it is relatively

straightforward to estimate the number of restriction
sites for a given enzyme though in silico digestion. How-
ever, quantifying restriction site frequencies in organisms
lacking genome assemblies is more problematic. One
commonly used approach is to derive the number of re-
striction sites from the genome of a related species and
then extrapolate to the focal species based on know-
ledge of their relative genome sizes [8]. Alternatively,
guanine-cytosine (GC) composition can be determined
using sequencing-independent methods such as flow
cytometry [9, 10] and used to predict the frequency of a
given restriction site [11]. However, both approaches have
their drawbacks, and predictions based on GC content in
particular do not always appear to be reliable [12, 13].
Fortunately, the low cost and relative ease of transcrip-

tome sequencing has led to rapid growth in the numbers
of transcriptome assemblies available for non-model spe-
cies [14–16]. Accordingly, Herrera et al. [17] recently de-
veloped the PredRAD pipeline (available at [18]), which
uses probabilistic models to predict restriction site fre-
quencies for a given enzyme based on the nucleotidic
composition of the transcriptome (or other genomic

resource). These frequencies can then be multiplied by
the genome size of the organism in question to obtain
the expected number of restriction sites. Four different
models corresponding to four different ways of asses-
sing nucleotidic composition are available–one is based
on GC content, while the other three are based on mono-,
di- or trinucleotide composition, meaning the frequency
of occurrence of the four bases (A, C, G and T), of the 16
possible two-nucleotide combinations (AA, AC, AG, AT
etc.) and of the 64 possible tri-nucleotide combinations
(AAA, AAC, AAG, AAT etc.) respectively.
Herrera et al. [17] applied PredRAD to the genome se-

quences of 434 different species spanning the eukaryotic
tree of life. For each species, they then compared predic-
tions based on the models described above for 18 differ-
ent restriction enzymes with direct estimates of the
number of cut sites in the genome based on in silico re-
striction digestion. For a subset of 27 species, the pipe-
line was also applied to transcriptome assemblies and
the resulting predictions from all three models were
compared with equivalent predictions derived from
genome assemblies. Overall, a strong correlation was
found between the transcriptomic and genomic predic-
tions, suggesting that PredRAD is a valuable tool for
designing RADseq studies. However, predictions for a
given restriction enzyme varied widely depending on
the model and genomic resource used. In particular, the
trinucleotide model tended to perform better for many
but not all of the restriction enzymes when applied to gen-
ome assemblies, but no best model was identified for tran-
scriptome-based predictions. Consequently, the choice of
the model to use for a given combination of species, gen-
omic resource and restriction enzyme may not always be
obvious.
Another potentially important source of uncertainty

concerns how well predictions from both PredRAD and
in silico digestion approximate the actual number of RAD
loci that are obtained when a given organism is RAD se-
quenced. On the one hand, estimates from in silico diges-
tion could potentially be downwardly biased if poor
quality or incomplete assemblies are used. Alternatively, a
RAD dataset might contain fewer loci than expected for a
number of reasons, including incomplete restriction en-
zymatic digestion of the samples [19] or uneven sequence
coverage across the genome [20], which may prevent
some loci from being built. One way to investigate this
would be to directly compare both PredRAD predictions
and in silico digestion estimates with the number of RAD
loci assembled from an empirical RADseq dataset.
In the present study, we used the Antarctic fur seal

(Arctocephalus gazella) as a case study to investigate this
topic. Antarctic fur seals have been intensively studied at
Bird Island in South Georgia since the 1980’s [21] and
individual-based genetic data have been amassed for
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over 7000 individuals since the mid 1990’s [22]. To fa-
cilitate ongoing studies of heterozygosity fitness corre-
lations [23–25] and mate choice [26], high quality
transcriptome [27] and genome assemblies [28] have
recently been developed. Both are arguably more complete
than is the case for many non-model organisms, the tran-
scriptome assembly being in its third iteration and incorp-
orating data from multiple individuals, tissue types and
sequencing platforms, while the genome assembly com-
bines Illumina data from multiple mate-pair and fosmid li-
braries with medium coverage PacBio sequencing (for
details, see the Methods). Additionally, RADseq data
were recently generated for 96 fur seal individuals
digested with the most commonly used restriction en-
zyme, SbfI [28].

Here, we first analysed the fur seal transcriptome and
genome assemblies using PredRAD to predict the
number of restriction sites present in the genome for
18 different enzymes. Second, we digested the refer-
ence genome in silico with the same restriction en-
zymes to estimate the number of cutting sites present
in the genome. For comparison, we then quantified the
number of RAD loci that could be de novo assembled
with seven different combinations of parameter settings
and mapped to the reference genome. We hypothesised
that restriction site frequencies predicted from the
transcriptome and genome assemblies would be highly
concordant with one another but would vary with the
model used by predRAD. Our main goal was to ‘ground
truth’ the various predictions by comparison to empirical

Fig. 1 Schematic representation of the procedure used to estimate the number of cutting sites present in the Antarctic fur seal genome for
the enzyme SbfI. a Two DNA fragments were generated for every restriction site (denoted by vertical red lines) present in the fur seal genome
(denoted by a continuous black horizontal line) and the first ~ 200 bp of each of them was sequenced in multiple copies (horizontal green
lines); b The resulting sequence data were delivered as a collection of raw sequence reads; c The Stacks pipeline was then employed to assemble
the raw reads into RAD loci (represented by blue horizontal lines); d The consensus sequence of every RAD locus was mapped to the reference genome
(denoted by the continuous grey horizontal line) allowing us to distinguish among five different scenarios: (I) a single pair of RAD loci map around a
restriction enzyme recognition sequence; (II) multiple RAD loci map around a recognition sequence; (III) a single RAD locus maps to a recognition
sequence; (IV and V) a pair or a single RAD locus maps to a genomic region not containing the recognition sequence. Scenarios I, II and III are
indicative of the presence of a restriction enzyme cutting site that is represented by the assembled RADseq data
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estimates of the number of RAD loci obtained by assem-
bling the RADseq data.

Methods
Data sources
For this study we utilized existing genomic resources and
RAD data as described below. The transcriptome assem-
bly (available at [29]) is described by Humble et al. [27].
Initially, cDNA from the skin of twelve fur seals was 454
sequenced, yielding a total of 1,443,397 reads. These were
de novo assembled using Newbler into 23,025 isotigs of
average length 854 bp, which in turn clustered into 18,576
isogroups [30]. To increase the representation of different
tissue types, we then 454 sequenced cDNA from testis,
heart, spleen, intestine, kidney and lung tissues obtained
from nine adult male seals that died of natural causes [31].
This generated a further 1,046,221 reads, which when
jointly assembled with the previous data resulted in a total
of 23,096 contigs of mean length 971 bp. Finally, the ori-
ginal cDNA library was Illumina sequenced to generate
17,894,042 paired-end reads [27]. These were assembled
using SOAPdenovo into 26,266 contigs of mean length
904 bp, which were then BLASTed to the 454 backbone.
This allowed us to identify a further 5452 contigs that
were absent from the original 454 assembly but which re-
vealed sequence homology to the Weddell seal (Leptony-
chotes weddellii) and walrus (Odobenus rosmarus). These
were then concatenated to the original 454 transcriptome
to yield a hybrid transcriptome comprising 28,548 contigs
of average length 950 bp and a combined length of
27,107,654 bp.
The reference genome assembly (available at the Euro-

pean Nucleotide Archive under BioProject ID PRJEB26995)
is described in detail by Humble et al. [28]. Initially, high
molecular weight DNA from an adult female that died of
natural causes was used to construct five paired-end librar-
ies with 180–230 bp insert sizes plus seven mate-pair li-
braries with 3–15Kb insert sizes and one 40 kb fosmid
library [27]. These were then Illumina sequenced to gener-
ate 598 Gb of data, equivalent to ~200× depth of coverage
over a 3 Gb genome. De novo assembly within Allpaths-
LG resulted in 144, 410 contigs integrated within 8126
scaffolds (assembly size: 2.41 Gb; scaffold/contig N50:
3.1 Mb/27.5 kb). Subsequently, the same sample was se-
quenced on 64 PacBio RSII SMRT cells using P6–C4
chemistry, which yielded a total of 58 Gb (~19×) of se-
quencing data. PBJelly v15.8.24 and blasr were then
used to align the PacBio reads to the Illumina assembly
to generate a hybrid genome assembly with a total length
of 2.3 Gb comprising 6169 scaffolds with an N50 of 6.2Mb.
The RAD dataset we analysed was generated by Humble

et al. [28] and comprises a total of 136,537,558 raw reads
corresponding to 96 RAD sequenced fur seal individuals.
These comprised adult males, adult females and pups

sampled using standard methodology [32] during
1994–2002 inclusive, mainly from Bird Island, South
Georgia, but also from several other islands across the
species global range (the South Shetlands, Bøuvetoya,
Heard Island, Isles Kerguelen and Macquarie Island).
800 ng of intact genomic DNA from each sample was
digested with 20 units of SbfI prior to the ligation of P1
adapters containing unique 5-base barcodes. Uniquely
barcoded samples were then pooled into six RAD
libraries and sheared to ∼400 bp on a Covaris S2 soni-
cator. For each library, fragments in the size range
∼300–700 bp were excised from an agarose gel and the
P2 adapters were then ligated. Each library was then
subjected to 16–17 cycles of PCR enrichment, followed
by agarose gel size selection of the ∼300–700 bp frac-
tion. Finally the libraries were 250 bp paired-end se-
quenced on two Illumina HiSeq2500 lanes. Read quality
was then evaluated using the software FastQC [33] and
no trimming was required as the per-base phred quality
score was greater than 36 at all positions. The raw data
are available via the Short Read Archive (BioProject ID
PRJNA473050, SRA accession SRP148937).

Prediction of restriction enzyme cutting site numbers
The PredRAD pipeline was applied to the fur seal tran-
scriptome and genome assemblies following the devel-
oper’s protocol [18] to predict the number of cutting
sites for 18 different restriction enzymes. To compare
the results obtained from the transcriptome and genome
assemblies, we then carried out linear regressions separ-
ately for each model with the genome-based predictions
treated as response variables and the transcriptome-
based predictions treated as predictor variables. Add-
itionally, we calculated the mean squared error (MSE), a
measure that when close to zero indicates high similarity
between genomic and transcriptomic predictions [17].
Finally, we used the script “restriction_site_search.sh” [18]
to digest the reference genome in silico to estimate the
number of restriction sites for each of the 18 enzymes.
The resulting values were then used as response variables
in linear regressions of the predicted values obtained from
the transcriptome and genome assemblies.

Estimation of the empirical number of RAD loci
In order to estimate the empirical number of RAD loci,
the raw reads described above were de novo assembled
and mapped to the reference genome. This involved a
number of steps, which are summarised in Fig. 1 and de-
scribed below. Briefly, our starting assumption was that
two DNA fragments are generated per restriction site
and that the first 250 bp of each of them is sequenced in
multiple copies in each of the samples in the RAD li-
brary (Fig. 1a). As the RAD sequence data were deliv-
ered as a collection of sequence reads in fastq format
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with no information regarding the genomic region they
come from (Fig. 1b), we then assembled the reads de
novo into loci (Fig. 1c) using the Stacks pipeline [34].
Briefly, Stacks first processes samples individually to

assemble raw reads into stacks, which are definable as
sets of reads that originated from the same genomic lo-
cation within the same sample. Subsequently, consensus
sequences constructed from different individuals are used
to assemble a catalogue of loci. To explore the robustness
of our results to parameters used for the de novo assem-
bly, we constructed seven different assemblies using differ-
ent combinations of the key parameters -m, −M and -n,
which correspond to the minimum number of reads re-
quired to build a stack, the maximum number of mis-
matches allowed between reads when building a stack and
the maximum number of mismatches allowed between
stacks consensus sequences when constructing a locus, re-
spectively. Specifically, we used the default values of the
Stacks pipeline (m = 3, M = 2 and n = 1) together with six
additional sets of parameters obtained by increasing and
decreasing the value of each parameter by one unit while
keeping the other two parameters fixed to the default
value. This approach allowed us to investigate how chan-
ging these three parameters within realistic bounds influ-
enced the outcome of the de novo assembly process.
Then, separately for each of the seven assemblies, we
mapped the sequences of the loci obtained to the refer-
ence genome (Fig. 1d) using BWA [35].
Finally, we used information present in the SAM file

outputted by BWA to enumerate the number of SbfI
cutting sites associated with assembled RAD loci. As
SAM files contain detailed information about the map-
ping of each specific sequence to the reference genome,
they can be used to determine the genomic location of
each locus in relation to known SbfI recognition sites. In
this way, we could distinguish among the five different
scenarios summarised in Fig. 1d. First, two independ-
ently assembled loci map to either side of a restriction
site (scenario I). Second, multiple loci map to both sides
of the restriction site (scenario II). This occurs because
in certain genomic regions the number of polymor-
phisms is greater than M and / or n, resulting in hom-
ologous loci being assembled separately. Third, one or
more loci map to only one side of a restriction site (sce-
nario III). Alternatively, a pair of loci or a single locus can
map to a genomic location that does not contain a cut site
(scenarios IV and V) and we interpreted these as not being
genuine RAD loci, even if we cannot exclude that scenario
IV could sometimes represent true restriction sites con-
taining a polymorphism. We therefore conservatively esti-
mated the empirical number of restriction sites
represented by de novo assembled RAD loci as the sum of
occurrences of scenarios I–III inclusive. The processing of
SAM files was conducted within R 3.4.3 [36].

Results
Predicted numbers of restriction sites
The predicted number of cutting sites in the Antarctic
fur seal genome, obtained by applying the PredRAD
pipeline to the transcriptome and genome assemblies,
was highly variable across the 18 different restriction en-
zymes (Fig. 2 and Additional file 1). Predicted restriction
site numbers ranged from 5136 to 13,473,997 based on
the transcriptome assembly and from 762 to 17,175,211
based on the genome assembly. Predictions from the
four different models were in general similar for a given
restriction enzyme, with values estimated using the GC
content model and the mononucleotide model being vir-
tually identical, as also observed by Herrera et al. [17].
Predicted numbers of restriction sites based on the

transcriptome and genome assemblies were strongly cor-
related regardless of the specific model used, with r2

values being consistently above 0.96 after logarithmic
transformation of the data to assure homoscedasticity
(Fig. 3). Consistently, MSE values were all around 10− 3,
indicating a high degree of similarity between recogni-
tion sequence frequencies predicted from the two as-
semblies, with the dinucleotide model showing the value
closest to zero (MSE = 0.00108, Fig. 3). Restriction site
numbers estimated by in silico digestion of the reference
genome (Additional file 2) were also strongly correlated
with PredRAD predictions from both the transcriptome
and the genome assemblies, with r2 values ranging from
0.85 to 0.96 depending on the model used (Fig. 4). Specif-
ically, the strongest correlations were obtained from the
dinucleotide model for the transcriptome assembly (r2 =
0.95) and from the trinucleotide model for the genome as-
sembly (r2 = 0.96).

Estimated numbers of SbfI restriction sites based on in
silico digestion and mapping of de novo assembled RAD
loci
We first estimated the empirical number of restriction
sites in the fur seal genome by in silico digesting the ref-
erence genome with SbfI. This resulted in an estimated
total of 61,687 restriction sites (black line in Fig. 5). For
comparison, we analysed a dataset of 136,537,558 raw
reads corresponding to 96 fur seals digested with SbfI to
create seven different sets of de novo assembled loci
based on plausible combinations of three main parame-
ters within the Stacks pipeline. The parameter settings
used together with summary information for each of the
resulting assemblies are shown in Table 1. While ob-
served heterozygosity and average depth of coverage
were reasonably consistent across assemblies, ranging
from 0.08 to 0.13 and from 9.46× to 11.48× respectively,
considerable variability was found in the total number of
assembled loci, which ranged from 276,717 to 674,500
(Table 1). To explore this further, we mapped all seven
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sets of loci to the reference genome. Mapping success
varied from 71 to 76.63% (Additional file 3). We then
quantified the number of cut sites in the genome to
which the de novo assembled RAD loci mapped. RAD
loci that did not map to restriction sites (scenarios IV
and V in Fig. 1) were discarded. The resulting estimates of
the number of SbfI restriction sites associated with RAD
loci were remarkably consistent across the assemblies,
averaging 59,753 and differing by at most a few hundred
loci between different assemblies (Additional file 3).
In order to explore why only a proportion of the de novo

assembled RAD loci successfully mapped to the reference
genome, we focused on the de novo assembly using de-
fault parameters and regressed the number of samples in
which each locus was assembled on mapping probability.
We found a strong positive relationship, with RAD loci
that were assembled in one or only a few individuals being
significantly less likely to map (Additional file 4; logistic

regression, β = 0.013 ± 0.0001, p < 0.01). This suggests that
loci assembled in larger numbers of individuals are more
likely to be genuine.
To facilitate comparison of the various predictions and

empirical estimates, we summarized all of the values in
Fig. 5. While estimates from both in silico digestion (de-
noted by the black line) and de novo assembly (denoted
by the green shaded area) were similar, greater variability
was observed in the PredRAD predictions. Regardless of
whether the transcriptome assembly (depicted by blue
circles) or the reference genome (depicted by red circles)
was used as an input, the predicted number of restric-
tion sites was consistently lowest for the mononucleo-
tide and GC models, intermediate for the dinucleotide
models and highest for the trinucleotide model. More-
over, for a given model, transcriptome-based predictions
were consistently higher than genome-based predictions.
Overall, the two predictions that were closest to the

Fig. 2 Barplot showing variability in the predicted numbers of cutting sites across 18 restriction enzymes based on (a) the transcriptome
assembly and (b) the genome assembly, calculated using four different probabilistic models implemented in PredRAD
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empirical estimates of the number of restriction sites
were those obtained from the dinucleotide and trinucle-
otide models when applied to the transcriptome and
genome assemblies respectively.

Discussion
One of the most important factors affecting the suc-
cess of a RADseq project is the choice of which re-
striction enzyme to use, as this determines the
number of RAD loci that will be obtained and conse-
quently the depth of sequencing coverage that should
result from a given sequencing effort. The PredRAD
pipeline was created to facilitate this choice, allowing
the estimation of restriction site frequencies from
transcriptome assemblies and other genomic re-
sources. Here we exploited a model marine mammal
species for which high quality transcriptome and gen-
ome assemblies are available to compare the number of
restriction sites predicted by PredRAD for 18 different en-
zymes with estimates based on in silico digestion of the
reference genome. However, empirical RADseq datasets
might not necessarily contain the expected number of loci

due to factors such as incomplete enzymatic digestion, un-
even depth of sequencing coverage and assembly errors.
Consequently, we compared PredRAD predictions for the
restriction enzyme SbfI with estimates of the number of
restriction sites obtained by digesting the reference gen-
ome in silico and by assembling and mapping a RADseq
dataset. Overall, we found strong concordance between
transcriptomic and genomic predictions across the four
models implemented in PredRAD. The resulting predic-
tions were also highly concordant with equivalent esti-
mates based on in silico genome digestion, indicating that
PredRAD generates useful predictions for the design of
RADseq projects. However, in the case of SbfI, the pre-
dicted number of restriction sites derived from the GC,
mono-, di- and trinucleotide models varied considerably
from under 20,000 to around 75,000. By contrast, the two
empirical estimates were highly concordant with one an-
other, at around 60,000 restriction sites. By implication,
the predictions obtained from PredRAD for the dinucleo-
tide model applied to transcriptome assembly and the tri-
nucleotide model applied to the genome assembly appear
to be closest to the most likely true value.

Fig. 3 Linear regressions showing relationships between genome-based and transcriptome-based predictions for the four models (all of the
models yielded p-values < 0.01) together with their MSE values
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Fig. 4 Linear regressions showing relationships between in silico observed cutting sites and (a) transcriptome-based predictions and (b) genome-
based predictions for the four models (all of the models yielded p-values < 0.01)
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PredRAD predictions
Considerable variation was observed in the predicted
numbers of restriction sites across the different restric-
tion enzymes, regardless of whether the PredRAD pipe-
line was applied to the transcriptome or the genome
assembly. This pattern is to be expected and reflects
underlying variability in the length and nucleotide com-
position of the recognition sequences of each restric-
tion enzyme. In general, the most frequent cutting
enzymes had shorter recognition sequences, as previ-
ously shown by Herrera et al. [17]. The same overall
pattern was obtained independently of which model was
used, and this pattern was also confirmed by in silico
digestion.
Predictions from the transcriptome and genome as-

semblies were also strongly positively correlated, with r2

values ranging from 0.96 for the trinucleotide model to
0.98 for the GC content and mononucleotide models.
The greatest similarity between predictions from the two
assemblies was obtained for the dinucleotide model
(MSE = 0.00108). This is in contrast to Herrera et al.
[17], who found the best concordance with the mononu-
cleotide model when analysing 27 different species. One
possible explanation for this could be that the Antarctic
fur seal transcriptome assembly is unusually complete,
having been sequenced with both 454 and Illumina
HiSeq technologies and assembled from multiple indi-
viduals and tissues. This would be consistent with one of
the higher complexity models (the dinucleotide model)
yielding the best outcome. However, the strength of cor-
relation between transcriptomic and genomic predic-
tions based on different models may also vary across
species.

Estimated numbers of SbfI restriction sites
Even though the predictions we obtained from PredRAD
correlated strongly with equivalent in silico estimates,
the empirical number of loci assembled from a RADseq
dataset could potentially be different due to methodo-
logical issues such as incomplete restriction digestion or
erroneous de novo assembly. We therefore decided to
‘ground truth’ PredRAD predictions for the restriction
enzyme SbfI by de novo assembling RADseq data from
96 individuals and mapping the resulting loci to the

Fig. 5 Predicted and empirical estimates of the number of SbfI
restriction sites in the Antarctic fur seal genome. The continuous
line corresponds to the estimate based on in silico digestion of
the genome assembly. The green area shows the range in which
estimates from the seven mapped de novo assemblies of the
RADseq dataset are contained. Blue and red circles correspond
to transcriptome-based and genome-based predictions respectively,
with the codes “GC”, “M”, “D” and “T” representing predictions from
the GC content, mononucleotide, dinucleotide and trinucleotide
models respectively
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reference genome to enumerate the corresponding num-
ber of restriction sites. As the de novo assembly of
RADseq datasets can be sensitive to the values of three
main parameters, −m, −M and -n, we constructed
seven alternative assemblies, each with a different par-
ameter combination. As expected, considerable vari-
ation was found in the number of RAD loci present in
the different de novo assemblies. However, when the
assembled loci were mapped to the reference genome,
the number of restriction sites represented by scenarios
I, II and III were highly consistent across the assem-
blies and very similar to the estimated number of re-
striction sites obtained by in silico digestion.
A probable explanation for the apparent disparity be-

tween the number of de novo assembled RAD loci and
the estimated number of restriction sites in the genome
could be that the former may be inflated due to assem-
bly artefacts. Two lines of evidence support this possibil-
ity. First, the number of assembled RAD loci was highly
dependent on the parameter settings used, a pattern that
is intrinsic to most if not all RADseq datasets [37]. Sec-
ond, we found that a large proportion of the loci that
did not map to the reference genome were assembled
in just one or a handful of individuals, suggesting that
many of these loci are likely to be assembly artefacts.
This observation is important because it suggests that a
reference genome should wherever possible be used to
improve the quality of a de novo assembled RADseq
dataset, as recently also suggested by Shefer et al. [38].
Of course, mapping the de novo assembled loci to the
reference genome places an upper limit on the number
of restriction sites that can be quantified from the RAD
data. However, the true number of restriction sites is
unlikely to be much higher than our estimates as our
reference genome shows a high degree of completeness
as indicated by the very low rate of gaps (0.5%) and the
fact that additional PacBio sequencing did not appre-
ciably increase the total assembly length. Nevertheless,
the number of restriction sites represented by mapped
RAD loci was a little lower than our in silico digestion

estimate. Hence, it would appear that not every restriction
site in the genome was captured by our empirical RADseq
dataset, although the vast majority were present, suggest-
ing that it may be possible to recover most of the RAD
loci present a given species’ genome.

Comparison between PredRAD predictions and empirical
estimates
Comparing predictions from PredRAD with our empir-
ical estimates of the number of SbfI restriction sites in
the fur seal genome revealed a number of patterns. First,
the GC content and mononucleotide models gave by far
the lowest estimates of the number of restriction sites, at
around 15–25,000 sites depending on whether the tran-
scriptome or genome assembly was used. By contrast,
the dinucleotide and trinucleotide models were much
closer to our empirical estimates, at around 40–75,000
restriction sites. The same pattern was found by Her-
rera et al. [17], who argued that the di- and trinucleo-
tide models produce better predictions because more
parameters are used (i.e. 16 two-nucleotide combina-
tions and 64 tri-nucleotide combinations) together with
longer k-mer lengths.
Second, we found that both the di- and trinucleotide

models slightly underestimated the number of SbfI re-
striction sites when applied to the genome assembly and
slightly overestimated the number of restriction sites
when applied to the transcriptome assembly. This find-
ing is consistent with trends reported for this enzyme by
Herrera et al. [17]. In mammals, SbfI restriction sites are
more likely to occur in conserved genomic elements
than would be expected by chance [17] and these con-
served elements (sensu [39]) have been identified as evi-
dence of functional regions under purifying selection
[40]. Therefore, it is plausible that the transcriptome as-
sembly could have overestimated the number of SbfI
sites due to enrichment (relative to the reference gen-
ome) for conserved functional elements.
Third, the best prediction based on the reference

genome was obtained from the trinucleotide model, as

Table 1 Summary information for the seven de novo assembled sets of RAD loci

m M n Number of RAD loci Number of RAD loci present in at least 2 individuals Heterozygosity Average depth of coverage

2 2 1 674,500 267,069 0.09 9.46

3 1 1 423,664 227,999 0.08 10.12

3 2 0 497,830 278,376 0.13 10.55

3 2 1 378,310 208,702 0.09 10.55

3 2 2 349,082 193,859 0.08 10.55

3 3 1 343,062 198,718 0.09 10.75

4 2 1 276,717 186,925 0.09 11.48

The Stacks parameters -m and -M define the minimum number of raw reads and the maximum number of mismatches between raw reads when creating a stack
within the same individual respectively. -n corresponds to the number of mismatches allowed between stacks when processing multiple individuals to construct
RAD loci. For each tested combination of parameters, we report the total number of RAD loci, the number of RAD loci present in at least two individuals, observed
heterozygosity (outputted by the population module within the Stacks pipeline) and average depth of coverage

Vendrami et al. BMC Genomics           (2019) 20:72 Page 10 of 12



observed also by Herrera et al. [17], while the best
transcriptome-based prediction was obtained from the
dinucleotide model. As mentioned above, this may be
due to the high degree of completeness of the fur seal
transcriptome assembly, which could potentially pro-
vide a relatively precise estimation of the genomic
nucleotidic composition and in turn produce better
estimates when a probabilistic model more complex
than the GC content or mononucleotide model are
applied.

Conclusions
We compared PredRAD predictions of the number of
SbfI restriction sites with empirical estimates obtained
from both in silico digestion and de novo assembly and
mapping of RAD loci. We found that our empirical data-
set yielded inflated estimates of the number of RAD loci
after de novo assembly. However, when these loci were
mapped to the reference genome, the resulting number
of restriction sites captured by the RAD data was con-
sistently close to our empirical estimate from in silico di-
gestion. This suggests that care should be taken when
assembling RADseq data without a reference genome,
while at least for our empirical RADseq dataset, we were
able to capture loci corresponding to the vast majority
of described restriction sites. However, our study was
based on a single species for which high quality genome
and transcriptome assemblies are available. Similar com-
parisons between predicted and empirical values in other
species belonging to different taxonomic groups and show-
ing differences in their genomic architecture will allow fur-
ther exploration of the performance of the four distinct
probabilistic models.
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Additional file 1: Predicted numbers of cutting sites for 18 restriction
enzymes based on (a) the transcriptome and (b) the genome assemblies,
calculated using the four probabilistic models implemented in PredRAD.
(XLSX 15 kb)

Additional file 2: In silico estimates of the number of cutting sites for
18 restriction enzymes. (XLSX 11 kb)

Additional file 3: Summary information for the alignments of the RAD
locus consensus sequences obtained from the seven de novo assemblies
to the reference genome. For each tested combination of parameters, we
report the number and percentage of mapped RAD loci, average mapping
quality, the number of RAD loci mapped to left and right sides of restriction
sites separately, the number of genomic locations with RAD loci mapped to
both sides of restriction sites, the number of genomic locations with RAD
loci mapped to only one side of restriction sites, the number of occurrences
of scenarios I, II and III, and finally the estimated number of restriction
enzyme cutting sites. (XLSX 11 kb)

Additional file 4: Logistic regression of RAD locus mapping probability
as a function of the number of samples in which the RAD locus was
found. The red line shows the probability of mapping and the bars

represent the number of RAD loci present in a certain number of
samples that either mapped (upper part of the plot) or did not map
(lower part of the plot) to the reference genome. (TIFF 951 kb)
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