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Abstract— Although autonomous robots can perform partic-
ularly well at highly specific tasks, learning each task in
isolation is a very costly process, not only in terms of time
but also in terms of hardware wearout and energy usage.
Hence, robotic systems need to be able to adapt quickly to new
situations in order to be useful in everyday tasks. One way to
address this issue is transfer learning, which aims at reusing
knowledge obtained in one situation, in a new related one. In
this contribution, we develop a drumming scenario with the
child robot Affetto where the environment changes such that
the scene can only be observed through a mirror. In order to
address such domain adaptation problems, we propose a novel
transfer learning algorithm that aims at mapping data from the
new domain in such a way that the original model is applicable
again. We demonstrate this method on an artificial data set as
well as in the robot setting.

I. INTRODUCTION

Advanced robotic systems face non-static environmental con-
ditions that require context-dependent adaptation of motor
skills. Approaches that optimize parameters for a given task,
like trajectory estimation [1] or walking gait exploration [2],
are only able to deal with static tasks. Although in many
cases a low-dimensional parametrization that covers the
variance of a task exists. As in our case, consider a drumming
task that has to incorporate kinematic constraints of the robot
and different target positions. A full optimization for each
new task from a reasonable initialization, that was acquired
by e.g. kinesthetic teaching, means that many computations
and trials need to be performed before the task can be
executed.
Previous work successfully achieved throwing of objects
at parametrized target positions [5] or playing table ten-
nis using motion primitives that are parameterized with
respect to the current ball trajectory [6], [7]. Matsubara [8]
focused on parametrized motion primitives by introducing
style parameters that determine a linear mixture of policy
parameters. The retrieval of parameterized motion primitives
by regression techniques was also proposed in [9], [10],
[11]. In [12], parameterized motion primitives have been
stored within a neural associative memory using non-linear
embeddings of policy parameters. While learning in [8],
[10], [12] was conducted offline on precollected data sets,

(a) (b)

Fig. 1. Affetto robot, (a) upper body and internal structure as presented
in [3], [4]. (b) Experimental setup for transfer learning, the robot has to
generate drumming actions based on the perceived reflection of the drum
in a mirror.

e.g. collected from human demonstrations, the work in [5]
integrates an active learning criterion in order to select new
task parameterizations in unexplored areas of the memory
to enhance efficiency of skill memory acquisition. However,
the initialization is done as in the previous examples by
kinesthetic demonstration of a whole-body overhand throw.
But generation of training data for skill memories requires a
set of optimized samples, which is costly since each action
has to be performed on the robot. Each training sample is
based on a full optimization with a fixed initialization or
an initialization gathered by demonstration e.g. kinesthetic
teaching.
Besides learning a completely new task, real world situations
sometimes require the ability to adapt an already learned
task to changing conditions without learning the acquired
motion repertoire from scratch. In our case, the humanoid
robot Affetto (Fig. 1a) learns to solve a drumming task
with varying positions of the drum. Then, the environment
changes in a way such that the drum cannot be observed
directly and the robot has to perceive its position through a
mirror, located at the side of the scenario (Fig. 1b). Other
examples for changes in the scenario include the replacement
of the original (possibly faulty) sensor by a newer/intact one,
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a changed position of the robot which would be otherwise
static, or another modified point of view on the scenery.
Relearning the complete task in the high-dimensional space
of actions would be highly ineffective if instead the already
acquired knowledge could be adapted and reused.
The field investigating such principles is called transfer
learning [13], [14], where the main goal is to reuse as much
as possible of the previous knowledge for the new situation.
Recently, a promising transfer learning approach has been
proposed for classification in myoelectric prosthesis control
under electrode shift [15]. This approach allows to transfer
the classification model between two settings, without as-
suming a continuous drift, by optimizing a mapping of the
input features directly for the target task.
In our contribution, we generalize this approach for a regres-
sion model and apply it to adapt a previously learned skill
of a humanoid robot towards changing task conditions.
The remaining of this paper is structured as follows. After a
related work section, which details the important strategies
for robot control and depicts the relevant related work on
transfer learning, section III introduces the proposed transfer
learning algorithm. Section IV illustrates this method for
an artificial example while section V describes the main
experiment where, first, a drumming task is learned with
the humanoid robot Affetto (Fig. 1a) and, then, the proposed
transfer learning algorithm is employed to adapt towards a
change in the environment.

II. RELATED WORK

A. Parameterized Skills

As in our previously published work [16], parameteriza-
tion θ ∈ RF of policies πθ are considered. Additionally,
it is assumed that tasks are parameterized by τ ∈ RE . Task
instances that are defined by τ are distributed according to
the probability density function P (τ ). The variability of the
task is represented by the task parameterization τ , e.g target
positions, positions of obstacles, or variable loads that are
attached to an end-effector. The notion of a parameterized
skill is introduced with reference to [5], it is given by a
function PS : RE → RF that maps task parameters τ
to policy parameters θ. The aim is to learn a parameter-
ized skill PS(τ ) that maximizes

∫
P (τ )J(πPS(τ ), τ )dτ with

J(π, τ ) = E {R(πθ, τ )|π, τ}, the expected reward for using
policy πθ to solve a task with parameterization τ . The reward
function R(πθ, τ ) assesses each action of the robot defined
by the policy πθ with respect to the current task param-
eterization τ . Optimization of PS(τ ) is usually performed
by learning from demonstration, policy optimization or a
combination of both.
Definition of πθ: For the policy representation πθ, that en-
codes the joint angle trajectories of the drumming action into
θ, we refer to Dynamic Movement Primitives (DMPs, [17]).
DMPs are widely used in the field of robot motion generation
and show good generalization in the parameter space as well
as invariances to scaling. The combination of a linear point
attractor in combination with a non-linear perturbation results

in a stable dynamical system

q̈ = kS(g − q)− kD q̇ + f(x,θ), (1)

that defines velocity and acceleration profiles and thus the
output trajectory. Typically, the canonical system of the
DMPs is defined as ẋ = −αx. However, in this work we
refer to a linear decay ẋ = −α as in [18]. The shape of the
primitive is defined by perturbation

f(x,θ) =

∑K
k=1 exp(−Vk(x−Ck))θk∑K
k=1 exp(−Vk(x−Ck))

, (2)

with a fixed number of K Gaussians that are centered around
Ck and the variance of the Gaussians Vk. Further, Ck

and Vk are assumed to be fixed as in [12]. The remaining
parameterization of the DMP are the coefficients θk.
Definition of PS(τ ): An incremental variant of the Extreme
Learning Machine (ELM, [19]) is used for implementation
of the parameterized skill PS(τ ). ELMs are feed-forward
neural networks with one hidden layer,

θi(τ ) =

H∑
j=1

Wout
ij σ

(
E∑

k=1

Winp
jk τk + bj

)
∀i = 1, . . . , F.

(3)
E denotes the input dimensionality, H the hidden layer size
and F the output dimensionality. Regression is performed
on a random projection of the input Winp ∈ RH×E and a
non-linear transformation σ(x) = (1 + e−x)−1. The linear
output transformation Wout ∈ RF×H can be updated by
incremental least squares algorithms. The incremental update
scheme of the ELM was introduced as Online Sequential
Extreme Learning Machine (OSELM) [20], [21] that incor-
porates the ability to perform an additional regularization
on the weights [22] or exponential forgetting of previous
samples [23]. Since we expect to deal with a small number
of training samples, regularization of the network can help
to prevent over-fitting and foster reasonable extrapolation.
Alternative approaches exist for learning DMPs such as [24].
In this work, however, we focus on the transfer between
related tasks and, hence, restrict our learning setup to one
DMP learning scheme.

B. Transfer Learning

In the following, we briefly recap the existing literature on
transfer learning and describe differences to our proposal.
The literature differentiates between different types of chang-
ing conditions [13]: Changes in the task and changes in
the data domain. In this work, we consider the latter case
where the task to be performed stays the same, while the
data domain changes. In particular, the general assumption
is that enough data are available in an old scenario, the so
called source domain, but the goal is to solve the task in the
new target domain, where only very few data are available.
These types of problems are also referred to as transductive
transfer learning [13] or as domain adaptation [25]. More
formally, we will refer to data instances from the source
domain as τ ∈ T = RE and to instances from the target
domain as τ̂ ∈ T̂ = RÊ .
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Fig. 2. Illustration of the proposed transfer learning approach on a toy data: the figures always show data (green circles) and the predictive function of
the ELM (trained on the source data). (a) source data; (b) target data; (c) target data after transfer learning.

A popular set of methods in this area are related to the
concept of importance sampling, one example being the
kernel mean matching algorithm [26]. Here, weights are
introduced for the data points in the source space and then
utilized for learning a new supervised model to improve its
performance in the target space. A central assumption here
is that the conditional distributions in both data spaces are
the same: pT̂ (θ|τ ) = pT (θ|τ ) [13]. This strong assumption,
however, does not hold in our scenario where the input space
is changed strongly and thus the conditional distribution
changes as well.
Another set of transfer learning methods aims to solve the
transfer problem by finding a common latent space for
the source and target domain [13], [27]. However, these
methods assume the availability of only unlabeled data in the
target space and, thus, do not make use of any supervised
information if existing. Procrustes Analysis [28] requires
correspondence information between some samples from
both domains which is unavailable in our setting. The work
[29] utilizes labels but assumes alignment of the features in
source and target space which is unavailable in our setting.
Transfer learning has been applied in robotic settings, like
reinforcement learning [30], [31], [32], multi-robot trans-
fer learning [33], [34], (learning a skill for a robot from
another robot). A further application is inter-task learning,
e.g. transfer knowledge of multiple acquired tasks to solve
more complex new tasks [35]. Those settings are, however,
different from ours because we consider only changes in the
input but not in the output for learning based on kinesthetic
teaching to adapt for changing task configurations.

III. TRANSFER LEARNING FOR NON-LINEAR
REGRESSION WITH THE ELM

For formalizing transfer learning, we follow the main idea
from [15], [36], which is to learn a mapping that transforms
the novel target data in such a way, that the original model
is applicable again. In contrast to [15], [36], we implement
this idea for a regression model and evaluate it in a robotic
scenario.
While in principle this technique is applicable to any super-
vised machine learning model with a differentiable cost func-
tion, we demonstrate it here for the regression model ELM.
Given a training data set D = {(τ j ,θj)|j = 1, . . . , N} in

the source domain, the ELM optimizes the cost

N∑
j=1

F∑
i=1

(
θji − θi(τ

j)
)2

(4)

with respect to the parameters Wout, where θi(.) is defined
in equation (3). This results in a learned function PS(τ ),
applicable to instances from the source domain τ .
For our transfer learning approach, we utilize the same cost
function but this time, it takes instances from the target
domain as input D̂ = {(τ̂ j ,θj)|j = 1, . . . , N̂}, where
N̂ � N . Furthermore, we introduce a transfer mapping
h(τ̂ ) which is applied to the input τ̂ . Thereby, h(.) realizes a
mapping from the target to the source domain and learning its
parameters comprises the main part of the transfer learning
step. In many application, it is reasonable to assume a
linear transformation of the form h(τ̂ ) = Hτ̂ + c, where
H ∈ RE×Ê and c ∈ RE . The transfer learning problem
finally is

min
H,c

N̂∑
j=1

F∑
i=1

(
θji − θi(h(τ̂ j))

)2
+ λ‖H̃‖2. (5)

Thereby, H̃ constitutes the matrix H augmented by an
additional column containing the values of c and λ is a
weighting for the L2 regularization.
Then, finding a minimum of this problem with respect to the
parameters of h(.) constitutes the transfer learning step and
we employ the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
algorithm [37] for optimization.

IV. EXPERIMENTS I:
A TOY DATA EXAMPLE

We demonstrate our proposed transfer learning scheme for a
toy data set first, before we apply it to a robotic scenario in
the next section.
We sample 20 data points from the function

R2 7→ R : x 7→ (x1 + 1)3 + (2(x2 + 1)3)/10, (6)

where we utilize 14 randomly selected points for training a
ELM. The mean squared error (MSE) is 0.00 on the training
and 0.06 on the remaining testing data. The trained model
together with the data is shown in Fig. 2a.
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Fig. 3. (a) Experimental setup of drumming scenario. Extraction of low dimensional task parameterization and relation to drum position can be seen. (b)
Visualization of similarity measure f̄ ~ f̄∗

i . (c) Success rate of drumming actions in relation of number of consolidated successful demonstrations by the
parameterized skill.

In order to simulate a systematic disturbance on the data we
generate 20 new data points and apply a rotation of 180◦

to them. The resulting target data together with the original
ELM is shown in Fig. 2b. The prediction MSE is 41.71.
Finally, we select five target data points randomly and use
them for training a transfer mapping with our proposed
transfer learning algorithm. Using these transfered target data
we can employ the original ELM to evaluate the quality of
the transfer by calculating the MSE. Repeating this transfer
step 100 times with different random training points yields
the averaged MSE 0.001(±0.001) for the points used to train
the transfer and 0.354(±0.661) for the other points (standard
deviations in brackets). An example run is shown in Fig. 2c.

V. EXPERIMENTS II:
DRUMMING THROUGH MIRROR ON HUMANOID ROBOT

This section aims at the evaluation of transfer learning for
complex robot skills. The upper body of the humanoid robot
Affetto has to play a drum positioned on a table in front of
the robot, as shown in Fig. 3a. For training, the robot is able
to observe the drum position directly which results in the task
parameterization and training samples for the parameterized
skill are gathered by kinesthetic teaching. After successful
task acquisition, the scenario is modified and the robot is
not allowed to observe the drum position directly, as shown
in Fig. 1b. The robot has to learn to utilize a mirror, to
transfer the previously learned skill of drumming to this new
situation.
The camera attached to the upper body of the robot performs
a simple visual search and blob detection of the marker
attached to the drum, giving the horizontal ximg ∈ [0, 1]
and vertical yimg ∈ [0, 1] position of the center, normalized
for drum positions in the workspace. To estimate the task
parameterization, the robot moves to a fixed starting config-
uration qstart (shown in Fig. 4) and centers the marker of the
drum in the image of the camera by only rotating the upper
body orientation q3. The task parameterization τ = [yimg q

∗
3 ]

includes the final rotation of the upper body q∗3 as well as

the height of the marker in the visual image of the camera,
resulting in a 2D coordinate that represents the position of
the drum relative to the robot. The estimation of the task
parametrization is illustrated in Fig. 3a.
For the second condition of our experiments, the Affetto
robot is not allowed to observe the drum directly and has
to learn a new parameterized skill P̂S. As shown in Fig. 1b,
the robot is commanded to rotate its upper body into the
direction of a mirror. As before, the marker position of
the drum is extracted by blob detection. The rotation angle
of the upper body is fixed, the task parameterization τ̂ =
[ximg yimg] 6= τ is given by the perceived location of the
reflection of the marker in the mirror. Accordingly, there is
a considerable difference in the mapping P̂S(τ̂ ) 6= PS(τ̂ ),
so that relearning of P̂S(τ̂ ) becomes necessary.
Robot Platform: The experiments are carried out on the
humanoid robot platform Affetto, a pneumatically-actuated
highly compliant robot with a 22DOF upper body structure.
For the experiments we utilize 8DOF, including 3DOF of
the abdomen and the right arm and an unactuated soft
rubber hand. Policies define joint angle trajectories that are
forwarded to the low-level joint controller. To enhance the
quality of the tracking performance, we refer to the PIDF
controller [38] for the pneumatically driven joints of the
robot and optimize the controller parameter by automatic
optimization and hand tuning on a test trajectory that includes
sine waves and step responses. According to [38], the valve
opening is controlled by:

v+j = kF (uPID
j − pPD

j ) (7)

and vise versa v−j = −v+j for the antagonistic chamber.
Kinesthetic Teaching Mode: To initiate the teaching mode,
the joint PIDF controller are commanded to move the joints
of the robot to a predefined initial posture qstart. After
convergence of the robot to the initial posture, the control
signals uPID

j of the equilibrium states of the joints j are
collected as ueqj and used as an offset for the feedback
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Fig. 4. Snapshots of generalized drumming action. Starting configuration
qstart is shown in the leftmost picture.

controller:

v+j = kF (uPID
j + ueqj − p

PD
j ) (8)

Additionally, we deactivate the integration of error by setting
the integral component I of the controller to zero. It can be
expected that ueqj reflects the integral part of the controller as
the proportional and derivative components are zero for equi-
librium states. A deflection of the robot joint configuration
qstart during the demonstration phase results in a counter
force given by the feedback controller proportional gains that
aim to move the robot back to its initial configuration. Each
recording is run for 3 sec. and the resulting trajectory is
encoded into θ by the DMP.

A. Learning to Drum

In comparison to our previous work [16], no policy optimiza-
tion is performed, we collect successful human demonstra-
tions for Ntr = 25 drum positions randomly distributed in the
workspace of the robot. A demonstration can be considered
successful in case the execution of the recorded trajectory by
the robot results in a drumming sound. Resulting in the train-
ing set D = {(τ k,θk)|k = 1, . . . , Ntr}, that is presented in a
random order for an incremental update of the parameterized
skill PS, as introduced in Sec. II-A. All demonstrations are
encoded as a K = 15 dimensional DMP for each of the
8 DOF of the robot, resulting in a F = 120 dimensional
parameterization of θ. For an objective evaluation of the
success rate of generalization to unseen drum positions, we
define a reward function based on a distance measure of the
recorded audio spectrum to the prototypes gathered by the
execution of training demonstrations. The similarity measure
of a recorded spectrum to one prototype is given by the
operator ~ : Rm×ts × Rm×tp → R, (S, P ) 7→ d = S ~ P
for input spectrum S, prototype P , m extracted frequency
bands and time-steps tp ≥ tt:

s~ p
def
= min

0≥o≥ts−tp

 m∑
i=1

tp∑
j=1

(s(i, j + o)− p(i, j))2
1/2

,

(9)
as visualized in Fig. 3b. The reward function for a recorded
spectrum f̄(ω, t) is given by:

R(f̄) = max
1≥i≥Ntr

‖f̄∗i ‖ − f̄ ~ f̄∗i
‖f̄∗i ‖

, (10)

with ‖f̄∗i ‖ acting as normalization of different prototype
activation strengths to a maximum reachable reward of one.
Hidden Layer size of the ELM was set to H = 50 with a
regularization λ = 10−4 for online learning as in [22]. We

estimate the generalization performance in terms of success
rate on a fixed set of Nte = 10 positions of the drum that
are not part of the training set, as shown in Fig. 3a
The success rate is estimated by a simple threshold operation
on the reward function and counted as successful if R(f̄) >
0.15. Fig. 3c shows the results of the evaluation, it can be
seen that the Affetto robot acquires the skill of drumming
for all evaluation positions after presentation of all 25 human
demonstrations.

B. Transfer Learning with Mirror

To solve this modified task we evaluate four learning
schemes: i) We ignore the modification of the parameter
space and evaluate the previously acquired parameterized
skill PS as in Sec. V-A; ii) We relearn the task from scratch,
in the same way as in Sec. V-A; iii) We reuse the parame-
terized skill obtained in Sec. V-A and continue training with
new human demonstration samples by incremental learning.
thereby ignoring the modification of the parameter space; iv)
We apply Transfer Learning as proposed in Sec. III. Human
demonstrations are utilized to estimate H̃ by application of
Eq. 5.
Let D̂ = {(τ̂ k,θk)|k = 1, . . . , N̂tr} be the new dataset for
transfer learning. We select N̂tr = 6 human demonstrations
for drum positions distributed in the workspace of the robot.
Each learner is incrementally trained until convergence with
3-5 randomly selected samples of D̂ and generalization
performance is evaluated for 6 randomly selected unseen
drum positions. The experiment is repeated ten times and
the results of the evaluation can be seen in Fig. 5.
Thereby, a baseline is given by the evaluation of the previ-
ously learned skill PS(τ̂ ) (i) resulting in a low performance
due to the modifications of the task. Continued training of
PS(τ̂ ) (iii) with new samples is also not able to adapt to the
new task situation. A significantly better performance can be
reached by transfer learning (iv) in comparison to relearning
from scratch (ii).

VI. DISCUSSION

In this contribution, we presented a novel transfer learning
algorithm aiming at domain adaptation problems with few
labeled instances from the target domain and without corre-
spondence information between the source and target space.
We have applied this method to a toy data set for illustration
and to a real world robot scenario in order to transfer com-
plex motor skills. The approach significantly outperformed
two baselines and a retrained model.
Future work includes testing the applicability of very new
approaches [39], [40] in the current setting and comparing
their performance to the proposed technique.
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