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Abstract: This work aims to study the dynamics of KIF1A in a noise-driven ratchet potential. KIF1A molecule is 

a single-headed kinesin which is specific to axonal transport in neurons. Recent studies have shown that the 

capability of this kind of motor to overcome an obstacle or a traffic jam that impedes the advance of a vesicle is 

strongly related to several neurodegenerative diseases like Alzheimer’s. We model the interaction and displacement 

of the motor with a two state Brownian ratchet potential in two dimensions. With the numerical simulation of this 

model we are able to give an accurate prediction of the overcoming time of an obstacle, modelled as a Gaussian 

potential, as a first step towards a better understanding of the interplay between traffic dysfunctions and 

neurodegenerative diseases.  

  

I. INTRODUCTION 

In modern Biophysics the term “molecular motor” is 

referred to those molecules, typically proteins, which 

transduce chemical energy into mechanical work. This kind 

of molecules is really important for the proper functioning of 

the cell, and is involved in a large number of active processes 

[1,2]. Some typical examples of these processes are cell 

division, muscular contraction or vesicle transport [8]. 

Molecular motors are usually classified in two groups. A 

first group includes the so-called “rower” motors, which act 

in large assemblies like myosin that is involved in muscular 

contraction. The second group is known as “porter” motors, 

which are usually involved in intracellular traffic transport.  

These motors, such as kinesins, work either individually or in 

small groups [6] and are processive, that is, they perform a 

large number of steps before detaching from the microtubule 

(MT), where the motion takes place.  

 In this study, we focus our attention on translationary or 

linear motors (porter motors), specifically the one called 

KIF1A of the kinesin-3 family. We do not give a full 

explanation of their modelling, but rather present a generic 

description allowing to extract the main features of the 

physics involved, avoiding the biological complexity. 

KIF1A is a single-headed plus-end kinesin which is 

specific to the transport of synaptic vesicle precursors in 

axons [4]. Trafficking conditions in neurons are extremely 

demanding due to the long distances that the motor has to 

travel (in a range from millimetres up to a few meters) being 

attached to the MT, the large cargoes involved and the 

crowded and constrained environment. In many cases the 

motor has to overcome roadblocks or traffic jams, and the 

ability to manoeuvre through these obstacles is crucial to 

ensure an efficient transport [4-6] and the arrival of the 

cargoes at their destination. The capability of travelling long 

distances without detaching from the MT is supported by the 

large number of motors available in the cell. Those motors 

could exert forces on a vesicle but they are limited by the 

liquid-like nature of the vesicle membrane. Consequently, 

tangential forces cannot be exerted. This implies that a large 

number of motors working cooperatively would not supply 

the ability to overcome an obstacle that impedes the advance 

of a vesicle, excepting if the motors make a force in the 

normal direction of the vesicle, where it can not be negligible 

[4]. Traffic dysfunctions in axons, like traffic jams, are 

related to several neurodegenerative diseases like 

Alzheimer’s [5,8].   

It is singular that a monomeric (one-sided) kinesin like 

KIF1A   could be responsible of this important task instead of 

a dimeric (two-sided) kinesin, which operates in a hand-over-

hand mode and is more efficient than the monomeric type. 

Recently it has been shown that monomeric kinesins are more 

susceptible to work collectively and, consequently, to achieve 

large normal forces if the vesicle is stuck. KIF1A is self-

adapted to cooperative action because of his Brownian 

dynamics nature. This motor operates on a two-state noise-

driven ratchet mechanism and combines a strongly bound 

state to the MT and a weakly bound state. The weakly bound 

state allows the motor to diffuse freely along the MT, 

therefore causing the inefficiency of a single motor travelling 

in the filament, and it is reflected on the velocities around 

≈0.15 µm/s and stall forces around ≈0.1 pN obtained in 

single-molecule experiments [3]. Besides this is the reason 

whereby a group of monomeric motors is more efficient than 

a group of dimeric motors acting collectively. The 

monomeric type has a totally diffusive state and it is more 

receptive to modify its trajectory and overcome obstacles due 

to the forces exerted by other motors than the dimeric type, 

whose diffusive state affects only one of the two “heads” 

while the other “head” is attached to the MT. 

II. MODEL FOR KIF1A DYNAMICS  

The aim of this work is to develop an efficient simulation 

of a single KIF1A motor moving in alongside a MT which 

has a transversal barrier that the motor has to overcome. In 

order to model a single particle traveling around a MT with a 

two-state ratchet potential, we have used some approaches 

that have been proved really predictive for this kind of 

situations. The model is based on the Langevin equation 

 

 

𝜆
𝑑𝑥𝑖

𝑑𝑡
= −𝑈(𝑥𝑖 , 𝑘𝑖) − 𝐹𝛿1𝑖 + 𝜁𝑖(𝑡), 

 

(1)  

where i=1 for a single particle, 𝑘𝑖 is a discrete stochastic 

variable that labels the two internal states of the motor, 𝜆 is a 

friction coefficient, 𝑈(𝑥𝑖 , 𝑘𝑖) is a potential that describes the 

attached and detached states, 𝐹𝛿1𝑖 is an external force and 

𝜁𝑖(𝑡)is a Gaussian white noise with autocorrelation 

 

 < 𝜁(𝑡)𝜁(𝑡′) >= 2𝑘𝐵𝑇𝜆𝛿𝑖𝑗𝛿(𝑡 − 𝑡′) (2) 
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FIG 1. Representation of the two-state ratchet mechanism for 
KIF1A. U is the height of the potential, l is the period, a is the 
asymmetry parameter and 𝛿 is the region where the motor is 
excited to the detached state. Average excitation and decay 
rates of the motor in the potential 𝑈1 and 𝑈2 are respectively, 
𝜏′ and 𝜏. Gray zones indicate where the transitions are allowed. 
Small circles do not indicate the effective size of the motor, 
which is comparable to l but tipycally smaller. 

We define a generic potential U(x,𝑘1) (for simplicity 𝑈1state) 

like a sawtooth potential plotted in FIG. 1 which defines the 

strongly bound state (attached), and a flat potential U(x,𝑘2) 

(for simplicity 𝑈2state) which defines the weakly bound state 

(detached). The friction coefficient 𝜆 is equal for both of the 

states. When the motor is in the attached state it perceives the 

effect of the 𝑈1 potential and a white noise. If the motor 

captures an adenosine triphosphate (ATP) molecule, it 

switches to the detached state and notices only the white 

noise effect. It is remarkable that the motor can capture an 

ATP molecule only in a small neighbourhood δ around the 

𝑈1 potential minimum (δ ≪ 𝑙) after a typical mean time 1/τ′. 

KIF1A will return to the attached state after a lifetime of 1/τ. 

Motors excite and decay stochastically, with exponential 

distributed times with average values 1/τ′ and 1/τ [4]. Due to 

the asymmetry of the sawtooth potential the motor will go 

ahead with more probability than going backwards.  

The model has an important parameter that is worth to 

taking into account, which is the ratio β = τ/τ′.  

A. Simulation of the motor dynamics in one 

dimension 

Even though the aim of this project is to study the 

properties of a MT with a barrier as an obstacle, and how a 

single molecular motor like KIF1A could circumvent it, it is 

suitable to start from the simplest case: a motor in one 

dimension without barrier. This will be a way to ensure that 

the simulation is working properly. It has been considered a 

1D lattice with the potential showed in Fig. (1), and Eq. (1) 

can be integrated numerically with the stochastic Euler 

algorithm 

 

      

      𝑥(𝑡 + 𝛥𝑡) = 𝑥(𝑡) −
1

𝜆

𝑑𝑈(𝑥(𝑡))

𝑑𝑥
𝛥𝑡 −

𝐹

𝜆
𝛥𝑡 + 𝑅√2𝐷𝛥𝑡 . 

vs 

(3) 

Where D is the diffusion coefficient 𝐷 =
𝑘𝐵𝑇

𝜆
 and it is the 

same for both potentials 𝑈1and 𝑈2, the integrating time step 

must be sufficiently small to make sure that the diffusion 

term and the deterministic velocity term are of the same 

order, R is a random Gaussian variable with average equal to 

0 and variance equal to 1. The main parameters used in this 

model are realistic values obtained in the literature [4,5,3,10] 

and are shown in Table 1. The parameter β gives information 

about the time that a motor has to wait to capture an ATP 

molecule at the minimum potential compared with the time 

that the motor is traveling in the 𝑈2 diffusive state. A β = 0 

state indicates that there is a high ATP concentration in the 

environment and the dwell time is negligible. This case is 

studied and compared in this 1D simulation, however in the 

following sections it is only analysed the β ≠ 0 case. 

 

Parameter Value 

Periodicity l=8 nm 

Asymmetry parameter a=0.2l nm 

Excitation region δ=0.02l nm 

Excitation rate τ'≤ 250 s-1 

Decay rate τ=250 s-1 

Diffusion coefficient D=20 nm2/ms 

Potential maximum U=20kBT 

TABLE 1. Values for the main parameters for the simulation of 
KIF1A motor. All values are completely realistic except for the 
asymmetry parameter a, which is difficult to extract from 
experiments. This parameter reduces the velocity of the motor 
and its value has been adjusted in order to simulate the real 
skills of the motor.  

 
FIG 2. Displacement of the KIF1A motor along the ratchet 
potential. 

 
FIG 3. Representation of the Velocity-Force curves for 𝛽 = 0 
(Blue) and 𝛽 = 2.5 (Red). The stall force of a single motor is 
≈0.1 pN.The statistical error is comparable to the size of the 
dot. 

Iterating the equation (1) we obtain a stochastic 

achievement of the KIF1A motor trajectory in different 

conditions of external load. In Fig. (2) it can be seen the 
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advance of the motor, verifying that the asymmetry of the 

sawtooth potential, together with the fact that there is a region 

where the velocity is negative, only makes the advance more 

slow. Checking the truthfulness of the simulation we have 

represented the average velocity in terms of the external 

force. 

The results in Fig. (3) are consistent with the ones 

reported in the literature [5,8]. 

B. Simulation of the motor dynamics in two 

dimensions 

The validity of the results obtained in the one dimension 

case let us keep on with the simulation and introduce the 

second spatial coordinate, thus creating a two-dimensional 

surface. In consequence, the potential form has to change 

adapting to the surface. The potential reproduced in Ref. [9],  

adapts to a two-dimensional oblique Bravais lattice with 

primitive vectors 𝒂𝑖, 𝑖 = 1,2, forming an angle 𝜃 > 0, which 

is modelling the MT structure.  

The position of the motor in the surface is denoted as 𝒓 =
𝑥𝒆𝑥 + 𝑦𝒆𝑦 and the position of the nodes 𝑹(𝑛1, 𝑛2) = 𝑛1𝒂1 +

𝑛2𝒂2, where 𝑛1and 𝑛2 are integer numbers. The primitive 

vectors of the lattice are: 

 

 𝒂1 = 𝑙1𝒆𝑦 

 

 

 𝒂2 = 𝑙2(−sin𝜃𝒆𝑥 + cos𝜃𝒆𝑦) (4) 

 

Where  𝑙1 and 𝑙2 are the periodicities for the primitive 

directions respectively, and 𝜃 = 80°. The reciprocal basis 

obtained are 

 
𝒒1 = 2𝜋

𝒂2 × 𝒆𝑧

|𝒂1 × 𝒂2|
=

2𝜋

𝑙1

(cot𝜃𝒆𝑥 + 𝒆𝑦) 

 

 

 
𝒒2 = 2𝜋

𝒆𝑧 × 𝒂1

|𝒂1 × 𝒂2|
= −

2𝜋

𝑙2

(csc𝜃𝒆𝑥) 

 

(5) 

Once the reciprocal basis is set, it has to be proposed an 

adequate potential, this potential will be asymmetric and 

periodic in the primitive directions. The one chosen is 𝑈 =
𝑉1 + 𝑉2 with 𝑉1and 𝑉2 

 

      
      𝑉𝑖(𝑥, 𝑦) = 𝑉0[sin(𝒒𝑖 ∙ 𝒓) + 𝜇𝑖 sin(2𝒒𝑖 ∙ 𝒓)] 

vs 

(6) 

Where 𝑉0 is the amplitude of the chosen potential and 

𝜇𝑖 ∈ [0,
1

2
] , 𝑖 = 1,2 are the asymmetry parameters for the 

primitive directions. For illustrative purposes the potential is 

represented in Fig. (4). 

Assuming the validity of this assumptions we have to 

determine the value of the periodicity 𝑙2, and the asymmetry 

parameters 𝜇1 and 𝜇2. KIF1A travels along a microtubule that 

is made of 13 protofilaments, which means that the motor has 

to overcome 13 potential peaks in the transverse direction to 

make a full turn around the MT. Dividing the perimeter of the 

filament over the number of potential peaks 𝑙2 =
2𝜋𝑟

𝑁
, the 

periodicity of the transversal coordinate can be easily 

calculated. The value of the MT radius is between 12 nm and 

12.5 nm, then 𝑙2~6 𝑛𝑚. The asymmetry parameter of the 

parallel coordinate 𝜇1 can be calculated imposing only one 

dimension y in the proposed potential. We know that the 

periodicity of the parallel y direction of the MT is 𝑙1 = 8 𝑛𝑚. 

Therefore, making 𝑥 = 0 and 𝑦 ≠ 0 the value of the 

asymmetry parameter 𝜇1 which reproduces better the results 

obtained in the one-dimensional case for 𝛽 = 2.5 is 0.23.  

In order to obtain the value of the asymmetry parameter 

of the transversal coordinate 𝜇2, we have focused on some 

experimental results that give the value of the pitch of a 

single motor in absence of an external force. Simulating the 

dynamics of the KIF1A motor along the 2D potential, with 

the values of the parameters obtained above, for different 

values of the asymmetry parameter we can obtain the total 

displacement in X and Y directions. The pitch P is the 

distance that the KIF1A motor has to travel in the parallel 

direction in order to complete a full turn in the transversal 

direction of the MT. Using the X, Y displacements calculated 

before, the total angle spanned is 𝛼 = arctan (
𝑋

𝑌
). By using 

this angle and the radius of the MT it is possible to calculate 

the pitch 

  

      𝑃 = 2𝜋𝑟cotan(𝛼) 
 

 

(7) 

 

These results are shown in Table (2) where it can be seen  

the relation between the pitch and the 𝜇2 parameter. 

Experimental results give a value of the pitch for a single 

monomeric kinesin of 300 nm approximately [8]. This model 

shows that the asymmetry parameter that simulates this result 

is 𝜇2 = 0.07. This result gives a value for the parallel and 

transversal velocities of 𝑣𝑌 = (0.149 ± 0.001) 𝜇𝑚/𝑠 and 

𝑣𝑋 = (−0.036 ± 0.001) 𝜇𝑚/𝑠. 

 

Pitch (nm) Asymmetry parameter 𝝁𝟐 

433 0.05 

348 0.06 

306 0.07 

254 0.08 

230 0.09 

215 0.10 

191 0.11 

TABLE 2. Values of the pitch for different transversal asymmetry 
parameters. The statistical error of the pitch values is about 
10% of its value. 

 

FIG 4. 2D potential with the parameters 𝑙2, 𝜇1and 𝜇2 finded. 

1.5·10-19 

-1.5·10-19 
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III. RESULTS 

Once the variables of the model are set and the simulation 

gives accurate and realistic results for the KIF1A motor 

dynamics in the MT, the obstacle can be introduced in the 

system. 

The complex structure of a filament with a ratchet 

potential such as the modelled in the previous section enables 

the motor to advance through the parallel direction with a left 

biased motion in the transversal direction. This results in a 

helicoidal motion of the monomeric kinesin along the MT 

surface. This ability of twisting around a tube gives the motor 

a chance to avoid obstacles. Due to the left-handed biased 

motion, if something obstruct the parallel displacement from 

the kinesin, the motor will be able to surround the obstacle 

and keep on with the vesicle transport. 

That obstacle can be a traffic jam or an inefficient kinesin 

obstructing other motors. A possible choice to model this 

type of impediment is a gasussian potential barrier in the MT 

surface. This barrier will be formed by a series of small 

gaussian potentials placed side by side along the transversal 

direction of the filament. The form of these small potentials is 

 

 

𝐺(𝑥, 𝑦) = 𝑉𝐺𝑒𝑥𝑝 (− (
(𝑥 − 𝑥0)2

2𝜎𝑥
2

+
(𝑦 − 𝑦0)2

2𝜎𝑦
2

)) 

 

(8) 

where 𝑉𝐺 is the gaussian height and it is 5 times larger than 

the ratchet potential maximum, 𝜎𝑥 and 𝜎𝑦 are the x, y width 

with values 1.5 nm and 0.5 nm respectively, 𝑥0 and 𝑦0 values 

are the position of the centre of each small potential barrier. 

Coupling the barrier with the described ratchet potential, the 

general form will be 𝑈(𝑥, 𝑦) = 𝑉1(𝑥, 𝑦) + 𝑉2(𝑥, 𝑦) +
𝐺(𝑥, 𝑦). This model will consist in a 300 nm length filament 

with a perimeter of 75 nm with a gaussian wall placed 

transversally at the centre of the MT. For the simulation, the 

gaussian wall will adopt different values of its transversal 

width, from 37.5 nm, which is a half of the period, to 0 nm 

for the control situation. Simulating for the first time in the 

literature how a motor can overcome this type of barrier, the 

mean first passage time obtained will be shown in Fig. (5).  

 

 
FIG 5. Representation of the average time that a motor needs 
to travel 300 nm in the parallel direction in front of different 
widths of the potential barrier. 

The representation above shows the difference between 

the traveling times in a MT without any obstacle in 

comparison with the time with an obstacle of different width. 

In order to improve the interpretation of these results in Fig. 

(7) and Fig. (6) there are represented the first passage time 

for a simulation with a half period barrier and for the free 

track simulation respectively.  

 

 
FIG 6. First passage time for a simulation with no barrier. 

 
FIG 7. First passage time for a simulation with a half-period 
barrier. 

By comparing these two graphics it can be observed that 

the peak of the first passage time with a half-period barrier is 

lower than the no-barrier, and the tail of the histogram is 

wider. This is due to the potential barrier, that make the 

motors move slower than in the no-barrier case. 

To summarize, draw upon experimental results, in this 

work we have developed a model to describe the dynamics of 

the KIF1A motor along a filament with a potential barrier in 

order to study the behaviour of a single kinesin in demanding 

trafficking conditions. 

 

IV. CONCLUSIONS 

 

 The ideas that emerge from the analysis of the 

previous sections can be briefly summarized. We 

have developed a two-dimensional model that 

simulates the dynamics of a single monomeric 

kinesin in an impaired filament. The reduced 

mobility of these motors caused by obstacles in the 

microtubule is a possible cause of several 

neurodegenerative diseases. The model is based in 

a two-state ratchet potential solved by a Langevin 

equation and simulated with a stochastical Euler 

method, first simulating for one dimension and 

later extending to the two-dimensional case. Both 

situations have reported satisfactory results, 
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sustaining our hypothesis. Introducing real values 

obtained from experiments in some parameters of 

the model, we have found  evidence of the effect 

that an obstacle causes to the KIF1A motion. The 

potential wall introduced is modelled as a series of 

gaussian potentials along the transversal direction 

of the microtubule. This model allows to extract 

information about the monomeric kinesin 

dynamics along a MT that is hardly accessible 

from experimental observation. To our knowledge 

this is the first time in the literature that a model 

which incorpores a potential barrier is simulated.    

 The conclusions of this work encourage to delve 

into the study of monomeric kinesin motors and 

expand our knowledge about this topic. The results 

obtained could be improved by iterating more 

cases in the simulation, consequently reducing the 

statistical error of some parameters. The next 

logical step would be to do more realistic the 

traffic jam approximation and change the form of 

the potential barrier. An example could be if it was 

formed by a random distribution of single gaussian 

potentials, emulating a certain number of 

inefficient kinesins which were obstructing the 

vesicle transport in axons. Another situation to 

take into account would be to put an external force 

and find the dependence of the first passage time 

with the external force. To conclude this study, it 

would be worth to mention an interesting 

phenomena not studied in this work such as the 

behaviour of a group of motors acting collectively. 

Such study could completely change and definitely 

improve our whole understanding of the axonal 

transport. 
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