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Recent studies into community level dynamics are revealing processes and patterns that underpin the biodiversity and
complexity of natural ecosystems. Theoretical food webs have suggested that species-rich and highly complex communities
are inherently unstable, but incorporating certain characteristics of empirical communities, such as allometric body size
scaling and non-random interaction distributions, have been shown to enhance stability and facilitate species coexistence.
Incorporating individual level traits and variability into food web theory is seen as a future pathway for this research and our
growing knowledge of individual behaviours, in the form of temperament (or personality) traits, can inform the direction
of this research. Temperament traits are consistent differences in behaviour between individuals, which are repeatable across
time and/or across ecological contexts, such as aggressive or boldness behaviours that commonly differ between individuals
of the same species. These traits, under the framework of behavioural reaction norms, show both individual consistency
as well as contextual and phenotypic plasticity. This is likely to contribute significantly to the effects of individual trait
variability and adaptive trophic behaviour on the structure and dynamics of food webs, which are apparently stabilizing.
Exploring the role of temperament in the context of community ecology is a unique opportunity for cross-pollination

between ecological fields, and can provide new insights into community stability and biodiversity.

The biodiversity paradox

Despite almost a century of ecological research, the
persistence of highly biodiverse communities through time
remains a paradox. The ‘biodiversity paradox’ revolves around
the fact that there are many more species present in natural
communities than are predicted by the principles of niche
occupancy and competitive exclusion (Clark et al. 2007).
Simple models of food webs predict many fewer species
than are in fact observed in nature (McCann 2000). While
classical ecological theory would suggest that subtle differ-
ences must exist between species to permit their coexistence,
more recent theory suggests that ‘ecological equivalence’ of
species can occur (Hubbell 2006). An understanding of pro-
cesses which underpin species coexistence and persistence
has wide ranging applications in ecology and environmental
management, from managing invasive species (Baiser et al.
2010, Ho et al. 2011) to predicting the effects of climate
change (Binzer et al. 2012).

Food-web analysis measures the flow of energy through
communities and commonly shows that natural communi-
ties are both biodiverse and characterised by non-random
structures, such as triangular motifs of one consumer and
two resources (Milo et al. 2002). There is a stark contrast
between this and the landmark community modelling work
of May (1972), which showed a negative relationship between

community complexity and stability in simple models of
randomly interacting species. Stability refers to the tendency
of a system to return to equilibrium following a perturbation,
and the persistence of large, complex and species-rich com-
munities is paradoxical based on our current understanding
of ecological processes (Allesina and Tang 2012).

The strength, distribution and diversity of interactions
(e.g. predator—prey, competitive and mutualistic) across
communities of organisms are closely related to its stabil-
ity (Gross et al. 2009, Allesina and Tang 2012). Simplistic
models of food webs assume that a species interacts uniformly
with its prey and predator species, ignoring that individuals
or groups of individuals may specialize on certain resources,
or differ in their susceptibility to predation (Valdovinos
etal. 2010). Incorporating intraspecific variability in trophic
roles influences food webs through multiple mechanisms,
such as altering the strength of interactions between spe-
cies, with intraspecific variability decreasing average inter-
action strength and increasing the average number of links
between each node/species within the food web (Bolnick
et al. 2011). These have stabilising effects on the dynam-
ics of food webs (Dunne et al. 2002, Gross et al. 2009).
Broadly, researchers are now developing a more nuanced
understanding of which characteristics of organisms, species
and their interactions may promote and maintain biodiver-
sity. For example, the inclusion of ‘real world’ ecological
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characteristics, such as allometric body-size scaling (Brose
et al. 2006, Tang et al. 2014), diversity and heterogeneity of
interaction types (Akihiko and Michio 2014, Wenfeng and
Kazuhiro 2014) and adaptive foraging behaviour (Uchida
et al. 2007, Valdovinos et al. 2010), has improved our
understanding of the processes which support biodiversity.
These characteristics are commonly found to have a positive
effect on stability in complex food webs, often by reducing
the strength of predator—prey and competitive interactions,
which are thought to have destabilizing effects (Allesina and
Tang 2012).

The study of individual differences in animal behaviour,
via temperament traits, may be a factor that influences the
dynamics of communities, and in particular their stability.
Temperament (or personality; Wolf and Weissing 2012)
traits are consistent differences in behaviour between indi-
viduals of the same species, which are repeatable across
time and/or across ecological contexts (Réale et al. 2007).
Researchers are increasingly recognising the importance
of individual traits and intraspecific variability in ecology,
from both the community (Thompson et al. 2012b) and
behavioural ecology perspectives (Sih et al. 2012, Wolf and
Weissing 2012). For example, trait differences between
individuals, such as temperament, influence the outcome
of ecological interactions that make up food webs (Bolnick
et al. 2011). In addition, there is a complex relationship
between temperament and adaptive trophic behaviour
(ATB), i.e. the ability of animals to behaviourally respond
to changes in their trophic environment to increase fitness,
which has also been shown to affect community stability
(Valdovinos et al. 2010). A growing body of experimental
research is demonstrating that responses to ecological pres-
sures linked to temperament may be common, via ontogenic

effects on the behavioural type of individuals (McGhee

and Travis 2011, Niemela et al. 2012, Adamo et al. 2013,
McDermott et al. 2014) and temperament-biased selection
(Réale and Festa-Bianchet 2003, Bell and Sih 2007). Here,
we will describe the growing body of evidence that tem-
perament traits influence trophic interactions, and suggest
approaches to temperament and community studies that
will allow greater integration of these currently disparate
areas of ecology.

Resource segregation within species — the role of
temperament

A simple mechanism through which variation in tempera-
ment may influence stability is through resource segregation
at a population level. Variation in temperament is related to
differences in resource use among individuals (Kobler et al.
2009, Patrick and Weimerskirch 2014), suggesting tempera-
ment promotes resource segregation. Total niche width, i.e.
the variance in the niche occupied by a species, is divided
into within-individual and between-individual components
(Montiglio et al. 2013). Total niche width being equal,
populations with high between-individual niche variance
will have higher degrees of individual resource segregation,
whereas high within-individual niche variance suggests
greater overlap of resource use between individuals. The
portfolio effect is one mechanism in population dynamics
through which temperament’s effects on resource segregation
may enhance population stability, where decreased competi-
tion between individuals with high phenotypic differences
buffers populations against temporal fluctuations (Bolnick
etal. 2011).

Empirical evidence suggests that resource segregation can
be a response to increased intraspecific competition (Araujo
etal. 2011) and specialisation facilitates resource partitioning

Glossary

year.

food web actually is (Thompson et al. 2012a).
positively affect connectance (Thompson et al. 2012b).

following a perturbation (Allesina and Tang 2012).

(generally > 50 % species loss; Dunne et al. 2002).

2007).

Community. All organisms that are present within an ecosystem, which may be defined spatially and temporally, for
example an aquatic community may be defined to include all aquatic organisms that are found within a lake over a

Food web. This includes all the organisms within a community and the links/trophic interactions between those species.
Trophic interaction. This refers to the consumer—resource or predator—prey interactions that make up a food web, i.e. one
organism consuming another both within and between species.

Interaction strength. In a food web context, this is a measure of the degree that one species affects another species’
population size, biomass or production, generally in a predator—prey interaction (Thompson et al. 2012a).
Connectance. The proportion of all possible links within a food web that occur, as a measure of how interconnected a

Omnivory. Omnivory occurs where a species within a food web feeds across multiple trophic levels, which will
Stability. Stability of food webs refers to the tendency for the food web to return to its previous structural configuration
Persistence. Persistence in model food webs is measured as the proportion of species remaining following a simulation, to
measure the likelihood of extinctions arising from certain food-web models (Stouffer and Bascompte 2011).

Robustness. The minimum proportion of species that, if removed from a food web will induce a significant collapse

Temperament. Temperament (or personality; Wolf and Weissing 2012) traits are consistent differences in behaviour
between individuals of the same species, which are repeatable across time and/or across ecological contexts (Réale et al.
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and lower levels of intraspecific competition (Ravigne et al.
2009). Svanbick and Bolnick (2007) showed that populations
of three-spine sticklebacks Gasterosteus aculeatus in environ-
ments with increased intraspecific competition had higher
levels of between-individual diet variance. Individuals with
differing morphological traits specialized on specific prey
items, demonstrating that competition can drive resource seg-
regation — and that intraspecific trait differences are a mech-
anism through which this can occur within ecological time
scales.

The links between temperament and resource use suggest
that behavioural differences positively influence popula-
tion-level persistence. Intraspecific differences in metabolic
requirements and food intake appear to be associated with
temperament to a degree (Careau et al. 2008, Bell et al.
2009). Temperament has been linked to differing prey
selection in largemouth bass Micropterus salmoides, where
less exploratory individuals preferentially fed on more novel
prey types (Nannini et al. 2012). Temperament traits, par-
ticularly boldness differences, have been linked to differ-
ences in where an animal forages. A study of Steller’s jays
Cyanocitta stelleri showed that bolder individuals fed on a
wider range of food sources (Rockwell et al. 2012). In black-
browed albatross 7halassarche melanophrys, the boldness of
individuals was associated with spatial variability in forag-
ing, where shyer individuals would forage further from their
colony than bold individuals (Patrick and Weimerskirch
2014). Also, temperament can determine an individual’s role
within social structures (Bergmiiller and Taborsky 2010),
which can be seen as a mechanism to assist resource alloca-
tion within populations. For example, between-individual
differences in the behaviour of social spiders Stegodyphus
spp. are increased by repeated social interactions (Laskowski
and Pruitt 2014, Modlmeier et al. 2014a). By facilitating
social structures, variation in temperament may promote
resource allocation, mitigate intraspecific competition and
positively influence population-level persistence (Montiglio
etal. 2013).

Plastic changes in temperament traits in response to
environmental factors can mitigate the negative effects of
intense intraspecific competition. For example, aggressive
behaviours can facilitate the establishment of dominance
relationships within social structures, allowing allocation
of resources without conflict (Ang and Manica 2010).
High aggression can be one potential context-specific plas-
tic response to conflict and increased competitive pressure
(Wilson et al. 2011), but studies looking at aggression as a
consistent temperament trait have shown similar patterns. In
bluefin killifish Lucania goodie, food resource limitation in
the early life stages produced adult males with more aggres-
sive temperaments (McGhee and Travis 2011), which may
be linked to social resource allocation in adults. Similarly, in
great tits Parus major, resource limitation in early life stages
was shown to increase aggression and exploration traits in
some individuals (Carere et al. 2005). Resource segrega-
tion may be enabled by the presence of temperament traits
in populations and by changes in the behavioural type of
individuals. Furthermore, diet differences have been shown
to promote the development of intraspecific trait varia-
tion, both morphological and behavioural (Oudman et al.
2016). As resource segregation can increase the stability and

potential size of a population, it is a simple mechanism that
could promote the development of individual behavioural
differences within populations. This is possible where varia-
tion in temperament facilitates more stable population struc-
tures, giving it a systemic selective advantage (Borrelli et al.
2015). This further suggests that temperament will influence
a community’s stability by increasing the persistence of its
constituent species.

Linking animal temperament and trophic
interactions

A growing body of experimental research is showing that an
animal’s temperament is associated with ecological interac-
tions, particularly those relevant to community dynam-
ics (Table 1, Fig. 1). Community dynamics have generally
been studied using network analysis tools, focusing on
trophic, competitive and mutualistic interactions (Dunne
2006, Allesina et al. 2008, Wenfeng and Kazuhiro 2014).
Trophic interactions (i.e. one organism consuming another)
have received the majority of attention and are particularly
important to the complexity—stability relationship in food
webs (Allesina and Tang 2012). Here, we look at the con-
nection between trophic interactions and temperament from
both the consumer’s perspective (i.e. feeding and foraging)
and the prey’s perspective (i.e. predation effects). In addition,
we consider connections between temperament and com-
petitive interactions, which are interactions that negatively
influence the complexity—stability relationship in communi-
ties (Allesina and Tang 2012).

Predator—prey interactions: the consumer’s perspective

An animal’s temperament can be linked to its individual
diet and foraging method, and the collective foraging behav-
iours of a population are also influenced by temperament
traits (Michelena et al. 2010). In multiple species of birds,
individual’s behavioural type determined the role (producer
v scrounger) they took within a foraging group (Kurvers
et al. 2012b, Jolles et al. 2013). Similarly, the composition
of behavioural types within a group influences the outcome
of collective decision making. This can influence a group’s
choice of where to forage (Michelena et al. 2010), foraging
methods (Keiser and Pruitt 2014), foraging success (Kurvers
etal. 2012a, Blight et al. 2016), as well as collective defence
behaviours (Modlmeier et al. 2014b). Temperament traits in
predators appear to be a major source of intraspecific vari-
ability influencing predator—prey interactions, and changes
to the composition of behavioural types in populations is
a potential mechanism through which group foraging can
adapt to change.

There is strong evidence that temperament traits are
associated with between-individual differences in adaptive
foraging behaviours, i.e. the ability to switch between
foraging methods and food sources. This is shown in the
relationship between certain traits and the temporal vari-
ability and predictability of food sources. In guppies Poecilia
reticulata, individuals raised on an unreliable, temporally
variable food source show increased boldness levels as adults
(Chapman et al. 2010). Furthermore, bolder individuals can
show different foraging preferences based on their reliability,
with shy individuals preferring more predictable food sources
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Trophic community
Community can be characterised
by species richness and
composition, as well as the
interactions between those species
(i.e. predator-prey, feeding and
foraging, competitive interactions)

Predation
Personality biased-selection can influence
population level temperament.

Predator exposure can cause plastic changes
in these traits within individuals.

l

Population

to multiple traits.

Composition and variability
in temperament may apply

Individual
Exploration Activity
Sociability Boldness
Aggression

Y

Competition
Resource competition
[ influences Sociability,
| Exploration and
Aggression at an
individual and
population level.

The temperament composition of a population or social
group influences collective foraging decisions.

Feeding/Foraging
Boldness traits influence individual's foraging decisions
and adaptive foraging ability.

Figure 1. Individual temperament traits within a population and community context.

(Ferrari et al. 2014). An implication of this is that individu-
als with different temperament traits are more able to adapt
and change their foraging behaviours than others. This has
been observed in great tits, where more exploratory individ-
uals were better able to cope with the loss of a food source
by switching to spatially different sources (van Overveld and
Matthysen 2010). These examples suggest that adaptive/
non-adaptive foraging is itself an intraspecific behavioural
axis. How individual and population ATB interact, particu-
larly how the presence of more adaptive individual foragers
influences the collective ability of populations to adapt to
change, is an important question for future research.

Predator—-prey interactions: the prey’s perspective

An animal’s temperament influences the outcome of indi-
vidual interactions with their predators. Risk-taking tenden-
cies, i.e. boldness traits, are often conflated with predator
response behaviours, as the risk of being predated is highly
relevant to an animal’s risk-taking tendencies in a natural
setting. A common method of testing boldness is through
predator exposure or fright stimulus assays (Wilson and
Godin 2009, Chapman et al. 2010), such that individual
boldness differences within populations can imply that
there are intraspecific differences that effect predator—prey
interactions (Dosmann and Mateo 2014). Furthermore,
studies have shown that temperament traits can predict an
individual’s susceptibility to predation. For example, in a
beetle Zénebrio molitor, boldness was associated with greater

susceptibility to aerial predation (Krams et al. 2013), while
more exploratory lemon damselfish Pomacentrus moluccensis
had higher survival rates when exposed to a predator
(White et al. 2013). In situations where both predator and
prey have variation in temperament, the outcome of preda-
tor and prey interaction is jointly determined by both behav-
ioural types (DiRienzo et al. 2013, Sweeney et al. 2013). For
black turban snails Chlorostoma funebralis and their preda-
tor, ocher sea stars Pisaster ochraceus, more active predators
favoured snails with greater predator avoidance behaviours
whereas less active predators favoured snails with low preda-
tor avoidance behaviour (Pruitt et al. 2012b). Temperament
can have fitness consequences for individuals relating to
predation and is a source of intraspecific variability influ-
encing predator—prey interactions, potentially leading to
changes in prey foraging behaviour and altering predator—
prey functional responses.

Temperament traits of prey species are also associated
with phenotypic responses to predation. Sub-lethal interac-
tions with predators may lead to shifts in individual’s behav-
ioural response traits. For example experiments in a field
cricket Gryllus texensis showed that individuals demonstrated
increased shelter-seeking behaviour post-exposure (Adamo
etal. 2013). Similarly in three-spined sticklebacks, individu-
als had behavioural types with reduced aggression following
predator exposure (Bell and Sih 2007). These changes in
behavioural responses may represent shifts in phenotype
in response to environmental factors, e.g. past predator
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exposure, which is potentially a form of plasticity distinct
from flexible, context-specific behavioural responses.

Temperament traits of prey populations have been shown
to be associated with the level of predation pressure, which
suggests that temperament does not necessarily inhibit
responses to predation pressure and may mitigate the effects
of predator interactions (Brydges et al. 2008, Harris et al.
2010, Archard and Braithwaite 2011). A long term study of
Eurasian perch Perca fluviatilis showed that, over six years,
increases in predation pressure were associated with reduced
boldness levels of juvenile fish (Magnhagen et al. 2012). The
mechanisms for these population-level responses appear to
be a combination of differences in selective pressure associ-
ated with behavioural types and plastic personality responses
to sub-lethal interactions. Bell and Sih’s (2007) predator
exposure and predation survival experiment on three-spined
sticklebacks showed that selection and plastic responses
combined to influence the population’s behavioural charac-
teristics. Non-aggressive and bold individuals had the highest
rates of mortality, whereas non-lethal predator exposure
induced a decrease in aggression, but not boldness. This
suggests that temperament responses to predation poten-
tially have a significant effect on the characteristics of that
predator—prey interaction.

Studies that have incorporated multiple trophic inter-
actions provide further evidence that temperament is a
source of intraspecific variability influencing trophic inter-
actions and that this can mitigate the cascading effects of
predation pressure on communities. An example is the
relationship between food and fear in meso-predators,
which experience the dual ecological pressures of forag-
ing and dealing with predation pressure (McArthur et al.
2014). There is increasing evidence that there may be a
tradeoff between anti-predator behaviours/predator vigi-
lance and foraging decisions, and temperament plays a
role in this (Stamps 2007). For example, in the agama
lizard Agama aculeata, exploratory individuals that spent
more time foraging had a higher rate of tail loss, suggest-
ing greater susceptibility to predation (Carter et al. 2010).
Risk-sensitive foraging as a boldness trait, which measures
an animal’s willingness to forage in areas of high-predation
risk, explores this tradeoff as it is inherently related to both
foraging and predator interactions. For example, both
grey mouse lemurs Microcebus murinus (Dammhahn and
Almeling 2012) and brushtail possums Trichosurus vul-
pecula (Mella et al. 2015) that are bolder in a novel object
test were willing to expose themselves to a greater risk of
predation when feeding. This has been characterised as a
behavioural mechanism to mitigate the effects of preda-
tion through differences in foraging effort (Elvidge et al.
2014). Furthermore, this demonstrates how temperament
traits may influence how perturbations propagate through
food webs, by dampening the negative impacts of strong
predator—prey interactions.

Competition and temperament

Temperament has been shown to drive competitive
interactions both within and between species (Blight et al.
2016, Lichtenstein et al. 2016), and may facilitate adaptive
responses under competition. Aggression and exploration are
common traits studied in this context. For instance, explor-
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atory behaviour was positively correlated with competitive
success in great tits (Cole and Quinn 2012), but negatively
correlated in the zebra finch (David etal. 2011). In a mammal,
Merriam’s kangaroo rat Dipodomys merriami, interspecific
competition was positively correlated with increased aggres-
sion (Dochtermann et al. 2012). The fitness of eastern
bluebirds Sialia sialis under high interspecific competition
favoured highly aggressive or non-aggressive behavioural
types over intermediate types (Harris and Siefferman 2014).
Intraspecific behavioural differences potentially reduce the
strength of interspecific competitive interactions and may
mitigate the negative effects of competition on community
stability (Bolnick et al. 2011). Understanding competition
as a potential driver of intraspecific behavioural differences
and the nature of individual behavioural responses to com-
petition is crucial to the integration of behavioural and
community ecology.

Moving to the whole food web

Several characteristics of temperament traits may have
broad-scale effects on the structural and dynamic features
of food webs. Temperament traits are characterised by par-
tial consistency, where meta-analysis has shown the mean
repeatability across behavioural traits to be approximately
0.37 (where 0 = no repeatability, 1 = absolute repeatability,
Bell et al. 2009). The framework of behavioural reaction
norms characterises behavioural traits according to both
their repeatable and plastic components, which are both
potentially subject to ecological pressures (Dingemanse
etal. 2010). Additionally, behavioural traits may show phe-
notypic plasticity, via changes to the mechanisms under-
lying repeatable behavioural traits due to environmental
effects (e.g. hormonal responses), such as early life experi-
ence with food limitation or non-lethal exposure with a
predator (McGhee and Travis 2011, Adamo et al. 2013).
Considering each of these characteristics of behavioural
traits, temperament may influence food-web interactions
through intraspecific variability, but also by affecting adap-
tive responses in populations through temperament-biased
selection and in individuals through behavioural and phe-
notypic plasticity. Incorporating this is crucial to our under-
standing of the structural and dynamic properties of real
world food webs and the role of biodiversity within those
communities (Fig. 2).

Community modelling techniques

Studies of ecological communities often use network analy-
sis approaches to quantify stability at a community level.
Analytical approaches can be broadly divided into two
approaches (Thompson et al. 2012b). Firstly, structural
approaches which describe the topology of networks in
terms of the species present and the architecture of their
interactions (Dunne 2006, Allesina et al. 2008). Principle
inputs into this analysis include the number of species inter-
acting and connectance, i.e. the links between those species
(Brose et al. 2006). Emergent variables from structural anal-
ysis can infer greater stability, persistence or robustness in a
food web, such as the distribution of links among species,
the mean trophic level among consumer species, the mean
and distribution of interaction strengths and the degree of
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Figure 2. Linking temperament to food web effects.

omnivory, particularly in top-predator species (Dunne et al.
2002, Martinez et al. 2006, Gross et al. 2009, Allesina and
Tang 2012).

The second approach analyses the dynamics of food
webs to predict the temporal variability in the abundance or
biomass of constituent species or the likelihood that species
(or nodes) and the links between nodes will disappear from
the food web. Generally this approach employs general

population dynamic equations of the form (Valdovinos et al.
2010):

dN.
dt] =N+ D egN, = 3 guN,

ieR; keC;

For a general species, j, inputs are their abundance, biomass
or density (Nj), their intrinsic growth rate (rj), their functional
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response (g;) and conversion efficiency (e;) of prey species 7,
and their functional response to a predator species, # (g;), of
size N,. By altering the terms of this equation the theoretical
effects of ecological characteristics on food-web stability can
be analysed, such as allometric scaling (Brose et al. 2006) and
compartmentalisation (Stouffer and Bascompte 2011). These
approaches allow us to investigate the community character-
istics that influence the stability, persistence and robustness
of food webs, including structural patterns (Martinez et al.
2006). For example the effects of adaptive behaviour in prey
species may be analysed, in part, by modifying the functional
response factors, g, to predator 4, which can have stabilising
effects (Kondoh 2007). As the modelling of the repeatable
and plastic components of behaviour are rapidly progressing
(Dingemanse et al. 2010), this is a unique opportunity to
explore the effects on food webs of adaptive responses stem-
ming from plasticity in behavioural responses and pheno-
types. Where introducing these elements enhances stability
in larger, more complex communities, systemic selection
would promote greater biodiversity in ecosystems (Borrelli
etal. 2015). This is a mechanism through which intraspecific
behavioural variability may enable complex species-rich food
webs to persist and is a means to answering the biodiversity
paradox.

Temperament as a source of intraspecific trait variability
The structure and topography of food webs is altered by
the presence of intraspecific trait variability. This is because
interactions between individuals are the interface where food-
web interactions actually occur (Thompson et al. 2012b).
In addition to the within-population effects outlined above,
Bolnick et al. (2011) proposes multiple mechanisms through
which intraspecific trait variability alters the strength and
distribution of trophic interactions. For example, where
a trait is non-linearly related to an interaction (Jensen’s
inequality; Ruel and Ayres 1999), mean interaction strength
and the functional response to predator/prey species are
altered. Similarly the presence of trait variation that influ-
ences trophic interactions will tend to decrease the strength
of interactions but increase node degree, i.e. the number of
links to a node/species, which are thought to increase sta-
bility and robustness in food webs (Bolnick et al. 2011).
Pruitt et al. (2012a) manipulated the composition of aggres-
sive temperaments in spider colonies (Anelosimus studiosus),
where aggressive, docile and mixed colonies each had differ-
ing interactions with their local insect community. This also
had indirect effects on interspecific interactions throughout
their community, showing that both the mean and variance
of temperament traits in one species can have wide ranging
effects at this level.

Similarly, trait-biased selection can drive rapid popula-
tion level shifts in phenotype where those traits are at least
partially heritable. Where this occurs under predation for
example, the selection is likely to alter the species” functional
response to that predator (Bell and Sih 2007, Bolnick et al.
2011). Moya-Larano (2011) has shown how trait variability
(in terms of growth rates) influences the structural compo-
nents of model food webs by decreasing predator speciali-
sation, resulting in increased connectance, omnivory and
variation in interaction strengths and an overall decrease in
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interaction strengths (Moya-Larano 2011). These changes
suggest that intraspecific differences have a positive effect on
food-web stability and persistence.

Trophic cascades are an example where intraspecific
variation, particularly in behavioural traits, may act as a
buffer against changes to food-web structure and function.
Trophic cascades occur when changes in abundance of one
species, often a top predator, has alternating positive and
negative effects moving down food chains, leading to sig-
nificantly altered community structure and function (Frank
et al. 2005). Within population behavioural differences, as
a source of intraspecific variability affecting trophic interac-
tions, are likely to alter the magnitude of trophic cascades.
Harmon et al. (2009) showed that within-population differ-
ences in feeding behaviour of three-spined sticklebacks had
community-level effects in mesocosms. Treatments showed
that the structure of prey communities differed between
systems with generalist-feeding fish versus systems that con-
tained specialized-feeding types (both benthic and limnetic
feeders). Keiser et al. (2015) similarly used mesocosms to
show how the composition of behavioural types in spider
populations influenced the extent of leaf damage in plants
via indirect effects on their herbivores. These studies suggest
that behavioural traits should be a key focus as we explore
the community effects of intraspecific variability, through
mechanisms including altered predator/prey functional
responses and mean interaction strengths across food-webs
(Bolnick et al. 2011).

A significant body of evidence shows that tempera-
ment traits are a source of intraspecific variation in food-
web interactions, including in susceptibility to predation
(Adamo et al. 2013) and foraging choices/ methods (David
etal. 2012, Rockwell et al. 2012). There is less known about
the relative effects of behaviour and other individual-level
traits, such as metabolic and physiological differences,
in food-webs (Moya-Larano 2011). Although evidence
points to temperament altering interactions in a way that
is likely to enhance stability and persistence in food webs,
further research is required to establish whether the effects
of temperament on trophic interactions are sufficiently
large to induce structural and dynamic differences at the
community level.

Temperament’s role in adaptive trophic behaviour

Adaptive trophic behaviour influences both the structural
and dynamic characteristics of food webs (Valdovinos et al.
2010). ATB includes both adaptive foraging, i.e. adjusting
foraging efforts to factors such as changing prey abundance,
and the ability to respond adaptively to the animals that
consume them, i.e. predator response. Various approaches
have been used to incorporate ATB into dynamic food-web
modelling, generally by altering the functional responses of
species to prey and predator species to a non-linear adaptive
response (Valdovinos et al. 2010). This work generally shows
that the presence of adaptive behaviour alters the commu-
nity responses to environmental perturbations, enhanc-
ing plasticity in the food-web structure and producing
more permanent, persistent food webs (Uchida et al. 2007,
Heckmann et al. 2012). The effects of adaptive behaviour
on food-web structure as predicted by models tend to show
higher numbers of species and increased trophic levels (Guill



and Drossel 2008), suggesting adaptive behaviour is an
important characteristic within ecosystems underpinning
biodiversity.

The relationship between ATB and temperament is
complex, where rigid behavioural types can be seen as
inhibiting an animal’s optimum behavioural response to
ecological conditions, potentially negatively influenc-
ing individual fitness and inhibiting ATB (Conrad et al.
2011, Sih et al. 2012). Nonetheless, temperament traits
are only partially repeatable and the plastic component of
behavioural reactions still allows individuals to adaptively
respond to environmental stimuli (Dingemanse et al. 2010).
For example, in the crab Panopeus herbstii, their func-
tional response to a prey species — the mussel Brachidontes
exustus — was related to their individual activity level, but
this functional response changed in the presence of a crab
predator independently of the effects of activity (Toscano
and Griffen 2014). Furthermore, experimental studies sug-
gest that there may be ontogenic effects on temperament
traits due to various ecological pressures, including diet
variability (Chapman et al. 2010), food resource compe-
tition (McGhee and Travis 2011) and predator exposure
(Adamo et al. 2013). This requires further exploration of the
how consistency in temperament traits interact with behav-
ioural plasticity, particularly understanding the dual roles
of genetics and environmental conditions in determining
behavioural types (Brown et al. 2007, van Oers and
Mueller 2010). This will allow behavioural adaptability to
be more effectively incorporated into our understanding of
community stability.

Conclusions

Both behavioural ecology and community ecology are
rapidly evolving. In behavioural ecology there is increas-
ing interest in the role of individual temperament as a
process underpinning natural selection and evolution
(Réale et al. 2007, Wolf and Weissing 2012). In food-web
ecology, increasingly sophisticated modelling approaches
are seeking to understand the processes that underpin
trophic structure, including through the use of individual-
based models (Thompson et al. 2012b). However there
are remarkably few studies at the nexus of these two dis-
ciplines, where many key questions remain unresolved.
Viewing temperament studies in the light of community
analysis, it is clear that there is potential for animal behav-
iour to influence food-web topology and dynamics, includ-
ing apparently stabilizing effects. These stability effects are
critical to how we understand complexity and biodiversity
within natural food webs, and can contribute to resolving
the biodiversity paradox. The relationship between tem-
perament and stability is also critical to our understating
of how individual behavioural differences develop in popu-
lations, particularly if temperament is a positive force on
community stability simply as an emergent property of a
population’s competitive and predator—prey interactions.
This would represent an ecological pressure encouraging
the development and maintenance of individual behav-
ioural differences and potentially account for the apparent
non-adaptive nature of certain individual behavioural types
(Borrelli et al. 2015).

Although there is significant evidence of an interactive
relationship between an animal’s trophic environment and
animal temperament, it is unlikely that these responses are
linear due to the multiplicity of factors that can influence
temperament traits, e.g. abiotic effects (Frost et al. 2013),
social effects (Webster and Ward 2011, Jolles et al. 2013) and
mating behaviours (Magnhagen et al. 2014). Understanding
and incorporating the non-linear nature of behavioural traits
into food-web dynamics will be a significant challenge to
community ecologists in the future. Nonetheless, as we con-
tinue to explore the dynamics of individual behaviour and of
communities, it is clear that they are mutually relevant and
their integration is a critical future step.

Future research questions

1) Animals can show intraspecific differences in their abil-
ity to adapt to changing food sources. How does the
mean and variance of adaptive behavioural types within a
population influence their collective adaptive ability?

2) How do multiple interactions, such as competition and
predation, combine to influence temperament in popula-
tions? Are their influences non-independent?

3) Hows significant are the effects of intraspecific behavioural
variability on food-web structure and trophic cascades
relative to other intraspecific traits, such as morphologi-
cal or physiological traits? How do behavioural and mor-
phological/ physiological effects on food webs interact?

4) How does the combination of plasticity and repeatability
in temperament traits influence the functional response
of a species with a predator or prey species, and what are
the relative influences of plasticity and repeatability on
predator—prey interactions?

5) How do the dual effects of temperament in constraining
and facilitating adaptive responses to ecological pressures
influence dynamic food-web modelling?
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