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ABSTRACT
Driven by endeavors towards Industry 4.0, there is increasing interest
in augmented reality (AR) as an approach for assistance in areas
like picking, assembly and maintenance. In this work our focus is
on AR-based assistance in manual assembly. The design space for
AR instructions in this context includes, e.g., side-by-side, 3D or
projected 2D presentations. In previous research, the low quality
of the AR devices available at the respective time had a significant
impact on performance evaluations. Today, a proper and up-to-date
comparison of different presentation approaches is missing.

This paper presents an improved 3D in-situ instruction and com-
pares it to previously presented techniques. All instructions are
implemented on up-to-date AR hardware, namely the Microsoft
HoloLens. To support reproducible research, the comparison is made
using a standardized benchmark scenario. The results show, contrary
to previous research, that in-situ instructions on state-of-the-art AR
glasses outperform side-by-side instructions in terms of errors made,
task completion time, and perceived task load.
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1 INTRODUCTION
While the digital office can be considered the norm today in many
businesses, digitalization has not yet reached classic industrial work-
spaces. Manual assembly tasks often still rely on paper instructions.
However, within the context of Industry 4.0 [8] and in particular
the goal of a highly variable manufacturing with a batch size of
one, a change towards using modern technologies is at stake. Where
automation is not possible, assistive systems can help workers to
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maintain or even increase their productivity under this increased task
load. They can moreover help integrating and training people with
cognitive disabilities [16] by giving instructions and monitoring, e.g.,
the state of assembly.

Augmented reality is capable of projecting assistive instructions
in-view of the user or directly in-situ at the object-of-interest. Projec-
tions can be in 2D or in 3D, e.g., when using binocular AR glasses.
A variety of different AR devices (projectors, tablets, monocular and
binocular glasses) and approaches for giving instructions have been
presented. In the past, many evaluations compared AR instructions
separately to classic - e.g. paper-based - instructions. Past mobile AR
devices thereby often had performance issues leading to slow and in-
stable tracking [14, 26] or a low visual fidelity due to low-resolution
displays [13]. Only recently mobile AR devices with reasonable
processing power, tracking accuracy and latency, as well as display
quality were released to the market, e.g. Microsoft HoloLens.

In this work, our aim is to evaluate assembly instructions on AR
glasses. In past experiments these performed worse than projection-
based approaches [5], but there was already some evidence that ap-
proaches on modern AR glasses may perform similarly well with the
advantage of not being bound to a specific workspace [4]. Previous
comparisons also indicated that side-by-side instructions outperform
in-situ instructions using AR glasses [14]. However, we anticipate
that these results do no longer hold in light of modern hardware.
Therefore, in this paper we focus on the comparison of different in-
situ and side-by-side instructions for an assembly task which were
implemented on a Microsoft HoloLens. In order to generate repro-
ducible results, we chose a standardized study scenario, originally
proposed by Funk et al. [6], where a pick-and-assemble task using
LEGO DUPLO bricks has to be solved by study participants.

We evaluated four different AR instruction techniques for placing
a brick in this scenario: An improved 3D in-situ visualization of the
brick matching the exact target position, orientation, and color; a 2D
in-situ visualization simulating a projected instruction; an animated
wireframe representation of the brick, which should avoid occlusions
of the target assembly position; and a side-by-side instruction based
on the approach proposed by Khuong et al. [14], which contains all
previously assembled bricks.

2 RELATED WORK
Assistive systems have recently reached various areas of Industry 4.0.
The continuing development of AR hardware bears a huge potential
for increasing productivity.

2.1 Picking Tasks
Picking tasks are a classic application area for AR assistance. Using
AR glasses, the picker can be guided towards the target shelf in
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a hands-free manner. Schwerdtfeger et al. [24] visualize either a
compass combined with a rubber line leading to the target drawer
or a tunnel showing the way towards it. Reif et al. [20] compare
a similar approach using a tunnel of circles as well as a contour
highlight at the drawer to classic paper-based guidance. Another
evaluation was conducted by Guo et al. [9]: They compare HUD
information on AR glasses and a display mounted on a cart to classic
picking lights (small lamps at each drawer indicating the relevant
drawers to pick from). The results of these evaluations suggest that
AR-based picking guidance outperforms classic techniques.

For more complex environments, such as industry halls with a
number of shelves to pick from, a combination of techniques can be
useful. Henderson et al. [12] propose a combination of 2D and 3D
arrows for huge orientation changes, highlights when targets come
into the AR FOV and finally fading out all visualizations in order
to prevent them from occluding targets. In the work presented in
this paper, the picking subtask comprises a small set of options, all
within reaching distance and in the field-of-view of the participant.
We thus followed the advice and only used unobtrusive highlights to
guide the user towards the correct picking target.

2.2 Assembly Tasks
In contrast to guiding techniques for picking tasks, in the area of
assembly the focus lies on how to conduct actions in a correct way.
This begins with choosing the correct objects (materials or tools)
in the workspace, which can be supported by highlighting them [3].
Instructions how to conduct an action can, e.g., be provided using
video recordings played in the user’s FOV [18]. Petersen et al. [19]
extend this approach by in-situ projections of previously recorded
videos directly as an overlay to the current situation. They moreover
analyze the current status and provide feedback by colorizing the
user’s hands.

Pure virtual instructions can be provided in various ways. A
straight-forward approach is to project them directly into the work-
space at the task relevant location [17]. This approach has been
shown to support product assembly without prior knowledge [22]. A
comparison of in-view instructions on AR glasses with tablet or pa-
per instructions revealed that only visualizing the paper instructions
on mobile devices does not improve performance of workers [7].

To improve over static instructions, Gupta et al. [10] track the
orientation of the current part and show instructions on a monitor
matching the part’s orientation. Their system outperformed tradi-
tional paper instructions in terms of speed and accuracy. Using AR
glasses, in-situ instructions can be given in 3D: Alvarez et al. [1] used
augmented in-situ instructions for speeding up disassembly tasks.
Objects to disassemble can be highlighted and an arrow shows the
direction of the action to conduct. Stanimirovic et al. [25] use a tablet
computer for showing in-situ visualizations in form of superimposed
3D animations and additional billboarded textual descriptions. Also
in a LEGO DUPLO assembly scenario, Khuong et al. [14] proposed
a side-by-side visualization for instructing workers. Compared to a
wireframe-based in-situ instruction, their results show that spatial
separation of the real and the virtual model performed better than
the target-aligned in-situ variant. They argue that in-situ projections
are sensitive to misalignment, latency and conflicting depth cues.

However, they state that overlaid in-situ instructions could reduce
spatial ambiguity when those issues were solved.

This is the starting point of the work presented here: Our claim is
that current AR glasses have overcome latency and accuracy issues
in an extent that in-situ instructions should actually perform best
in terms of speed and accuracy compared to both other instruction
techniques on AR glasses and instructions on other devices. First
evidence supporting this claim has been found in our prior work [4].
The 3D in-situ visualization used there, however, was not optimal, as
AR objects sometimes occluded already placed real objects, which
made the disambiguation of the correct placement difficult. In the
improved version presented in this paper, occlusions of AR objects
by real objects are taken into account. To substantiate our claim,
we implemented AR instructions similar to the ones proposed by
Khuong et al. [14] and the improved 3D in-situ instruction in our
evaluation.

2.3 Projected and Mobile Augmented Reality
Assistive systems based on AR not only differ in their user interface
design, but also in the device used for presentation. Projected AR
led to promising results concerning task performance [22, 23] in the
past. Korn et al. [15–17] used projected AR to help people with cog-
nitive disabilities in the workplace by displaying in-situ instructions
and monitoring the current assembly state. Rodriguez et al. [21]
even used projection mapping for visualizing information correctly
overlaid to objects in the workspace. An evaluation conducted by
Funk et al. [7] suggests that projected in-situ AR performs better
than in-view instructions using either an HMD, a tablet or paper-
based instructions. However, projected AR has the disadvantage
of being bound to a specific workspace. It cannot move with the
worker like AR glasses do. Moreover, projections are limited to 2D.
In our evaluation, we focus on AR glasses especially because of the
advantage of 3D visualizations. To learn about the impact of 2D vs.
3D visualizations, we also evaluate a 2D in-situ instruction.

2.4 Evaluation Scenario
In the literature, mostly two different scenarios for evaluating as-
sistance in assembly tasks were chosen: For maximizing realism,
workbench scenarios are used (e.g. in [1, 2]) or specific areas of ap-
plication like furniture assembly [11] or notebook maintenance [19].
The other range of scenarios abstracts from real tasks, e.g., by using
LEGO bricks [10, 14, 17]. Funk et al. [6] proposed a standard-
ized scenario for comparing different instruction techniques. It en-
compasses a picking part as well as a placing part using LEGO
DUPLO bricks. In that scenario, already a number of studies was
conducted [4, 7]. We adopted this scenario to support the work on
standardized procedures for benchmarking different AR instruction
designs in a reproducible way.

3 IMPLEMENTATION OF THE
INSTRUCTION TECHNIQUES

The assembly environment introduced by Funk et al. [6] can be split
into two areas: The spare part area containing eight blue container
bins and the assembly area with a green 24x24 Lego Duplo plate.
Therefore the needed AR instructions can also be split into two
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Figure 1: The standardized assembly scenario (Reality), the computerized augmentations on the Microsoft HoloLens (Augmentation)
and the result (Augmented Reality). The Augmentations (from top to bottom): 3D in-situ instructions (1), 2D in-situ instructions (2),
3D animated wireframe instructions (3) and side-by-side instructions (4)

categories: Picking instructions (for the container bins) and assembly
instructions (on the Lego Duplo plate).

For the picking instructions Funk et al. [7] and Blattgerste et
al. [4] both highlighted the corresponding container of the current
brick of the assembly task. While Funk et al. [7] highlighted the top
of the entrance of the container bin, in [4] we used a cross-hair to
point to the correct container bin. We were able to show that this
significantly reduced errors while picking a brick. Therefore we use
a similar approach in this experiment, but instead of a cross-hair,
which could possibly mask the entrance and make it harder to see the
bricks inside the container bins, we decided to highlight the whole
front side of the container in the corresponding color. This scheme
was used for picking support in each evalauted instruction approach
since we are mainly interested in the instructions for the assembly
phase.

Similar to our previous experiment [4], we place an AR marker
between both areas for the spatial registration between the physical
space and the AR models. A visual anchor (chain-symbol) is visu-
alized in AR directly overlapping to the physically counterpart to
allow the user a visual estimation of registration precision.

For the AR assembly instructions we compare the following four
approaches:

3.1 3D in-situ Instructions
The static 3D in-situ instructions (Figure 1.1) mainly follow the
approach we introduced in [4]. A basic cuboid with the size and
color of the corresponding brick is displayed at the exact target
location of the current step of the task. We continue to argue that
displaying an actual model of a LEGO DUPLO brick would not
give any advantages over a plain cuboid in the scenario, it would
only increase visual clutter. The results of the previous experiment
showed that participants had problems with the interpretation of the
visualization, as it did not consider the occlusion of the new block by
previously placed (real) bricks. In the discussion, we argued that this
problem, at least partially, could have been the reason for the high
amount of errors we observed during the assembly phase [4] (0.92
errors per participant and task, resulting in a 2.875% chance for an
error per placement). In the study at hand, we thus implemented a
correct handling of occlusions to create a proper visualization of the
expected target state.

3.2 2D in-situ Instructions
The static 2D in-situ instructions (Figure 1.2) simulate the projected
AR introduced by Funk et al. [7], where the position of the current
step of the assembly task is displayed as a highlight in a color match-
ing that of the target block and not as an actual 3D object. Similar to
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the 3D in-situ instructions, occlusion by previously placed bricks are
taken into account, as this would have been the case in real projected
AR, too. However, we did not explicitly implement false positives,
i.e. the overlapping of projected target positions with already placed
bricks at higher positions in off-center positions. These effects might
happen when projections do not correctly compensate for the 3D
structures currently on the workplace.

3.3 Animated 3D in-situ Wireframe
The 3D in-situ instructions with the animated wireframe (Figure 1.3)
are based on the in-situ wireframe approach that was introduced
by Khuong et al. [14]. Similar to their implementation, we use a
wireframe with the corresponding size and color of the brick. We
furthermore also attach an animation to it to suggest the snapping-in
of that brick during assembly. Beside the animated wireframe of the
current step, Khuong et al. [14] also displayed the previous layer of
bricks as a static wireframe because they believed that this has the
potential to reduce spatial ambiguity. In our implementation, we only
display the animated wireframe of the current step as we believe AR
tracking is already stable enough, therefore those problems should
no longer occur and this would only add unnecessary clutter. As the
assembly task that was used with their implementation was built
upwards, they did not have potential occlusion of previously placed
bricks. We therefore advance their implementation by adding the
occlusion of previously placed bricks similar to the 3D and 2D
in-situ instructions.

3.4 Side-by-side Instructions
The side-by-side in-situ instructions (Figure 1.4) also follow an im-
plementation approach of Khuong et al. [14] where the instructions
are not displayed directly aligned with but separately beside the
assembly task. Furthermore not only the current brick of the task is
displayed but everything that was build up to this point. While they
displayed the instructions diagonally to the assembled figure with
the same size, our implementation slightly differs. As the assembly
task introduced by Funk et al. [6] is larger and shaped like an L, we
had to display the instructions smaller (factor: 0.6) to fit them inside
the L-shape for a fair comparison. If, e.g., the side-by-side instruc-
tions would have been placed with their original size at the same
position, they would have occluded the actual assembled figure; if
they would have been placed strictly beside the whole figure, an
unfair disadvantage for this approach would have been introduced
as additional head movement would have been necessary to get the
visualization covered by the AR display. As every approach beside
this one was an in-situ approach, we also displayed the side-by-side
instructions in-situ but mounted them on a differently colored plate
so participants would not get confused and try to place the bricks
directly onto the displayed absolute position.

Feedback from participants in a non-representative preliminary
study strongly suggested that an animation on the side-by-side in-
structions had "no benefit and was unnecessary" as it did not help to
make the instructions more clear but introduced additional clutter.
Therefore we furthermore altered the side-by-side instructions by
replacing the animation of the current brick with an arrow. Using
arrows for showing AR instructions already proved to be an intuitive
approach in previous research [1, 12].

4 EXPECTATIONS
In contrast to previous work we believe that with the improved
tracking of modern AR glasses like the Microsoft HoloLens, in-situ
AR instructions should outperform side-by-side AR instructions in
assembly tasks regarding task completion time, errors made and task
load. Furthermore, when asked to rank the different approaches, we
believe that participants correctly perceive in-situ instructions as
being faster simply because the instructions are directly projected
onto the actual assembly position. Moreover, we expect participants
to falsely perceive side-by-side instructions as being more accurate,
as the full assembly status up to the current brick is visualized and
is always consistent (e.g. no tracking latencies/swimming). We also
believe that, while all in-situ instructions should perform equally
in terms of task completion time, 3D in-situ instructions should
outperform 2D in-situ instructions with regard to errors made and
task load.

5 METHODOLOGY
The experiment was conducted as a repeated measures experiment
with the independent variable being the four approaches of AR
instructions for placing bricks in assembly tasks. The dependent
variables were task completion time, NASA (Raw) TLX score, errors
made, and subjective rating of the instructions by the participants.

To make the results comparable we used the exact same 32-brick
assembly task of [6] for every condition. To counterbalance possible
bias due to order effects and especially learning effects, we used
each permutation of the 4 AR instructions in one trial, thus each of
the N=24 participants tested the instructions in different order.

To collect qualitative results, we asked the participants to fill out
the NASA TLX questionnaire after each condition. After completion
of all conditions, we asked the participants to rank the AR instruc-
tions with regard to speed, accuracy, learnability, usefulness, joy of
use and preference.

For the quantitative results we filmed the participants while com-
pleting each assembly task, which allowed us to annotate the errors
participants made. The system also recorded the time participants
needed to place one brick by logging the time difference between
two clicks of the HoloLens Clicker, as explained later.

5.1 Apparatus
The apparatus (Figure 3) of the experiment consisted of a table
containing the assembly environment, a chair, a 360 degrees camera,
the Microsoft HoloLens and an explanation sheet.

The assembly environment closely followed the standardized
LEGO DUPLO assembly task introduced by Funk et al. [6] and
therefore consisted of two areas, the spare part area containing 8
blue container bins where bricks in different colors were stored, and
the assembly area with a green 24x24 LEGO DUPLO plate. Similar
to our previous work [4], an AR marker was added between those
areas for the initial registration of the tracking. The container bins,
the green plate and the AR marker were all fixed to the table. The
Microsoft HoloLens was the AR glasses of choice for this experi-
ment, as it provides stable tracking at low latencies. The AR marker
was only used to initially register the physical assembly environ-
ment with the virtual model. Then this registration was passed to
the "spatial tracking" of the HoloLens, which was exclusively used
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Figure 2: The procedure of a participant searching for the correct container and grabbing a brick (1), searching for correct assemble
position (2) and assembling the brick (3)

Figure 3: The apparatus consisting of the LEGO DUPLO as-
sembly task that was used for the experiment and the 360 de-
grees camera.

for tracking from then on. While the HoloLens still has technical
limitations, such as the small FOV of 30 x 17 degrees, it allows for
AR tracking without any accuracy issues in a sitting experience like
in this experiment.

Furthermore, the 360 degree camera was placed to the left of
the assembly environment to catch every hand movement of the
participants and especially also the inside of the container bins. The
explanation sheet for the AR instructions was placed to the right of
the container bins.

5.2 Procedure
First, participants were asked to sign a declaration of consent and
fill out a demographic questionnaire. After completing those, they
were asked to sit down at the assembly environment. They were
given a general explanation of the assembly environment and their
impending task. Then they were introduced to the HoloLens and the
4 different AR instruction approaches were explained with the help
of an explanation sheet that also contained a graphic for each AR
instruction approach.

After communicating that they understood the experiment and
the instructions, the HoloLens calibration tool was started and the
participants were asked to put on the Microsoft HoloLens.

After calibrating the device, the application for the experiment
was started. Participants were asked to look at the green LEGO DU-
PLO plate and assemble the two red bricks that were now displayed
as a part of the calibration-process. After placing those two bricks
they were asked if the AR instructions and the real brick perfectly
align. If they didn’t, the experimenter was able to remotely correct
the offset using a bluetooth keyboard.

The participants where then introduced to the HoloLens Clicker,
a small handheld device with one button, that was used to forward to
the next step of the task. They were explained that they can solve the
task with either the right or the left hand and are supposed to hold
the Clicker in the opposite one. Furthermore, they were instructed
that they were supposed to press the Clicker once initially for the
first brick and then always at the exact moment they released a brick
from their hands after placing it. They were told that the first priority
of the experiment was to finish the task without errors and the second
priority to do this as fast as possible.

Participants then started with one of the four AR instruction ap-
proaches. First they were asked to solve a test task containing 8 steps
to get used to the currently displayed AR instruction approach. Af-
terwards the 360 degrees camera was started and participants solved
the 32 step assembly task (Figure 2) with the same AR instruction
approach. After completing the task, the camera was stopped and
they were handed the associated NASA TLX questionnaire. This
was repeated for the three remaining AR instruction approaches.

After completing all conditions, they were finally handed the
questionnaire that asked them to rank the approaches and then gave
them the opportunity to write down comments, observations or sug-
gestions regarding the experiment.

5.3 Participants
We conducted the experiment with 24 participants. The participants
were aged between 18 and 31 (average = 23.72, SD = 3.17) and 13 of
them were female. Most participants were students of our university.

6 RESULTS
As objective measures we recorded the task completion times and
the errors participants made. Moreover, we let the participants report
about their task load using the NASA TLX questionnaire after every
condition. Finally, a ranking questionnaire had to be filled out. In
the following, we report our measurements.
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Figure 4: The time participants needed from picking a brick
until placing it, using the different instruction techniques.

The completion times, the number of errors and the TLX scores
have been statistically compared between the four instruction tech-
niques using a one-way repeated measures ANOVA. When the
ANOVA showed a significant difference between systems, pair-
wise comparisons have been conducted using paired t-tests with
Bonferroni-Holm correction.

6.1 Task Completion Times
As we are interested only in the time needed to place a brick and
thus kept picking assistance the same in all conditions, it is not
necessary to divide task completion time in four different phases
(tlocate, tpick, tlocate_pos, tassemble) as done in Funk et al. [6]. The
first two phases measure the time until a brick is picked. In our
case, we do not consider these. Therefore, we focus on the time
spent on locating the correct assembly position. Participants clicked
whenever having placed a brick. The time between two clicks thus
encompasses all four phases, but as the picking guidance is constant
over all conditions, only tlocate_pos and tassemble are supposed to
differ due to the instruction techniques. We suppose that placing the
brick (tassemble) thereby is not strongly influenced by the instruction
technique.

Figure 4 shows that the 3D in-situ instructions led to the fastest
time for placing a brick. Participants needed on average 3.88 s
(SD=1.04 s) using this technique. The side-by-side technique re-
quired most time to place a brick with a mean of 4.47 s (SD=2.27 s).
In between, the 2D in-situ instructions lead to a task-completion-
time of 4.07 s (SD=1.40 s) and using the animated in-situ wireframe,
participants needed 4.21 s (SD=3.42 s). An ANOVA showed a sig-
nificant difference between the systems, p < .01. The post-hoc tests
revealed that the 3D in-situ required significantly less time for plac-
ing a brick than the side-by-side instructions (p < .005).

6.2 Average Number of Errors
The errors while assembling the bricks were counted. Overall, errors
occurred seldom (see Figure 5): On average, participants made errors
in 1.17 % (SD=2.37 %) of all brick placements. Being instructed
by the 3D in-situ technique, only one participant made a single
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Figure 5: The percentage of erroneous attempts participants
made in placing bricks. Error bars depict the standard error
of the mean.
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Figure 6: The task load participants reported when being in-
structed by the different techniques (NASA-TLX).

error at all, which equals 0.13 % overall. Using the other techniques,
more errors were made. The animated in-situ wireframe instruction
lead to 1.3 % errors (SD=2.24 %), the 2D in-situ instruction lead to
1.43 % errors (SD=2.91 %). Most errors were made using the side-
by-side instructions with an average of 1.82 % errors (SD=2.75 %).
An ANOVA showed a significant difference between the systems,
p < .05. However, the post-hoc tests only revealed trends that the
3D in-situ instructions could reduce errors being made, especially
compared to the side-by-side technique (p = .055).

6.3 Task Load
As illustrated by Figure 6, participants reported the least task load
when using the 3D in-situ instruction technique with a mean TLX
score of 29.6 (SD=17.4). The animated wireframe lead to a slightly
higher TLX score of 32.8 (SD=21.9), followed by the side-by-side
instructions which had a mean TLX score of 36.7 (SD=20.0). Par-
ticipants reported the highest task load when being instructed using
the 2D in-situ instructions with a score of 37.6 (SD=24.4). However,
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an ANOVA did not show significant differences between these task
load values.

6.4 Rankings
After finishing the experiment, participants were asked to report
their subjective preferences regarding the four instruction techniques
by rank-ordering them according to different categories: Speed,
accuracy, learnability, usefulness, joy of use, and overall preference.

Regarding subjective speed, 50% of the participants thought that
the 3D in-situ instructions helped them most to solve the task quickly.
The other half shared their votes equally among the other three
instruction techniques. In terms of subjective accuracy, in contrast
to the objective results 45.8% of the participants considered the side-
by-side instructions as most accurate, followed by the 3D in-situ
instructions with 29.2%. The in-situ wireframe instructions were
rated as most accurate by only 16.7%, the 2D in-situ instructions
by 8.3%. At the other end, most often rated as least accurate were
the side-by-side instructions (37.5% of the participants) and the 2D
in-situ instructions (29.2%). Most participants regarded the 3D in-
situ instructions (41.7%) and the side-by-side instructions (33.3%)
as best learnable, followed by the wireframe in-situ instructions
(20.8%), while only 4.2% of the participants considered the 2D
in-situ instructions as easiest to learn.

Since the ordering can be considered as a forced-choice situa-
tion, we applied Fisher’s exact test to analyze the respective con-
tingency tables. Significant associations between instruction tech-
niques and rankings were found regarding speed (p < .01), accuracy
(p < .01), learnability (p < .05) and joy of use (p < .05), but not
regarding usefulness or overall preference. Pairwise post-hoc tests
using Wilcoxon signed-rank tests with Bonferroni-Holm correction
showed that our 3D in-situ instructions were rated significantly bet-
ter than the 2D in-situ approach in the categories speed (p < .05),
learnability (p < .01) and joy of use (p < .05). The animated in-situ
wireframe also ranked significantly higher than the 2D approach
regarding joy of use (p < .05). No other significant pairwise differ-
ences were found.

7 DISCUSSION
Both the objective and the subjective results strongly suggest that
our main expectation was met: The 3D in-situ instruction technique
required least time for participants to fulfill their task and they made
least errors using it. Especially in comparison to the side-by-side
instructions, this technique was significantly faster. Moreover, partic-
ipants reported the lowest task load with the 3D in-situ technique. In
contrast to the findings in Khuong et al. [14], in this evaluation, the
side-by-side technique led to the slowest task completion time, most
errors and high task load. Thus, we believe that we could meet the
proposed criteria of Khuong et al. [14] for successfully using in-situ
AR visualizations: We established a solid tracking using the Mi-
crosoft HoloLens and ensured a stable high frame rate. The correct
handling of occlusions by real objects seems to improve the error
rate, which went down from 2.875% per placement in our previous
work [4] to only 0.13% in this study. This way, it was possible to
benefit from the theoretical advantages of in-situ visualizations.

Regarding task completion time, the 2D in-situ instructions and
the animated 3D wireframe instructions required slightly more time

than the 3D in-situ technique. We believe that the 2D instructions
make it more difficult to disambiguate a 3D position, which could
also be the reason for higher task load. In case of the 3D wireframe,
we could observe participants waiting for the animation to finish,
leading to longer time for placing a brick.

In comparison to our previous experiment [4], the number of
errors made by the participants using all the in-situ instructions is
considerably lower. In [4] we stated that the high number of average
errors results from not correctly handling occlusions by real objects
in the visualizations. Thus we believe that handling occlusions is
indeed a crucial factor for making in-situ visualizations unambigu-
ous. Additionally, 2D in-situ instructions seem not to be sufficient
to clearly reference a 3D position, leading to more errors. The wire-
frame technique might suffer from its animation: Participants could
misinterpret the moving location of a visualized brick and thus tend
to make more errors. The 3D in-situ instruction technique did not
suffer from these issues, thus participants made nearly no errors
using it.

Observing the subjective ratings participants made regarding the
speed of the techniques, these are in line with the objective results
and our expectations. However, the ratings concerning accuracy
interestingly are basically divided into two groups: One that consid-
ered the 3D in-situ instructions as most accurate and the side-by-side
instructions relatively inaccurate and nearly one half that regarded
the side-by-side instructions as most accurate. Thus, our expectation
that side-by-side instructions are falsely rated as very accurate can
only partly be confirmed, nearly one third of the participants rated
the 3D in-situ technique in line with the objective results.

8 CONCLUSION
In our evaluation, we compared four approaches for assembly as-
sistance: Three different 3D in-situ instruction approaches, and a
side-by-side instruction approach in a LEGO DUPLO assembly sce-
nario. Our contribution is two-fold: Firstly, we have shown that –
in contrast to findings in the past – in-situ instruction techniques
using AR glasses outperform the side-by-side variant when ensuring
a stable and accurate tracking and a high frame rate. In addition
to these technical requirements, handling occlusions of the visual-
izations by real objects was identified as a crucial factor. This is in
line with the assumptions of Khuong et al. [14], whose evaluation
was in favor of side-by-side instructions but suffered from problems
concerning tracking accuracy. Secondly, our comparison of different
in-situ instruction techniques revealed that in terms of task comple-
tion time, errors and task load, a static 3D visualization performs
better than both a 2D projection and animated 3D instructions using
a wireframe instead of a solid geometry.

Building on these findings, in future experiments we plan to also
evaluate the influence of FOV size of AR devices, which could addi-
tionally influence the performance of in-situ instruction techniques.
Furthermore, we will switch from the relatively simple assembly
task of placing LEGO DUPLO bricks to more complex task which,
e.g., require bi-manual interaction and placements in more arbitrary
orientations.
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